捷多邦,专业PCB打样工厂,24小时加急出货

November 1993

National Semiconductor

NMC27C64 65,536-Bit (8192 x 8) CMOS EPROM

General Description

The NMC27C64 is a 64K UV erasable, electrically reprogrammable and one-time programmable (OTP) CMOS EPROM ideally suited for applications where fast turnaround, pattern experimentation and low power consumption are important requirements.

The NMC27C64 is designed to operate with a single +5V power supply with $\pm 10\%$ tolerance. The CMOS design allows the part to operate over extended and military temperature ranges.

The NMC27C64Q is packaged in a 28-pin dual-in-line package with a quartz window. The quartz window allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written electrically into the device by following the programming procedure.

The NMC27C64N is packaged in a 28-pin dual-in-line plastic molded package without a transparent lid. This part is ideally suited for high volume production applications where cost is an important factor and programming only needs to be one once.

This family of EPROMs are fabricated with National's proprietary, time proven CMOS double-poly silicon gate technology which combines high performance and high density with low power consumption and excellent reliability.

Block Diagram

DATA OUTPUTS 00-07 VCC O GND O VPP O OUTPUT ENABLE **DF** PGM Pin Names AND CHIP ENABLE LOGIC OUTPUT BUFFERS ĈĒ A0-A12 Addresses CE Chip Enable ŌĒ Output Enable Y GATING DECODER Outputs $O_0 - O_7$ PGM Program A0-A12 Address Inputs NC No Connect 65.538-BIT х VPP Programming ٠ DECODER CELL MATRIX . Voltage Vcc **Power Supply** GND Ground TL/D/8634-1 TRI-STATE[®] is a registered trademark of National Semiconductor Corp. NSC800™ is a trademark of National Semiconductor Corp.

Features

High performance CMOS — 150 ns access time

- 28-pin DIP package

- 32-pin chip carrier

JEDEC standard pin configuration

Manufacturers identification code

Drop-in replacement for 27C64 or 2764

© 1996 National Semiconductor Corporation TL/D/8634

RRD-B30M17/Printed in U.S.A.

http://www.national.com

NMC27C64 65,536-Bit (8192 x 8) CMOS EPROM

Connection Diagram

27C512 27512	27C256 27256	27C128 27128	27C32 2732	27C16 2716	NMC27C64Q/N Dual-In-Line Package		27C16 2716	27C32 2732	27C128 27128	27C256 27256	27C51 27512	
A15	VPP	VPP			V _{PP} 1	28	- vcc			V _{CC}	V _{CC}	V _{CC}
A12	A12	A12			A12 — 2	2 27	PGM			PGM	A14	A14
A7	A7	A7	A7	A7	A7 — 3	3 26	NC	V _{CC}	V _{CC}	A13	A13	A13
A6	A6	A6	A6	A6	A6 — 4	1 25	- A8	A8	A8	A8	A8	A8
A5	A5	A5	A5	A5	A5 — 5	5 24	- A9	A9	A9	A9	A9	A9
A4	A4	A4	A4	A4	A4 6	i 23	A11	V _{PP}	A11	A11	A11	A11
A3	A3	A3	A3	AЗ	A3 — 7	22	- ÖE	ŌĒ	OE/V _{PP}	ŌĒ	ŌĒ	OE/V
A2	A2	A2	A2	A2	A2 8	3 21	- A10	A10	A10	A10	A10	A10
A1	A1	A1	A1	A1	A1 — 9	20	ĈE	CE/PGM	CE	CE	CE/PGM	CE
A0	A0	A0	A0	A0	A0 1	0 19	07	07	07	07	07	07
O0	O ₀	O ₀	O0	O ₀	0 0 1	11 18	06	O ₆	0 ₆	0 ₆	0 ₆	06
0 ₁	0 ₁	01	01	01	0 ₁ 1	12 17	— 0 ₅	05	0 ₅	05	0 ₅	05
O ₂	O2	O2	02	O2	0 ₂ 1	13 16	04	04	O4	04	04	04
GND	GND	GND	GND	GND	GND 1	4 15	- 0 ₃	03	O3	03	O3	03

TL/D/8634-2

Note: Socket compatible EPROM pin configurations are shown in the blocks adjacent to the NMC27C64 pins.

Commercial Temperature Range

v	cc	=	5V	±	10%	
---	----	---	----	---	-----	--

Parameter/Order Number	Access Time (ns)
NMC27C64Q, N150	150
NMC27C64Q, N200	200
NMC27C64Q, N250	250

Extended Temp Range (-40° C to $+85^{\circ}$ C) V_{CC} = 5V ± 10%

Parameter/Order Number	Access Time (ns)
NMC27C64QE150	150
NMC27C64QE200	200

Military Temp Range (-55°C to + 125°C) $V_{\text{CC}}=$ 5V \pm 10%

Parameter/Order Number	Access Time (ns)
NMC27C64QM200	200
NMC27C64QM250	250

Absolute Maximum Ratings (Note 1)

J J J J J J J J J J							
If Military/Aerospace specifie please contact the Nationa Office/Distributors for availab	I Semiconductor Sales						
Temperature Under Bias	-55°C to +125°C						
Storage Temperature	-65°C to +150°C						
All Input Voltages except A9 with Respect to Ground (Note 10)	∩ +6.5V to −0.6V						
All Output Voltages with Respect to Ground (Note 10)	V_{CC} + 1.0V to GND - 0.6V						
V _{PP} Supply Voltage and A9 with Respect to Ground During Programming	+ 14.0V to -0.6V						

V _{CC} Supply Voltage with Respect to Ground	+7.0V to -0.6V			
Power Dissipation	1.0W			
Lead Temperature (Soldering, 10 sec.)	300°C			
ESD Rating (Mil Spec 883C, Method 3015.2)	2000V			
Operating Conditions (Note 7)				

Temperature Range	
NMC27C64Q150, 200, 250	0°C to +70°C
NMC27C64N150, 200, 250	
NMC27C64QE150, 200	-40°C to +85°C
NMC27C64QM200, M250	-55°C to +125°C
V _{CC} Power Supply	$+5V \pm 10\%$

READ OPERATION

DC Electrical Characteristics

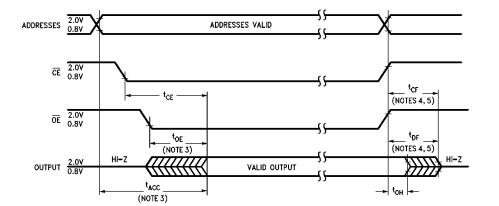
Symbol	Parameter	Conditions	Min	Тур	Max	Units
lu -	Input Load Current	$V_{IN} = V_{CC} \text{ or } GND$			10	μΑ
ILO	Output Leakage Current	$V_{OUT} = V_{CC} \text{ or GND, } \overline{CE} = V_{IH}$			10	μΑ
I _{CC1} (Note 9)	V _{CC} Current (Active) TTL Inputs	$\overline{CE} = V_{IL}$, f = 5 MHz Inputs = V _{IH} or V _{IL} , I/O = 0 mA		5	20	mA
I _{CC2} (Note 9)	V _{CC} Current (Active) CMOS Inputs	\overline{CE} = GND, f = 5 MHz Inputs = V _{CC} or GND, I/O = 0 mA		3	10	mA
I _{CCSB1}	V _{CC} Current (Standby) TTL Inputs	CE = V _{IH}		0.1	1	mA
I _{CCSB2}	V _{CC} Current (Standby) CMOS Inputs	$\overline{CE} = V_{CC}$		0.5	100	μΑ
I _{PP}	V _{PP} Load Current	$V_{PP} = V_{CC}$			10	μΑ
VIL	Input Low Voltage		-0.1		0.8	V
VIH	Input High Voltage		2.0		V _{CC} + 1	V
V _{OL1}	Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$			0.45	V
V _{OH1}	Output High Voltage	$I_{OH} = -400 \ \mu A$	2.4			V
V _{OL2}	Output Low Voltage	$I_{OL} = 0 \ \mu A$			0.1	V
V _{OH2}	Output High Voltage	$I_{OH} = 0 \ \mu A$	V _{CC} - 0.1			v

AC Electrical Characteristics

					NMC27	C64Q/N			
Symbol	Parameter	Conditions	150,	E150	200, E2	00, M200	250,	M250	Units
			Min	Max	Min	Мах	Min	Max	
t _{ACC}	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$ $\overline{PGM} = V_{IH}$		150		200		250	ns
t _{CE}	CE to Output Delay	$\overline{OE} = V_{IL}, \overline{PGM} = V_{IH}$		150		200		250	ns
t _{OE}	OE to Output Delay	$\overline{CE} = V_{IL}, \overline{PGM} = V_{IH}$		60		60		70	ns
t _{DF}	OE High to Output Float	$\overline{CE} = V_{IL}, \overline{PGM} = V_{IH}$	0	60	0	60	0	60	ns
t _{CF}	CE High to Output Float	$\overline{OE} = V_{IL}, \overline{PGM} = V_{IH}$	0	60	0	60	0	60	ns
^t OH	Output Hold from Addresses, CE or OE, Whichever Occurred First	$\overline{CE} = \overline{OE} = V_{IL}$ $\overline{PGM} = V_{IH}$	0		0		0		ns
	•				•			•	·

Capacitance T_A = +25°C, f = 1 MHz (Note 2) NMC27C64Q

Symbol	Parameter	Conditions	Тур	Max	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	6	8	рF
Соит	Output Capacitance	V _{OUT} = 0V	9	12	рF


Capacitance $T_A = +25^{\circ}C$, f = 1 MHz (Note 2) NMC27C64N

Symbol	Parameter	Conditions	Тур	Max	Units
CIN	Input Capacitance	$V_{IN} = 0V$	5	10	рF
COUT	Output Capacitance	V _{OUT} = 0V	8	10	рF

AC Test Conditions

Output Load	1 TTL Gate and $C_L = 100 \text{ pF}$ (Note 8)	Timing Measurement Reference Level Inputs	0.8V and 2V
Input Rise and Fall Times	≤5 ns	Outputs	0.8V and 2V
Input Pulse Levels	0.45V to 2.4V		

AC Waveforms (Notes 6 & 9)

TL/D/8634-3

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: This parameter is only sampled and is not 100% tested.

Note 3: $\overline{\text{OE}}$ may be delayed up to $t_{ACC} - t_{OE}$ after the falling edge of $\overline{\text{CE}}$ without impacting t_{ACC} .

Note 4: The t_{DF} and t_{CF} compare level is determined as follows: High to TRI-STATE, the measured V_{OH1} (DC) - 0.10V; Low to TRI-STATE, the measured V_{OL1} (DC) + 0.10V.

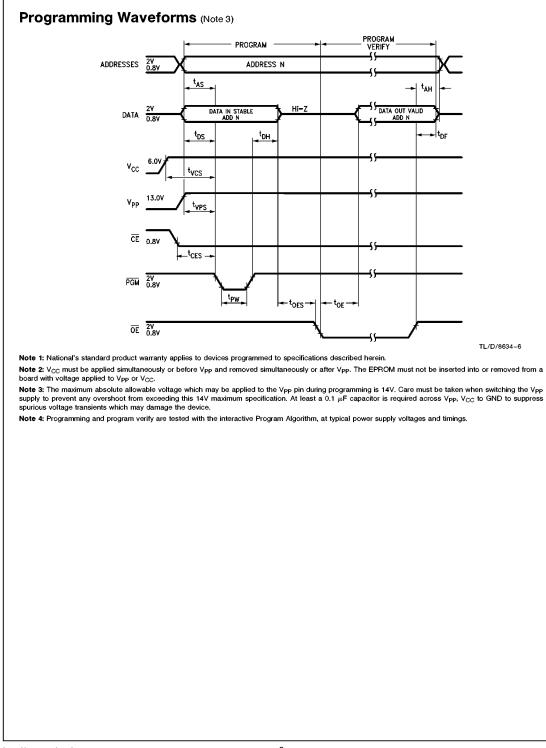
Note 5: TRI-STATE may be attained using \overline{OE} or \overline{CE} .

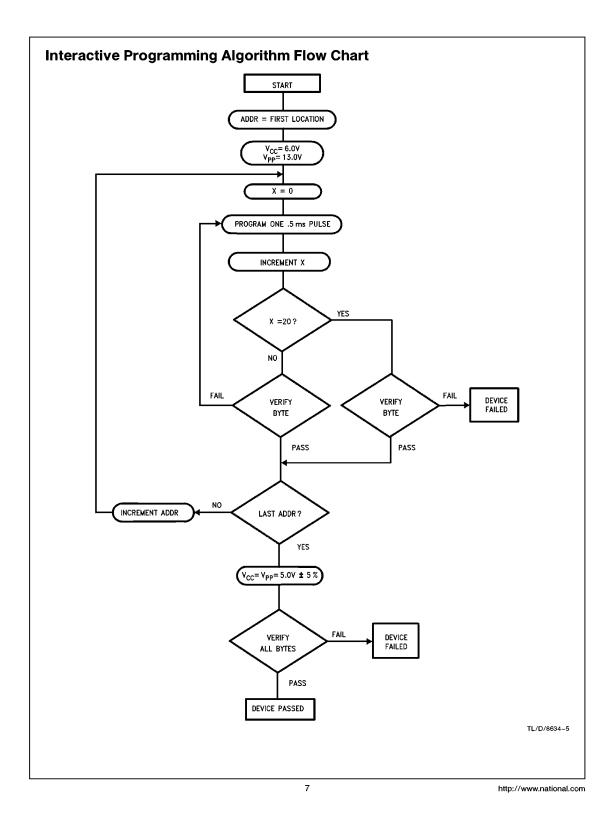
Note 6: The power switching characteristics of EPROMs require careful device decoupling. It is recommended that at least a 0.1 µF ceramic capacitor be used on every device between $V_{\mbox{CC}}$ and GND.

Note 7: The outputs must be restricted to V_{CC} + 1.0V to avoid latch-up and device damage.

Note 8: 1 TTL Gate: $I_{OL} = 1.6 \text{ mA}, I_{OH} = -400 \mu \text{A}.$

CL: 100 pF includes fixture capacitance.


Note 9: $V_{\mbox{PP}}$ may be connected to $V_{\mbox{CC}}$ except during programming. Note 10: Inputs and outputs can undershoot to -2.0V for 20 ns Max.


tagAddress Setup Time21tocs \overline{OE} Setup Time211tcss \overline{CE} Setup Time211tpsData Setup Time211typsVpp Setup Time211tvrsVcC Setup Time211tvrsVcC Setup Time211tvrsVcC Setup Time211thAAddress Hold Time01301tppOutput Enable to Output Float Delay $\overline{CE} = V_{IL}$ 0130tpwProgram Pulse Width0.450.50.551tceData Valid from \overline{OE} $\overline{CE} = V_{IL}$ 1501lppVpp Supply Qurent During $\overline{CE} = V_{IL}$ 3010tract20253011tract10013.311tract10013.31tract2025301VcCSupply Voltage5.756.06.25VpProgramming Supply Voltage12.213.013.3tractInput High Notage2.44.01ViLInput Timing Reference Voltage0.81.52.0toutOutput Timing Reference Voltage0.81.52.0toutOutput Timing Reference Voltage0.81.52.0
t_{CES} \overline{CE} Setup Time21 t_{CES} \overline{CE} Setup Time21 t_{NS} $Data$ Setup Time21 t_{VPS} V_{PP} Setup Time21 t_{VCS} V_{CC} Setup Time21 t_{AH} Address Hold Time01 t_{DH} Data Hold Time21 t_{DH} Data Hold Time21 t_{DF} Output Enable to Output Float Delay $\overline{CE} = V_{IL}$ 0130 t_{PW} Program Pulse Width0.450.50.551 t_{OE} Data Valid from \overline{OE} $\overline{CE} = V_{IL}$ 150150 lpp Vpp Supply Current During Programming Pulse $\overline{CE} = V_{IL}$ 3010 T_A Temperature Ambient20253010 V_{CC} Power Supply Voltage5.756.06.2512.2 V_{PP} Programming Supply Voltage12.213.013.315 t_{FR} Input Rise, Fall Time5111 V_{IL} Input High Voltage2.44.011 V_{IH} Input Timing Reference Voltage0.81.52.01
t_{DS} Data Setup Time21 t_{DS} V_{PP} Setup Time21 t_{VCS} V_{CC} Setup Time21 t_{AH} Address Hold Time01 t_{DH} Data Hold Time21 t_{DH} Data Hold Time21 t_{DH} Data Hold Time21 t_{DH} Data Hold Time2130 t_{PW} Program Pulse to Output Float Delay $\overline{CE} = V_{IL}$ 0130 t_{PW} Program Pulse Width0.450.50.55 t_{OE} Data Valid from \overline{OE} $\overline{CE} = V_{IL}$ 1501 lpp V_{PP} Supply Current During Programming Pulse $\overline{CE} = V_{IL}$ 3010 I_{CC} V_{CC} Supply Current10101 T_A Temperature Ambient2025301 V_{CC} Power Supply Voltage5.756.06.251 V_{PP} Programming Supply Voltage12.213.013.31 t_{FR} Input Rise, Fall Time5111 V_{IL} Input Low Voltage2.44.011 V_{IH} Input High Voltage0.81.52.01
v_{VPS} V_{PP} Setup Time21 v_{VCS} V_{CC} Setup Time21 t_{AH} Address Hold Time01 t_{DH} Data Hold Time21 t_{DH} Data Hold Time21 t_{DF} Output Enable to Output Float Delay $\overline{CE} = V_{IL}$ 0130 t_{PW} Program Pulse Width0.450.50.551 t_{OE} Data Valid from \overline{OE} $\overline{CE} = V_{IL}$ 150150 IPP V_{PP} Supply Current During Programming Pulse $\overline{CE} = V_{IL}$ 3010 T_A Temperature Ambient20253010 V_{CC} Power Supply Voltage5.756.06.2510 V_{PP} Programming Supply Voltage12.213.013.313.3 t_{FR} Input Rise, Fall Time5111 V_{IL} Input High Voltage2.44.011 v_{IN} Input Timing Reference Voltage0.81.52.01
V_{VCS} V_{CC} Setup Time21 t_{AH} Address Hold Time01 t_{DH} Data Hold Time21 t_{DF} Output Enable to Output Float Delay $\overline{CE} = V_{IL}$ 0130 t_{PW} Program Pulse Width0.450.50.55 t_{OE} Data Valid from \overline{OE} $\overline{CE} = V_{IL}$ 150 Ipp V_{PP} Supply Current During Programming Pulse $\overline{CE} = V_{IL}$ 30 Icc V_{CC} Supply Current1010 T_A Temperature Ambient202530 V_{CC} Power Supply Voltage5.756.06.25 V_{PP} Programming Supply Voltage12.213.013.3 t_{FR} Input Rise, Fall Time511 V_{IL} Input High Voltage2.44.01 t_{N} Input Timing Reference Voltage0.81.52.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Dr. tpFOutput Enable to Output Float Delay $\overline{CE} = V_{IL}$ 0130tpWProgram Pulse Width0.450.50.55toEData Valid from \overline{OE} $\overline{CE} = V_{IL}$ 150lpPVpp Supply Current During Programming Pulse $\overline{CE} = V_{IL}$ 30lcCV_{CC} Supply Current10T_ATemperature Ambient2025VpPProgramming Supply Voltage5.756.0VpPProgramming Supply Voltage12.213.0ValueInput Rise, Fall Time51VILInput High Voltage2.44.0tyNInput Timing Reference Voltage0.81.5202.44.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
t_{OE} Data Valid from \overline{OE} $\overline{CE} = V_{IL}$ 150Ipp V_{PP} Supply Current During Programming Pulse $\overline{CE} = V_{IL}$ $\overline{PGM} = V_{IL}$ 30Icc V_{CC} Supply Current10T_ATemperature Ambient2025 V_{CC} Power Supply Voltage5.756.0 V_{PP} Programming Supply Voltage12.213.0 V_{RR} Input Rise, Fall Time5 V_{IL} V_{IL} Input Low Voltage2.44.0 V_{IN} Input Timing Reference Voltage0.81.52.0
$\begin{array}{ c c c c c c c } & V_{PP} \mbox{Supply Current During} & \hline CE = V_{IL} \\ \hline PGM = V_{IL} & & & & & & & & & & \\ \hline PGM = V_{IL} & & & & & & & & & & & \\ \hline PGM = V_{IL} & & & & & & & & & & & & \\ \hline I_{CC} & V_{CC} \mbox{Supply Current} & & & & & & & & & & & & & & & & \\ \hline T_A & Temperature Ambient & & & & & & & & & & & & & & & \\ \hline T_C & Power \mbox{Supply Voltage} & & & & & & & & & & & & & & \\ \hline V_{CC} & Power \mbox{Supply Voltage} & & & & & & & & & & & & & & \\ \hline V_{CC} & Power \mbox{Supply Voltage} & & & & & & & & & & & & & \\ \hline V_{PP} & Programming \mbox{Supply Voltage} & & & & & & & & & & & & & \\ \hline V_{PP} & Programming \mbox{Supply Voltage} & & & & & & & & & & & & & \\ \hline V_{PP} & Programming \mbox{Supply Voltage} & & & & & & & & & & & & & \\ \hline V_{IL} & Input \mbox{Rise, Fall Time} & & & & & & & & & & & & & & & & \\ \hline V_{IL} & Input \mbox{Low Voltage} & & & & & & & & & & & & & & & & \\ \hline V_{IH} & Input \mbox{High Voltage} & & & & & & & & & & & & & & & & & \\ \hline V_{IH} & Input \mbox{High Voltage} & & & & & & & & & & & & & & & & & & &$
Programming Pulse $\overrightarrow{PGM} = V_{IL}$ <th< td=""></th<>
T _A Temperature Ambient 20 25 30 V _{CC} Power Supply Voltage 5.75 6.0 6.25 V _{PP} Programming Supply Voltage 12.2 13.0 13.3 t _{FR} Input Rise, Fall Time 5
V _{CC} Power Supply Voltage 5.75 6.0 6.25 V _{PP} Programming Supply Voltage 12.2 13.0 13.3 t _{FR} Input Rise, Fall Time 5
Vpp Programming Supply Voltage 12.2 13.0 13.3 tFR Input Rise, Fall Time 5 VIL Input Low Voltage 0.0 0.45 VIH Input High Voltage 2.4 4.0 tIN Input Timing Reference Voltage 0.8 1.5 2.0
tFR Input Rise, Fall Time 5 VIL Input Low Voltage 0.0 0.45 VIH Input High Voltage 2.4 4.0 tIN Input Timing Reference Voltage 0.8 1.5 2.0
VIL Input Low Voltage 0.0 0.45 VIH Input High Voltage 2.4 4.0 1 t _{IN} Input Timing Reference Voltage 0.8 1.5 2.0
VIH Input High Voltage 2.4 4.0 tIN Input Timing Reference Voltage 0.8 1.5 2.0
t _{IN} Input Timing Reference Voltage 0.8 1.5 2.0
t _{OUT} Output Timing Reference Voltage 0.8 1.5 2.0

5

Functional Description

DEVICE OPERATION

The six modes of operation of the NMC27C64 are listed in Table I. It should be noted that all inputs for the six modes are at TTL levels. The power supplies required are V_{CC} and V_{PP} . The V_{PP} power supply must be at 13.0V during the three programming modes, and must be at 5V in the other three modes. The V_{CC} power supply must be at 6V during the three programming modes, and at 5V in the other three modes.

Read Mode

The NMC27C64 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. The programming in (PGM) should be at V_{IH} except during programming. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs to_{CE} after the falling edge of \overline{OE} , assuming that A_{CC} -to_E.

The sense amps are clocked for fast access time. V_{CC} should therefore be maintained at operating voltage during read and verify. If V_{CC} temporarily drops below the spec. voltage (but not to ground) an address transition must be performed after the drop to insure proper output data.

Standby Mode

The NMC27C64 has a standby mode which reduces the active power dissipation by 99%, from 55 mW to 0.55 mW. The NMC27C64 is placed in the standby mode by applying a CMOS high signal to the \overline{CE} input. When in standby mode, the outputs are in a high impedance state, independent of the \overline{OE} input.

Output OR-Tying

Because NMC27C64s are usually used in larger memory arrays, National has provided a 2-line control function that accommodates this use of multiple memory connections. The 2-line control function allows for:

a) the lowest possible memory power dissipation, and

b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that \overline{CE} (pin 20) be decoded and used as the primary device selecting function, while \overline{OE} (pin 22) be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby modes and that the output pins are active only when data is desired from a particular memory device.

Programming

CAUTION: Exceeding 14V on pin 1 (V_{PP}) will damage the NMC27C64.

Initially, all bits of the NMC27C64 are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" will be programmed, both "1s" and "0s" can be presented in the data word. A "0" cannot be changed to a "1" once the bit has been programmed.

The NMC27C64 is in the programming mode when the V_{PP} power supply is at 13.0V and \overline{OE} is at V_{IH}. It is required that at least a 0.1 μ F capacitor be placed across V_{PP}, V_{CC} to ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

For programming, \overline{CE} should be kept TTL low at all times while V_{PP} is kept at 13.0V.

When the address and data are stable, an active low, TTL program pulse is applied to the \overline{PGM} input. A program pulse must be applied at each address location to be programmed. The NMC27C64 is designed to be programmed with interactive programming, where each address is programmed with a series of 0.5 ms pulses until it verifies (up to a maximum of 20 pulses or 10 ms). The NMC27C64 must not be programmed with a DC signal applied to the \overline{PGM} input.

Programming multiple NMC27C64s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled NMC27C64s may be connected together when they are programmed with the same data. A low level TTL pulse applied to the \overrightarrow{PGM} input programs the paralleled NMC27C64s. If an application requires erasing and reprogramming, the NMC27C64Q UV erasable PROM in a windowed package should be used.

Pins Mode	CE (20)	<u>OE</u> (22)	PGM (27)	V _{РР} (1)	V _{CC} (28)	Outputs (11-13, 15-19
Read	VIL	VIL	VIH	5V	5V	D _{OUT}
Standby	VIH	Don't Care	Don't Care	5V	5V	Hi-Z
Output Disable	Don't Care	VIH	VIH	5V	5V	Hi-Z
Program	VIL	VIH		13V	6V	D _{IN}
Program Verify	VIL	VIL	VIH	13V	6V	DOUT
Program Inhibit	VIH	Don't Care	Don't Care	13V	6V	Hi-Z

Functional Description (Continued)

Program Inhibit

Programming multiple NMC27C64s in parallel with different data is also easily accomplished. Except for \overline{CE} all like inputs (including \overline{OE} and \overline{PGM}) of the parallel NMC27C64 may be common. A TTL low level program pulse applied to an NMC27C64's PGM input with \overline{CE} at V_{IL} and V_{PP} at 13.0V will program that NMC27C64. A TTL high level \overline{CE} input inhibits the other NMC27C64s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine whether they were correctly programmed. The verify may be performed with V_{PP} at 13.0V. V_{PP} must be at V_{CC}, except during programming and program verify.

MANUFACTURER'S IDENTIFICATION CODE

The NMC27C64 has a manufacturer's identification code to aid in programming. The code, shown in Table II, is two bytes wide and is stored in a ROM configuration on the chip. It identifies the manufacturer and the device type. The code for the NMC27C64 is "8FC2", where "8F" designates that it is made by National Semiconductor, and "C2" designates a 64k part.

The code is accessed by applying 12V \pm 0.5V to address pin A9. Addresses A1–A8, A10–A12, \overline{CE} , and \overline{OE} are held at V_{IL}. Address A0 is held at V_{IL} for the manufacturer's code, and at V_{IH} for the device code. The code is read out on the 8 data pins. Proper code access is only guaranteed at 25°C \pm 5°C.

The primary purpose of the manufacturer's identification code is automatic programming control. When the device is inserted in a EPROM programmer socket, the programmer reads the code and then automatically calls up the specific programming algorithm for the part. This automatic programming control is only possible with programmers which have the capability of reading the code.

ERASURE CHARACTERISTICS

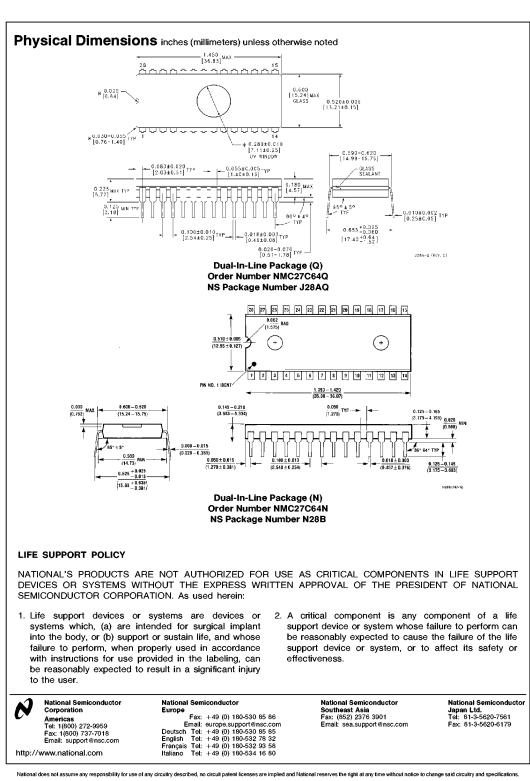
The erasure characteristics of the NMC27C64 are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000Å-4000Å range.

After programming, opaque labels should be placed over the NMC27C64's window to prevent unintentional erasure. Covering the window will also prevent temporary functional failure due to the generation of photo currents. The recommended erasure procedure for the NMC27C64 is exposure to short wave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity x exposure time) for erasure should be a minimum of 15W-sec/cm².

The NMC27C64 should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure. Table III shows the minimum NMC27C64 erasure time for various light intensities.

An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at one inch. The erasure time increases as the square of the distance. (If distance is doubled the erasure time increases by a factor of 4.) Lamps lose intensity as they age. When a lamp is changed, the distance has changed or the lamp has aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been erroneously suspected when incomplete erasure was the problem.

SYSTEM CONSIDERATION


The power switching characteristics of EPROMs require careful decoupling of the devices. The supply current, I_{CC}, has three segments that are of interest to the system designer-the standby current level, the active current level, and the transient current peaks that are produced by voltage transitions on input pins. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. The associated V_{CC} transient voltage peaks can be suppressed by properly selected decoupling capacitors. It is recommended that at least a 0.1 uF ceramic capacitor be used on every device between V_{CC} and GND. This should be a high frequency capacitor of low inherent inductance. In addition, at least a 4.7 μF bulk electrolytic capacitor should be used between $V_{\mbox{CC}}$ and GND for each eight devices. The bulk capacitor should be located near where the power supply is connected to the array. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of the PC board traces.

P	ins A ₀ O ₇ O ₆ O ₅ (10) (19) (18) (17)				O ₄ (16)	O ₃ (15)	O ₂ (13)	0 ₁ (12)	O ₀ (11)	Hex Data	
Manufac	turer Code	VIL	1	0	0	0	1	1	1	1	8F
Device C	Code	VIH	1	1	0	0	0	0	1	0	C2
		(Micro-\		-				linutes)			
	TABLE III. Minimum NMC Light Intensity				Erasure Time						
		1:	5,000					20			
	10,000				25						
	5,000				50						

TABLE II. Manufacturer's Identification Code

NMC27C64 65,536-Bit (8192 x 8) CMOS EPROM

