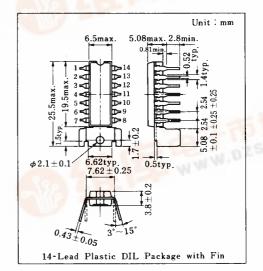
WWW.0ZSC.COM 捷多邦,专业PCB打样工厂,24小时加

AN7114

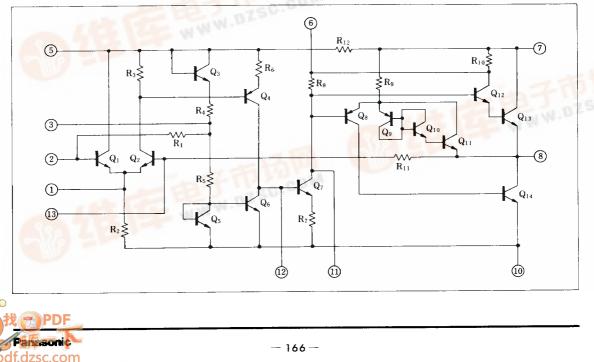
AN7114

ラジオ、 査询ANZ114供应商 IC


1W低周波電力增幅回路/1W Audio Power Amplifier Circuit

■ 概 要/Description

AN 7114 は, 電源電圧 6 V, 負荷 4 Ω で 1 W の出力が得られるオ ーディオ出力用半導体集積回路です。 無信号時の電流が少なく, 乾電池動作のカセットテープレコーダ, ラジオ, ポータブルレコ ードプレヤなどの出力段に好適です。

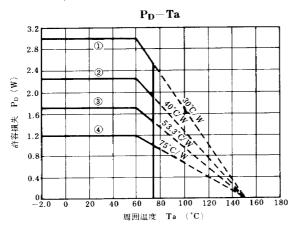

■ 特 徵/Features

- ●低電圧動作で高出力: P₀=1W typ.(6V,4Ω)
- ●無信号時の電流が少ない
- ●フィン付 14 ピンプラスチック DIL パッケージ
- High power output at low voltage : $P_0 = 1 \text{ W typ. } (6 \text{ V}, 4 \Omega)$
- Low quiescent current
- •14-lead dual-in-line plastic package with fin go GOM WWW.

<u> 马</u>山伐

| 等価回路/Schematic Diagram

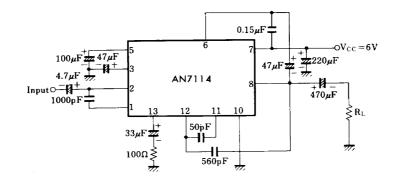
ラジオ,オーディオ用IC


Item	Symbol	Rating	Unit
電源電圧	Vcc	11	v
電源電流	I _{CC(peak)}	1.5	Α
許容損失(Ta ≤ 60°C)	P _D	1.2(2.25*)	W
動作周囲温度	Topr	$-20 \sim +70$	°C
保存温度	T _{stg}	-40~+150	°C

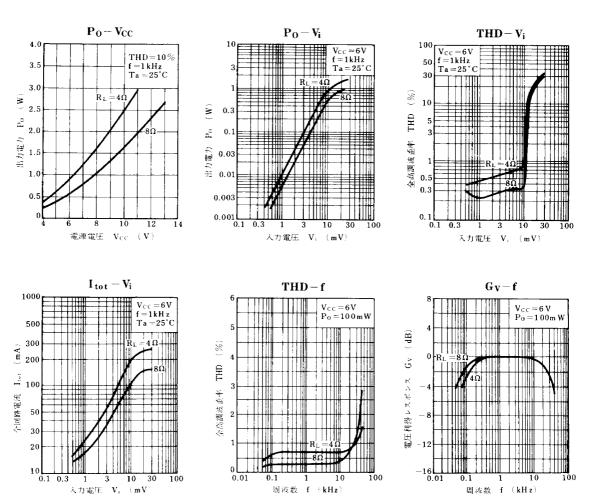
■ 絶対最大定格/Absolute Maximum Ratings (Ta = 25°C)

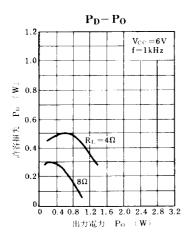
* 50×50mm 銅箔付プリント基板使用。

■ 電気的特性/Electrical Characteristics ($V_{CC} = 6 V$, $R_L = 4 \Omega$, f = 1 kHz, $Ta = 25^{\circ}C$)

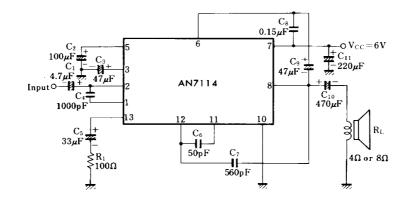

Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
静止回路電流	I _{CQ}	1	$\mathbf{V}_i = 0$		15	25	mA
開回路電圧利得	Gvo		$\mathbf{V}_{\mathrm{i}}=0$. 2 mV		70		dB
閉回路電圧利得	Gvc	1	$V_i = 5 mV$	42	45	48	dB
出力電力 Po	1	$\mathrm{THD}=10~\%$	0.65	1		W	
	.		$V_{CC}=6~V,~R_L=8~\Omega,~THD=10~\%$		0.6		w
	Po		$V_{CC} = 7.5 V, R_L = 4 \Omega, THD = 10\%$	0.95	1.5		W
		$V_{CC} = 7.5 V, R_L = 8 \Omega, THD = 10\%$	-	0.9		W	
全高調波歪率	THD	1	$\mathbf{V}_{i} = 5 \mathbf{mV}$		0.5	1.5	%
	1	$R_g = 10 k\Omega$			3	mV	
出力雑音電圧	Vno		$R_g = 0$			1	mV
入力インピーダンス	Zi			12	20		kQ

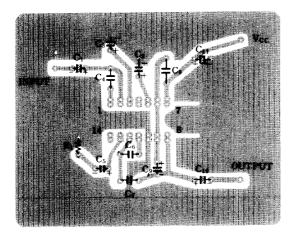
- printed circuit board ④ Without heat sink


Test Circuit 1



Panasonic




Panasonic

■ 応用回路例/Application Circuit

■ プリント板パターン例/Printed Circuit Board Layout

$R_1 = 100 \Omega$	$C_5 = 33 \ \mu F$
	$C_6 = 50 \mathrm{pF}$
	$C_7 = 560 \mathrm{pF}$
$C_1 = 4.7 \ \mu F$	$C_8=0.15~\mu F$
$C_2 = 100 \ \mu F$	$C_9 = 47 \ \mu F$
$C_3 = 47 \ \mu F$	$\mathbf{C}_{10} = 470 \ \mu \mathbf{F}$
$C_4 = 1000 pF$	$C_{11} = 220 \ \mu F$

