

4556 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0025-0101Z Rev.1.01 2003.09.17

DESCRIPTION

The 4556 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has one or two reload register), a 16-bit timer for clock count, interrupts, and oscillation circuit switch function.

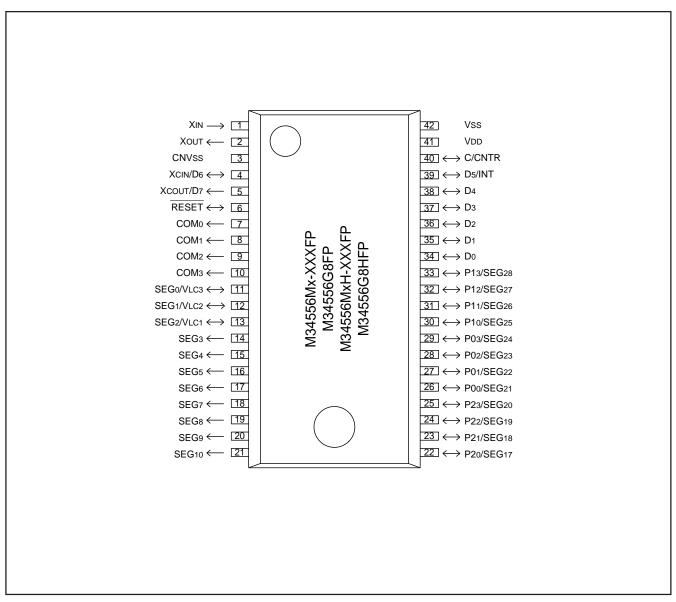
The various microcomputers in the 4556 Group include variations of the built-in memory size as shown in the table below.

FEATURES

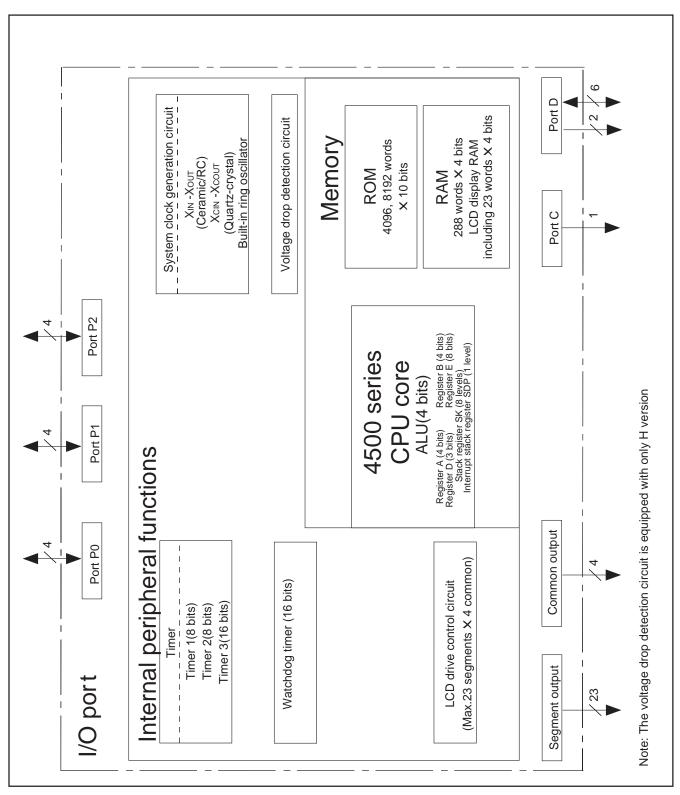
eration mode)

●Interrupt	4 sources
●Key-on wakeup function pins	9
● LCD control circuit	
Segment output	23
Common output	4
■Voltage drop detection circuit (only H version)	
Reset occurrenceTyp. 1.8 V (Ta	a = 25 °C)
Reset releaseTyp. 1.9 V (Ta	a = 25 °C)

- Watchdog timer
- Clock generating circuit
 Built-in clock
 (built-in ring oscillator)
 Main clock
 (ceramic resonator/RC oscillation)
 Sub-clock
 (quartz-crystal oscillation)


 LED drive directly enabled (port D)
- APPLICATION

Remote control transmitter


	Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
	M34556M4-XXXFP	4096 words	288 words	42P2R-A	Mask ROM
dno	M34556M8-XXXFP	8192 words	288 words	42P2R-A	Mask ROM
l g	M34556G8FP (Note)	8192 words	288 words	42P2R-A	One Time PROM
4556	M34556M4H-XXXFP	4096 words	288 words	42P2R-A	Mask ROM
45	M34556M8H-XXXFP	8192 words	288 words	42P2R-A	Mask ROM
	M34556G8HFP (Note)	8192 words	288 words	42P2R-A	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4556 Group)

Block diagram (4556 Group)

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

PERFORMANCE OVERVIEW

	Parar	nete	r	Function					
Number of basic	M345	56M	4/M8/G8	123					
instructions	M34556M4H/M8H/G8H		4H/M8H/G8H	124					
Minimum insti	ruction	exe	cution time	0.5 μs (at 6 MHz oscillation frequency, in through mode)					
Memory sizes	ROM	МЗ	4556M4	4096 words X 10 bits					
		МЗ	4556M4H						
		МЗ	4556M8/G8	8192 words X 10 bits					
		МЗ	4556M8H/G8H						
	RAM	МЗ	4556M4/M8/G8	288 words X 4 bits (including LCD display RAM 23 words X 4 bits)					
		M34	556M4H/M8H/G8H						
Input/Output ports	Do-D	5	I/O	Six independent I/O ports. Input is examined by skip decision. The output structure can be switched by software. Port D5 is also used as INT pin.					
	D6, D	7	Output	Two independent output ports. Ports D6 and D7 are also used as XCIN and XCOUT, respectively.					
	P00-F	2 03	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P00–P03 are also used as SEG21–SEG24, respectively.					
	P10-P13 I/O		I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P10–P13 are also used as SEG25–SEG28, respectively.					
	P20-P23		I/O	4-bit I/O port; The output structure can be switched by software. Ports P20–P23 are also used as SEG17–SEG20, respectively.					
	С		Output	1-bit output; Port C is also used as CNTR pin.					
Timers	Timer 1			8-bit programmable timer with a reload register and has an event counter.					
	Timer 2			8-bit programmable timer with two reload registers and PWM output function.					
	Timer 3			16-bit timer, fixed dividing frequency (timer for clock count)					
	Timer LC			4-bit timer with a reload register (for LCD clock)					
	Watch	ndog	timer	16-bit timer (fixed dividing frequency) (for watchdog)					
LCD control	Selec	tive	bias value	1/2, 1/3 bias					
circuit	Selec	tive	duty value	2, 3, 4 duty					
	Comn	non	output	4					
	Segm	ent	output	23					
	Intern powe		esistor for oply	$2r \times 3$, $2r \times 2$, $r \times 3$, $r \times 2$ ($r = 80 \text{ k}\Omega$, (Ta = 25 °C, Typical value))					
Interrupt	Sourc	es		4 (one for external, three for timer)					
	Nestir	ng		1 level					
Subroutine ne	sting			8 levels					
Device structu	ıre			CMOS silicon gate					
Package				42-pin plastic molded SSOP (42P2R-A)					
Operating temperature range		ange	−20 °C to 85 °C						
Supply	Mask	ROI	M version	1.8 to 5.5 V (It depends on operation source clock, oscillation frequency and operation mode)					
voltage	One 7	Time	PROM version	2.5 to 5.5 V (It depends on operation source clock, oscillation frequency and operation mode)					
Power	Active	mo	de	2.2 mA (at room temperature, $VDD = 5 \text{ V}$, $f(XIN) = 6 \text{ MHz}$, $f(XCIN) = \text{stop}$, $f(RING) = \text{stop}$,					
dissipation				f(STCK) = f(XIN)/1)					
(Typ.value)	At clo	ck o	perating mode	6 μ A (at room temperature, VDD = 5 V, f(XCIN) = 32 kHz)					
	At RAM back-up			0.1 μ A (at room temperature, VDD = 5 V, output transistor is cut-off state)					

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

PIN DESCRIPTION

Pin	Name	Input/Output	Function						
VDD	Power supply	_	Connected to a plus power supply.						
Vss	Ground	_	Connected to a 0 V power supply.						
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.						
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer or the voltage drop detection circuit cause the system to be reset, the RESET pin outputs "L" level.						
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. A feedback resistor is built-in between them.						
Xout	Main clock output	Output	When using the RC oscillation, connect a resistor and a capacitor to XIN, and XOUT pin open.						
XCIN	Sub-clock input	Input	I/O pins of the sub-clock generating circuit. Connect a 32.768 kHz quartz-crystal oscilla-						
XCOUT	Sub-clock output	Output	tor between pins XCIN and XCOUT. A feedback resistor is built-in between them. XCIN and XCOUT pins are also used as ports D6 and D7, respectively.						
D0-D5	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D5 is also used as INT pin.						
D6, D7	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is N-channel open-drain. Ports D6 and D7 are also used as XCIN pin and XCOUT pin, respectively.						
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P00–P03 are also used as SEG21–SEG24, respectively.						
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P10–P13 are also used as SEG25–SEG28, respectively.						
P20-P23	I/O port P2	I/O	Port P2 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports P20–P23 are also used as SEG17–SEG20, respectively.						
Port C	Output port C	Output	1-bit output port. The output structure is CMOS. Port C is also used as CNTR pin.						
COM ₀ –	Common output	Output	LCD common output pins. Pins COMo and COM1 are used at 1/2 duty, pins COMo-COM2 are used at 1/3 duty and pins COMo-COM3 are used at 1/4 duty.						
SEG0-SEG10 SEG17-SEG28 (Note)	Segment output	Output	LCD segment output pins. SEG0-SEG2 pins are used as VLC3-VLC1 pins, respectively. SEG17-SEG28 pins are used as Ports P20-P23, Ports P00-P03 and Ports P10-P13, respectively.						
CNTR	Timer input/output	I/O	CNTR pin has the function to input the clock for the timer 1 event counter and to output the PWM signal generated by timer 2.CNTR pin is also used as Port C.						
INT	Interrupt input	Input	INT pin accepts external interrupts. They have the key-on wakeup function which can be switched by software. INT pin is also used as Port D5.						

Note: SEG11 to SEG16 pins are not existed in the 4556 Group.

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
XCIN	D6	D6	XCIN	P20	SEG17	SEG17	P20
Хсоит	D7	D7	XCOUT	P21	SEG18	SEG18	P21
P00	SEG21	SEG21	P00	P22	SEG19	SEG19	P22
P01	SEG22	SEG22	P01	P23	SEG20	SEG ₂₀	P23
P02	SEG23	SEG23	P02	D ₅	INT	INT	D5
P03	SEG24	SEG24	P03	С	CNTR	CNTR	С
P10	SEG25	SEG25	P10	SEG ₀	VLC3	VLC3	SEG ₀
P11	SEG26	SEG26	P11	SEG1	VLC2	VLC2	SEG1
P12	SEG27	SEG27	P12	SEG ₂	VLC1	VLC1	SEG2
P13	SEG28	SEG28	P13				

Notes 1: Pins except above have just single function.

- 2: The input/output of D5 can be used even when INT is selected.
 The threshold value is different between port D5 and INT. Accordingly, be careful when the input of both is used.

 3: The port C "H" output function can be used even when CNTR (output) is selected.

Notice: This is not a final specification. Some parametric limits are subject to change

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- ullet Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the ring oscillator which is the internal oscillator
- Clock (f(XCIN)) by the external quartz-crystal oscillation

System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

Register MR			System clock	Operation mode	
MR3	MR2	MR1	MR ₀		
1	1	0	0	f(STCK) = f(RING)/8	Internal frequency divided by 8 mode
1	0	0	0	f(STCK) = f(RING)/4	Internal frequency divided by 4 mode
0	1	0	0	f(STCK) = f(RING)/2	Internal frequency divided by 2 mode
0	0	0	0	f(STCK) = f(RING)	Internal frequency through mode
1	1	0	1	f(STCK) = f(XIN)/8	High-speed frequency divided by 8 mode
1	0	0	1	f(STCK) = f(XIN)/4	High-speed frequency divided by 4 mode
0	1	0	1	f(STCK) = f(XIN)/2	High-speed frequency divided by 2 mode
0	0	0	1	f(STCK) = f(XIN)	High-speed through mode
1	1	1	0	f(STCK) = f(XCIN)/8	Low-speed frequency divided by 8 mode
1	0	1	0	f(STCK) = f(XCIN)/4	Low-speed frequency divided by 4 mode
0	1	1	0	f(STCK) = f(XCIN)/2	Low-speed frequency divided by 2 mode
0	0	1	0	f(STCK) = f(XCIN)	Low-speed through mode

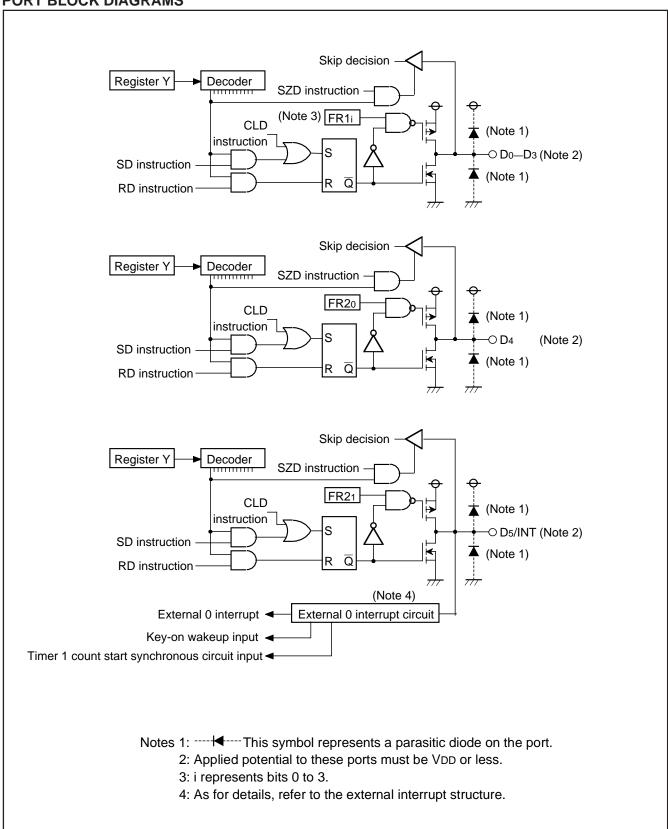
Note: The f(RING)/8 is selected after system is released from reset.

PORT FUNCTION

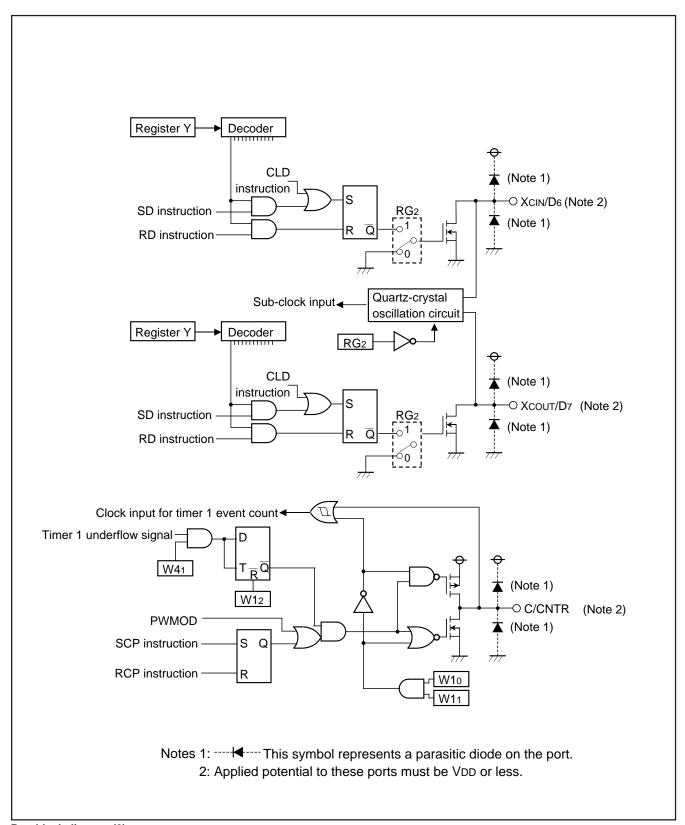
	1 014011014						
Port	Pin	Input	Output structure	I/O	Control	Control	Remark
Lion	1 111	Output	Output structure	unit	instructions	registers	Kemark
Port D	D0-D4, D5/INT	I/O	N-channel open-drain/	1	SD, RD	FR1, FR2	Output structure selection
		(6)	CMOS		SZD	I1, K2	function (programmable)
					CLD		
	XCIN/D6, XCOUT/D7	Output	N-channel open-drain			RG	
		(2)					
Port P0	P00/SEG21-P03/SEG24	I/O	N-channel open-drain/	4	OP0A	FR0, PU0	Built-in pull-up functions, key-on
		(4)	CMOS		IAP0	K0	wakeup functions and output
						C1	structure selection function
							(programmable)
Port P1	P10/SEG25-P13/SEG28	I/O	N-channel open-drain/	4	OP1A	FR0, PU1	Built-in pull-up functions, key-on
		(4)	CMOS		IAP1	K0, K1	wakeup functions and output
						C2	structure selection function
							(programmable)
Port P2	P20/SEG17-P23/SEG20	I/O	N-channel open-drain/	4	OP2A	FR2	Output structure selection func
		(4)	CMOS		IAP2	L3	tion (programmable)
Port C	C/CNTR	Output	CMOS	1	RCP	W1	
		(1)			SCP		

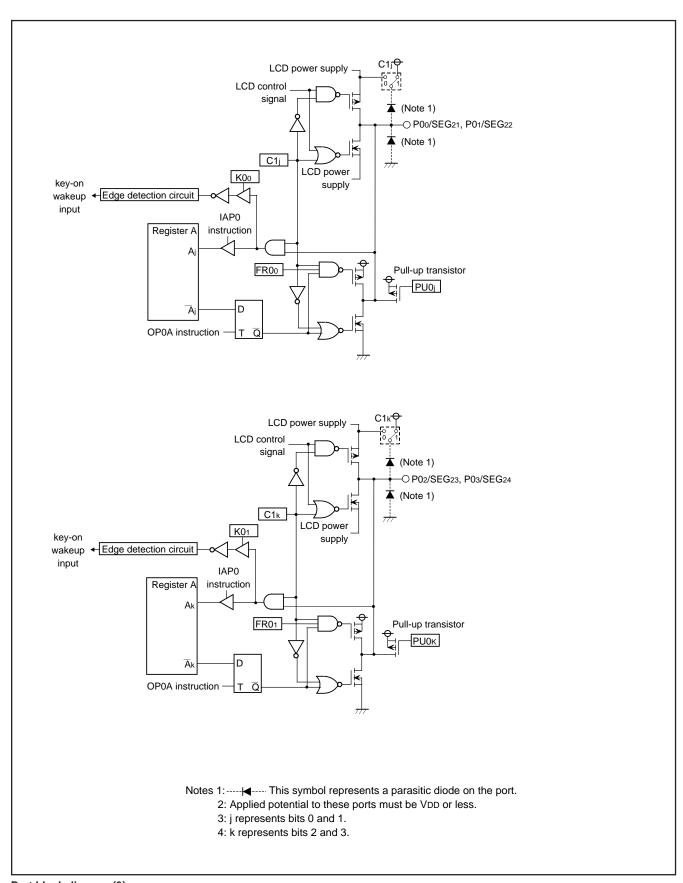
CONNECTIONS OF UNUSED PINS

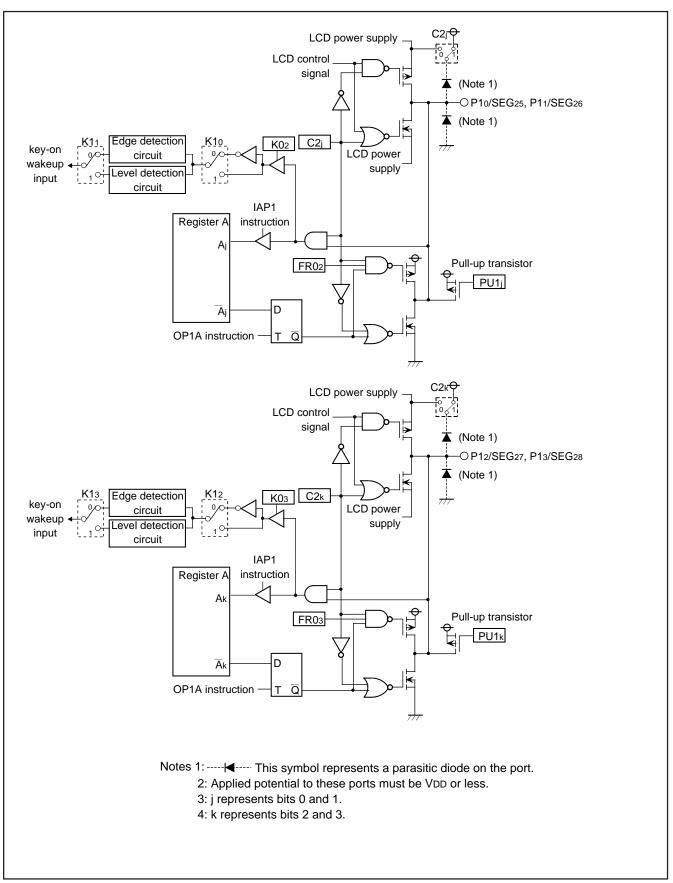
Pin	Connection	Usage condition
XIN	Connect to Vss.	RC oscillator is not selected
Хоит	Open.	
XCIN/D6	Connect to Vss.	
XCOUT/D7	Open.	
D0-D4	Open.	
	Connect to Vss.	N-channel open-drain is selected for the output structure.
D5/INT	Open.	INT pin input is disabled.
	Connect to Vss.	N-channel open-drain is selected for the output structure.
C/CNTR	Open.	CNTR input is not selected for timer 1 count source.
P00/SEG21-	Open.	The key-on wakeup function is invalid.
P03/SEG24	Connect to Vss.	Segment output is not selected.
		N-channel open-drain is selected for the output structure.
		Pull-up transistor is OFF.
		The key-on wakeup function is invalid.
P10/SEG25-	Open.	The key-on wakeup function is invalid.
P13/SEG28	Connect to Vss.	Segment output is not selected.
		N-channel open-drain is selected for the output structure.
		Pull-up transistor is OFF.
		The key-on wakeup function is invalid.
P20/SEG17-	Open.	
P23/SEG20	Connect to Vss.	Segment output is not selected.
		N-channel open-drain is selected for the output structure.
COMo-COM3	Open.	
SEG ₀ /V _L C ₃	Open.	SEGo pin is selected.
SEG1/VLC2	Open.	SEG1 pin is selected.
SEG2/VLC1	Open.	SEG2 pin is selected.
SEG3-SEG10	Open.	
(Note)		

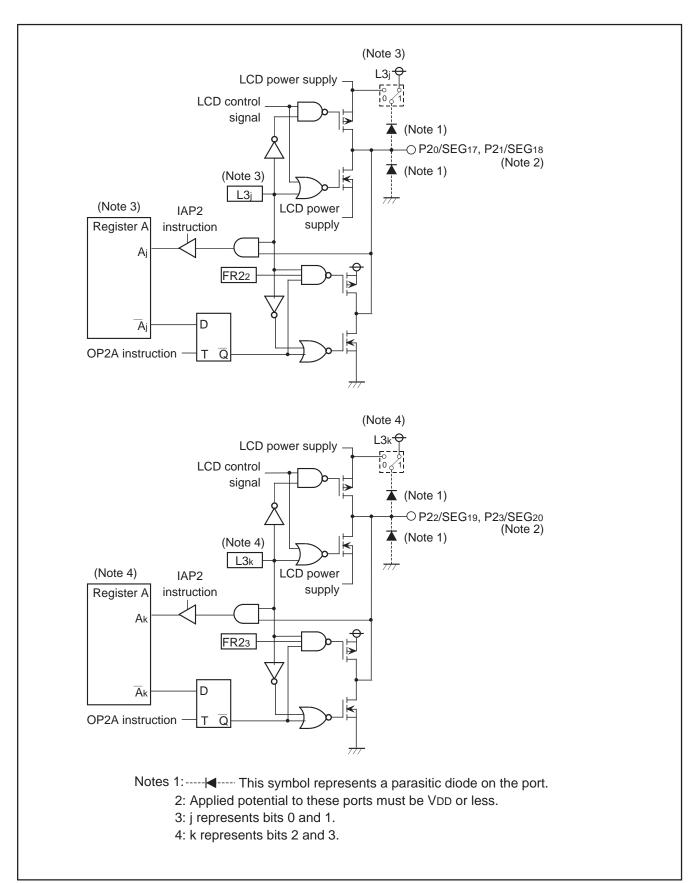

Note: SEG11 to SEG16 pins are not existed in the 4556 Group.

(Note when connecting to Vss and VDD)

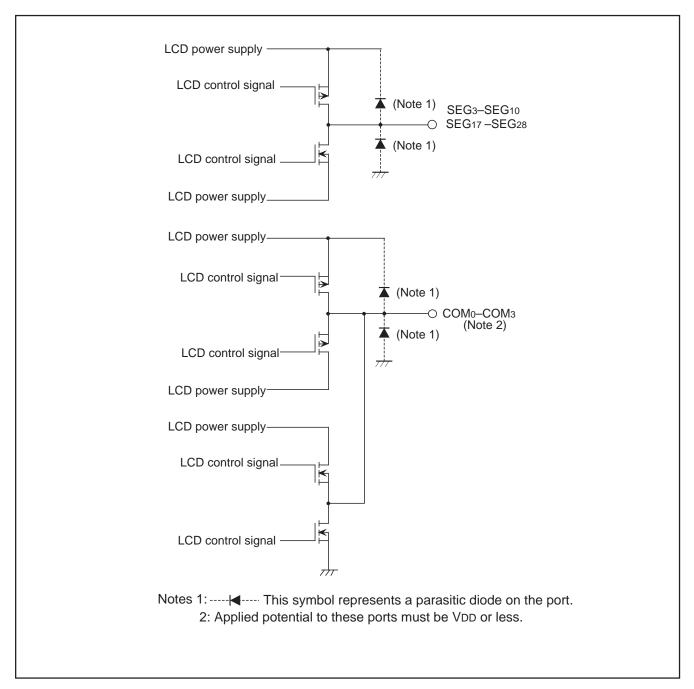

• Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.


PORT BLOCK DIAGRAMS

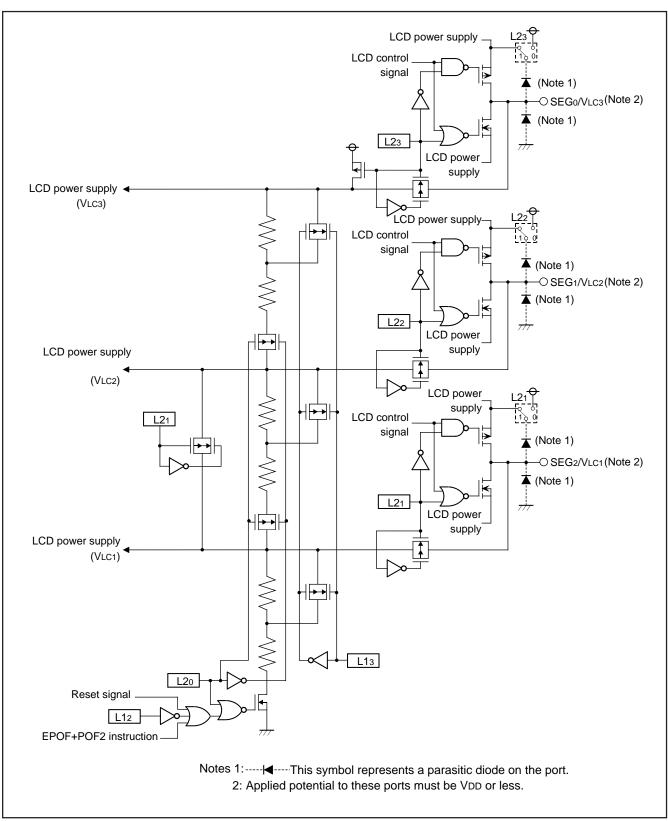

Port block diagram (1)

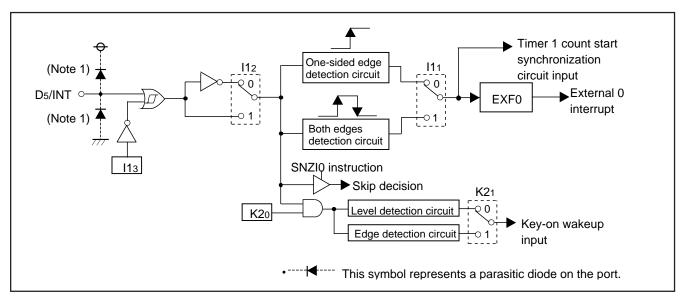


Port block diagram (2)



Port block diagram (3)




Port block diagram (5)

Port block diagram (6)

Port block diagram (7)

Block diagram of external interrupt

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both An instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Also, when the TABP p instruction is executed at UPTF flag = "1", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D, the high-order 1 bit of register D is "0". When the TABP p instruction is executed at UPTF flag = "0", the contents of register D remains unchanged. The UPTF flag is set to "1" with the SUPT instruction and cleared to "0" with the RUPT instruction. The initial value of UPTF flag is "0".

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

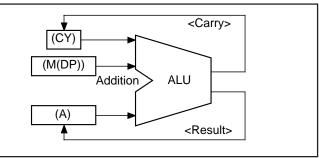


Fig. 1 AMC instruction execution example

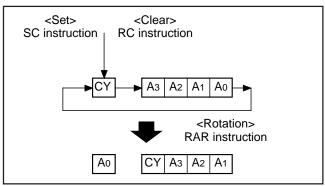


Fig. 2 RAR instruction execution example

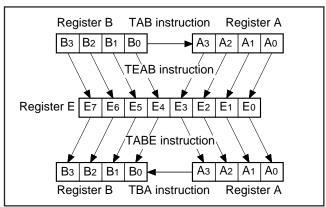


Fig. 3 Registers A, B and register E

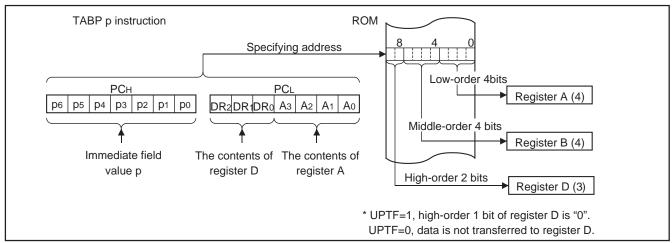


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

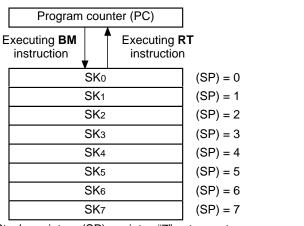
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.


Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SK0. When the BM instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SK0 is destroyed.

Fig. 5 Stack registers (SKs) structure

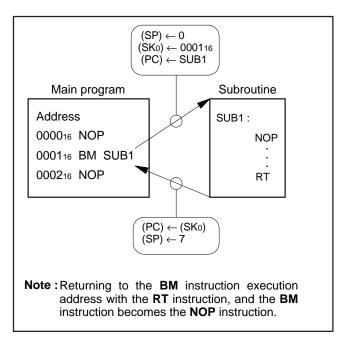


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

Note

Register Z of data pointer is undefined after system is released from reset

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

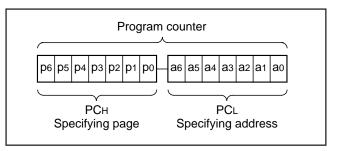


Fig. 7 Program counter (PC) structure

Fig. 8 Data pointer (DP) structure

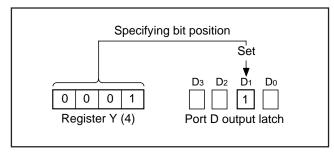


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34556ED.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages			
M34556M4	4096 words	32 (0 to 31)			
M34556M4H					
M34556M8	8192 words	64 (0 to 63)			
M34556M8H					
M34556G8					
M34556G8H					

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction.

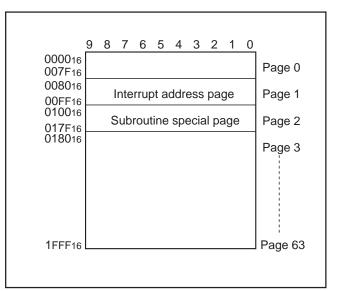


Fig. 10 ROM map of M34556M8/M8H/G8/G8H

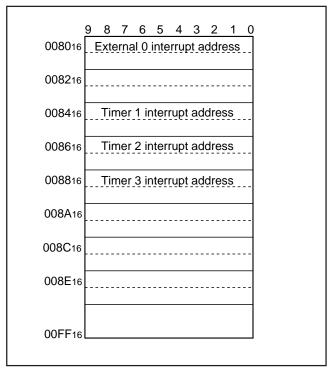


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up). RAM includes the area for LCD.

When writing "1" to a bit corresponding to displayed segment, the segment is turned on.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34556M4/M4H	288 words X 4 bits (1152 bits)
M34556M8/M8H	
M34556G8/G8H	

RAM 288 words X 4 bits (1152 bits)

	Register Z					()				1			
	Register X	0	1	2	3		12	13	14	15	0	1	2	3
	0													
	1													
	2													
	3													
	4													
	5													
	6													
ste	7													
Register Y	8										0	8		24
œ	9										1	9	17	25
	10										2	10	18	26
	11										3		19	27
	12										4		20	28
	13										5		21	
	14										6		22	
	15										7		23	

Note: The numbers in the shaded area indicate the corresponding segment output pin numbers.

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

	torrapt coareco		
Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
4	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Request flag	Skip instruction	Enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

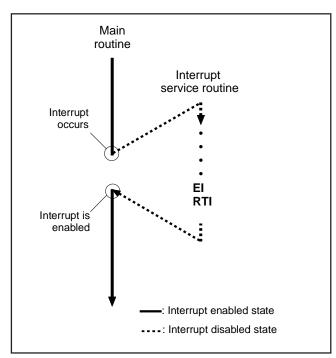


Fig. 13 Program example of interrupt processing

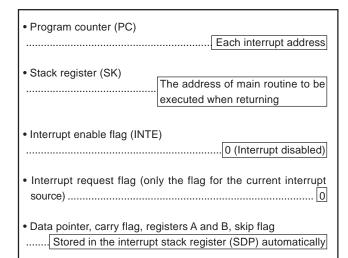


Fig. 14 Internal state when interrupt occurs

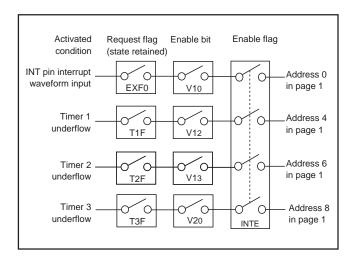


Fig. 15 Interrupt system diagram

(6) Interrupt control registers

Interrupt control register V1
 Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

Interrupt control register V2
 The timer 3 interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

Interrupt control register V1		at reset : 00002		at power down : 00002	R/W TAV1/TV1A
V13	Timer 2 interrupt enable bit	0	Interrupt disabled	(SNZT2 instruction is valid)	
V 13	V13 Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)		
1/10	V12 Timer 1 interrupt enable bit	0	Interrupt disabled	(SNZT1 instruction is valid)	
V 12		1	Interrupt enabled (SNZT1 instruction is invalid)	
V11	Not used	0	This his has a forestion but one discribed a southerd		
VII	Not used	1	This bit has no function, but read/write is enabled.		
1/10	External 0 interrupt enable bit	0	Interrupt disabled	(SNZ0 instruction is valid)	
V10	External o interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)	

	Interrupt control register V2		reset : 00002	at power down : 00002	R/W TAV2/TV2A	
V23	Not used	0	This bit has no function, but read/write is enabled.			
V23	Not used	1	This bit has no function, but read/write is enabled.			
1/00	V22 Not used	0	This bit has no function, but read/write is enabled.			
V Z2		1				
1/04	Not used	0	This bit has no function, but read/write is enabled.			
V21	Not used	1	This bit has no function, but read/write is enabled.			
1/00	Timer 3 interrupt enable bit	0	Interrupt disabled ((SNZT3 instruction is valid)		
V20	Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT3 instruction is invalid)		

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V20), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

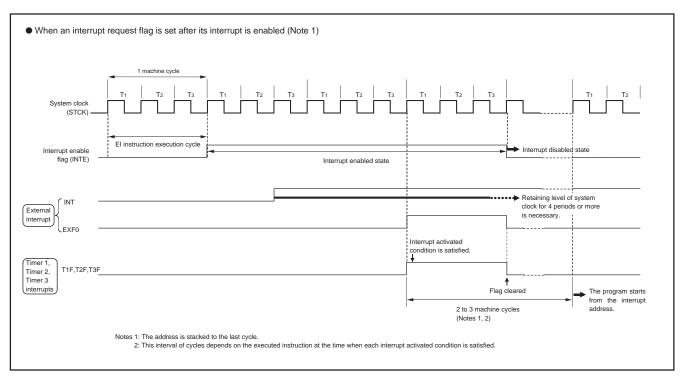


Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4556 Group has the external 0 interrupt.

An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	D5/INT	When the next waveform is input to D5/INT pin	l11
		Falling waveform ("H"→"L")	l12
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	

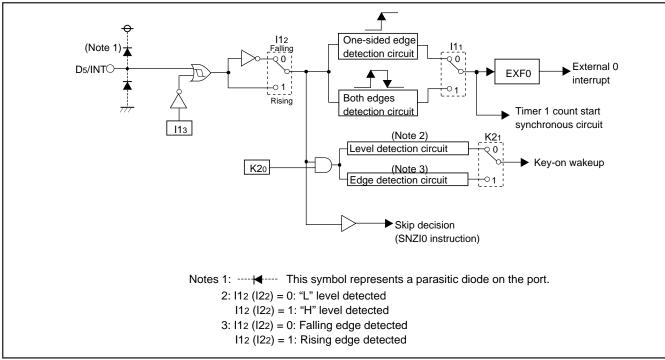


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to D5/INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16). The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

• External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to D5/INT pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- ② Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D5/INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 8 External interrupt control register

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A
113	INT pin input control bit (Note 2)	0	INT pin input disab	led	
113	in in put control bit (Note 2)	1	INT pin input enabl	ed	
		0	Falling waveform/"	L" level ("L" level is recognized with	the SNZI0
112	Interrupt valid waveform for INT pin/	U	instruction)		
112	return level selection bit (Note 2)		Rising waveform/"H" level ("H" level is recognized with the SNZI0		
		ı	instruction)		
l11	INT pin edge detection circuit control bit	0	One-sided edge detected		
'''	111 IN 1 pin eage detection circuit control bit		Both edges detected		
110	INT pin Timer 1 count start synchronous	0	Timer 1 count start	synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count start	art synchronous circuit selected	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of these bits (I12 , I13) are changed, the external interrupt request flag (EXF0) may be set.

(3) Notes on External 0 interrupts

- ① Note [1] on bit 3 of register I1
 - When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18②). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18③).

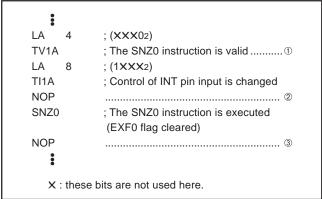


Fig. 18 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the key-on wakeup function of INT pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 19①).

```
LA 0 ; (00XX2)

TI1A ; Input of INT disabled.......

DI

EPOF

POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2

③ Note on bit 2 of register I1 When the interrupt valid waveform of the D5/INT pin is changed with the bit 2 of register I1 in software, be careful about the fol-

lowing notes.

Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20@). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20@).

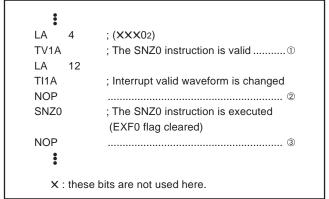


Fig. 20 External 0 interrupt program example-3

TIMERS

The 4556 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer
 The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

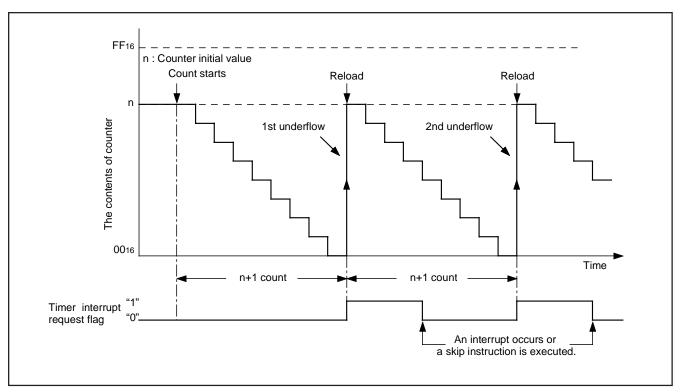


Fig. 21 Auto-reload function

The 4556 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2: 8-bit programmable timer
- Timer 3: 16-bit fixed dividing frequency timer
- Timer LC: 4-bit programmable timer
- Watchdog timer: 16-bit fixed dividing frequency timer
 (Timers 1, 2, and 3 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3 and LC can be controlled with the timer control registers PA, W1 to W4. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable	Instruction clock (INSTCK)	1 to 256	• Timer 1, 2, 3 and LC count sources	PA
	binary down counter				
Timer 1	8-bit programmable	PWM output (PWMOUT)	1 to 256	CNTR output control	W1
	binary down counter	Prescaler output (ORCLK)		Timer 1 interrupt	
	(link to INT input)	Timer 3 underflow			
		(T3UDF)			
		CNTR input			
Timer 2	8-bit programmable	XIN input	1 to 256	Timer 1 count source	W2
	binary down counter	Prescaler output (ORCLK)		CNTR output	
	(PWM output function)	divided by 2		Timer 2 interrupt	
Timer 3	16-bit fixed dividing	XCIN input	8192	Timer 1 count source	W3
	frequency		16384	Timer 3 interrupt	
			32768		
			65536		
Timer LC	4-bit programmable	Bit 4 of timer 3	1 to 16	• LCD clock	W4
	binary down counter	System clock (STCK)			
Watchdog	16-bit fixed dividing	Instruction clock (INSTCK)	65534	System reset (count twice)	
timer	frequency			WDF flag decision	

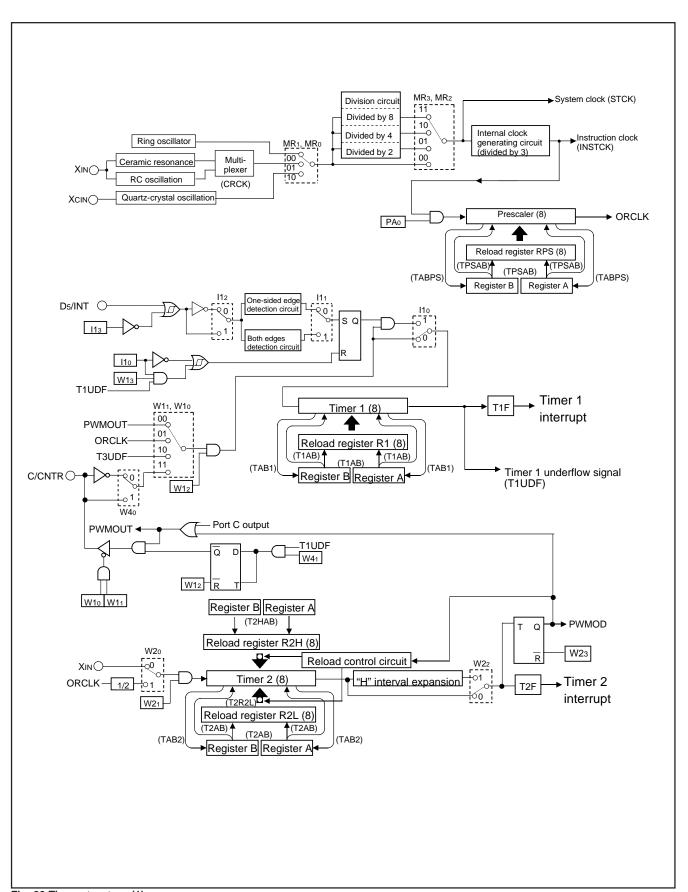


Fig. 22 Timer structure (1)

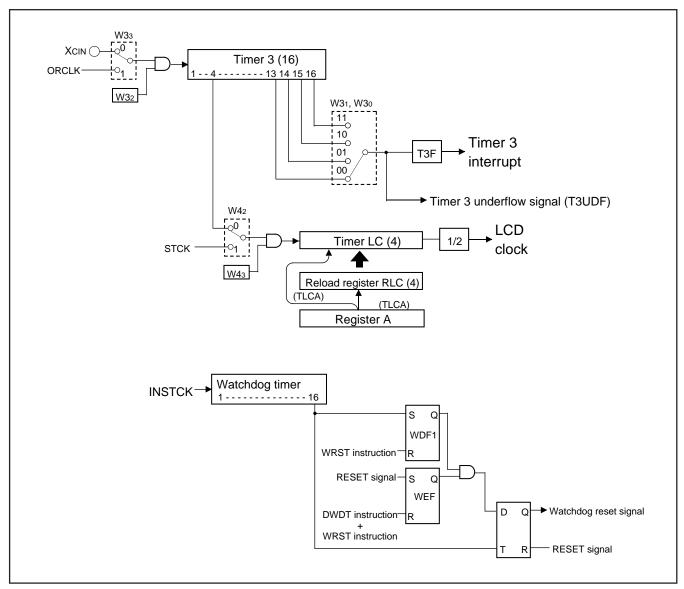


Fig. 23 Timer structure (2)

Table 10 Timer related registers

	Timer control register PA		at reset : 02	at power down : 02	W TPAA
PA ₀	PA0 Prescaler control bit		Stop (state initialize	ed)	
PA0 Prescaler control bit		1	Operating		

	Timer control register W1		at reset : 00002		at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	()	Timer 1 count auto	-stop circuit not selected	
VV13	bit (Note 2)	,	1	Timer 1 count auto	-stop circuit selected	
W12	W10 T 4 117)	Stop (state retained)		
VV 12	Timer 1 control bit	^	1	Operating		
		W11	W10		Count source	
W11		0	0	PWM signal (PWM	OUT)	
	Timer 1 count source selection bits		1	Prescaler output (ORCLK)		
W10 (Note 3)	(Note 3)	1	0	Timer 3 underflow	signal (T3UDF)	
		1	1	CNTR input		

Timer control register W2		at	reset: 00002	at power down : 00002	R/W TAW2/TW2A	
W23	CNTP nin output control hit	0	CNTR pin output in	nvalid		
VV23	W23 CNTR pin output control bit	1	CNTR pin output v	CNTR pin output valid		
W22	W22 PWM signal interrupt valid waveform/	0	PWM signal "H" interval expansion function invalid			
V V Z Z	return level selection bit	1	PWM signal "H" in	terval expansion function valid		
W21	Taran O anatosibit	0	Stop (state retaine	d)		
VVZ1	Timer 2 control bit	1	Operating			
W20	Taran O assert as managed as for his	0	XIN input			
VV∠0	Timer 2 count soruce selection bit	1	Prescaler output (0	ORCLK)/2 signal output		

	Timer control register W3		at reset : 00002		at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	(О	XCIN input		
*****	bit	1		Prescaler output (C	DRCLK)	
W32	W22 T 2 11 11		C	Stop (Initial state)		
VV 32	Timer 3 control bit		1	Operating		
1440			W30		Count source	
W31	Time and 2 countries and action hite	0	0	Underflow occurs e	every 8192 counts	
	Timer 3 count source selection bits	0	1	Underflow occurs every 16384 counts		
W30		1	0	Underflow occurs every 32768 counts		
		1	1	Underflow occurs of	every 65536 counts	

Timer control register W4		at reset : 00002		at power down : state retained	R/W TAW4/TW4A	
W43	Timer LC control bit	0	Stop (state retaine	d)		
VV-13	vv43 Timer LC control bit		Operating	Operating		
\/\/\/\2	W42 Timer LC count source selection bit	0	Bit 4 (T34) of timer 3			
VV42		1	System clock (STCK)			
\/\/.1	W41 CNTR output auto-control circuit selection bit		CNTR output auto-	-control circuit not selected		
VV-41			CNTR output auto-control circuit selected			
W40	CNTR pin input count edge selection bit	0	Falling edge			
VV40		1	Rising edge			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").
- 3: Port C output is invalid when CNTR input is selected for the timer 1 count source.

PRELIMINARY

(1) Timer control registers

Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register W2

Register W2 controls the CNTR output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

· Timer control register W3

Register W3 controls the count operation and count source of timer 3. Set the contents of this register through register A with the TW5A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

· Timer control register W4

Register W4 controls the operation and count source of timer LC, the selection of CNTR output auto-control circuit and the count edge of CNTR input. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A..

(2) Prescaler (interrupt function)

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

2 set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2, 3 and LC count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1
- 2 set count source by bits 0 and 1 of register W1, and
- 3 set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with two timer 2 reload registers (R2L, R2H). Data can be set simultaneously in timer 2 and the reload register R2L with the T2AB instruction. Data can be set in the reload register R2H with the T2HAB instruction. The contents of reload register R2L set with the T2AB instruction can be set to timer 2 again with the T2R2L instruction. Data can be read from timer 2 with the TAB2 instruction.

Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

When executing the T2HAB instruction to set data to reload register R2H while timer 2 is operating, avoid a timing when timer 2 underflows

Timer 2 starts counting after the following process;

- ① set data in timer 2
- 2 set count source by bit 0 of register W2, and
- 3 set the bit 1 of register W2 to "1."

When a value set in reload register R2L is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

When bit 3 of register W2 is set to "1", timer 2 reloads data from reload register R2L and R2H alternately each underflow.

Timer 2 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R2L, and the "H" interval set as reload register R2H. The PWM signal (PWMOUT) is output from CNTR pin.

When bit 2 of register W2 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R2H for the counter of timer 2 is extended for a half period of count source.

In this case, when a value set in reload register R2H is n, timer 2 divides the count source signal by n + 1.5 (n = 1 to 255).

When this function is used, set "1" or more to reload register R2H. When bit 1 of register W4 is set to "1", the PWM signal output to CNTR pin is switched to valid/invalid each timer 1 underflow. However, when timer 1 is stopped (bit 2 of register W1 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W2 is cleared to "0" in the "H" interval of PWM signal, timer 2 does not stop until it next timer 2 underflow. When clearing bit 1 of register W2 to "0" to stop timer 2, avoid a timing when timer 2 underflows.

(5) Timer 3 (interrupt function)

Timer 3 is a 16-bit binary down counter.

Timer 3 starts counting after the following process;

- ① set count value by bits 0 and 1 of register W3,
- 2 set count source by bit 3 of register W3, and
- 3 set the bit 2 of register W3 to "1."

Once count is started, when timer 3 underflows (the set count value is counted), the timer 3 interrupt request flag (T3F) is set to "1," and count continues.

Bit 4 of timer 3 can be used as the timer LC count source for the LCD clock generating.

When bit 2 of register W3 is cleared to "0", timer 3 is initialized to "FFF16" and count is stopped.

Timer 3 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 3 underflow occurs at clock operating mode, system returns from the power down state.

(6) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.

Timer LC starts counting after the following process;

- ① set data in timer LC,
- 2 select the count source with the bit 2 of register W4, and
- 3 set the bit 3 of register W4 to "1."

When a value set in reload register RLC is n, timer LC divides the count source signal by n + 1 (n = 0 to 15).

Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes "0"), new data is loaded from reload register RLC, and count continues (auto-reload function).

Timer LC underflow signal divided by 2 can be used for the LCD clock.

(7) Timer input/output pin (C/CNTR pin)

CNTR pin is used to input the timer 1 count source and output the PWM signal generated by timer 2. When the PWM signal is output from C/CNTR pin, set "0" to the output latch of port C.

The selection of CNTR output signal can be controlled by bit 3 of register W2.

When the CNTR input is selected for timer 1 count source, timer 1 counts the waveform of CNTR input selected by bit 0 of register W4. Also, when the CNTR input is selected, the output of port C is invalid (high-impedance state).

(8) Timer interrupt request flags (T1F, T2F, T3F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(9) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT pin input can be performed.

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT pin.

The valid waveform of INT pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit I10 to "0" or reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(10) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(11) Precautions

Note the following for the use of timers.

Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

Timer count source

Stop timer 1, 2, and LC counting to change its count source.

· Reading the count value

Stop timer 1 or 2 counting and then execute the data read instruction (TAB1, TAB2) to read its data.

· Writing to the timer

Stop timer 1, 2 or LC counting and then execute the data write instruction (T1AB, T2AB, TLCA) to write its data.

Writing to reload register R1, R2H

When writing data to reload register R1 or reload regiser R2H while timer 1 or timer 2 is operating, avoid a timing when timer 1 or timer 2 underflows.

• Timer 2

Avoid a timing when timer 2 underflows to stop timer 2 at PWM output function used.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R2H.

• Timer 3

Stop timer 3 counting to change its count source.

• Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

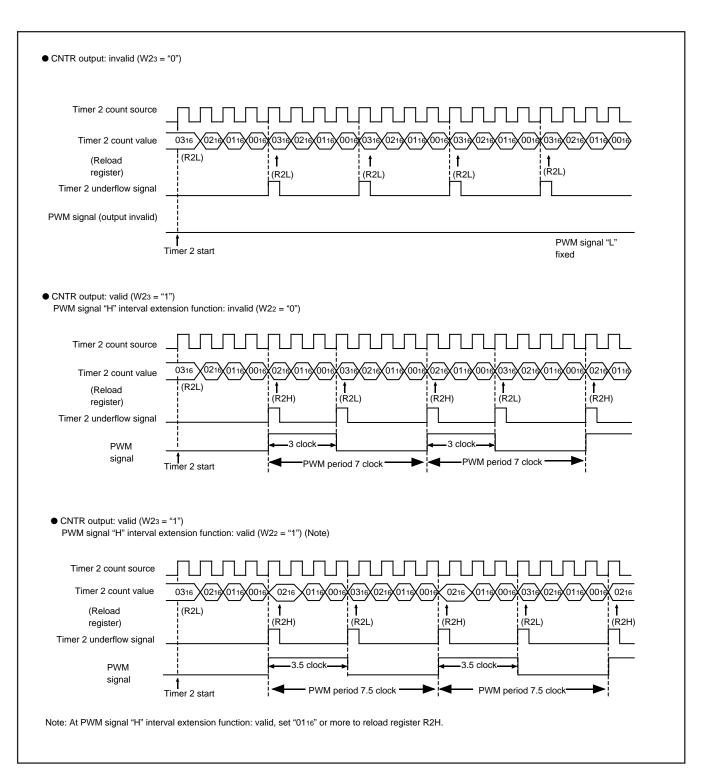


Fig. 24 Timer 2 operation (reload register R2L: "0316", R2H: "0216")

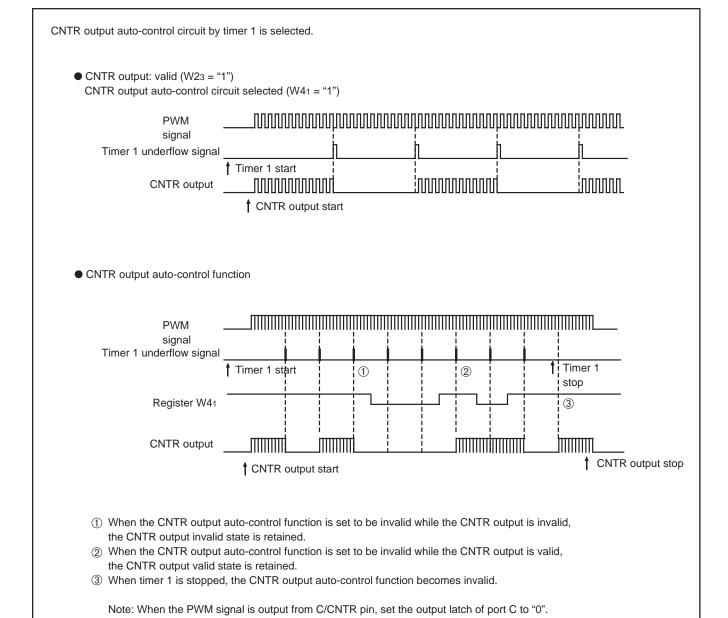
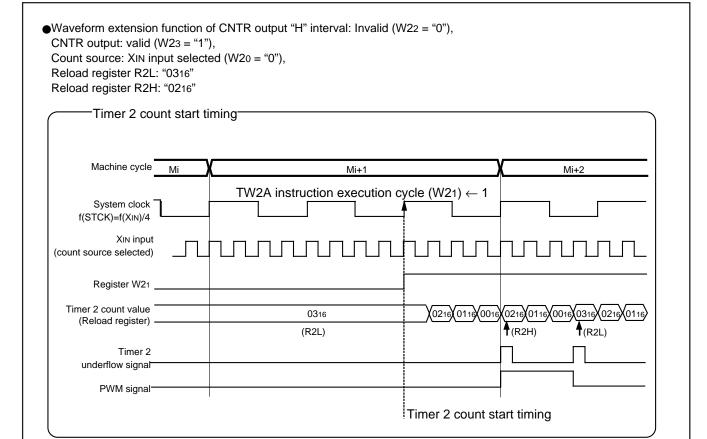
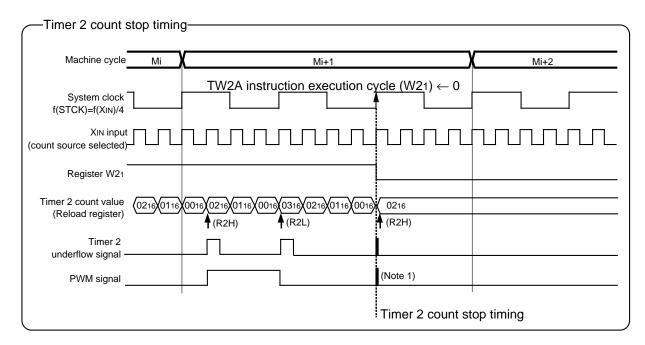




Fig. 25 CNTR output auto-control function by timer 1

Notes 1: In order to stop timer 2 at CNTR output valid (W23 = "1"), avoid a timing when timer 2 underflows. If these timings overlap, a hazard may occur in a CNTR output waveform.

2: At CNTR output valid, timer 2 stops after "H" interval of PWM signal set by reload register R2H is output.

Fig. 26 Timer 2 count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the $\overline{\text{RESET}}$ pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

However, in order to set the WEF flag to "1" again once it has cleared to "0", execute system reset.

The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- ® When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 27 Watchdog timer function

WRST; WDF1 flag cleared

DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 28). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the power down mode.

When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down state (refer to Figure 29).

microcomputer enters the power down state (refer to Figure 29). The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down, and stop the watchdog timer function.

Fig. 28 Program example to start/stop watchdog timer

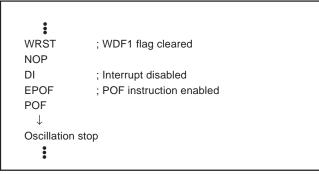


Fig. 29 Program example to enter the mode when using the watchdog timer

LCD FUNCTION

The 4556 Group has an LCD (Liquid Crystal Display) controller/driver. When the proper voltage is applied to LCD power supply input pins (VLC1–VLC3) and data are set in timer control register (W4), timer LC, LCD control registers (L1, L2, L3, C1, C2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias. 4 common signal output pins and 23 segment signal output pins can be used to drive the LCD. By using these pins, up to 92 segments (when 1/4 duty and 1/3 bias are selected) can be controlled to display. The LCD power input pins (VLC1–VLC3) are also used as pins SEG0–SEG2. When SEG0–SEG2 are selected, the internal power (VDD) is used for the LCD power.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- 1/2 duty, 1/2 bias
- 1/3 duty, 1/3 bias
- 1/4 duty, 1/3 bias

Table 11 Duty and maximum number of displayed pixels

	-	
Duty	Maximum number of displayed pixels	Used COM pins
1/2	46 segments	COM ₀ , COM ₁ (Note)
1/3	69 segments	COM0-COM2 (Note)
1/4	92 segments	COM0-COM3

Note: Leave unused COM pins open.

(2) LCD clock control

The LCD clock is determined by the timer LC count source selection bit (W42), timer LC control bit (W43), and timer LC. Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers (① to ③) shown below the formula correspond to numbers in Figure 30, respectively.

 When using the prescaler output (ORCLK) as timer LC count source (W42="1")

$$F = ORCLK \times \frac{1}{LC+1} \times \frac{1}{2}$$

$$0$$

$$0$$

$$0$$

$$0$$

• When using the bit 4 of timer 3 as timer LC count source (W42="0")

$$F = \begin{array}{c|c} T34 & \times & \frac{1}{LC+1} & \times & \frac{1}{2} \\ \hline ① & ② & ③ \\ \hline \end{array}$$

[LC: 0 to 15]

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency =
$$\frac{F}{n}$$
 (Hz)

Frame period =
$$\frac{n}{F}$$
 (s)

F: LCD clock frequency

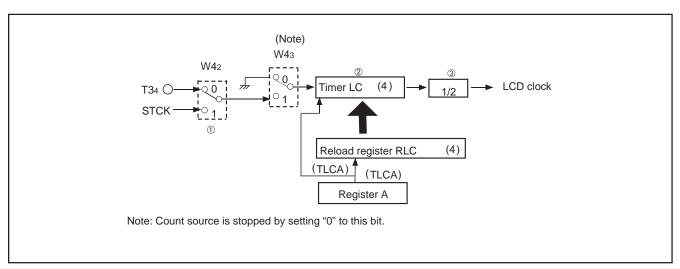


Fig. 30 LCD clock control circuit structure

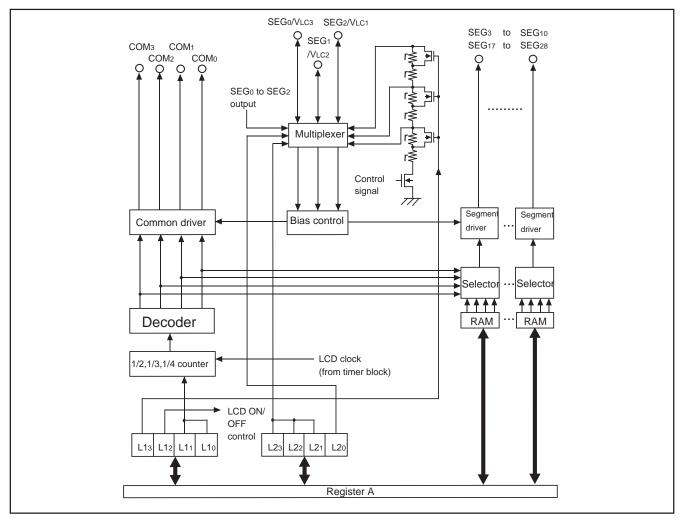


Fig. 31 LCD controller/driver

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

(4) LCD drive waveform

When "1" is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC3I and the display pixel at the cross section turns on.

When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level.

							I									
Χ			0				1				2		3			
Y Bits	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
8	SEG0	SEG0	SEG ₀	SEG ₀	SEG8	SEG8	SEG8	SEG8					SEG24	SEG24	SEG24	SEG
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17	SEG25	SEG25	SEG25	SEG
10	SEG2	SEG2	SEG2	SEG2	SEG10	SEG ₁₀	SEG ₁₀	SEG ₁₀	SEG18	SEG18	SEG18	SEG18	SEG26	SEG26	SEG26	SEG
11	SEG3	SEG3	SEG3	SEG3					SEG19	SEG19	SEG19	SEG19	SEG27	SEG27	SEG27	SEG
12	SEG4	SEG4	SEG4	SEG4					SEG20	SEG20	SEG20	SEG20	SEG28	SEG28	SEG28	SEG
13	SEG5	SEG5	SEG5	SEG5					SEG21	SEG21	SEG21	SEG21			—	_
14	SEG6	SEG6	SEG6	SEG6					SEG22	SEG22	SEG22	SEG22			I —	_
15	SEG7	SEG7	SEG7	SEG7					SEG23	SEG23	SEG23	SEG23				_
COM	СОМз	COM ₂	COM1	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	COM3	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM1	CON

Fig. 32 LCD RAM map

" is not the LCD display RAM.

Note: The area marked " -

Table 12 LCD control registers (1)

LCD control register L1			at	reset : 00002	at power down : state retained		R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power	()	2r X 3, 2r X 2	•		
L13	supply selection bit (Note 2)	1		r X 3, r X 2			
L12)	Stop			
L12	LCD control bit	1		Operating			
			L10	Duty		Bias	i
L11	LCD duty and bias selection bits	0	0		Not available		
		0	1	1/2		1/2	
L10		1	0	1/3		1/3	
		1	1	1/4		1/3	

LCD control register L2		at	reset : 00002	at power down : state retained	W TL2A		
L23	SEG0/VLC3 pin function switch bit (Note 3)	0	SEG ₀				
LZS	SEGO/VEC3 pin function switch bit (Note 3)	1	VLC3				
L22	SEG1/VLC2 pin function switch bit (Note 4)	0	0 SEG1				
LZZ		1	VLC2				
L21	SEG2/VLC1 pin function switch bit (Note 4)	0	SEG ₂				
LZ1		1	VLC1				
1.20	Internal dividing resistor for LCD power 0		Internal dividing resistor valid				
L20	supply control bit	Internal dividing resistor invalid					

LCD control register L3		at reset : 11112		at power down : state retained	W TL3A
L33	P23/SEG20 pin function switch bit	0	SEG20	•	
L33	F23/3EG20 piii idiletion switch bit	1	P23		
L32	P22/SEG19 pin function switch bit	0	SEG19		
L32	P22/3EG19 pin function switch bit	1	P22		
L31	P21/SEG18 pin function switch bit	0	SEG18		
L31		1	P21		
1.20	P20/SEG17 pin function switch bit	0	SEG17		
L30		1	P20		

- 2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.
- $3\!\!:\! \mathsf{VLC3}$ is connected to VDD internally when SEG0 pin is selected.
- 4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

Table 12 LCD control registers (2)

LCD control register C1		at reset : 11112		at power down : state retained	W TC1A
Do-/OF On a in familiar and talk hit		0	SEG24		1017
C13	P03/SEG24 pin function switch bit	1	P03		
C12	P02/SEG23 pin function switch bit	0	SEG23		
C12	P02/SEG23 pill fullction switch bit	1	P02		
C11	P01/SEG22 pin function switch bit	0	SEG22		
CII		1	P01		
C10	P00/SEG21 pin function switch bit	0	SEG21		
C10	P00/SEG21 pin function switch bit	1	P00		

LCD control register C2		at reset : 11112		at power down : state retained	W TC2A
C23	P13/SEG28 pin function switch bit	0	SEG28		
023	1 13/02/02/0 piri function 3 witch bit	1	P13		
C22	P12/SEG27 pin function switch bit	0	SEG27		
C22	F 12/3EG27 pill fullction switch bit	1	P12		
C21	P11/SEG26 pin function switch bit	0	SEG26		
C21		1	P11		
C20	P10/SEG25 pin function switch bit	0	SEG25		
C20	F 10/3EG25 pin function switch bit	1	P10		·

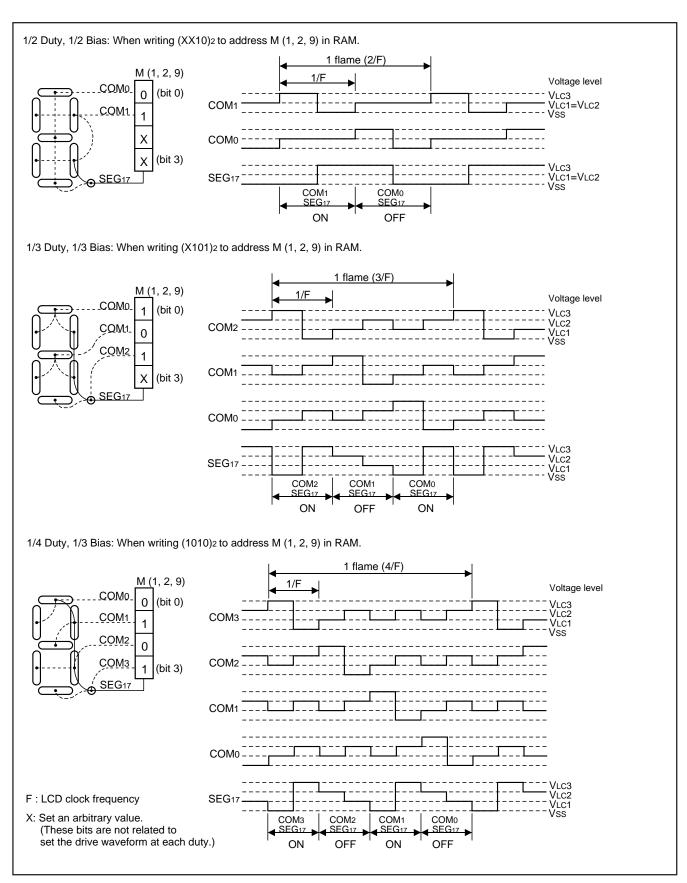


Fig. 33 LCD controller/driver structure

(5) LCD power supply circuit

Select the LCD power supply circuit suitable for the using LCD panel.

The LCD power supply circuit is fixed by the followings;

- The internal dividing resistor is controlled by bit 0 of register L2.
- The internal dividing resistor is selected by bit 3 of register L1.
- The bias condition is selected by bits 0 and 1 of register L1.

Internal dividing resistor

The 4556 Group has the internal dividing resistor for LCD power supply.

When bit 0 of register L2 is set to "1", the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to "0", the internal dividing resistor is turned off.

The same six resistor (r) is prepared for the internal dividing resistor. According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows;

- L13 = "0", 1/3 bias used: 2r X 3 = 6r
- L13 = "0", 1/2 bias used: 2r X 2 = 4r
- L13 = "1", 1/3 bias used: r X 3 = 3r
- L13 = "1", 1/2 bias used: r X 2 = 2r

● VLC3/SEG0 pin

The selection of VLC3/SEG0 pin function is controlled with the bit 3 of register L2.

When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally.

When the SEGo pin function is selected, VLC3 is connected to VDD internally.

● VLC2/SEG1, VLC1/SEG2 pin

The selection of VLC2/SEG1 pin function is controlled with the bit 2 of register L2.

The selection of VLC1/SEG2 pin function is controlled with the bit 1 of register L2.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of 0<VLC1<VLC2<VLC3 to these pins. Short the VLC2 pin and VLC1 pin at 1/2 bias.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin have the same electric potential at 1/2 bias. When SEG1 and SEG2 pin functions are selected, use the internal dividing resistor. In this time, VLC2 and VLC1 are connected to the generated dividingg voltage.

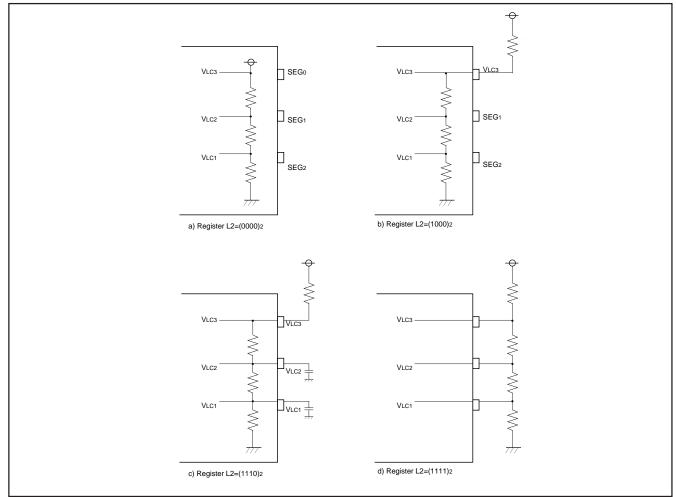


Fig. 34 LCD power supply circuit example (1/3 bias condition selected)

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to RESET pin, software starts from address 0 in page 0.

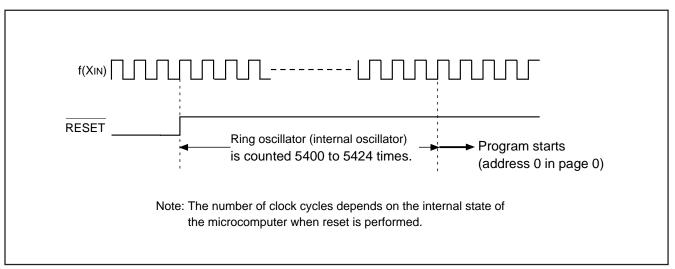


Fig. 35 Reset release timing

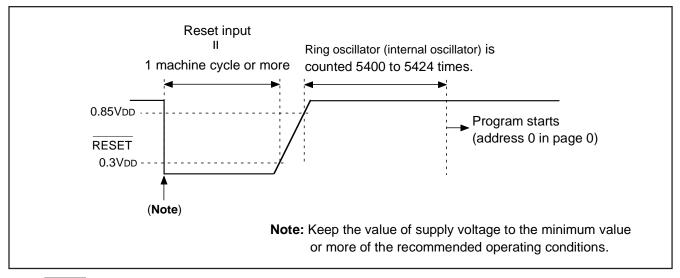


Fig. 36 RESET pin input waveform and reset operation

(1) Power-on reset (only for H version)

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V must be set to 100 μs or less. If the rising time ex-

ceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

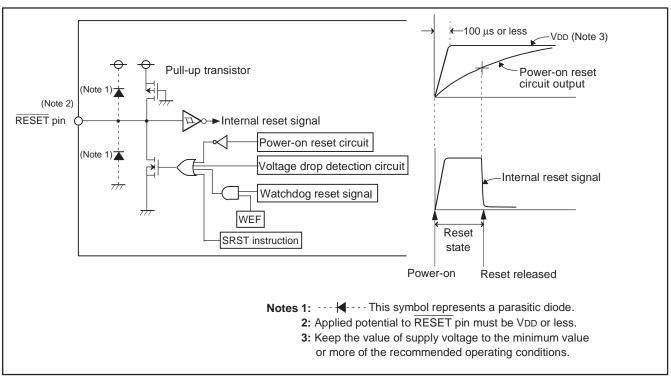


Fig. 37 Power-on reset circuit example

Table 13 Port state at reset

Name	Function	State	
D0-D4	D0-D4	High-impedance (Notes 1, 2)	
D5/INT	D5	High-impedance (Notes 1, 2)	
XCIN/D6, XCOUT/D7	XCIN, XCOUT	Sub-clock input	
P00/SEG21-P03/SEG24	P00-P03	High-impedance (Notes 1, 2, 3)	
P10/SEG25-P13/SEG28	P10-P13	High-impedance (Notes 1, 2, 3)	
P20/SEG17-P23/SEG20	P20-P23	High-impedance (Notes 1, 2, 3)	
SEG0/VLC3-SEG2/VLC1	SEG0-SEG2	VLC3 (VDD) level	
SEG3-SEG10	SEG3-SEG10	VLC3 (VDD) level	
COM0-COM3	COMo-COM3	VLC3 (VDD) level	
C/CNTR	С	"L" (Vss) level	

Notes 1: Output latch is set to "1."

- 2: Output structure is N-channel open-drain.
- 3: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 38 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 38 are undefined, so set the initial value to them.

Program counter (PC)	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	
Power down flag (P)	
External 0 interrupt request flag (EXF0)	
Interrupt control register V1	0 0 0 0 (Interrupt disabled)
Interrupt control register V2	
Interrupt control register I1	
Timer 1 interrupt request flag (T1F)	
Timer 2 interrupt request flag (T2F)	
Timer 3 interrupt request flag (T3F)	
Watchdog timer flags (WDF1, WDF2)	<u>—</u>
Watchdog timer enable flag (WEF)	
Timer control register PA	<u> </u>
Timer control register W1	
Timer control register W2	` ' '
• Timer control register W3	
Timer control register W4	
Clock control register MR	
Clock control register RG	
LCD control register L1	
• LCD control register L2	
LCD control register L3	
LCD control register C1	
LCD control register C2	
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Pull-up control register PU0	
Pull-up control register PU1	
Port output structure control register FR0	
Port output structure control register FR1	
Port output structure control register FR2	
• Carry flag (CY)	
High-order bit reference enable flag (UPTF)	
• Register A	
• Register B	
• Register D	
• Register E	
• Register X	
• Register Y	
• Register Z	
Stack pointer (SP) Operation source clock	
Operation source clock	
Ceramic resonator circuit	
RC oscillation circuit	

VOLTAGE DROP DETECTION CIRCUIT (only for H version)

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

(1) SVDE instruction

When the SVDE instruction is executed, the voltage drop detection circuit is valid even after system enters into the power down mode. The SVDE instruction can be executed only once.

In order to release the execution of the SVDE instruction, the system reset is required.

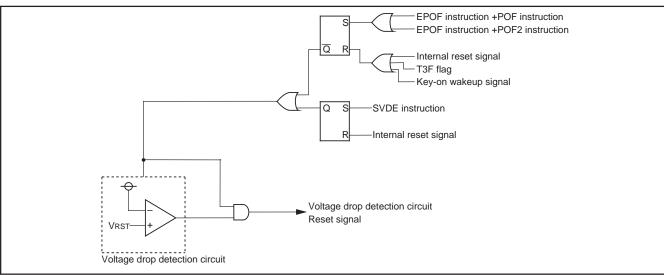


Fig. 39 Voltage drop detection reset circuit

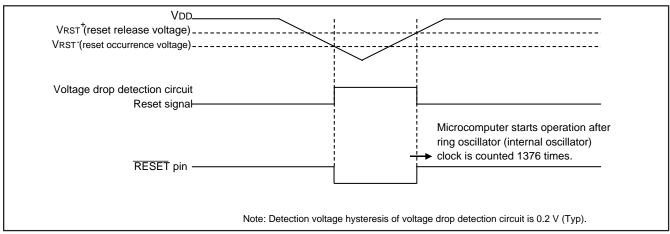


Fig. 40 Voltage drop detection circuit operation waveform

(2) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 41);

supply voltage does not fall below to VRST-, and

its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST- and re-goes up after that.

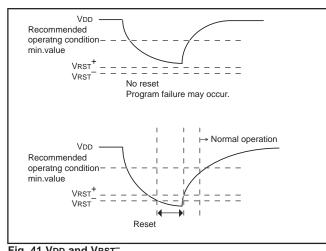


Fig. 41 VDD and VRST

POWER DOWN FUNCTION

The 4556 Group has 2-type power down functions.

System enters into each power down state by executing the following instructions.

Clock operating mode	EPOF and POF instructions
RAM back-up mode	EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN—XCOUT oscillation
- · LCD display
- Timer 3

(2) RAM back-up mode

The following functions and states are retained.

- RAM
- Reset circuit

(3) Warm start condition

The system returns from the power down state when;

- External wakeup signal is input
- Timer 3 underflow occurs

in the power down mode.

In either case, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(4) Cold start condition

The CPU starts executing the software from address 0 in page 0 when;

- reset pulse is input to RESET pin,
- reset by watchdog timer is performed, or
- reset by the voltage drop detection circuit is performed. In this case, the P flag is "0."

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T3F flag.

Table 15 Functions and states retained at power down

	•	
	Power do	wn mode
Function	Clock	RAM
December (DO) manipulation A. D.	operating	back-up
Program counter (PC), registers A, B,	X	X
carry flag (CY), stack pointer (SP) (Note 2)	_	_
Contents of RAM	0	0
Interrupt control registers V1, V2	X	X
Interrupt control register I1	0	0
Selected oscillation circuit	0	0
Clock control register MR, RG	0	0
Timer 1 to timer 2 functions	(Note 3)	(Note 3)
Timer 3 function	0	0
Timer LC function	0	(Note 3)
Watchdog timer function	X (Note 4)	X (Note 4)
Timer control registers PA	X	X
Timer control registers W1 to W4	0	0
LCD display function	0	(Note 5)
LCD control registers L1 to L3, C1, C2	0	0
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Pull-up control registers PU0, PU1	0	0
Key-on wakeup control registers K0 to K2	0	0
Port output format control registers	0	0
FR0 to FR2		
External interrupt request flag	X	X
(EXF0)		
Timer interrupt request flags (T1F, T2F)	(Note 3)	(Note 3)
Timer interrupt request flag (T3F)	0	0
Interrupt enable flag (INTE)	X	X
Watchdog timer flags (WDF1, WDF2)	X (Note 4)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)	X (Note 4)
Notes 4:00 assessments that the forestion and ba	4-!!	1 "> «"

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then go into the power down state.
- 5: LCD is turned off.
- 6: When the SVDE instruction is executed, this function is valid at power down.
- 7: In the RAM back-up mode, C/CNTR pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/CNTR pin is in an input enabled state (output = high-impedance). Other ports retain their respective output levels.

(6) Return signal

An external wakeup signal or timer 3 interrupt request flag (T3F) is used to return from the clock operating mode.

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped.

Table 16 shows the return condition for each return source.

(7) Control registers

- · Key-on wakeup control register K0
 - Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K1
 - Register K1 controls the return condition and the selection of valid waveform/level of port P1. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K2
 Register K2 controls the INT pin key-on wakeup function and the
 selection of return codition. Set the contents of this register
- through register A with the TK2A instruction. In addition, the TK2A instruction can be used to transfer the contents of register K2 to register A.

- Pull-up control register PU0
 - Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.
- Pull-up control register PU1
- Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.
- · External interrupt control register I1
 - Register I1 controls the valid waveform of the external 0 interrupt, the input control of INT pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 16 Return source and return condition

F	Return source	Return condition	Remarks
lal	Ports P00–P03	Return by an external falling edge ("H" \rightarrow "L").	The key-on wakeup function can be selected by two port unit.
wakeup signal	Ports P10–P13	Return by an external "H" level or "L" level input, or rising edge ("L"→"H") or falling edge ("H"→"L"). Return by an external "L" level input.	The key-on wakeup function can be selected by two port unit. Select the return level ("L" level or "H" level) and return condition (return by level or edge) with register K1 according to the external state before going into the power down state.
External w	INT pin	Return by an external "H" level or "L" level input, or rising edge ("L"→"H") or falling edge ("H"→"L").	Select the return level ("L" level or "H" level) with register I1 and return condition (return by level or edge) with register K2 according to the external state before going into the power down state.
lω̂		When the return level is input, the interrupt request flag (EXF0) is not set.	
	er 3 interrupt est flag (T3F)	Return by timer 3 underflow or by setting T3F to "1".	Clear T3F with the SNZT3 instruction before system enters into the power down state.
		It can be used in the clock operating mode.	When system enters into the power down state while T3F is "1", system returns from the state immediately because it is recognized as return condition.

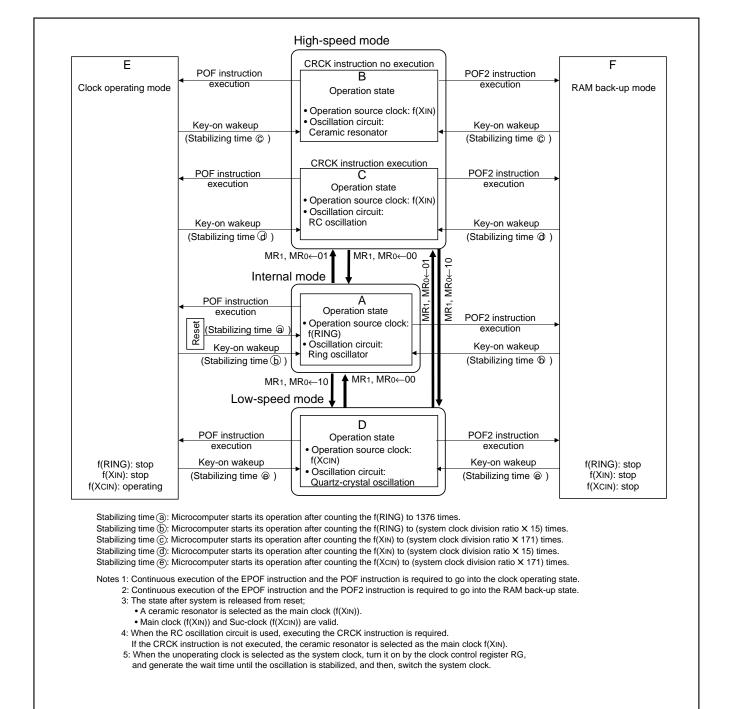


Fig. 42 State transition

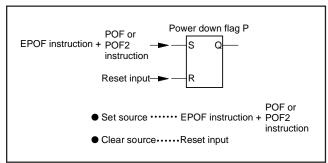


Fig. 43 Set source and clear source of the P flag

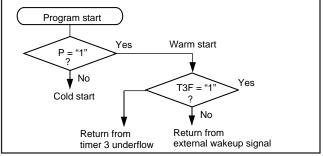


Fig. 44 Start condition identified example using the SNZP instruction

Table 17 Key-on wakeup control register, pull-up control register and interrupt control register

and it has an makeup control regions, pain up control regions and interrupt control regions.								
	Key-on wakeup control register K0		reset: 00002	at power down : state retained	R/W TAK0/ TK0A			
K03	Port P12, P13 key-on wakeup	0	Key-on wakeup not	used				
KU3	control bit	1	Key-on wakeup use	ed				
I/Os	Port P10, P11 key-on wakeup	0 Key-on wakeup not		used				
K02	control bit	1	Key-on wakeup use	sed				
I/O+	Port P02, P03 key-on wakeup	0	Key-on wakeup not	ot used				
K01	control bit	1	Key-on wakeup use	ed				
1/0-	Port P00, P01 key-on wakeup	0	Key-on wakeup not	used				
K00	control bit	1	Key-on wakeup use	ed				

	Key-on wakeup control register K1		reset : 00002	at power down : state retained	R/W TAK1/ TK1A
K13	Donto Dao Dao return condition colortion hit	0	Returned by edge		
K13	Ports P12, P13 return condition selection bit	1	Returned by level		
K12	Ports P12, P13 valid waveform/level	0	Falling waveform/"L	." level	
K12	selection bit	1	Rising waveform/"H	" level	
1/14	Posts D4s D4s setum and P6s set les 6s s let	0	Returned by edge		
K11	Ports P10, P11 return condition selection bit	1	Returned by level		
K10	Ports P10, P11 valid waveform/level	0	Falling waveform/"L	." level	
N10	selection bit	1	Rising waveform/"H	" level	

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W TAK2/ TK2A	
K23	Not used	0	This bit has no function, but read/write is enabled.			
1\23	K23 Not used		This bit has no function, but read/write is enabled.			
I/Oo	K22 Not used	0	This bit has no function, but read/write is enabled.			
N22		1	This bit has no function, but read/write is enabled.			
I/O.	INIT pin return condition colection bit	0	Returned by level			
K21	INT pin return condition selection bit	1	Returned by edge			
K20	K20 INT pin key-on wakeup control bit		Key-on wakeup inva	alid		
N20			Key-on wakeup valid			

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W TAPU0/ TPU0A
DUO	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1	Pull-up transistor O	N	
DUIOs	Port P02 pull-up transistor	0 Pull-up transistor O		FF	
PU02	control bit	1	Pull-up transistor O	N	
DUO	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1 Pull-up transistor ON		N	
DUIOs	Port P00 pull-up transistor	0 Pull-up transistor C		FF	
PU00	control bit	1	Pull-up transistor O	N	

Pull-up control register PU1		at reset : 00002		· · · · · · · · · · · · · · · · · · ·	R/W APU1/ PU1A
DUIA	Port P13 pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1	Pull-up transistor O	N	
DUIA	Port P12 pull-up transistor	0 Pull-up transistor O		FF	
PU12	control bit	1	Pull-up transistor O	N	
DUA	Port P11 pull-up transistor	0	Pull-up transistor O	FF	
PU11	control bit	1 Pull-up transistor ON		N	
PU10	Port P10 pull-up transistor	0 Pull-up transistor O		FF	
PU10	control bit	1	Pull-up transistor O	N	

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A	
l13	I13 INT pin input control bit (Note 2)		INT pin input disab	bled		
113	INTERPRETATION DIE (NOTE 2)	1	INT pin input enab	INT pin input enabled		
	Interrupt valid waveform for INT pin/	0	Falling waveform/" instruction)	L" level ("L" level is recognized with	the SNZI0	
l12	return level selection bit (Note 2)	1	Rising waveform/"I	H" level ("H" level is recognized with	the SNZI0	
l1 ₁	INT pip adge detection circuit central bit	0	One-sided edge de	etected		
1111	INT pin edge detection circuit control bit	1	Both edges detected	ed		
I10	INT pin Timer 1 count start synchronous	0	Timer 1 count start	t synchronous circuit not selected		
110	circuit selection bit	1	Timer 1 count start	t synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of I12 and I13 are changed, the external interrupt request flag (EXF0) may be set.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- Ring oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- · Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 45 shows the structure of the clock control circuit.

The 4556 Group operates by the ring oscillator clock (f(RING)) which is the internal oscillator after system is released from reset.

Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4556 Group.

The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

Fig. 45 Clock control circuit structure

(1) Ring oscillator operation

After system is released from reset, the MCU starts operation by the clock output from the ring oscillator which is the internal oscillator.

The clock frequency of the ring oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(2) Main clock generating circuit (f(XIN))

When the MCU operates by the ceramic resonator or the RC oscillator as the main clock (f(XIN)).

After system is released from reset, the ceramic oscillation is valid for main clock.

The ceramic oscillation is invalid and the RC oscillation circuit is valid with the CRCK instruction.

The CRCK instruction can be executed only once.

Execute the CRCK instruction in the initial setting routine (executing it in address 0 in page 0 is recommended).

When the main clock (f(XIN)) is not used, connect XIN pin to VSS and leave XOUT pin open, and do not execute the CRCK instruction (Figure 46).

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. A feedback resistor is built in between pins XIN and XOUT (Figure 47). Do not execute the CRCK instruction in program.

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 48).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

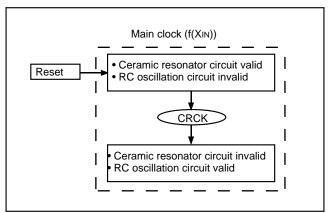


Fig. 46 Switch to ceramic resonance/RC oscillation

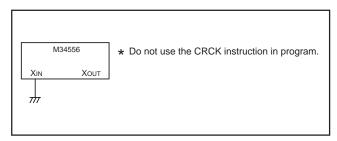


Fig. 47 Handling of XIN and XOUT when operating ring oscillator

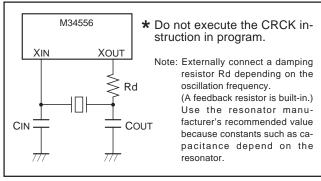


Fig. 48 Ceramic resonator external circuit

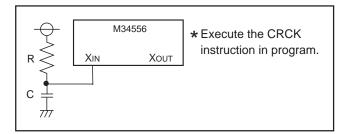


Fig. 49 External RC oscillation circuit

(5) External clock

When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. (Figure 49). Do not execute the CRCK instruction.

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down mode (POF and POF2 instructions) cannot be used when using the external clock.

(6) Sub-clock generating circuit f(XCIN)

Sub-clock signal f(XCIN) is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit and a quartz-crystal oscillator to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and XCOUT (Figure 50). XCIN pin and XCOUT pin are also used as ports D6 and D7, respectively. The sub-clock oscillation circuit is invalid and the function of ports D6 and D7 are valid by setting bit 2 of register RG to "1". When sub-clock, ports D6 and D7 are not used, connect XCIN/D6 to

When sub-clock, ports D6 and D7 are not used, connect XCIN/D6 to Vss and leave XCOUT/D7 open.

(7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

(8) Clock control register RG

Register RG controls the start/stop of each oscillation circuit. Set the contents of this register through register A with the TRGA instruction.

Table 18 Clock control registers

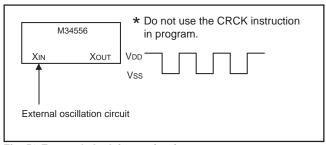


Fig. 50 External clock input circuit

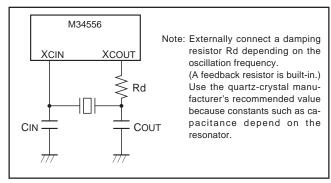


Fig. 51 External quartz-crystal circuit

ROM ORDERING METHOD

- 1.Mask ROM Order Confirmation Form*
- 2.Mark Specification Form*
- 3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
- * For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

Clock control register MR		at reset : 11002		reset : 11002	at power down : state retained	TAMR/ TMRA
		MRз	MR2		Operation mode	
MR3		0	0	Through mode		
	Operation mode selection bits	0	1	Frequency divided by	by 2 mode	
MR ₂	MR2	1	0	Frequency divided by 4 mode		
		1	1	Frequency divided by 8 mode		
		MR1	MR ₀		System clock	
MR3		0	0	f(RING)		
	System clock selection bits (Note 3)	0	1	f(XIN)		
MR2		1	0	f(XCIN)		
		1	1	Not available (Note	2)	

	Clock control register RG		reset: 0002	at power down : state retained	W TRGA
RG2	RG2 Sub-clock (f(XCIN)) control bit (Note 2)		Sub-clock (f(XCIN))	oscillation available, ports D6 and D	77 not selected
11.02			Sub-clock (f(XCIN))	oscillation stop, ports D6 and D7 se	lected
	Main-clock (f(XIN)) control bit (Note 2)	0	Main clock (f(XIN))	oscillation available	
RG1	Walli-clock (I(XIN)) Control bit (Note 2)	1	Main clock (f(XIN))	oscillation stop	
	Ring oscillator (f(RING)) control bit	0	Ring oscillator (f(RING)) oscillation available		
RG ₀	(Note 2)	1	Ring oscillator (f(RI	NG)) oscillation stop	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: "11" cannot be set to the low-order 2 bits (MR1, MR0) of register MR.

LIST OF PRECAUTIONS

① Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- \bullet connect a bypass capacitor (approx. 0.1 $\mu\text{F})$ between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

3 Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑤ Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

® Timer count source

Stop timer 1, 2 and LC counting to change its count source.

② Reading the count value

Stop timer 1 or 2 counting and then execute the data read instruction (TAB1, TAB2) to read its data.

®Writing to the timer

Stop timer 1, 2 or LC counting and then execute the data write instruction (T1AB, T2AB, TLCA) to write its data.

9 Writing to reload register R1, R2H

When writing data to reload register R1, reload register R2H while timer 1 or timer 2 is operating, avoid a timing when timer 1 or timer 2 underflows.

© Timer 2

Avoid a timing when timer 2 underflows to stop timer 2 at PWM output function used.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R2H.

Timer 3

Stop timer 3 counting to change its count source.

Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

[®]Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state, and stop the watchdog timer function.
- When the watchdog timer function and power down function are used at the same time, execute the WRST instruction before system enters into the power down state and initialize the flag WDF1.

(1) Multifunction

 Be careful that the output of port D5 can be used even when INT pin is selected.

The threshold value is different between port D5 and INT. Accordingly, be careful when the input of both is used.

• Be careful that the "H" output of port C can be used even when output of CNTR pin are selected.

® Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

¹⁶ D5/INT pin

• Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 51①) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 51@). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 51®).

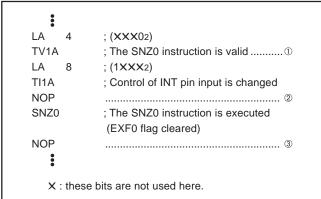


Fig. 51 External 0 interrupt program example-1

- Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the key-on wakeup function of INT pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 52①).

```
LA 0 ; (00XX2)
TI1A ; Input of INT disabled......①
DI
EPOF
POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 52 External 0 interrupt program example-2

Note on bit 2 of register I1

When the interrupt valid waveform of the D5/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 53⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 53@). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 53@).

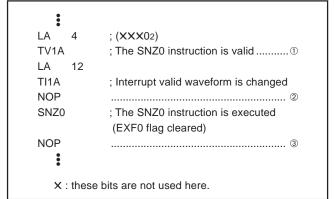


Fig. 53 External 0 interrupt program example-3

POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state.

Note that system cannot enter the power down state when executing only the POF or POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

® Power-on reset

When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μs or less. If the rising time exceeds 100 μs , connect a capacitor between the $\overline{\text{RESET}}$ pin and Vss at the shortest distance, and input "L" level to $\overline{\text{RESET}}$ pin until the value of supply voltage reaches the minimum operating voltage.

Voltage drop detection circuit (only in H version)

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 55);

supply voltage does not fall below to VRST-, and its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST- and re-goes up after that.

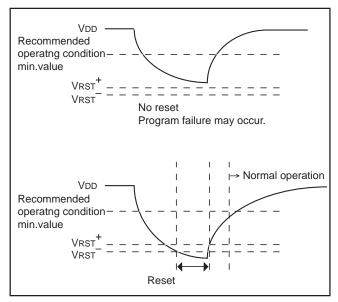


Fig. 55 VDD and VRST

© Clock control

Execute the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). The oscillation circuit by the CRCK instruction can be selected

The oscillation circuit by the CRCK instruction can be selected only once.

®Ring oscillator

The clock frequency of the ring oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the ring oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the ring oscillator clock.

@External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the power down mode (POF and POF2 instructions) cannot be used.

©Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at power down : 00002	R/W TAV1/TV1A
V13	Timer 2 interrupt enable bit	0	Interrupt disabled	(SNZT2 instruction is valid)	
V 13	Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)	
V12	V12 Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
V 12	Timer i interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	Not used	0			
V 11	Not used	1	This bit has no function, but read/write is enabled.		
1/40	V10 External 0 interrupt enable bit		Interrupt disabled	(SNZ0 instruction is valid)	
V 10			Interrupt enabled (SNZ0 instruction is invalid)	

	Interrupt control register V2		reset : 00002	at power down : 00002	R/W TAV2/TV2A	
\/2a	V23 Not used		This bit has no function, but read/write is enabled.		•	
V23			rnis bit has no function, but read/write is enabled.			
1/20	V22 Not used		This bit has no function, but read/write is enabled.			
V22	Not used	1	This bit has no function, but read/write is enabled.			
V/0.	Not used	0	This hit has no fun	ction, but read/write is enabled.		
V21	V21 Not used		This bit has no function, but read/write is enabled.			
\/2°	Vo- Timor 2 interrupt anable hit		Interrupt disabled	(SNZT3 instruction is valid)		
V20 T	Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT3 instruction is invalid)		

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A
l13	INT pin input control bit (Note 2)	0	INT pin input disab	bled	
113	in pin input control bit (Note 2)	1	INT pin input enab	led	
l12	Interrupt valid waveform for INT pin/ return level selection bit (Note 3)	instruction) Rising waveform/"I		waveform/"H" level ("H" level is recognized with the SNZI0	
l11	INT pin edge detection circuit control bit	0	instruction) One-sided edge de		
110	INT pin Timer 1 count start synchronous	1 Both edges detect 0 Timer 1 count star		ed t synchronous circuit not selected	
l10	circuit selection bit	1	Timer 1 count start	t synchronous circuit selected	

Clock control register MR		at reset : 11002		reset : 11002	at power down : state retained	R/W TAMR/ TMRA
		MRз	MR2		Operation mode	
MR3		0	0	Through mode		
	Operation mode selection bits	0	1	Frequency divided by	by 2 mode	
MR ₂		1	0	Frequency divided by	by 4 mode	
		1	1	Frequency divided by 8 mode		
		MR1	MR ₀		System clock	
MR3		0	0	f(RING)		
	System clock selection bits (Note 3)	0	1	f(XIN)		
MR2		1	0	f(XCIN)		
1411.42			1	Not available (Note	4)	

- 2: When the contents of I12 and I13 are changed, the external interrupt request flag (EXF0) may be set.
- 3: The stopped clock cannot be selected for system clock.
 4: "11" cannot be set to the low-order 2 bits (MR1, MR0) of register MR.

Clock control register RG		a	t reset : 0002	at power down : state retained	W TRGA	
DCo	20 20 00 00 00 00 00 00		0 Sub-clock (f(Xcin)) oscillation available, ports D6 and D7 not selec			
RG2	Sub-clock (f(XCIN)) control bit (Note 2)	1	1 Sub-clock (f(XCIN)) oscillation stop, ports D6 and D7 selected			
	Main-clock (f(XIN)) control bit (Note 2)	0	Main clock (f(XIN)) oscillation available			
RG1	Walli-clock (I(XIIV)) control bit (Note 2)	1	Main clock (f(XIN))	oscillation stop		
	Ring oscillator (f(RING)) control bit	0	Ring oscillator (f(RI	NG)) oscillation available		
RG ₀	(Note 2)	1 Ring oscillator (f(R		NG)) oscillation stop		

	Timer control register PA	at reset : 02		at power down : 02	W TPAA
PA ₀	PAo Prescaler control bit		Stop (state initialize	ed)	
FAU	Frescaler control bit	1	Operating		

Timer control register W1			at reset : 00002		at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	(0	Timer 1 count auto-	-stop circuit not selected	
VV13	bit (Note 3)		1	Timer 1 count auto-	-stop circuit selected	
W12	Times of a control hit	0		Stop (state retained)		
VV 12	Timer 1 control bit		1 Operating			
		W11	W10		Count source	
W11		0	0	PWM signal (PWM	OUT)	
	W10 Timer 1 count source selection bits (Note 4)		1	Prescaler output (ORCLK)		
W10			0	Timer 3 underflow	signal (T3UDF)	
			1	CNTR input		

	Timer control register W2 at		reset : 00002	at power down : 00002	R/W TAW2/TW2A
W23	CNTR pin output control bit	0	CNTR pin output ir	nvalid	
VV23	Civit pin output control bit	1	CNTR pin output valid		
W22	PWM signal interrupt valid waveform/	0	PWM signal "H" interval expansion function invalid		
V V Z Z	return level selection bit	1	PWM signal "H" interval expansion function valid		
W21	Time on O combined hit	0	Stop (state retaine	d)	
VVZI	Timer 2 control bit	1	Operating		
W20	W/20 Ti 0 ti 1'i	0	XIN input		
V V Z U	W20 Timer 2 count soruce selection bit		Prescaler output (0	ORCLK)/2 signal output	

	Timer control register W3	at re		reset : 00002	at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	()	XCIN input		
1100	bit	1	l	Prescaler output (0	ORCLK)	
W32	Timer 3 control bit	0		Stop (Initial state)		
VV32	Timer 3 control bit	1	1 Operating			
		W31	W30		Count source	
W31	To an O accord a company and action hits	0	0	Underflow occurs every 8192 counts		
	Timer 3 count source selection bits	0	1	Underflow occurs of	Underflow occurs every 16384 counts	
W30		1 (Underflow occurs every 32768 counts		
		1	1	Underflow occurs every 65536 counts		

- 2: The oscillation circuit selected for system clock cannot be stopped.
- 3: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").

 4: Port C output is invalid when CNTR input is selected for the timer 1 count source.

	Timer control register W4	at	reset : 00002	at power down : state retained	R/W TAW4/TW4A
W43	Timer LC control bit	0	Stop (state retaine	d)	
VV-13	Timer Lo control bit	1	Operating		
W42	W42 Timer LC count source selection bit	0	Bit 4 (T34) of timer 3		
VV42	Timer LC count source selection bit	1	System clock (STCK)		
W41	CNTR output auto-control circuit	0	CNTR output auto-	control circuit not selected	
VV	selection bit	1 CNTR output auto-		control circuit selected	
W40	W/40	0	Falling edge		
VV40	CNTR pin input count edge selection bit	1	Rising edge		

	LCD control register L1	at		reset : 00002	at power dov	vn : state retained	R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power	()	2r X 3, 2r X 2			
LIS	supply selection bit (Note 2)	1		r X 3, r X 2			
L12	140	0		Stop			
L12	LCD control bit	1		Operating			
		L11	L10	Duty		Bias	;
L11		0	0		Not av	ailable	
	LCD duty and bias selection bits	0	1	1/2		1/2	
L10		1	0	1/3		1/3	
LIO		1	1	1/4		1/3	

	LCD control register L2	at reset : 00002		at power down : state retained	W TL2A		
L23	SEG ₀ /V _L C ₃ pin function switch bit (Note 3)	0	SEG ₀				
LZ3	3EG0/VEC3 pill function switch bit (Note 3)	1	VLC3				
1.00	SEC4//4 so nin function quitab hit (Note 4)	0	0 SEG1				
L22	SEG1/VLC2 pin function switch bit (Note 4)	1	VLC2				
1.24	SECON/LOA nin function quitab bit (Note 4)	0	SEG ₂				
L21	SEG2/VLC1 pin function switch bit (Note 4)	1	VLC1				
1.20	Internal dividing resistor for LCD power	0	Internal dividing res	sistor valid			
L20	supply control bit	1	Internal dividing res	sistor invalid			

	LCD control register L3	at reset : 11112		at power down : state retained	W TL3A	
L33	P23/SEG20 pin function switch bit	0	SEG20			
LJS	1 23/02/02/0 piri function 3witch bit	1	P23			
L32	L32 P22/SEG19 pin function switch bit	0	0 SEG19			
L32	1 22/3E 3 19 piri function switch bit	1	P22			
1.24	P21/SEG18 pin function switch bit	0	SEG18			
L31	F21/3EG18 piii luliciioii switcii bit	1	P21			
1.20	P20/SEG17 pin function switch bit	0	SEG17			
L30	L30 P20/SEG17 pin function switch bit		P20			

- 2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias. 3: VLC3 is connected to VDD internally when SEG0 pin is selected.
- 4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

	LCD control register C1	at reset : 11112		at power down : state retained	W TC1A	
C13	P03/SEG24 pin function switch bit	0	SEG24			
C13	1 03/3E 024 piri function switch bit	1	P03			
C12	P02/SEG23 pin function switch bit	0	0 SEG23			
U12	F02/3EG23 piii function switch bit	1	P02			
C11	P01/SEG22 pin function switch bit	0	SEG22			
CII	P01/3EG22 pin function switch bit	1	P01			
C10	C4a D0g/CFCc4 nin function quitab hit	0	SEG21			
C10	P00/SEG21 pin function switch bit	1	P00			

	LCD control register C2	at reset : 11112		at power down : state retained	W TC2A
C23 P13/SEG28 pin function switch bit		0	SEG28		
023	1 13/02/028 pin function switch bit	1	P13		
C22	C22 P12/SEG27 pin function switch bit	0	SEG27		
C22	1 12/3E/327 piir function switch bit	1	P12		
C21	P11/SEG26 pin function switch bit	0	SEG26		
C21	F 11/3E G26 pill fullction switch bit	1	P11		
Coo	D10/SEC of pin function quitab hit	0	SEG25		
C20	C20 P10/SEG25 pin function switch bit		P10		

Pull-up control register PU0		at reset : 00002		at power down : state retained R/W TAPU0/ TPU0A
DLIO	Port P03 pull-up transistor	0	Pull-up transistor O	FF
PU03	control bit	1	Pull-up transistor O	N
DUIOs	Port P02 pull-up transistor	0	Pull-up transistor O	FF
PU02	control bit	1	Pull-up transistor O	N
DUO	Port P01 pull-up transistor	0	Pull-up transistor O	FF
PU01	control bit	1	Pull-up transistor O	N
DUO	Port P00 pull-up transistor	0	Pull-up transistor O	FF
PU00	control bit	1	Pull-up transistor O	N

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/ TPU1A	
DUIA	Port P13 pull-up transistor	0	Pull-up transistor O	FF		
PU13	control bit	1 Pull-up transistor ON		N		
DUIA	Port P12 pull-up transistor		Pull-up transistor OFF			
PU12	control bit	1	Pull-up transistor O	N		
DI IA	Port P11 pull-up transistor	0	Pull-up transistor O	FF		
PU11	control bit	1 Pull-up transistor ON		N		
DUIA	Port P10 pull-up transistor 0 Pull-up transistor 0		FF			
PU10	control bit	1 Pull-up transistor ON		N		

Note: "W" represents write enabled.

Port output structure control register FR0		at reset : 00002		at power down : state retained	W TFR0A		
FR03	Ports P12, P13 output structure selection	0	N-channel open-dra	ain output			
FR03	bit 1 CMOS out		CMOS output				
ED0s	Ports P10, P11 output structure selection		N-channel open-drain output				
FR02	bit	1	CMOS output				
EDO.	Ports P02, P03 output structure selection	0	N-channel open-drain output				
FR01 bit		1	CMOS output				
Ports P00, P01 output structure selection		0	N-channel open-drain output				
FR00 bit		1	CMOS output				

Port output structure control register FR1		at reset : 00002		at power down : state retained	W TFR1A		
ED40	Part Do autout atrusture caleatian hit	0	N-channel open-dra	ain output			
FR13 Port D3 output structure selection bit		1	CMOS output	CMOS output			
ED4e	ED4		N-channel open-drain output				
FR12	Port D2 output structure selection bit	1	CMOS output				
ED4.	Dant Dr. autout atmost up agle ation hit	0	N-channel open-drain output				
FRII	FR11 Port D1 output structure selection bit		CMOS output				
ED4°	Dant Do sutrout atmost us calcution hit	0	N-channel open-drain output				
FR10	Port Do output structure selection bit	1	CMOS output				

Port output structure control register FR2		at reset : 00002		at power down : state retained	W TFR2A	
EDO	FR23 Ports P22, P23 output structure selection bit		N-channel open-dra	ain output		
FR23			CMOS output			
FR22	EDO: Desta DO: DO: extent atmatema action bits		N-channel open-drain output			
FR22	Ports P20, P21 output structure selection bit	1	CMOS output			
ED24	Don't De control de tronctions de la chiera de la	0	N-channel open-dra	N-channel open-drain output		
FR21	FR21 Port D5 output structure selection bit		CMOS output	CMOS output		
FR20	Part D4 autout atrusture calcution hit	0	N-channel open-drain output			
FR20	Port D4 output structure selection bit	1	CMOS output			

Note: "W" represents write enabled.

	Key-on wakeup control register K0		reset : 00002	at power down : state retained	R/W TAK0/ TK0A	
K03	Port P12, P13 key-on wakeup	0	Key-on wakeup not	used		
K03	control bit	1 Key-on wakeup used		ed		
K02	Port P10, P11 key-on wakeup		Key-on wakeup not used			
K02	control bit	1	Key-on wakeup used			
I/O+	Port P02, P03 key-on wakeup	0	Key-on wakeup not used			
KU1	K01 control bit		Key-on wakeup used			
K0°	Port P00, P01 key-on wakeup		Key-on wakeup not used			
KU0	K00 control bit		Key-on wakeup use	ed		

	Key-on wakeup control register K1		reset : 00002	at power down : state retained	R/W TAK1/ TK1A	
K12	K13 Ports P12, P13 return condition selection bit		Returned by edge			
K13			Returned by level	Returned by level		
K12	Ports P12, P13 valid waveform/level		Falling waveform/"L" level			
K12	selection bit	1	Rising waveform/"H	H" level		
1/4 /	D . D. D	0	Returned by edge			
K11	K11 Ports P10, P11 return condition selection bit		Returned by level			
K10	Ports P10, P11 valid waveform/level	0 Falling waveform/"L" level		" level		
K10	selection bit	1 Rising waveform/"H" level				

	Key-on wakeup control register K2		reset: 00002	at power down : state retained	R/W TAK2/ TK2A		
K23	Not used	0	This hit has no fund	tion, but read/write is enabled			
N23	Not used	1	This bit has no function, but read/write is enabled.				
K22	I/O- Notice of		This bit has no function, but read/write is enabled.				
NZ2	Not used	1	This bit has no function, but read/white is enabled.				
I/O+	INIT pie pature andition adjection bit	0	Returned by level				
K21	K21 INT pin return condition selection bit		Returned by edge				
K20	KOO INT min how on walkerin control hit		Key-on wakeup inva	alid			
N20	INT pin key-on wakeup control bit	1	Key-on wakeup valid				

INSTRUCTIONS

The 4556 Group has the 124 (123) instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	PS	Prescaler
В	Register B (4 bits)	T1	Timer 1
DR	Register DR (3 bits)	T2	Timer 2
E	Register E (8 bits)	Т3	Timer 3
V1	Interrupt control register V1 (4 bits)	TLC	Timer LC
V2	Interrupt control register V2 (4 bits)	T1F	Timer 1 interrupt request flag
11	Interrupt control register I1 (4 bits)	T2F	Timer 2 interrupt request flag
MR	Clock control register MR (4 bits)	T3F	Timer 3 interrupt request flag
RG	Clock control register RG (3 bits)	WDF1	Watchdog timer flag
PA	Timer control register PA (1 bit)	WEF	Watchdog timer enable flag
W1	Timer control register W1 (4 bits)	INTE	Interrupt enable flag
W2	Timer control register W2 (4 bits)	EXF0	External 0 interrupt request flag
W3	Timer control register W2 (4 bits)	P	Power down flag
W4	Timer control register W4 (4 bits)	-	Fower down hag
			Part D (9 hita)
L1	LCD control register L1 (4 bits)	D P0	Port D (8 bits)
L2	LCD control register L2 (4 bits)	P0 P1	Port P0 (4 bits)
L3	LCD control register L3 (4 bits)		Port P1 (4 bits)
C1	LCD control register C1 (4 bits)	P2	Port P2 (4 bits)
C2	LCD control register C2 (4 bits)	С	Port C (1 bit)
PU0	Pull-up control register PU0 (4 bits)		Have de deselve de la
PU1	Pull-up control register PU1 (4 bits)	X	Hexadecimal variable
FR0	Port output format control register FR0 (4 bits)	У	Hexadecimal variable
FR1	Port output format control register FR1 (4 bits)	Z	Hexadecimal variable
FR2	Port output format control register FR2 (4 bits)	р	Hexadecimal variable
K0	Key-on wakeup control register K0 (4 bits)	n	Hexadecimal constant
K1	Key-on wakeup control register K1 (4 bits)	i	Hexadecimal constant
K2	Key-on wakeup control register K2 (4 bits)	į j	Hexadecimal constant
X	Register X (4 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
Y	Register Y (4 bits)		(same for others)
Z	Register Z (2 bits)		
DP	Data pointer (10 bits)	←	Direction of data movement
	(It consists of registers X, Y, and Z)	\leftrightarrow	Data exchange between a register and memory
PC	Program counter (14 bits)	?	Decision of state shown before "?"
РСн	High-order 7 bits of program counter	()	Contents of registers and memories
PCL	Low-order 7 bits of program counter	-	Negate, Flag unchanged after executing instruction
SK	Stack register (14 bits X 8)	M(DP)	RAM address pointed by the data pointer
SP	Stack pointer (3 bits)	а	Label indicating address as a
CY	Carry flag	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
UPTF	High-order bit reference enable flag	l'	in page p5 p4 p3 p2 p1 p0
RPS	Prescaler reload register (8 bits)	С	Hex. C + Hex. number x
R1	Timer 1 reload register (8 bits)	C + x	
R3	Timer 3 reload register (8 bits)		
R2L	Timer 2 reload register (8 bits)		
R2H	Timer 2 reload register (8 bits)		
RLC	Timer LC reload register (4 bits)		
		<u> </u>	

Note: Some instructions of the 4556 Group has the skip function to unexecute the next described instruction. The 4556 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	TAB	(A) ← (B)	88, 104	Je.	XAMI j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$	103, 104
	ТВА	(B) ← (A)	95, 104	RAM to register transfer		$j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$	
	TAY	$(A) \leftarrow (Y)$	94, 104	registe	TMA j	$(M(DP)) \leftarrow (A)$	99, 104
	TYA	$(Y) \leftarrow (A)$	102, 104	AM to	,	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	
ı	TEAB	(E7–E4) ← (B) (E3–E0) ← (A)	96, 104	<u>~~</u>	LA n	(A) ← n	78, 106
transfe	TARE		89, 104		LATI	n = 0 to 15	76, 106
Register to register transfer	TABE	(B) ← (E7–E4) (A) ← (E3–E0)	89, 104		ТАВР р	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	89, 106
ter to re	TDA	(DR2−DR0) ← (A2−A0)	96, 104			(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0) at (UPTF) = 0	
Regis	TAD	$ (A2-A0) \leftarrow (DR2-DR0) $ $ (A3) \leftarrow 0 $	90, 104			(B) ← (ROM(PC))7-4 (A) ← (ROM(PC))3-0 at (UPTF) = 1	
	TAZ	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$	95, 104			$(DR2) \leftarrow (0)$ $(DR1, DR0) \leftarrow (ROM(PC))9, 8$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$	
	TAX	$(A) \leftarrow (X)$	94, 104			(PC) ← (SK(SP)) (SP) ← (SP) − 1	
	TASP	$(A2-A0) \leftarrow (SP2-SP0)$ $(A3) \leftarrow 0$	92, 104		AM	$(A) \leftarrow (A) + (M(DP))$	73, 106
	LXY x, y	$(X) \leftarrow x \ x = 0 \text{ to } 15$	78, 104	eration	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	73, 106
Ses		$(Y) \leftarrow y y = 0 \text{ to } 15$		Arithmetic operation	A n	(A) ← (A) + n	73, 106
ddress	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	79, 104	vrithme		n = 0 to 15	
RAM addresses	INY	(Y) ← (Y) + 1	78, 104		AND	$(A) \leftarrow (A) \text{ AND } (M(DP))$	73, 106
	DEY	$(Y) \leftarrow (Y) - 1$	76, 104		OR	$(A) \leftarrow (A) OR (M(DP))$	80, 106
	ТАМ ј	$(A) \leftarrow (M(DP))$	91, 104		sc	(CY) ← 1	83, 106
er		$(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$			RC	(CY) ← 0	81, 106
r transf	XAM j	$(A) \leftarrow \rightarrow (M(DP))$	103, 104		SZC	(CY) = 0 ?	87, 106
registeı		$(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$			СМА	$(A) \leftarrow (\overline{A})$	75, 106
RAM to register transfer	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) - 1$	103, 104		RAR	CY A3A2A1A0	81, 106

Note: p is 0 to 31 for M34556M4/M4H.

p is 0 to 63 for M34556M8/M8H/G8/G8H.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	SB j	$(Mj(DP)) \leftarrow 1$ j = 0 to 3	83, 106		DI	(INTE) ← 0	76, 110
ion					EI	(INTE) ← 1	77, 110
Bit operation	RB j	$ (Mj(DP)) \leftarrow 0 $ $ j = 0 \text{ to } 3 $	81, 106		SNZ0	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) ← 0	84, 110
ш	SZB j	(Mj(DP)) = 0 ? j = 0 to 3	87, 106			V10 = 1: NOP	
ison	SEAM	(A) = (M(DP)) ?	84, 106	eration	SNZI0	I12 = 1 : (INT) = "H" ? I12 = 0 : (INT) = "L" ?	85, 110
Comparison operation	SEA n	(A) = n ? n = 0 to 15	84, 106	Interrupt operation	TAV1	(A) ← (V1)	93, 110
	Ва	(PCL) ← a6–a0	74, 108	Inte	TV1A	(V1) ← (A)	101, 110
ation	BL p, a	(PCH) ← p	74, 108		TAV2	(A) ← (V2)	93, 110
Branch operation	DL β, a	(PCL) ← a6–a0	74, 100		TV2A	(V2) ← (A)	101, 110
Branc	BLA p	(PCH) ← p (PCL) ← (DR2–DR0, A3–A0)	74, 108		TAI1	(A) ← (I1)	90, 110
	ВМа	(SP) ← (SP) + 1	74, 108		TI1A	(I1) ← (A)	97, 110
	DIVI A	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$	74, 100		TPAA	(PA) ← (A)	99, 112
<u>_</u>		(PCL) ← a6–a0			TAW1	(A) ← (W1)	93, 112
Subroutine operation	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	75, 108		TW1A	(W1) ← (A)	101, 112
outine ((PCH) ← p (PCL) ← a6–a0			TAW2	(A) ← (W2)	93, 112
Subro	BMLA p	(SP) ← (SP) + 1	75, 108		TW2A	(W2) ← (A)	102, 112
	'	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$		uo	TAW3	(A) ← (W3)	94, 112
		(PCL) ← (DR2–DR0, A3–A0)		perati	TW3A	(W3) ← (A)	102, 112
	RTI	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	82, 108	Timer operation	TAW4	(A) ← (W4)	94, 112
	RT	(PC) ← (SK(SP))	82, 108		TW4A	(W4) ← (A)	102, 112
ion		$(SP) \leftarrow (SP) - 1$	02, 100		TABPS	(B) ← (TPS7–TPS4) (A) ← (TPS3–TPS0)	90, 112
Return operation	RTS	(PC) ← (SK(SP)) (SP) ← (SP) − 1	82, 108		TPSAB	$(RPS7-RPS4) \leftarrow (B)$ $(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$	100, 112

Note: p is 0 to 31 for M34556M4/M4H.

p is 0 to 63 for M34556M8/M8H/G8/G8H.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	TAB1	(B) ← (T17–T14) (A) ← (T13–T10)	89, 112		CLD	(D) ← 1	75, 114
	T1AB	$(R17-R14) \leftarrow (B)$	87, 112		RD	$(D(Y)) \leftarrow 0$ (Y) = 0 to 7	82, 114
		$(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$			SD	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 7$	84, 114
	TAB2	(B) ← (T27–T24) (A) ← (T23–T20)	89, 112		SZD	(D(Y)) = 0 ? (Y) = 0 to 7	87, 114
	T2AB	$(R27-R24) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$	88, 112		RCP	(C) ← 0	81, 114
		$(R23-R20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$			SCP	(C) ← 1	83, 114
	Т2НАВ	(R2H7–R2H4) ← (B)	88, 112		TAPU0	(A) ← (PU0)	92, 114
ation		(R2H3–R2H0) ← (A)		ration	TPU0A	(PU0) ← (A)	100, 114
Timer operation	TR1AB	$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$	100, 112	Input/Output operation	TAPU1	(A) ← (PU1)	92, 114
Ë	T2R2L	(T27−T24) ← (R2L7−R2L4)	88, 112	put/Out	TPU1A	(PU1) ← (A)	100, 114
		(T23−T20) ← (R2L3−R2L0)		드	TAK0	(A) ← (K0)	90, 114
	TLCA	$ (LC) \leftarrow (A) $ $ (RLC) \leftarrow (A) $	99, 112		TK0A	(K0) ← (A)	97, 114
	SNZT1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) ← 0 V12 = 1: NOP	85, 112		TAK1	$(A) \leftarrow (K1)$ $(K1) \leftarrow (A)$	91, 114
	SNZT2	V13 = 0: (T2F) = 1 ?	85, 112		TAK2	$(A) \leftarrow (K2)$	91, 114
		After skipping, $(T2F) \leftarrow 0$ V13 = 1: NOP			TK2A TFR0A	$(K2) \leftarrow (A)$ $(FR0) \leftarrow (A)$	98, 114
	SNZT3	V20 = 0: (T3F) = 1 ? After skipping, (T3F) \leftarrow 0	86, 112		TFR1A	$(FR1) \leftarrow (A)$	96, 114
		V20 = 1: NOP			TFR2A	(FR2) ← (A)	97, 114
-	IAP0	$(A) \leftarrow (P0)$	77, 114		CRCK	RC oscillator selected	76, 116
eration	OP0A	$(P0) \leftarrow (A)$	79, 114	L C	TAMR	$(A) \leftarrow (MR)$	92, 116
Input/Output operation	IAP1	$(A) \leftarrow (P1)$	77, 114	Clock operation	TMRA	$(MR) \leftarrow (A)$	99, 116
put/Ou	OP1A	(P1) ← (A)	79, 114	Clock o	TRGA	(RG) ← (A)	101, 116
<u>=</u>	IAP2	(A) ← (P2)	78, 114				
	OP2A	(P2) ← (A)	80, 114				

INDEX LIST OF INSTRUCTION FUNCTION (continued)

INDE	<u> LIST U</u>	FINSTRUCTION FUNCT	ION (COI
Group- ing	Mnemonic	Function	Page
	TAL1	(A) ← (L1)	91, 116
	TL1A	(L1) ← (A)	98, 116
eration	TL2A	$(L2) \leftarrow (A)$	98, 116
LCD operation	TL3A	(L3) ← (A)	98, 116
]	TC1A	(C1) ← (A)	95, 116
	TC2A	(C2) ← (A)	95, 116
	NOP	(PC) ← (PC) + 1	79, 116
	POF	Transition to clock operating mode	80, 116
	POF2	Transition to RAM back-up mode	80, 116
	EPOF	POF, POF2 instructions valid	77, 116
uo	SNZP	(P) = 1 ?	85, 116
Other operation	DWDT	Stop of watchdog timer function enabled	76, 116
Othe	SRST	System reset	86,116
	WRST	(WDF1) = 1 ? After skipping, (WDF1) ← 0	103, 116
	RUPT	(UPTF) ← 0	83, 116
	SUPT	(UPTF) ← 1	86, 116
	SVDE (Note)	At power down mode, voltage drop detection circuit valid	86, 116

Note: The SVDE instruction can be used only for the H version.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

1 n (1) dd n	and accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	r lag o r	Only condition	
	16	1	1	_	Overflow = 0	
Operation:	$(A) \leftarrow (A) + n$	Grouping:	Arithmetic	operation		
•	n = 0 to 15		: Adds the \	value n in	the immediate field to	
			register A,	and stores	a result in register A.	
			The contents	s of carry fla	g CY remains unchanged.	
					ction when there is no	
					of operation.	
					struction when there is	
			overnow as	s the result	of operation.	
	ccumulator and Memory)	1	1	T		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 0 0 1 0 1 0 1 0 ₂ 0 0 A ₁₆	1	1	_		
		· '				
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping:	Arithmetic			
		Description	f M(DP) to register A.			
					egister A. The contents	
			or carry na	g C r rema	ins unchanged.	
AMC (Add	accumulator, Memory and Carry)	1				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 2 & 0 & 0 & B & 16 & 16 & 16 & 16 & 16 & 16 & 16 $	words	cycles			
	2	1	1	0/1	_	
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping:	Arithmetic	operation		
	$(CY) \leftarrow Carry$	Description: Adds the contents of M(DP) and carry flag				
			_		res the result in regis-	
			ter A and c	arry flag C	Υ.	
AND (logic	cal AND between accumulator and memory)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles			
	16	1	1	_	-	
Operation:	$(A) \leftarrow (A) \text{ AND } (M(DP))$	Grouping:	Arithmetic	operation		
oporation.	(4) (4) (11(5)))	Description			ation between the con-	
			tents of r	egister A	and the contents of	
			M(DP), an	d stores th	e result in register A.	

Ba (Branc	ch to address a)				
Instruction code	D9 D0 0 1 1 a6 a5 a4 a3 a2 a1 a0 1 8 a	Number of words	Number of cycles	Flag CY	Skip condition
	0 1 1 1	1	1	-	_
Operation:	(PCL) ← a6 to a0	Grouping: Description Note:	a in the ide	hin a page entical pag e branch a	ddress within the page
BL p, a (Br	ranch Long to address a in page p)	<u> </u>			
Instruction code	D9 D0 0 0 1 1 1 p4 p3 p2 p1 p0 0 E p 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 ps cs cs c4 c2 c2 c4 c2 2 P c	2	2	_	_
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 2 +a a 16	Grouping:	Branch ope	eration	
Operation:	$(PCH) \leftarrow p$	Description	: Branch out	of a page	: Branches to address
	(PCL) ← a6 to a0		a in page p).	
		Note:			556M4/M4H and p is (M8H/G8/G8H.
	anch Long to address (D) + (A) in page p)				
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 0 0 0 1 0 16	2	cycles 2	_	_
	1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p p 16	Grouping:	Branch ope	L eration	
Operation:	(PCH) ← p				: Branches to address
-	$(PCL) \leftarrow (DR2-DR0, A3-A0)$				2 A1 A0)2 specified by
		registers D and A in page p.			
		Maria	n is 0 to 3	1 for M345	556M4/M4H and p is (
		Note:	•		M8H/G8/G8H.
BM a (Brai	nch and Mark to address a in page 2)	Note:	•		
Instruction	nch and Mark to address a in page 2) D9 D0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Number of words	•		•
	· · · · · · · · · · · · · · · · · · ·	Number of	to 63 for M	34556M8/	M8H/G8/G8H.
Instruction code	D9 D0 0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a 16	Number of words	Number of cycles	34556M8/ Flag CY	M8H/G8/G8H. Skip condition
Instruction	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping:	Number of cycles 1 Subroutine	Flag CY - call opera	M8H/G8/G8H. Skip condition
Instruction code	D9 D0 0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a 16	Number of words 1 Grouping:	Number of cycles 1 Subroutines: Call the s	Flag CY call opera	Skip condition -
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping:	Number of cycles 1 Subroutine : Call the s subroutine	Flag CY call operaubroutine at address	Skip condition - ation in page 2 : Calls the s a in page 2.
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping: Description	Number of cycles 1 Subroutine : Call the s subroutine Subroutine	Flag CY - call opera ubroutine at address e extendir	Skip condition Skip condition ation in page 2 : Calls the sa in page 2. ng from page 2 to an
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping: Description	Number of cycles 1 Subroutine : Call the s subroutine Subroutine other page instruction	Flag CY call operaubroutine at addresse extendire can also when it sta	Skip condition Skip condition ation in page 2 : Calls the sa in page 2. ng from page 2 to an be called with the BM arts on page 2.
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping: Description	Number of cycles 1 Subroutine : Call the s subroutine other page instruction Be careful	Flag CY call operaubroutine at addresse extendire can also when it struct to over	Skip condition Skip condition ation in page 2 : Calls the s a in page 2. g from page 2 to an be called with the BM

	E INSTRUCTIONS (INDEX BY ALPHABET)	(Continu	ueu)		
	Branch and Mark Long to address a in page p)		1	1	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 C p 16	2	-		
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 p a	2	2	_	_
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 2 +a a 16	Grouping:	Subroutine	call opera	ation
Operation:	(SP) ← (SP) + 1		: Call the su	broutine :	Calls the subroutine a
-	$(SK(SP)) \leftarrow (PC)$		address a	in page p.	
	$(PCH) \leftarrow p$	Note:	•		556M4/M4H and p is 0
	(PCL) ← a6-a0				M8H/G8/G8H.
					the stack because the
			IIIaxiiIIuIII I	evel of Sub	routine nesting is 8.
DMI A m /F	Propose and Mark Lang to address (D) + (A) in page	2)			
Instruction	Branch and Mark Long to address (D) + (A) in page D9 D0	Number of	Number of	Floor CV	Chin condition
code		words	cycles	Flag CY	Skip condition
code	0 0 0 0 1 1 0 0 0 0 0 2 0 3 0 16	2	2	_	_
	1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p				
	1 0 p3 p4 0 0 p3 p2 p1 p0 2 2 p p p 16	Grouping:	Subroutine	call opera	ation
Operation:	$(SP) \leftarrow (SP) + 1$	Description			Calls the subroutine at
	$(SK(SP)) \leftarrow (PC)$,		Ro A3 A2 A1 A0)2 speci-
	$(PCH) \leftarrow p$	Note:			nd A in page p. 556M4/M4H and p is 0
	$(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note.	•		M8H/G8/G8H.
					the stack because the
					routine nesting is 8.
CLD (CLea	er port D)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 1 . 0 1 1 .	words	cycles		'
	16	1	1	_	_
Operation:	(D) ← 1	Grouping:	Input/Outp	ut oneratio	nn
•	` ,		: Sets (1) to	•	
			()		
CMA (Cal	Inloment of Accumulator				
Instruction	Iplement of Accumulator) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag 0 i	Okip condition
	0 0 0 0 0 1 1 1 1 0 0 ₂ 0 1 C ₁₆	1	1	_	_
					
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic		mploment for regists
		Description	A's conten		mplement for registe
			A S COINCEIL	is in regist	or A.

CBCK (Clo	ock select: Rc oscillation ClocK)		,		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 ₂ 2 9 B ₁₆	words	cycles		
	10	1	1	_	_
Operation:	RC oscillation circuit selected	Grouping:	Clock cont	rol operation	on
•					llation circuit for main
			clock f(XIN).	
DEY (DEc	rement register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 1 1 7	words	cycles		
		1	1	_	(Y) = 15
Operation:	$(Y) \leftarrow (Y) - 1$	Grouping:			
		Description	contents of register Y. action, when the con-		
					15, the next instruction
					e contents of register Y
			is not 15, 1	the next ins	struction is executed.
DI (Disable	e Interrupt)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 0 1 0 0 2	words 1	cycles 1	_	_
Operation:	(INTE) ← 0	Grouping:	Interrupt c	ontrol onor	ation
Operation.	$(INTL) \leftarrow U$	Description			t enable flag INTE, and
			disables th	e interrupt	
		Note:			by executing the DI in-
			struction a	fter execut	ing 1 machine cycle.
DWDT (Dis	sable WatchDog Timer)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 ₂ 2 9 C ₁₆	words 1	cycles 1	_	
		'	'		
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper		
		Description		struction	timer function by the after executing the

errupt) D0 D0 D0 D0 D0 D0 D0 D0 D0 D	Number of words 1 Grouping: Description Note: Number of words 1 Grouping: Description	Number of cycles 1 Other open	Flag CY ration interrupt s enabled I fter execut	enable flag INTE, and	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Note: Number of words 1 Grouping:	Interrupt or Sets (1) to enables the Interrupt is struction at Number of cycles 1 Other open or POF2 in	ontrol oper o interrupt e interrupt s enabled I fter execut Flag CY ration e immediatenstruction	enable flag INTE, and by executing the EI intigering 1 machine cycle. Skip condition e after POF instruction	
NTE) ← 1 e POF instruction) by D0 0 0 0 1 0 1 1 0 1 1 2 0 5 B 16	1 Grouping: Description Note: Number of words 1 Grouping:	Interrupt core: Sets (1) to enables the Interrupt is struction at Struction at 1 Number of cycles 1 Other open in Makes the or POF2 in	ontrol oper o interrupt e interrupt s enabled I fter execut Flag CY ration e immediatenstruction	enable flag INTE, and by executing the EI intiger of the EI integral o	
NTE) ← 1 e POF instruction) by D0 0 0 0 1 0 1 1 0 1 1 2 0 5 B 16	Number of words Grouping: Output Ou	Number of cycles Other open Makes the or POF2 ii	pontrol oper o interrupt e interrupt s enabled I fter execut Flag CY ration e immediatenstruction	enable flag INTE, and by executing the EI in ting 1 machine cycle. Skip condition e after POF instructio	
e POF instruction) D0 0 0 0 1 0 1 1 0 1 1 2 0 5 B 16	Note: Number of words 1 Grouping:	Number of cycles Other open Makes the or POF2 in	Flag CY ration interrupt s enabled I fter execut	enable flag INTE, and by executing the EI in ting 1 machine cycle. Skip condition - e after POF instruction	
D0 D	Note: Number of words 1 Grouping:	Number of cycles 1 Other open or POF2 in	e interrupt s enabled I fter execut Flag CY ration s immediat nstruction	Skip condition e after POF instructio	
D0 D	Number of words 1 Grouping:	Number of cycles 1 Other open or POF2 in	Flag CY ration immediate	by executing the EI in ing 1 machine cycle. Skip condition – e after POF instructio	
D0 D	Number of words 1 Grouping:	Number of cycles 1 Other open in Makes the or POF2 in the cycles in th	Flag CY ration s immediatenstruction	Skip condition – e after POF instructio	
D0 D	words 1 Grouping:	Number of cycles 1 Other open in Makes the or POF2 in the cycles.	Flag CY ration immediate	Skip condition – e after POF instruction	
D0 D	words 1 Grouping:	cycles 1 Other open Makes the or POF2 in	ration e immediat	e after POF instructio	
0 0 0 1 0 1 1 0 1 1 ₂ 0 5 B ₁₆	words 1 Grouping:	cycles 1 Other open Makes the or POF2 in	ration e immediat	e after POF instruction	
	Grouping:	Other open : Makes the or POF2 in	ration immediatenstruction		
OF instruction, POF2 instruction valid		or POF2 in	immediat		
		or POF2 in	immediat		
		or POF2 in		valid by executing the	
		EPOF inst	ruction.		
ccumulator from port P0) D0 1 0 0 1 1 0 0 0 0 0 0 2 6 0 40	Number of words	Number of cycles	Flag CY	Skip condition	
1 0 0 1 1 1 0 0 0 0 0 2 2 5 6 0 16	1	1	_	-	
A) ← (P0)	Grouping: Input/Output operation				
	Description	: Transfers	the input o	of port P0 to register A.	
1 0 0 1 1 0 0 0 1 2 6 1	Number of words	Number of cycles	Flag CY	Skip condition	
1 0 0 1 1 0 0 0 0 1 2 2 0 1 16	1	1	-	_	
A) ← (P1)	Grouping: Description				
1	0 0 1 1 0 0 0 0 1 2 2 6 1 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Do Number of Number of Cycles Flag CY Number of Number	

IAP2 (Input	t Accumulator from port P2)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 0 0 0 1 0 2 2 6 2	words	cycles			
		1	1	_	_	
Operation:	(A) ← (P2)	Grouping:	Input/Outp	ut operation	n	
		Description	: Transfers t	he input of	port P2 to register A.	
INY (INcrer	ment register Y)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
	16	1	1	_	(Y) = 0	
Operation:	(Y) ← (Y) + 1	Grouping: RAM addresses				
		Description	sult of ac register Y skipped. W	dition, w is 0, the hen the c	s of register Y. As a re- hen the contents of e next instruction is ontents of register Y is stion is executed.	
Instruction	n in Accumulator)	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 1 1 1 1 n n n n 2 0 7 n 16	1	1	_	Continuous description	
Operation:	(A) ← n	Grouping:	Arithmetic	operation		
	n = 0 to 15	Description: Loads the value n in the immediate fie				
			register A.			
					ions are continuously	
					, only the first LA in-	
					ited and other LA d continuously are	
LXY x, y (L	oad register X and Y with x and y)					
Instruction	D9 D0 1 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 X y 16	Number of words	Number of cycles	Flag CY	Skip condition	
	16	1	1	_	Continuous description	
Operation:	$(X) \leftarrow x \ x = 0 \text{ to } 15$	Grouping:	RAM addr	esses		
	$(Y) \leftarrow y \ y = 0 \text{ to } 15$	Description: Loads the value x in the immed register X, and the value y in the field to register Y. When the L tions are continuously coded an only the first LXY instruction i and other LXY instructions cod ously are skipped.				

LZ z (Load	register Z with z)				
Instruction code	D9 D0 0 0 1 0 0 1 0 z1 z0 0 0 4 8 45	Number of words	Number of cycles	Flag CY	Skip condition
oodo	0 0 0 1 0 0 1 0 0 1 21 20 2 0 4 8 +z 16	1	1	-	-
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping:	RAM addr	esses	
			: Loads the	value z in	the immediate field to
			register Z.		
NOP (No C	Peration)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(PC) ← (PC) + 1	Grouping:	Other ope	ration	
					1 to program counte
	tput port P0 from Accumulator)			- ov.	
Instruction code	D9 D0 1 0 0 0 0 0 0 2 2 0 4c	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(P0) ← (A)	Grouping:		out operation	
		Description	P0.	he content	s of register A to por
OP1A (Out	tput port P1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 1 2 2 1 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(P1) ← (A)	Grouping: Description		out operation he content	on s of register A to po

OP2A (Out	put port P2 from Accumulator)					
Instruction code	D9 D0 1 0 0 0 1 0 0 2 2 2 2	2 46	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(P2) ← (A)		Grouping:	Input/Outp	ut operatio	n
						s of register A to port
OR (logica	OR between accumulator and memory)					
Instruction	D9 D0	9 16	Number of words	Number of cycles	Flag CY	Skip condition
		916	1	1	_	-
Operation:	$(A) \leftarrow (A) OR (M(DP))$		Grouping:	Arithmetic	operation	
				tents of r	egister A	tion between the con- and the contents of e result in register A.
POF (Pow	,		.		EL 01/	01:
Instruction code	D9 D0 D0 0 0 0 0 0 1 0 2 0 0 2	2 16	Number of words	Number of cycles	Flag CY	Skip condition
			1	1	_	
Operation:	Transition to clock operating mode		Grouping: Other operation Description: Puts the system in clock operating mode executing the POF2 instruction after ecuting the EPOF instruction. Note: If the EPOF instruction is not executed before executing this instruction, this instruction equivalent to the NOP instruction.			
POF2 (Pov	ver OFf2)		'			
Instruction code	D9 D0 0 0 0 0 1 0 0 0 0 0 0	8 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	-
Operation:	Transition to RAM back-up mode		Grouping: Other operation Description: Puts the system in RAM back-up state to executing the POF2 instruction after executing the EPOF instruction. Note: If the EPOF instruction is not executed before executing this instruction, this instruction equivalent to the NOP instruction.			

Rotate Accumulator Right)					
On D9 D0 0 0 0 0 1 1 1 0 1 0 1 D ₁₆	Number of words	Number of cycles	Flag CY	Skip condition	
0 0 0 0 1 1 1 1 0 1 2 0 1 5 16	1	1	0/1	-	
$n: \longrightarrow \boxed{CY} \longrightarrow \boxed{A3A2A1A0}_{7}$	Grouping:	Arithmetic	operation		
	1			ontents of register A in- of carry flag CY to the	
teset Bit)					
On D9 D0 0 0 0 1 0 0 1 1 j j 2 0 4 C +j 16	Number of words	Number of cycles	Flag CY	Skip condition	
16	1	1	_	-	
$\mathbf{n} \colon (Mj(DP)) \leftarrow 0$	Grouping:	Bit operati	on		
j = 0 to 3	Description	, ,		nts of bit j (bit specified e immediate field) of	
set Carry flag)					
on D9 D0	Number of	Number of	Flag CY	Skip condition	
0 0 0 0 0 0 1 1 0 2 0 0 6	words 1	cycles 1	0	· 	
n : (CY) ← 0	Grouping:	Δrithmetic	oneration		
(01) \ 0	Grouping: Arithmetic operation Description: Clears (0) to carry flag CY.				
leset Port C)					
on D9 D0 1 0 0 0 1 1 0 0 0 2 8 C	Number of words	Number of cycles	Flag CY	Skip condition	
16	1	1	0	_	
n : (C) ← 0	Grouping: Description				
n: (C) ← 0				Grouping: Input/Output operation Description: Clears (0) to carry fla	

RD (Reset	port D specified by register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 0 0 2 0 1 4	words	cycles		
		1	1	_	_
Operation:	$(D(Y)) \leftarrow 0$	Grouping:	Input/Outp	ut operation	on
·	However,	Description			oort D specified by reg-
	(Y) = 0 to 7		ister Y.		
RT (ReTur	n from subroutine)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 0 0 1 0 0 2 0 4 4 16	words	cycles		
		1	2	_	-
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
	(SP) ← (SP) – 1	Description			outine to the routine
			called the	subroutine	
RTI (ReTui	n from Interrupt)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 2	1	1	_	_
		'	ı		_
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
	$(SP) \leftarrow (SP) - 1$	Description			upt service routine to
			main routir		of data pointer (X, Y, Z),
					s, NOP mode status by
					ption of the LA/LXY in-
					and register B to the
			states just	before inte	errupt.
	urn from subroutine and Skip)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 0 1 0 1 2 0 4 5	1	2	_	Skip at uncondition
		'			Okip at anothalion
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope		
	$(SP) \leftarrow (SP) - 1$	Description			outine to the routine
			struction a		, and skips the next in-
			on donor a		

RUPT (Res	set UPTF flag)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	0 0 0 1 0 1 1 0 0 0 0 2 0 5 8 16	1	1	-	-
Operation:	(UPTF) ← 0	Grouping:	Other oper	ration	
				to the hig	h-order bit referenc
SB j (Set E	Bit)				
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(Mj(DP)) ← 1	Grouping:	Bit operati	on	
	j = 0 to 3	Description	, ,		of bit j (bit specified b ediate field) of M(DP)
SC (Set Ca	arry flag)				
Instruction code	D9	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	1	_
Operation:	(CY) ← 1	Grouping:	Arithmetic		
			i: Sets (1) to		
SCP (Set F	•	1	1	I I	
Instruction code	D9 D0 1 0 0 0 1 1 0 1 2 8 D	Number of words	Number of cycles	Flag CY	Skip condition
Code	16	1	1	_	_
Operation:	(C) ← 1	Grouping: Description	Input/Outp		n

SD (Set no	ort D specified by register Y)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	0 0 0 0 0 1 0 1 0 1 2 0 1 5	words	cycles	1 lag 01	Skip condition			
		1	1	_	_			
Operation:	$(D(Y)) \leftarrow 1$	Grouping:	Input/Outp	ut operation	on			
	(Y) = 0 to 7	Description	s: Sets (1) to ter Y.	a bit of po	ort D specified by regis-			
SEA n (Sk	ip Equal, Accumulator with immediate data n)							
Instruction	Do Do	Number of words	Number of cycles	Flag CY	Skip condition			
		2	2	_	(A) = n n = 0 to 15			
	0 0 0 1 1 1 1 n n n n ₂ 0 7 n ₁₆	Grouping:	Compariso	on operation				
Operation:	(A) = n ?	Description		e next instruction when the con-				
-	n = 0 to 15			-	s equal to the value n in			
			the immed					
			struction when the con- not equal to the value n d.					
SEAM (Sk	ip Equal, Accumulator with Memory)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	0 0 0 0 1 0 0 1 1 0 2 0 16	words 1	cycles 1	_	(A) = (M(DP))			
Operation:	(A) = (M(DP)) ?	Grouping	Compariso	n operatio	<u> </u>			
орегалоп.	(A) = (M(D)):	Grouping: Comparison operation Description: Skips the next instruction when the or						
			tents of re M(DP). Executes	gister A is the next in register A	equal to the contents of struction when the con- A is not equal to the			
SNZ0 (Ski	p if Non Zero condition of external 0 interrupt reques	st flag)						
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	0 0 0 0 1 1 1 0 0 0 2 0 3 8 16	1	1	_	V10 = 0: (EXF0) = 1			
Operation:	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)	Grouping: Interrupt operation Description: When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF is "1." After skipping, clears (0) to the EXF flag. When the EXF0 flag is "0," executed the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction.						

SNZIO (Ski	p if Non	Zero	o cond	dition	n of e	xterr	al 0	Inte	erru	ıpt iı	nput i	oin)			
Instruction	D9						D ₀				. 0. 1	Number of	Number of	Flag CY	Skip condition
code	0 0	0	0 1	1	1 () 1	0	. [o T	3	A 10	words	cycles		
								2 🗀			16	1	1	_	l12 = 0 : (INT) = "L" l12 = 1 : (INT) = "H"
Operation:	112 = 0 112 = 1 (112 : bi)	(INT) = "H"	?	contro	l regi:	ster I1)				Grouping: Description	when the	= 0 : Skip level of IN	os the next instruction IT pin is "L." Executes when the level of INT
													pin is "H." When I12 when the I	= 1 : Skip level of IN	os the next instruction T pin is "H." Executes when the level of INT
SNZP (Ski	o if Non	Zero	cond	lition	of P	ower	dow	n fl	ag))					
Instruction	D9 0	0	0 0	0	0 0) 1	D0		o	0	3 46	Number of words	Number of cycles	Flag CY	Skip condition
		0	0 0	1 0	0 0	<u> </u>		2 🗅		<u> </u>	16	1	1	_	(P) = 1
Operation:	(P) = 1	?										Grouping:	Other oper	ration	
												Description	ction when the P flag is P flag remains un-		
													changed.	, p	
											the next i	nstruction when the P			
													flag is "0."		
SNZT1 (SI	kip if No	n Ze	ro cor	nditic	n of	Time	r 1 ir	nteri	rup	t re	quest	flag)			
Instruction code	D9	1	0 0	0	0 (0 0	D0	Γ:	2	8	0 40	Number of words	Number of cycles	Flag CY	Skip condition
								2 ∟			16	1	1	_	V12 = 0: (T1F) = 1
Operation:	V12 = 0											Grouping:	Timer ope		
	After sk V12 = 1		J, (,)							Description			ps the next instruction upt request flag T1F is
	(V12 = 1				ontrol r	egiste	er V1)								clears (0) to the T1F
	`					J	,								lag is "0," executes the
													next instru		
													When V12 lent to the		s instruction is equiva- uction.
SNZT2 (SI	kip if No	n Ze	ro cor	nditio	n of	Time	r 2 ir	nteri	rup	t red	quest	flag)			
Instruction	D9 1 0	1	0 0	0	0 (0 0	D0		2	8	1 40	Number of words	Number of cycles	Flag CY	Skip condition
		'	0 0			9 0		2 Ľ			16	1	1	_	V13 = 0: (T2F) = 1
Operation:	V13 = 0 After sk V13 = 1 (V13 =	ippin : SNZ	g, (T2F ZT2 = N) ← 0 IOP		egiste	ster V1)					Grouping: Timer operation Description: When V13 = 0 : Skips the next inst when timer 2 interrupt request flag "1." After skipping, clears (0) to the flag. When the T2F flag is "0," execut next instruction. When V13 = 1 : This instruction is easily lent to the NOP instruction.			

SNZT3 (Sk	ap it ivo	n Zei	O COII	uillo	11 01	Time	r 3 in	terru	pt red	quest	nag)				
Instruction	D9						D ₀				Number of	Number of	Flag CY	Skip condition	
code	1 0	1	0 0	0	0	0 1	0	2	8	2 16	words	cycles			
								2 ட		116	1	1	_	V20 = 0: (T3F) = 1	
Operation:	V20 = 0): (T3F	=) = 1 ?								Grouping:	Timer oper	ation		
•			g, (T3F)									: When V20	= 0 : Skir	s the next instruction	
			2T3 = N											pt request flag T3F i	
			of interru		ntrol	reaiste	er V2)							clears (0) to the T3	
	(120	0 0				. 0 9.011	· · -,							ag is "0," executes the	
												next instru		ag is o, excoutes the	
														instruction is equiva	
												lent to the			
												lent to the	INOP IIISIII	action.	
SRST (Sys		SeT)	1										I I		
Instruction	D9						D ₀				Number of	Number of	Flag CY	Skip condition	
code	0 0	0	0 0	0	0	0 0	1	0	0	1 16	words	cycles			
								2		10	1	1	_	_	
Operation:	System	reset	occurre	ence							Grouping:	Other oper	ation		
											Description	: System res	set occurs.		
SUPT (Set		ilag)					D-				Ni mala an af	Manada a a of	FI 0)/	01 ' 1't'	
Instruction	D9						D ₀			_	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0	0	1 0	1	1	0 0	0	2 0	5	9 16					
											1	1	_	_	
Operation:	(UPTF	<i>←</i> 1									Grouping:	Other oper	ation		
											Description	: Sets (1) to	high-orde	er bit reference enable	
												flag.			
SVDE (Se	Voltage	Dot	octor [Enak	lo fl	3a)									
Instruction		ייייייייייייייייייייייייייייייייייייייי	20101 L		,10 110	^9 <i>)</i>	Do				Number of	Number of	Flac CV	Skip condition	
	D9						D ₀				words	cycles	Flag CY	Skip condition	
code	1 0	1	0 0	1	0	0 1	1	2 2	9	3 16		-			
											1	1			
Operation:	Voltage	drop	detection	on cir	cuit v	alid at	powe	rdown	mode	·	Grouping:	Other oper	ation		
											Description	: Voltage d	rop detect	tion circuit is valid a	
												_		clock operating mode	
											RAM back-up mode)				
											Note: This instruction can be used only for H version.				
														,	

	o if Zero, Bit)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 0 0 j j 2 0 2 j	words	cycles		•
		1	1	_	(Mj(DP)) = 0 $j = 0 to 3$
Operation:	(Mj(DP)) = 0 ?	Grouping:	Bit operation	on	
	j = 0 to 3	Description	: Skips the	next instr	uction when the con-
					cified by the value j in
				,	of M(DP) is "0."
					struction when the con-
			tents of bit	j of M(DP)) is "1."
SZC (Skip	if Zero, Carry flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 1 1 1 ₂ 0 2 F ₁₆	words	cycles		(CV) 0
		1	1	_	(CY) = 0
Operation:	(CY) = 0 ?	Grouping:	Arithmetic		
		Description			ruction when the con-
			tents of ca		
			changed.	ping, the	CY flag remains un-
			ū	the next in	struction when the con-
			tents of the		
SZD (Skip	if Zero, port D specified by register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 0 0 0 0 2 4	words	cycles		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	2	_	(D(Y)) = 0
	0 0 0 0 1 0 1 0 1 1 ₂ 0 2 B ₁₆				(Y) = 0 to 7
Operation:	(D(Y)) = 0 ?	Grouping:	Input/Outp		
-	(Y) = 0 to 7	Description			ction when a bit of port er Y is "0." Executes the
				, ,	the bit is "1."
				0	
T1AB (Tra	unsfer data to timer 1 and register R1 from Accumula	tor and reg	gister B)		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 0 0 2 2 3 0	words	cycles		
	10	1	1	_	-
Operation:	(T17–T14) ← (B)	Grouping:	Timer ope	ration	
	$(R17-R14) \leftarrow (B)$	Description	n: Transfers	the conte	nts of register B to the
	$(T13-T10) \leftarrow (A)$		•		timer 1 and timer 1 re-
	$(R13-R10) \leftarrow (A)$		_		ansfers the contents of
			Ü		order 4 bits of timer 1
			and timer	i reload re	egister K1.

T2AR (Trai	nsfer data to timer 2 and register R2 from Accumula	tor and red	ister R)		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 0 1 2 3 1	words	cycles	l lag 01	Okip condition
	1 0 0 0 1 1 0 0 0 1 2 2 3 1 16	1	1	-	_
Operation:	$(R2L7-R2L4) \leftarrow (B)$	Grouping:	Timer oper		to of register D to the
	$(T27-T24) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$	Description			its of register B to the imer 2 and timer 2 re-
	$(T23-T20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$		-		ansfers the contents of
	(:=====================================		-		order 4 bits of timer 2
			and timer 2		
T2HAB (Tr	ransfer data to register R2H from Accumulator and re	egister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 0 1 0 0 2 2 9 4	words	cycles		
		1	1	_	_
Operation:	(R2H7–R2H4) ← (B)	Grouping:	Timer oper	ation	
·	$(R2H3-R2H0) \leftarrow (A)$	Description			nts of register B to the
			-		imer 2 and timer 2 re-
			-		ansfers the contents of
			-		order 4 bits of timer 2 gister R2H.
			and timer 2	z roload ro	gistor NZTI.
TODOL /T:	anofan data ta timan O franco na nietan DOLV				
IZRZL (113	ansfer data to timer 2 from register R2L) D0 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag C1	Skip condition
33.0	1 0 0 0 <th>1</th> <th>1</th> <th>_</th> <th>_</th>	1	1	_	_
Operation:	$(T27-T20) \leftarrow (R2L7-R2L0)$	Grouping:	Timer ope		ents of reload register
		Description	R2L to tim		ints of reload register
TAB (Trans	sfer data to Accumulator from register B)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	$\begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 2 & 0 & 1 & E & 16 \end{vmatrix}$	words	cycles		
		1	1	_	_
Operation:	$(A) \leftarrow (B)$	Grouping:	Register to	register tr	ansfer
	() ()				ts of register B to reg-
			ister A.		

TAD4 /Tue		nintan D funna timan	4\			
	ansfer data to Accumulator and re		· · · · · · · · · · · · · · · · · · ·			
Instruction code	D9 1 0 0 1 1 1 0 0 0	$\begin{bmatrix} D_0 \\ 0 \end{bmatrix}_2 \begin{bmatrix} 2 & 7 & 0 \end{bmatrix}_{16}$	Number of words	Number of cycles	Flag CY	Skip condition
			1	1	_	_
Operation:	(B) ← (T17–T14)		Grouping:	Timer ope	ration	
-	(A) ← (T13–T10)			: Transfers	the high-o	rder 4 bits (T17-T14) o
				timer 1 to	register B.	
				Transfers	the low-or	der 4 bits (T13-T10) o
				timer 1 to	register A.	
TAB2 (Tra	ansfer data to Accumulator and re	gister B from timer	2)			
Instruction code	D9 1 0 0 1 1 1 0 0 0	D ₀ 2 7 1 40	Number of words	Number of cycles	Flag CY	Skip condition
		2 2 7 116	1	1	_	-
Operation:	(B) ← (T27–T24)		Grouping:	Timer ope	ration	
•	(A) ← (T23–T20)					rder 4 bits (T27-T24) of
				timer 2 to	_	,
				Transfers	the low-or	der 4 bits (T23-T20) o
				timer 2 to	register A.	
TABE (Tra	ansfer data to Accumulator and re	gister B from regist	er E)			
Instruction	D9	Do	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1	0 ₂ 0 2 A ₁₆	words 1	cycles 1	_	_
	(5) (5 5)					
Operation:	$(B) \leftarrow (E7 - E4)$		Grouping:	Register to		
	$(A) \leftarrow (E3-E0)$		Description		_	order 4 bits (E7–E4) of
				of register	-	B, and low-order 4 bits er A.
TABP p (T	Fransfer data to Accumulator and	register B from Pro	gram mem	ory in page	p)	
Instruction	D9	D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 1 0 p5 p4 p3 p2 p1	p0 2 0 +p p 16	1	3	-	-
Operation:		Grouping: Arithme	tic operation	1	1	
$(SP) \leftarrow (SP) \leftarrow (SK(SP)) \leftarrow (SK(SP$	(PC)	Description: UPTF = 0: Transfers bit				o register A. These bits A2 A1 A0)2 specified by

TABPS (T	ransfer data to Accumulator and register B from Pre	Scaler)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 1 0 1 2 2 7 5 16	words	cycles		
		1	1	-	_
Operation:	$(B) \leftarrow (TPS7-TPS4)$	Grouping:	Timer oper	ation	
	$(A) \leftarrow (TPS3-TPS0)$	Description	TPS4) of	prescaler he low-orde	order 4 bits (TPS7- to register B, and er 4 bits (TPS3-TPS0) er A.
TAD (Trans	sfer data to Accumulator from register D)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 1 2	words 1	cycles 1	_	
		·			
Operation:	$(A2-A0) \leftarrow (DR2-DR0)$	Grouping:	Register to		
	(A ₃) ← 0	Description Note:	low-order : When this	3 bits (A2-A instruction	ts of register D to the Ao) of register A. on is executed, "0" is of register A.
	sfer data to Accumulator from register I1)		1		
Instruction code	D9 D0 1 0 1 0 0 1 1 2 5 3 4c	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (I1)	Grouping:	Interrupt o	peration	
		Description	: Transfers register I1		ts of interrupt control A.
TAK0 (Trai	nsfer data to Accumulator from register K0)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0000	1 0 0 1 0 1 0 1 0 1 0 2 2 5 6 16	1	1	_	-
Operation:	(A) ← (K0)	Grouping: Description	Input/Outp : Transfers control reg	the conter	nts of key-on wakeup

`				
nsfer data to Accumulator from register K1)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
16	1	1	_	-
(A) ← (K1)	Grouping:	Input/Outp	ut operation	n
	Description			
nsfer data to Accumulator from register K2)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
16	1	1	_	-
$(A) \leftarrow (K2)$	Grouping:			
	Description:			
nsfer data to Accumulator from register L1) D9 D0 1 0 0 1 0 0 1 0 1 0 2 2 4 A 16	Number of words	Number of cycles	Flag CY	Skip condition
40 40				
$(A) \leftarrow (L1)$				
	Description			is of ECD control regis
nsfer data to Accumulator from Memory)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
16	1	1	-	-
$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Grouping: Description:	After transf register A,	ferring the an exclus	contents of M(DP) to
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c }\hline D_0 & D_0$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

TAMR (Tra	ınsfer d	ata t	o Accu	ımul	ator fr	om r	eais	ter	MF	R)					
Instruction	D9						D ₀					Number of	Number of	Flag CY	Skip condition
code	1 0	0	1 0	1	0 0	1	0	, [2	5	2 16	words	cycles		
								2 L			10	1	1	_	_
Operation:	(A) ← (MR)										Grouping:	Clock oper	ration	
•	` , , ,	,										Description	: Transfers	the conten	ts of clock control reg-
													ister MR to	o register A	
TAPU0 (Tr	ansfer o	lata	to Acc	umu	lator f	rom	regi	ste	r P	U0)					
Instruction	D9						D ₀			,		Number of	Number of	Flag CY	Skip condition
code	1 0	0	1 0	1	0 1	1	1	2	2	5	7 16	words	cycles		
												1	1	_	_
Operation:	(A) ← (PU0)										Grouping:	Input/Outp	ut operatio	n
·	` , , ,	•												the conte J0 to regist	nts of pull-up control er A.
TAPU1 (Tr Instruction code	D9	data	to Acc	umu 1	lator f	rom 1	regi Do		r P		E 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(A) \leftarrow ($	PU1)										Grouping:	Input/Outp		n nts of pull-up control
												2000		J1 to regist	
TASP (Trai		ta to	Accui	mula	tor fro	m S		PC	oint	er)		T		I =	
Instruction code	D9		4 6		0 0	Τ_	D ₀	Г		_		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0	0	1 0	1	0 0	0	0	2 [0	5	0 16	1	1	_	-
Operation:	(A3) ← 0							Grouping: Register to register transfer Description: Transfers the contents of stack pointer to the low-order 3 bits (A2–A0) of regist After this instruction is executed, "stored to the bit 3 (A3) of register A.							

TAV1 (Tran	nsfer data to Accumulator from register V1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 0 2 0 5 4	words 1	cycles 1	_	
		!	I I	_	_
Operation:	$(A) \leftarrow (V1)$	Grouping:	Interrupt o		
		Description	register V1		nts of interrupt control r A.
TAV2 (Trai	nsfer data to Accumulator from register V2)				
Instruction	D9 D0 0 0 1 0 1 0 1 0 1 0 1 0 5 5 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 0 1 2 0 5 5 16	1	1	_	-
Operation:	$(A) \leftarrow (V2)$	Grouping:	Interrupt o		
		Description		the contei	nts of interrupt control r A.
TAW1 (Tra	insfer data to Accumulator from register W1)				
Instruction code	D9 D0 1 0 0 1 0 1 1 1 2 2 4 B 16	Number of words	Number of cycles	Flag CY	Skip condition
		'	1	_	
Operation:	$(A) \leftarrow (W1)$	Grouping:	Timer ope		
		Description	ister W1 to		ts of timer control reg-
	ansfer data to Accumulator from register W2)	I		EL 01/	
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 1 0 0 1 1 0 0 1 1 0 0 ₂ 2 4 C ₁₆	1	1	_	-
Operation:	(A) ← (W2)	Grouping: Description			ts of timer control reg-

TAW3 (Tra	nster dat	a to	Accu	mui	ator i	rom	re	gist	er vv	3)						
Instruction	D9							Do_					Number of	Number of	Flag CY	Skip condition
code	1 0	0	1 0	0	1	1 (0	1 2	2	4	D	16	words 1	cycles 1	_	
													1	'		
Operation:	$(A) \leftarrow (V)$	(3)											Grouping:	Timer oper		
													Description	: Transfers		s of timer control reg
TAW4 (Tra	ınsfer da	ta to	Accı	 ımul	ator f	rom	n re	gist	er V	/4)						
Instruction	D9	0	1 0					D ₀	2	4	E	1	Number of words	Number of cycles	Flag CY	Skip condition
	[,] •]		. 0	1 ,	<u> </u>	<u> </u>	•	2		<u> </u>		」 16	1	1	_	_
Operation:	(A) ← (V	/4)											Grouping:	Timer ope	ration	
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	← (W4)									ts of timer control reç					
TAX (Trans	sfer data	to A	\ccum	ıulat	or fro	m r		ster	X)				Number of	Number of	Flag CY	Skip condition
code	0 0	0	1 0	1	0	0	_	0 2	0	5	2	16	words	cycles	-	
Operation:	(A) ← (X												Grouping:	Register to	register tr	anefer
		,														ts of register X to reg
TAY (Trans		to A	ccum	ulat	or fro	m re	egis	ster	Y)							
Instruction code	D9	0	0 0	1	1	1 /	_	D0		1	F	7	Number of words	Number of cycles	Flag CY	Skip condition
oodo	0 0	0	0 0		1	1	1	1 2	0	1		_16	1	1	-	-
Operation:								Grouping: Description	Register to : Transfers t ter A.		ansfer s of register Y to regis					

TA7 /Trans	star data to Accumulator from register 7)		-		
IAZ (Trans	sfer data to Accumulator from register Z)	Ni. wala a u a f	Niala a n. af	Flar CV	Chin and dition
code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 1 2 0 5 3	1	1	_	_
Operations	$(A1,A0) \leftarrow (Z1,Z0)$	Grouping:	Register to	rogiotor tr	constor
Operation:	$(A1, A0) \leftarrow (21, 20)$ $(A3, A2) \leftarrow 0$				nts of register Z to the
	$(n_0, n_2) \leftarrow 0$	Description			A ₀) of register A.
		Note:			n is executed, "0" is
					rder 2 bits (A3, A2) of
			register A.		
TBA (Trans	sfer data to register B from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 1 1 0 ₂ 0 0 E ₁₆	words 1	cycles 1	_	
		'	ı	_	
Operation:	$(B) \leftarrow (A)$	Grouping:	Register to		
		Description		he content	s of register A to regis-
			ter B.		
TC1A (Tra	nsfer data to register C1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 1 0 1 0 0 0 0 2 A 8 40	words	cycles		·
	16	1	1	_	-
Operation:	(C1) ← (A)	Grouping:	LCD contr	ol operatio	n
		Description	: Transfers	the conte	nts of register A to the
			LCD contr	ol register	C1.
TC2A /Tro	notes data to register C2 from A coumulator				
	nsfer data to register C2 from Accumulator)	Number of	Number of	Flog CV	Clain condition
Instruction code	D9 D0	Number of words	cycles	Flag CY	Skip condition
code	1 0 1 0 1 0 1 0 1 0 1 0 0 1 2 2 A 9 16	1	1	_	_
Operation:	$(C2) \leftarrow (A)$	Grouping:	LCD contr		
		Description			nts of register A to the
			LCD contr	oi register	U2.
		I			

Instruction code Operation:	fer data to register D from Accumulator and register D9 D0 $0 0 0 0 1 0 1 0 1 0 0 1$ $0 2 9$ $0 2 9$ $0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	Number of words 1 Grouping:	Number of cycles 1 Register to Transfers register A	the low-o	
Operation:		1 Grouping:	1 Register to	register to	- ransfer
		Grouping:	Register to	register to	
	(DR2−DR0) ← (A2−A0)		n: Transfers	the low-o	
TFAR (Tra		Description			
TFAR (Tra			register A	to register	rder 3 bits (A2-A0) of
TFΔB (Tra					D.
ILAD (III	nsfer data to register E from Accumulator and regis	ter B)			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 1 0 ₂ 0 1 A ₁₆	1	1	-	_
Operation:	(E7–E4) ← (B)	Grouping:	Register t	↓l o register t	ransfer
·	(E3–E0) ← (A)	Description	n: Transfers high-orde the conter	the conte r 4 bits (E7	nts of register B to the r–E4) of register E, and ter A to the low-order 4
	ansfer data to register FR0 from Accumulator)			- OV	011
Instruction code	D9 D0 1 0 1 0 1 0 0 0 2 2 8 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	$(FR0) \leftarrow (A)$	Grouping:	Input/Outp		
		Description			nts of register A to the control register FR0.
TFR1A (Tra	ansfer data to register FR1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 1 0 1 0 0 1 2 2 9 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(FR1) ← (A)	Grouping: Description		the conter	on nts of register A to the control register FR1.

ansfer data to register FR2 from Accumulator) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping:	Number of cycles 1 Interrupt on: Transfers	Flag CY pperation	nts of register A to the control register FR2. Skip condition
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	cycles 1 Input/Outp : Transfers port output Number of cycles 1 Interrupt on: Transfers	ut operation the content t structure of the content t structure of the content t structure of the content to t	hts of register A to the control register FR2. Skip condition
$(FR2) \leftarrow (A)$ sfer data to register I1 from Accumulator) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Orouping: Description Number of words 1 Grouping:	Input/Outp : Transfers port output Number of cycles 1 Interrupt of: Transfers	ut operation the content structure of	nts of register A to the control register FR2. Skip condition
sfer data to register I1 from Accumulator) D9	Number of words 1 Grouping:	Number of cycles Interrupt on: Transfers	Flag CY pperation	nts of register A to the control register FR2. Skip condition
D9	Number of words 1 Grouping:	Number of cycles 1 Interrupt on: Transfers	Flag CY - pperation	Skip condition
D9	words 1 Grouping:	cycles 1 Interrupt con: Transfers	– pperation	
1 0 0 0 0 1 0 1 1 1 1 2 2 1 7 16	words 1 Grouping:	cycles 1 Interrupt con: Transfers	– pperation	
	Grouping:	Interrupt on: Transfers	peration	
(I1) ← (A)		n: Transfers		
		n: Transfers		
			ol register l	ts of register A to inter- 1.
nsfer data to register K0 from Accumulator)				
D9 D0	Number of	Number of	Flag CY	Skip condition
1 0 0 0 0 1 1 0 1 1 ₂ 2 1 B ₁₆	words 1	cycles 1	_	_
(K0) ← (Δ)	Grouping	Innut/Outr	out operation	nn
		: Transfers	the conten	nts of register A to key-
nsfer data to register K1 from Accumulator)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
16	1	1	-	_
(K1) ← (A)	Grouping:	Input/Outr	out operation	n
		: Transfers	the conten	its of register A to key-
	D9 D0 $1 0 0 0 0 1 1 0 1 1_2 2 1 B_{16}$ (K0) \leftarrow (A)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

INZA (Ira	nsfer data to register K2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 0 1 2 2 1 5 16	words 1	cycles 1	_	
Operation:	$(K2) \leftarrow (A)$	Grouping:		ut operation	
			on wakeup	control reg	s of register A to key gister K2.
TL1A (Tran	nsfer data to register L1 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(L1) ← (A)	Grouping:		ol operation	
		Description	control reg		s of register A to LCD
	nsfer data to register L2 from Accumulator)	1	1		
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0000	1 0 0 0 0 0 1 0 1 1 2 2 0 B ₁₆	1	1	-	-
Operation:	$(L2) \leftarrow (A)$	Grouping:	LCD contro	ol operation	1
		Description	: Transfers control reg		s of register A to LCD
	nsfer data to register L3 from Accumulator)		T		
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 1 0 0 ₂ 2 0 C ₁₆	1	1	-	_
Operation:	(L3) ← (A)	Grouping: Description			s of register A to LCE

nsfer data to register LC from Accumulator)				
D9 D0	Number of	Number of	Flag CY	Skip condition
1 0 0 0 0 0 1 1 0 1 2 0 D	words	cycles		
	1	1	-	-
$(LC) \leftarrow (A)$	Grouping:	Timer ope	ration	
				s of register A to time
		LC and rel	oad registe	er RLC.
nsfer data to Memory from Accumulator)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
16	1	1	_	_
$(M(DP)) \leftarrow (A)$	Grouping:	RAM to re	gister trans	sfer
$(X) \leftarrow (X)EXOR(j)$	Description	: After trans	sferring the	contents of register A
j = 0 to 15		formed be in the imm	tween reg ediate field	re OR operation is per ister X and the value d, and stores the resul
D9 D0	Number of words	Number of	Flag CY	Skip condition
1 0 0 0 0 1 0 1 1 0 2 2 1 6 6	1	1	_	_
$(MR) \leftarrow (A)$	Grouping:	Other oper	ration	
	Description			s of register A to clock
nsfer data to register PA from Accumulator)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
1 0 1 0 1 0 1 0 1 0 2 2 A A 16	1	1	_	_
$(PA0) \leftarrow (A0)$	Grouping: Description	: Transfers t	he content	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ds	Do

TPSAB (Ti	ansfer data to Pre-Scaler from Accumulator and reg	ister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 1 0 1 2 2 3 5	words 1	cycles 1	_	_
	(DD0 DD0) (D)				
Operation:	$ (RPS7-RPS4) \leftarrow (B) $ $ (TPS7-TPS4) \leftarrow (B) $	Grouping:	Timer oper		
	(RPS3–RPS0) ← (A) (TPS3–TPS0) ← (A)	Description	high-order reload regi tents of re	4 bits of p ister RPS, gister A to	nts of register B to the rescaler and prescale and transfers the conthe low-order 4 bits caller reload registers.
TPU0A (Tr	ansfer data to register PU0 from Accumulator)				
Instruction	D9 D0 1 0 1 1 0 1 2 2 D	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(PU0) ← (A)	Grouping:	Input/Outp	ut operation	on
					ts of register A to pull
TPU1A (Tr	ansfer data to register PU1 from Accumulator)				
Instruction code	D9 D0 1 0 1 1 1 0 2 2 E 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(PU1) \leftarrow (A)$	Grouping:	Input/Outp	-	
		Description			its of register A to pull
			up control	register i d	51.
TR1AB (Ti	ansfer data to register R1 from Accumulator and reg	gister B)			
Instruction code	D9 D0 1 1 1 1 1 1 2 3 F 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(R17–R14) ← (B)	Grouping:	Timer oper	ration	
	(R13–R10) ← (A)	Description	high-order ter R1, and	4 bits (R1	nts of register B to the register B to the register A to the ents of register A to the register A to t

		()			
<u> </u>	Insfer data to register RG from Accumulator)	I		I =	
Instruction code	D9 D0 1 0 0 0 0 1 0 0 1 2 0 9 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(RG) ← (A)	Grouping: Description	Clock cont : Transfers t ter RG.		on s of register A to regis-
	nsfer data to register V1 from Accumulator)		•		
Instruction code	D9 D0 0 0 1 1 1 1 1 1 1 2 0 3 F 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	
Operation:	(V1) ← (A)	Grouping: Description	Interrupt of Transfers trupt contro	he content	s of register A to inter- /1.
	nsfer data to register V2 from Accumulator)				
Instruction code	D9 D0 0 0 1 1 1 1 1 0 2 0 3 E 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1		_
Operation:	(V2) ← (A)	Grouping: Description	Interrupt op: Transfers t rupt contro	he content	s of register A to inter- /2.
TW1A (Tra	nsfer data to register W1 from Accumulator)				
Instruction	D9 D0 1 1 1 1 0 0 E 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(W1) ← (A)	Grouping: Description	Timer oper : Transfers t control reg	he content	s of register A to timer

TW2A (Tra	nsfer da	ata to	o regi	ister	r W	/2 fro	om	Αc	cur	mι	ılatı	or)						
Instruction	D9								D ₀						Number of	Number of	Flag CY	Skip condition
code	1 0	0	0 0	0)	1 1		1	1		2	С) F	- 16	words	cycles		
										12				16	1	1	_	_
Operation:	(W2) ←	(A)													Grouping:	Timer ope	ration	
	()	()															the content	s of register A to timer
TW3A (Tra	ınsfer da	ata t	o rea	iste	r V	/3 fr	om	Ac	ccu	mı	ulat	or))					
Instruction	D9		0.09	.0.0				, ,	D ₀		ai ai	<u> </u>			Number of	Number of	Flag CY	Skip condition
code	1 0	0	0	0 /	1	0 ()	0	0	2	2	,	1 (0 16	words	cycles		·
						·									1	1	_	_
Operation:	(W3) ←	- (A)													Grouping:	Timer ope	ration	
															Description	n: Transfers control reç		ts of register A to time
TW4A (Tra	ınsfer da	ata t	o reg	iste	r V	/4 fr	om	Ac	ccu	mι	ulat	or))					
Instruction	D9				_		_		D ₀	1			_	_	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0	0	0 (0 /	1	0 (0	0	1	2	2		1	116	1	1	_	-
Operation:	(W4) ←	- (A)													Grouping:	Timer ope	ration	
															Description	n: Transfers control reç		ts of register A to time
TYA (Trans	sfer data	a to	regist	er \	/ fr	om /	\cc	cun	nula	atc	or)							
Instruction code	D9						.		D ₀	1		Τ,		$\overline{}$	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0	0	0 (0 ()	1	1	0	0	2	0	Ι.)	C ₁₆	1	1	_	_
Operation:	(Y) ← (A)													Grouping: Description		o register to	ransfer ts of register A to regis

	atchdog tim	פו ולפ	Sel)								1			
Instruction code	D9 1	0	1 0	0	0 0		\neg	2	А	0 16	Number of words	Number of cycles	Flag CY	Skip condition
			. 0		0 0	, 0	2			16	1	1	_	(WDF1) = 1
Operation:	(WDF1) = 1	?									Grouping:	Other oper	ration	
•	After skippir	ıg, (WI	DF1) ←	- 0								: Skips the	next instr	uction when watchdo
		0, (,											." After skipping, clear
												•		. When the WDF1 fla
												. ,	-	next instruction. Also
														timer function when ex
												•	-	nstruction immediatel
												after the D		
XABE! () (1.5.4				`						
Instruction	change Acc	umula	ator a	nd IV	lemo)			Number of	Number of	Flor CV	Chin condition
	D9			. I		D	0				Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1	1 (0 1	j	j j	j	2	2	D	j ₁₆	1	1		_
											'	ı	_	_
Operation:	$(A) \longleftrightarrow (M)$	DP))									Grouping:	RAM to reg	gister trans	sfer
	$(X) \leftarrow (X)EX$	(OR(j)									Description	: After exch	nanging th	ne contents of M(DP
	j = 0 to 15											with the co	ntents of r	egister A, an exclusive
												OR operat	ion is perf	ormed between regis
												ter X and t	he value j	in the immediate field
												and stores	the result	in register X.
XAMD j (e	Xchange A	cum	ulator	and	Men	nory	da	ta a	nd D	ecrer	nent registe	er Y and sk	(ip)	
XAMD j (e	Xchange Ao	cum	ulator	and	Men	nory D		ta a	nd D	ecrer	nent registe	er Y and sk	rip) Flag CY	Skip condition
	D9			and	Men					i]			1 '	Skip condition
Instruction			ulator	and	Mem j j			ta a	nd D	j 16	Number of	Number of	1 '	Skip condition (Y) = 15
Instruction code	D9 1	1		and j	Men j j					i]	Number of words	Number of cycles	Flag CY	(Y) = 15
Instruction code	$ \begin{array}{c cccc} D9 & & & \\ \hline 1 & 0 & 1 & \\ \hline (A) & \longleftrightarrow (Me) \end{array} $	1 DP))		and j	Men j j					i]	Number of words	Number of cycles 1 RAM to reg: After exch	Flag CY - gister transpanging th	(Y) = 15
Instruction code	D9 $ \begin{array}{c cccc} & & & & & \\ \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	1 DP))		and j	Men j j					i]	Number of words 1 Grouping:	Number of cycles 1 RAM to reg : After exch with the co	Flag CY - gister transpanging the ntents of r	(Y) = 15 If er contents of M(DP egister A, an exclusive
Instruction code	D9 $ \begin{array}{c cccc} \hline 1 & 0 & 1 \end{array} $ $ \begin{array}{c cccc} (A) & \longleftrightarrow & (M) \\ (X) & \longleftrightarrow & (X) \\ j & = 0 \text{ to } 15 \end{array} $	DP))		and j	Mem j j					i]	Number of words 1 Grouping:	Number of cycles 1 RAM to receive the coordinate of the coordina	Flag CY gister transpanging the ntents of rion is perf	(Y) = 15 Ifer Le contents of M(DP) Legister A, an exclusive ormed between regis
Instruction code	D9 $ \begin{array}{c cccc} & & & & & \\ \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	DP))		and j	Mem j j					i]	Number of words 1 Grouping:	Number of cycles 1 RAM to rec : After exch with the co OR operat ter X and t and stores	Flag CY pister transpanging the ntents of rion is perfibe value jithe result	(Y) = 15 If of the contents of M(DP) egister A, an exclusive ormed between regis in the immediate field in register X.
Instruction code	D9 $ \begin{array}{c cccc} \hline 1 & 0 & 1 \end{array} $ $ \begin{array}{c cccc} (A) & \longleftrightarrow & (M) \\ (X) & \longleftrightarrow & (X) \\ j & = 0 \text{ to } 15 \end{array} $	DP))		j	Mem j j					i]	Number of words 1 Grouping:	RAM to reg After exch with the co OR operat ter X and t and stores Subtracts	Flag CY - gister trans anging the ntents of r ion is perf he value j the result from the	(Y) = 15 If er the contents of M(DP) egister A, an exclusive ormed between registin the immediate field in register X. contents of register Y
Instruction code	D9 $ \begin{array}{c cccc} \hline 1 & 0 & 1 \end{array} $ $ \begin{array}{c cccc} (A) & \longleftrightarrow & (M) \\ (X) & \longleftrightarrow & (X) \\ j & = 0 \text{ to } 15 \end{array} $	DP))		and j	Mem j j					i]	Number of words 1 Grouping:	RAM to rec After exch with the co OR operat ter X and t and stores Subtracts As a resul	Flag CY - gister trans ranging the ntents of r ion is perf he value j the result from the t of subtra	(Y) = 15 If of the contents of M(DP) egister A, an exclusive ormed between registing the immediate field in register X. contents of register Y action, when the contents of
Instruction code	D9 $ \begin{array}{c cccc} \hline 1 & 0 & 1 \end{array} $ $ \begin{array}{c cccc} (A) & \longleftrightarrow & (M) \\ (X) & \longleftrightarrow & (X) \\ j & = 0 \text{ to } 15 \end{array} $	DP))		j	Men j j					i]	Number of words 1 Grouping:	RAM to receive with the coordinates and stores Subtracts: As a resultents of received so	Flag CY - gister trans ranging th ntents of r ion is perf he value j the result from the t of subtra gister Y is	(Y) = 15 If er the contents of M(DP) egister A, an exclusive ormed between registin the immediate field in register X. contents of register Y
Instruction code Operation:	D9 $ \begin{array}{c cccc} \hline 1 & 0 & 1 \\ \hline (A) & \longleftrightarrow & (M) \\ (X) & \longleftrightarrow & (X) \\ j & = 0 \text{ to } 15 \\ (Y) & \longleftrightarrow & (Y) & - \end{array} $	DP)) (OR(j)	1 1	ј	j j	j	0 2	2	F	j 16	Number of words 1 Grouping: Description	RAM to rectangle is not 15. ti	Flag CY pister trans langing the tents of rion is perfect the value jets the result of subtractions are the tof subtractions when the tent to the ten	(Y) = 15 If er the contents of M(DP) egister A, an exclusive ormed between registing in the immediate field in register X. contents of register Y action, when the contents, the next instruction
Instruction code Operation:	D9 $ \begin{array}{c cccc} \hline & 1 & 0 & 1 \\ \hline & (A) & \longleftrightarrow & (M) \\ & (X) & \longleftrightarrow & (X) & E) \\ & j & = 0 \text{ to } 15 \\ & (Y) & \longleftrightarrow & (Y) & \longleftrightarrow \end{array} $ (change According)	DP)) (OR(j)	1 1	ј	j j	D	o 2	2	F	j 16	Number of words 1 Grouping: Description	RAM to rec After exch with the co OR operat ter X and t and stores Subtracts As a resul tents of rec is skipped. is not 15, ti Y and skip	Flag CY - gister trans nanging the ntents of r ion is perf he value j the result from the t of subtra gister Y is When the he next ins)	(Y) = 15 Interpretation of M(DP) Interpretat
Instruction code Operation:	D9 $ \begin{array}{c cccc} \hline & D9 \\ \hline & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & &$	DP)) (OR(j)	1 1	and N	j j	D j	o 2	2	f d In	j ₁₆	Number of words 1 Grouping: Description	RAM to rectangle is not 15. ti	Flag CY pister trans langing the tents of rion is perfect the value jets the result of subtractions are the tof subtractions when the tent to the ten	(Y) = 15 efer the contents of M(DP) the egister A, an exclusive the ormed between registion the immediate field in register X. the contents of register Y the exciton, when the contents of register Y
Instruction code Operation: XAMI j (e)	D9 $ \begin{array}{c cccc} \hline & 1 & 0 & 1 \\ \hline & (A) & \longleftrightarrow & (M) \\ & (X) & \longleftrightarrow & (X) & E) \\ & j & = 0 \text{ to } 15 \\ & (Y) & \longleftrightarrow & (Y) & \longleftrightarrow \end{array} $ (change According)	DP)) (OR(j)	1 1	and N	j j	D	o 2	2	f d In	j 16	Number of words 1 Grouping: Description ent register Number of	RAM to rec After exch with the co OR operat ter X and t and stores Subtracts As a resul tents of rec is skipped. is not 15, ti Y and skip Number of	Flag CY - gister trans nanging the ntents of r ion is perf he value j the result from the t of subtra gister Y is When the he next ins)	(Y) = 15 Interpretation of M(DP) Interpretat
Nami j (e) XAMI j (e) Instruction code	D9 $ \begin{array}{c cccc} \hline & D_{3} \\ \hline & A_{3} & \leftarrow \rightarrow & (M_{1} & (M_{2}) & \leftarrow & (M_{3}) \\ & (X_{3} & \leftarrow & (X_{3}) & E_{3} & E_{3} \\ & j & = 0 \text{ to } 15 \\ & (Y_{3} & \leftarrow & (Y_{3}) & - & (Y_{3}) & E_{3} \\ \hline & Cchange Accounts & D_{3} & E_{3} & E_{3} & E_{3} \\ \hline & D_{3} & D_{3} & D_{3} & D_{3} & D_{3} \\ \hline & D_{3} & D_{3} & D_{3} & D_{3} & D_{3} \\ \hline & D_{4} & D_{5} & D_{5} & D_{5} & D_{5} \\ \hline & D_{5} & D_{5} & D_{5} & D_{5} & D_{5} \\ \hline & D_{7} & D_{7} & D_{7} & D_{7} & D_{7} & D_{7} \\ \hline & D_{7} \\ \hline & D_{7} \\ \hline & D_{7} \\ \hline & D_{7} \\ \hline & D_{7} \\ \hline & D_{7} \\ \hline & D_{7} \\ \hline & D_{7} & D_$	DP)) COR(j) 1	1 1	and N	j j	D j	o 2	2	f d In	j ₁₆	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to receive the receive shall be received and stores. Subtracts and stores subtracts from the received shall be received and stores. Y and skipped is not 15. the received shall be received and stores. Y and skipped is not 15. the received and skipped is not 15. the received and skipped is not 15. the received and skipped shall be r	Flag CY pister translanging the tents of rion is perfect the result of from the tof subtragister Y is When the next institute of th	(Y) = 15 Interpretation of M(DP) Interpretation of M(
Instruction code Operation: XAMI j (e)	D9 $ \begin{array}{c cccc} \hline & D_{9} \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ & & & & \\ \hline &$	DP)) (OR(j) 1 Dumu DP))	1 1	and N	j j	D j	o 2	2	f d In	j ₁₆	Number of words 1 Grouping: Description ent register Number of words 1	RAM to receive After exchange of the second	Flag CY pister transmanging the result the result of subtragister Y is When the he next insection of the result of subtragister Y is when the next insection of the next insect	(Y) = 15 Interpretation of M(DP) Interpretat
Nami j (exinatruction code	D9 $ \begin{array}{c cccc} \hline & D_9 \\ \hline & 1 & 0 & 1 \\ \hline & (A) & \longleftrightarrow & (M) \\ & (X) & \longleftrightarrow & (X) & \longleftrightarrow \\ & j & = 0 \text{ to } 15 \\ & (Y) & \longleftrightarrow & (Y) & \frown \\ \hline & (Change Accomplete Accomp$	DP)) (OR(j) 1 Dumu DP))	1 1	and N	j j	D j	o 2	2	f d In	j ₁₆	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to receive the second state of the second	Flag CY pister transmanging the ntents of rion is perfihe value jethe result from the tof subtragister Y is When the next instance of	(Y) = 15 Interpretation of M(DP) Interpretat
Nami j (exinternation) XAMI j (exinternation)	D9 $ \begin{array}{c cccc} \hline & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & &$	DP)) COR(j) 1 DP)) COR(j)	1 1	and N	j j	D j	o 2	2	f d In	j ₁₆	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to receive for some states of the second states	Flag CY pister transmanging the ntents of rion is perfihe value jethe result from the tof subtraspister Y is When the next institute of the next institute of its of its perfit on is perfit on the tents of its on its perfit on its perfit on its perfit on the tents of its on its perfit on its perfi	(Y) = 15 Interpretation of M(DP) Interpretat
Nami j (exinatruction code	D9 $ \begin{array}{c cccc} \hline & D_9 \\ \hline & 1 & 0 & 1 \\ \hline & (A) & \longleftrightarrow & (M) \\ & (X) & \longleftrightarrow & (X) & \longleftrightarrow \\ & j & = 0 \text{ to } 15 \\ & (Y) & \longleftrightarrow & (Y) & \frown \\ \hline & (Change Accomplete Accomp$	DP)) COR(j) 1 DP)) COR(j)	1 1	and N	j j	D j	o 2	2	f d In	j ₁₆	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to receive for any stores RAM to receive for a first section of the coordinate for t	Flag CY - gister trans nanging the ntents of r ion is perf he value j the result f from the t of subtra When the he next ins Flag CY gister trans nanging the notents of r tion is perf	(Y) = 15 Interpretation of M(DP) Interpretation of M(DP) Interpretation of M(DP) Interpretation of M(DP) Interpretation of register Y action, when the conduction of register Y action is executed. Skip condition (Y) = 0 Interpretation of M(DP) Interpretation of M
Nami j (exinatruction code	D9 $ \begin{array}{c cccc} \hline & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & &$	DP)) COR(j) 1 DP)) COR(j)	1 1	and N	j j	D j	o 2	2	f d In	j ₁₆	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to require to the control of the	Flag CY - gister transpanging the ntents of rion is perfihe value jethe result from the tof subtractions. Flag CY Flag CY Flag CY - gister transpanging the next instancing the total perfihe value jethe result the result the contents.	(Y) = 15 Interval to the contents of M(DP) Register A, an exclusive ormed between regis in the immediate field in register X. contents of register Y action, when the contents of register Y is contents of register Y is contents of register Y is contents of M(DP) Register A, an exclusive formed between registing in the immediate field in register Y. As a register Y.
Nami j (exinatruction code	D9 $ \begin{array}{c cccc} \hline & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & &$	DP)) COR(j) 1 DP)) COR(j)	1 1	and N	j j	D j	o 2	2	f d In	j ₁₆	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to receive the receive the receive terms of received t	Flag CY pister transmanging the tents of rion is perfihe value jethe result to from the tent of subtragister Y is When the next institute the result the result the result the result the contendidition, we saw in the substitute the result the	(Y) = 15 Interpolation (Y) = 15 Interpolation (Y) = 15 Interpolation (Y) = 15 Interpolation (Y) = 0 Interpola
Operation: XAMI j (e) Instruction code	D9 $ \begin{array}{c cccc} \hline & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & $	DP)) COR(j) 1 DP)) COR(j)	1 1	and N	j j	D j	o 2	2	f d In	j ₁₆	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to receive the control of the co	Flag CY pister transmanging the tents of rion is perfihe value jethe result to for subtragister Y is When the next institute to for the tents of rion is perfit the result the content didition, work is 0, the substitute the content didition of the substitute the content didition, work is 0, the substitute the content didition of the substitute the content didition of the substitute the content didition of the substitute the s	(Y) = 15 Interval to the contents of M(DP) Register A, an exclusive ormed between regis in the immediate field in register X. contents of register Y action, when the contents of register Y is contents of register Y is contents of register Y is contents of M(DP) Register A, an exclusive formed between registing in the immediate field in register Y. As a register Y.

MACHINE INSTRUCTIONS (INDEX BY TYPES)

Parameter						In	stru	ction	coc	le					er of	er of	_
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otati	cimal on	Number of words	Number cycles	Function
	TAB	0	0	0	0	0	1	1	1	1	0	0	1	E	1	1	$(A) \leftarrow (B)$
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	$(B) \leftarrow (A)$
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
_	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
Register to register transfer	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
egister	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
er to i	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2−DR0) ← (A2−A0)
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$ (A2-A0) \leftarrow (DR2-DR0) $ $ (A3) \leftarrow 0 $
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$ \begin{array}{l} (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \end{array} $
	LXY x, y	1	1	Х3	X2	X1	X 0	уз	у2	y1	y0	3	Х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
Iresses	LZ z	0	0	0	1	0	0	1	0	Z 1	Z 0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
<u> </u>	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	ТАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
er	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAM to re	XAMI j	1	0	1	1	1	0	j	j	j	j	2	Е	j	1		$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

Skip condition	Carry flag CY	Datailed description
_	-	Transfers the contents of register B to register A.
_	-	Transfers the contents of register A to register B.
_	-	Transfers the contents of register Y to register A.
_	-	Transfers the contents of register A to register Y.
_	_	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
_	_	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A.
_	-	Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D.
-	-	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A.
-	_	Transfers the contents of register Z to the low-order 2 bits (A ₁ , A ₀) of register A.
_	-	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
_	-	Loads the value z in the immediate field to register Z.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
_	_	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
-	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

Parameter		Instruction code		•		J.	<u></u>										
Type of \	Mnemonic	Do	Da	D-	Da	D-	D.	Do	Do	D.	Do	Hex	ade	cimal	Number o	Number of cycles	Function
instructions		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	n	otat	ion	ž	ž	
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	$ (A) \leftarrow n $ $ n = 0 \text{ to } 15 $
	ТАВР р	0	0	1	0	p5	p4	рз	p2	p1	ро	0	8 +1		1		$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ at $(UPTF) = 0$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ at $(UPTF) = 1$ $(DR2) \leftarrow (0)$ $(DR1, DR0) \leftarrow (ROM(PC))9, 8$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
eration	AM	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithm	An	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15
	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \text{ AND } (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) OR (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (A)$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
1	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	$(Mj(DP)) \leftarrow 1$ j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$ (Mj(DP)) \leftarrow 0 $ $ j = 0 \text{ to } 3 $
Bit	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0? j = 0 to 3
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP))?
Comparison operation	SEA n	0	0	0	0	1	0	0 n	1 n	0 n	1 n		2		2	2	(A) = n? n = 0 to 15
	0 to 31 for M3/																<u> </u>

Note: p is 0 to 31 for M34556M4/M4H. p is 0 to 63 for M34556M8/M8H/G8/G8H.

Skip condition	Carry flag CY	Datailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	_	UPTF = 0: Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 9 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. UPTF = 1: Transfers bits 9, 8 to register D, bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	_	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	_	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
-	-	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	_	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

Parameter						In	stru	ction	cod	e		-0, (0011	JC	r of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Дз	D2	D1	D ₀	Hexadecimal notation	Number of words	Number o	Function
	Ва	0	1	1	a6	a 5	a4	аз	a 2	a1	a 0	1 8 a +a	1	1	(PCL) ← a6–a0
ation	BL p, a	0	0	1	1	1	p4	рз	p2	p 1	ро	0 E p +p	2	2	(PCH) ← p (Note) (PCL) ← a6–a0
Branch operation		1	p6	р5	a 6	a 5	a 4	аз	a2	a 1	ao	2 p a +p+a			
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0 1 0	2		(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	p6	p5	p4	0	0	рз	p2	p1	po	2 p p +p			(102)
_	ВМ а	0	1	0	a 6	a 5	a4	a 3	a 2	a1	a0	1 a a	1		$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	p 1	po	0 C p +p	2		$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$
outine		1	p6	p5	a 6	a 5	a4	a 3	a2	a 1	ao	2 p a +p+a			(PCL) ← a6–a0
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0 3 0	2		$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$
		1	p6	p5	p4	0	0	рз	p2	p1	po	2 p p +p			$(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR2-DR0,A3-A0)$
u	RTI	0	0	0	1	0	0	0	1	1	0	0 4 6	1		$ (PC) \leftarrow (SK(SP)) $ $ (SP) \leftarrow (SP) - 1 $
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0 4 4	1		$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Retui	RTS	0	0	0	1	0	0	0	1	0	1	0 4 5	1		$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
	0 to 21 for M2											l			<u> </u>

Note: p is 0 to 31 for M34556M4/M4H.

p is 0 to 63 for M34556M8/M8H/G8/G8H.

Skip condition	Carry flag CY	Datailed description
_	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
-		Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-		Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de-
_		scription of the LA/LXY instruction, register A and register B to the states just before interrupt. Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter						Ir	stru	ction	cod	le					r of s	r of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal ion	Number words	Number of cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP
	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	l12 = 1 : (INT) = "H" ?
Interrupt operation																	I12 = 0 : (INT) = "L" ?
errup	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
<u>r</u>	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	$(A) \leftarrow (V2)$
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	(A) ← (I1)
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	$(11) \leftarrow (A)$

Note: p is 0 to 31 for M34556M4/M4H.

p is 0 to 63 for M34556M8/M8H/G8/G8H.

Skip condition	Carry flag CY	Datailed description
_	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	_	When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "H" However, I12 = 1	_	When I12 = 1: Skips the next instruction when the level of INT pin is "H." (I12: bit 2 of interrupt control register I1)
(INT) = "L" However, I12 = 0	_	When I12 = 0 : Skips the next instruction when the level of INT pin is "L."
_	_	Transfers the contents of interrupt control register V1 to register A.
_	_	Transfers the contents of register A to interrupt control register V1.
-	_	Transfers the contents of interrupt control register V2 to register A.
-	_	Transfers the contents of register A to interrupt control register V2.
_	_	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter						In	stru	ction	cod	le					er of	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otati	cimal on	Number of words	Number of cycles	Function
	TPAA	1	0	1	0	1	0	1	0	1	0	2	Α	Α	1	1	$(PA) \leftarrow (A)$
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	$(A) \leftarrow (W1)$
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	$(W1) \leftarrow (A)$
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	(A) ← (W3)
	TW3A	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	(W3) ← (A)
	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	Е	1	1	(A) ← (W4)
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	(W4) ← (A)
	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	$ \begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array} $
	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$ \begin{array}{l} (RPS7\text{-}RPS4) \leftarrow (B) \\ (TPS7\text{-}TPS4) \leftarrow (B) \\ (RPS3\text{-}RPS0) \leftarrow (A) \\ (TPS3\text{-}TPS0) \leftarrow (A) \end{array} $
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
Timer operation	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
Ĕ	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$
	Т2НАВ	1	0	1	0	0	1	0	1	0	0	2	9	4	1	1	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	(R17-R14) ← (B) (R13-R10) ← (A)
	T2R2L	1	0	1	0	0	1	0	1	0	1	2	9	5	1	1	(T27−T20) ← (R2L7−R2L0)
	TLCA	1	0	0	0	0	0	1	1	0	1	2	0	D	1	1	$(LC) \leftarrow (A)$ $(RLC) \leftarrow (A)$
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) \leftarrow 0 V12 = 1: NOP
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: (T2F) = 1 ? After skipping, (T2F) \leftarrow 0 V13 = 1: NOP
	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1	1	V20 = 0: (T3F) = 1 ? After skipping, (T3F) \leftarrow 0 $V20 = 1$: NOP

		,
Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of register A to timer control register PA.
-	_	Transfers the contents of timer control register W1 to register A.
-	_	Transfers the contents of register A to timer control register W1.
_	_	Transfers the contents of timer control register W2 to register A.
_	_	Transfers the contents of register A to timer control register W2.
_	_	Transfers the contents of timer control register W3 to register A.
_	_	Transfers the contents of register A to timer control register W3.
_	_	Transfers the contents of timer control register W4 to register A.
_	_	Transfers the contents of register A to timer control register W4.
-	_	Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	_	Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	_	Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2L, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2L.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 2 reload register R2H, and transfers the contents of register A to the low-order 4 bits of timer 2 reload register R2H.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.
-	_	Transfers the contents of timer 2 reload register R2L to timer 2.
_	_	Transfers the contents of register A to timer LC and timer LC reload register RLC.
V12 = 0: (T1F) = 1	_	Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 is "0" and the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
V13 = 0: (T2F) =1	_	Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 is "0" and the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
V20 = 0: (T3F) = 1	_	Skips the next instruction when the contents of bit 0 (V20) of interrupt control register V2 is "0" and the contents of T3F flag is "1." After skipping, clears (0) to T3F flag.

Parameter						In	stru	ction	cod	e					r of	r of s	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexa	ideo		Number of words	Number of cycles	Function
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	(A) ← (P2)
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P2) ← (A)
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 7
	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ (Y) = 0 to 7
	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	1	1	(D(Y)) = 0? (Y) = 0 to 7
uo		0	0	0	0	1	0	1	0	1	1	0	2	В	1	1	(1) = 0 to 7
Input/Output operation	RCP	1	0	1	0	0	0	1	1	0	0	2	8	С	1	1	(C) ← 0
out og	SCP	1	0	1	0	0	0	1	1	0	1	2	8	D	1	1	(C) ← 1
/Outp	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	(A) ← (PU0)
Input	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	Е	1	1	(A) ← (PU1)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	Е	1	1	(PU1) ← (A)
	TAK0	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	(K0) ← (A)
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)
	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)
	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	Α	1	1	(A) ← (K2)
	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	$(K2) \leftarrow (A)$
	TFR0A	1	0	0	0	1	0	1	0	0	0	2	2	8	1	1	(FR0) ← (A)
	TFR1A	1	0	0	0	1	0	1	0	0	1	2	2	9	1	1	(FR1) ← (A)
	TFR2A	1	0	0	0	1	0	1	0	1	0	2	2	Α	1	1	$(FR2) \leftarrow (A)$

Skip condition	Carry flag CY	Datailed description
_	_	Transfers the input of port P0 to register A.
_	_	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
_	_	Outputs the contents of register A to port P1.
_	_	Transfers the input of port P2 to register A.
_	_	Outputs the contents of register A to port P2.
_	_	Sets (1) to all port D.
_	_	Clears (0) to a bit of port D specified by register Y.
_	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 However, (Y)=0 to 7	_	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
_	_	Clears (0) to port C.
_	_	Sets (1) to port C.
_	_	Transfers the contents of pull-up control register PU0 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
_	_	Transfers the contents of pull-up control register PU1 to register A.
_	_	Transfers the contents of register A to pull-up control register PU1.
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	_	Transfers the contents of key-on wakeup control register K2 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
_	_	Transferts the contents of register A to port output format control register FR0.
_	_	Transferts the contents of register A to port output format control register FR1.
_	_	Transferts the contents of register A to port output format control register FR2.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter						In	stru	ctior	coc	le					er of	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D ₀	Hexa no	ide tati		Number words	Number cycles	Function
	TAL1	1	0	0	1	0	0	1	0	1	0	2	4	Α	1	1	(A) ← (L1)
_	TL1A	1	0	0	0	0	0	1	0	1	0	2	0	Α	1	1	(L1) ← (A)
ratio	TL2A	1	0	0	0	0	0	1	0	1	1	2	0	В	1	1	(L2) ← (A)
LCD operation	TL3A	1	0	0	0	0	0	1	1	0	0	2	0	С	1	1	(L3) ← (A)
	TC1A	1	0	1	0	1	0	1	0	0	0	2	Α	8	1	1	(C1) ← (A)
	TC2A	1	0	1	0	1	0	1	0	0	1	2	Α	9	1	1	(C2) ← (A)
u _o	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillator selected
Clock operation	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
%	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$
S S	TRGA	1	0	0	0	0	0	1	0	0	1	2	0	9	1	1	$(RG) \leftarrow (A)$
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	Transition to clock operating mode
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	Transition to RAM back-up mode
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF, POF2 instructions valid
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
ration	WRST	1	0	1	0	1	0	0	0	0	0	2	Α	0	1	1	(WDF1) = 1 ? After skipping, (WDF1) ← 0
Other operation	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
O E	SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset
	RUPT	0	0	0	1	0	1	1	0	0	0		5	8	1	1	(UPTF) ← 0
	SUPT	0	0	0	1	0	1	1	0	0	1	0	5	9	1	1	(UPTF) ← 1
	SVDE	1	0	1	0	0	1	0	0	1	1	2	9	3	1	1	At power down mode, voltage drop detection circuit valid

Note: SVDE instruction can be used only in H version.

Skip condition	Carry flag CY	Datailed description
_	-	Transfers the contents of LCD control register L1 to register A.
_	_	Transfers the contents of register A to LCD control register L1.
_	_	Transfers the contents of register A to LCD control register L2.
_	_	Transfers the contents of register A to LCD control register L3.
_	_	Transfers the contents of register A to LCD control register C1.
_	_	Transfers the contents of register A to LCD control register C2.
_	-	Selects the RC oscillation circuit for main clock, stops the ring oscillator (internal oscillator).
_	_	Transfers the contents of clock control regiser MR to register A.
_	_	Transfers the contents of register A to clock control register MR.
_	_	Transfers the contents of register A to clock control register RG.
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
_	_	Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction.
_	_	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction.
_	_	Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.
(P) = 1	_	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged.
(WDF1) = 1	_	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
_	_	Stops the watchdog timer function by the WRST instruction.
_	-	System reset occurs.
_	-	Clears (0) to the high-order bit reference enable flag UPTF.
_	_	Sets (1) to the high-order bit reference enable flag UPTF.
_	_	Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode).

INSTRUCTION CODE TABLE

<u>INS I</u>	RUC	HON	COL	DE TA	ARLE														
1	D9-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111		011000 011111
D3-D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BMLA	-	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32*	TABP 48*	BML	BML	BL	BL	ВМ	В
0001	1	SRST	CLD	SZB 1	-	_	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33*	TABP 49*	BML	BML	BL	BL	вм	В
0010	2	POF	_	SZB 2	_	_	TAX	A 2	LA 2	TABP 2	TABP 18	TABP 34*	TABP 50*	BML	BML	BL	BL	ВМ	В
0011	3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35*	TABP 51*	BML	BML	BL	BL	ВМ	В
0100	4	DI	RD	SZD	-	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36*	TABP 52*	BML	BML	BL	BL	ВМ	В
0101	5	EI	SD	SEAn	-	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37*	TABP 53*	BML	BML	BL	BL	ВМ	В
0110	6	RC	_	SEAM	_	RTI	_	A 6	LA 6	TABP 6	TABP 22	TABP 38*	TABP 54*	BML	BML	BL	BL	ВМ	В
0111	7	sc	DEY	_	-	_	_	A 7	LA 7	TABP 7	TABP 23	TABP 39*	TABP 55*	BML	BML	BL	BL	ВМ	В
1000	8	POF2	AND	_	SNZ0	LZ 0	RUPT	A 8	LA 8	TABP 8	TABP 24	TABP 40*	TABP 56*	BML	BML	BL	BL	ВМ	В
1001	9	_	OR	TDA	-	LZ 1	SUPT	A 9	LA 9	TABP 9	TABP 25	TABP 41*	TABP 57*	BML	BML	BL	BL	ВМ	В
1010	Α	AM	TEAB	TABE	SNZI0	LZ 2	-	A 10	LA 10	TABP 10	TABP 26	TABP 42*	TABP 58*	BML	BML	BL	BL	ВМ	В
1011	В	AMC	-	-	-	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43*	TABP 59*	BML	BML	BL	BL	ВМ	В
1100	С	TYA	СМА	_	-	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44*	TABP 60*	BML	BML	BL	BL	ВМ	В
1101	D	-	RAR	-	-	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45*	TABP 61*	BML	BML	BL	BL	ВМ	В
1110	Е	TBA	TAB	-	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46*	TABP 62*	BML	BML	BL	BL	ВМ	В
1111	F	_	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47*	TABP 63*	BML	BML	BL	BL	ВМ	В

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	1p	paaa	aaaa
BML	1p	paaa	aaaa
BLA	1p	pp00	pppp
BMLA	1p	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

• * cannot be used in the M3455xM4/M4H.

INSTRUCTION CODE TABLE (continued)

IIIOI	RUC	HON	COL		ARLE	(con	tinue	2 a)										
1	D9-D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	TW3A	OP0A	T1AB	-	-	IAP0	TAB1	SNZT1	-	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	TW4A	OP1A	T2AB	_	ı	IAP1	TAB2	SNZT2	_	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	_	_	OP2A	_	_	TAMR	IAP2	_	SNZT3	-	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	_	_	_	_	TAI1	_	_	_	SVDE**	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	_	TK1A	_	_	_	-		_	_	T2HAB	-	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	_	TK2A	_	TPSAB	_	-	_	TABPS	-	T2R2L	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	ı	TMRA	_	_	_	TAK0	_	_	_	_	_	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	ı	TI1A	_	_	_	TAPU0	_	_	_	_	_	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	Ī		TFR0A	-	_	ı	_	_	_	_	TC1A	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	TRGA	_	TFR1A	_	_	TAK1	_	_	_	_	TC2A	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	TL1A	_	TFR2A	-	TAL1	TAK2	_	_	_	_	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	TL2A	TK0A	_	_	TAW1	-		_	_	CRCK		TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	TL3A	_	_	_	TAW2	ı	_	_	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	TLCA	_	TPU0A	-	TAW3	-	_	_	SCP	-	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A		TPU1A	_	TAW4	TAPU1	_	_	_	_	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	_	_	TR1AB	_	_	_	_	_	_	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The second word					
BL	1p	paaa	aaaa			
BML	1p	рааа	aaaa			
BLA	1p	pp00	pppp			
BMLA	1p	pp00	pppp			
SEA	00	0111	nnnn			
SZD	00	0010	1011			

• ** can be used only in the M3455xM4H/M8H/G8H.

ABSOLUTE MAXIMUM RAINGS

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage P0, P1, P2, D0–D5, RESET, INT, XIN, XCIN		-0.3 to VDD+0.3	V
VI	Input voltage CNTR		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, D0-D7, RESET, CNTR	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C, Xout, Xcout		-0.3 to VDD+0.3	V
Vo	Output voltage SEG0-SEG28, COM0-COM3		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

Note: SEG11 to SEG16 pins are not equipped with the 4556 Group.

RECOMMENDED OPERATING CONDITIONS 1

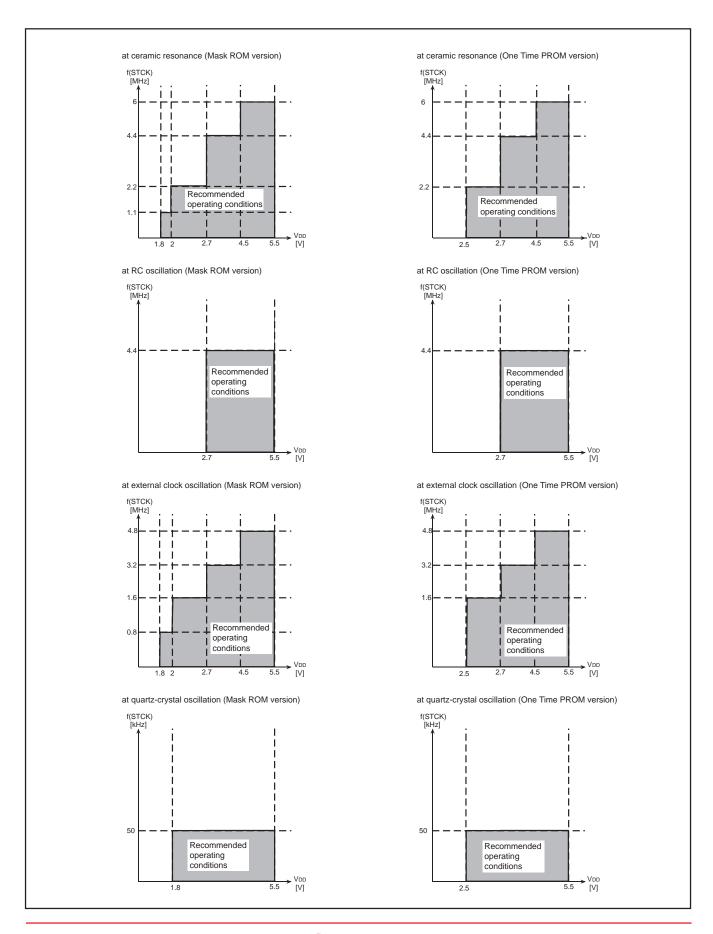
(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditions		Limits				
Cymbol				Min.	Тур.	Max.	Unit	
VDD	Supply voltage	Mask ROM version	f(STCK) ≤ 6 MHz	4		5.5	V	
	(when ceramic resonator is used)		f(STCK) ≤ 4.4 MHz	2.7		5.5]	
			f(STCK) ≤ 2.2 MHz	2		5.5		
			f(STCK) ≤ 1.1 MHz	1.8		5.5		
		One Time PROM version	f(STCK) ≤ 6 MHz	4		5.5		
			f(STCK) ≤ 4.4 MHz	2.7		5.5		
			f(STCK) ≤ 2.2 MHz	2.5		5.5		
VDD	Supply voltage (when quartz-crystal/ring oscillation	Mask ROM version		1.8		5.5	V	
	is used)	One Time PROM version		2.5		5.5		
VDD	Supply voltage (when RC oscillation is used)	f(STCK) ≤ 4.4 MHz		2.7		5.5	V	
VRAM	RAM back-up voltage	at RAM back-up mode	Mask ROM version	1.6			V	
			One Time PROM version	2			1	
Vss	Supply voltage		,		0		V	
VLC3	LCD power supply (Note 1)	Mask ROM version		1.8		VDD	V	
	, , , , ,	One Time PROM version		2.5		VDD	1	
VIH	"H" level input voltage	P0, P1, P2, D0-D5		0.8Vpd		VDD	V	
	, e	XIN, XCIN	0.7Vdd		VDD			
		RESET	0.85Vpd		VDD			
		INT	0.85Vpd		VDD			
		CNTR		0.8Vpd		VDD		
VIL	"L" level input voltage P0, P1, P2, D0–D5			0		0.2VDD	V	
	pgo	XIN, XCIN	0		0.3VDD			
		RESET	0		0.3VDD			
		INT		0			0.15Vpp	
		CNTR		0		0.15VDD	1	
Iон(peak)	"H" level peak output current	P0, P1, P2, D0–D5	VDD = 5 V			-20		
(/			VDD = 3 V			-10	1	
		С	VDD = 5 V			-30		
		CNTR	VDD = 3 V			-15	1	
Iон(avg)	"H" level average output current	P0, P1, P2, D0–D5	VDD = 5 V			-10	mA	
(3 /	(Note 2)		VDD = 3 V			-5	1	
	,	С	VDD = 5 V			-20	1	
		CNTR	VDD = 3 V			-10	1	
IOL(peak)	"L" level peak output current	P0, P1, P2, D0–D7, C	VDD = 5 V			24	mA	
(- (CNTR	VDD = 3 V			12	1	
		RESET	VDD = 5 V			10	1	
			VDD = 3 V			4	1	
IOL(avg)	"L" level average output current	P0, P1, P2, D0–D7, C	VDD = 5 V			15	mA	
(- + 9)	(Note 2)	CNTR	VDD = 3 V			7	1	
	(RESET	VDD = 5 V			5	1	
		VDD = 3 V				2	†	
ΣIOH(avg)	"H" level total average current	P0, P1, P2, D0–D5, C, CN			-40	mA		
ΣloL(avg)	"L" level total average current	P0, P1, P2, D0–D5, C, CN				60	mA	
			I		1 50	1		

Notes 1: At 1/2 bias: $VLC1 = VLC2 = (1/2) \cdot VLC3$

At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3

2: The average output current is the average value during 100 ms.


RECOMMENDED OPERATING CONDITIONS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter		Limits			Unit		
-							Тур. Мах.	
(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4 to 5.5 V			6	MH:
	(with a ceramic resonator)	version		VDD = 2.7 to 5.5 V			4.4	
				VDD = 2 to 5.5 V			2.2	
				VDD = 1.8 to 5.5 V			1.1	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6	
				VDD = 2 to 5.5 V			4.4	
				VDD = 1.8 to 5.5 V			2.2	
			Frequency/4 mode	VDD = 2 to 5.5 V			6	
				VDD = 1.8 to 5.5 V			4.4	
			Frequency/8 mode	VDD = 1.8 to 5.5 V			6	
		One Time PROM	Through mode	VDD = 4 to 5.5 V			6	1
		version		VDD = 2.7 to 5.5 V			4.4	1
				VDD = 2.5 to 5.5 V			2.2	1
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6	1
				VDD = 2.5 to 5.5 V			4.4	1
			Frequency/4, 8 mode	VDD = 2.5 to 5.5 V			6	1
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 V					4.4	MHz
` '	(at RC oscillation) (Note)							
f(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4 to 5.5 V			4.8	MHz
, ,	(with a ceramic resonator selected,	version		VDD = 2.7 to 5.5 V			3.2	1
	external clock input)			VDD = 2 to 5.5 V			1.6	
				VDD = 1.8 to 5.5 V			0.8	
			Frequency/2 mode Frequency/4 mode	VDD = 2.7 to 5.5 V			4.8	
				VDD = 2 to 5.5 V			3.2	
				VDD = 1.8 to 5.5 V			1.6	
				VDD = 2 to 5.5 V			4.8	
				VDD = 1.8 to 5.5 V			3.2	1
			Frequency/8 mode	VDD = 1.8 to 5.5 V			4.8	1
		One Time PROM		VDD = 4 to 5.5 V			4.8	1
		version		VDD = 2.7 to 5.5 V			3.2	1
				VDD = 2.5 to 5.5 V			1.6	1
			Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	1
				VDD = 2.5 to 5.5 V			3.2	1
			Frequency/4, 8 mode				4.8	1
f(XCIN)	Oscillation frequency (sub-clock)	Quartz-crystal os	1 7 7	V D D = 2.0 to 0.0 V			50	kHz
f(CNTR)	Timer external input frequency	CNTR					f(STCK)/6	-
, ,	Timer external input nequency Timer external input period	CNTR			0.11/0=01.0		1.(0.010)/0	S
WV(CIVIII)	("H" and "L" pulse width)	ONTR			3/f(STCK)			3
TPON	Power-on reset circuit	Mask ROM version	nn.	$VDD = 0 \rightarrow 1.8 \text{ V}$			100	
I I OIN	valid supply voltage rising time	One Time PROM		$VDD = 0 \rightarrow 1.8 \text{ V}$ $VDD = 0 \rightarrow 2.5 \text{ V}$			100	μs

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

PRELIMINARY

ELECTRICAL CHARACTERISTICS 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Test conditions			Limits			
Cymbol				Min.	Тур.	Max.	Unit	
Vон	"H" level output voltage	VDD = 5 V	IOH = -10 mA	3			V	
	P0, P1, P2, D0–D5		IOH = -3 mA	4.1				
		VDD = 3 V	IOH = -5 mA	2.1				
			IOH = −1 mA	2.4				
Vон	"H" level output voltage	VDD = 5 V	IOH = -20 mA	3			V	
	C, CNTR		IOH = -6 mA	4.1				
		VDD = 3 V	IOH = -10 mA	2.1				
			IOH = -3 mA	2.4				
Vol	"L" level output voltage	VDD = 5 V	IOL = 15 mA			2	V	
	P0, P1, P2, D0–D7, C, CNTR		IOL = 5 mA			0.9		
		VDD = 3 V	IOL = 9 mA			1.4		
			IOL = 3 mA			0.9		
Vol	"L" level output voltage	VDD = 5 V	IOL = 5 mA			2	V	
	RESET		IOL = 1 mA			0.6		
		VDD = 3 V	IOL = 2 mA			0.9		
lін	"H" level input current P0, P1, P2, D0–D5, XIN, XCIN, RESET CNTR, INT	VI = VDD				2	μΑ	
İIL	"L" level input current	VI = 0 V P0, P1 No p			-2	μΑ		
	P0, P1, P2, D0–D5, XIN, XCIN, RESET CNTR, INT					_		
Rpu	Pull-up resistor value	VI = 0 V	VDD = 5 V	30	60	125	kΩ	
	P0, P1, RESET		VDD = 3 V	50	120	250		
VT+ - VT-	Hysteresis RESET	VDD = 5 V	·		1		V	
		VDD = 3 V			0.4			
VT+ - VT-	Hysteresis INT	VDD = 5 V			0.6		V	
		VDD = 3 V			0.3			
VT+ - VT-	Hysteresis CNTR	VDD = 5 V			0.2		V	
		VDD = 3 V			0.2			
f(RING)	Ring oscillator clock frequency	VDD = 5 V		200	500	700	kHz	
		VDD = 3 V		100	250	400		
Δf(XIN)	Frequency error (with RC oscillation,	$VDD = 5 V \pm 10 \%, Ta$	a = 25 °C			±17	%	
	error of external R, C not included) (Note 1)	$VDD = 3 V \pm 10 \%, Ta$	ı = 25 °C			±17		
RCOM	COM output impedance	VDD = 5 V			1.5	7.5	kΩ	
	(Note 2)	VDD = 3 V			2	10		
RSEG	SEG output impedance	VDD = 5 V			1.5	7.5	kΩ	
	(Note 2)	VDD = 3 V			2	10		
RVLC	Internal resistor for LCD power supply	When dividing resisto	or 2r X 3 selected	300	480	960	kΩ	
		When dividing resisto	or 2r X 2 selected	200	320	640		
		When dividing resisto	or r X 3 selected	150	240	480		
		When dividing resisto	or r X 2 selected	100	160	320		

Notes 1: When RC oscillation is used, use the external 33 pF capacitor (C).

^{2:} The impedance state is the resistor value of the output voltage.

at VLC3 level output: Vo = 0.8 VLC3 at VLC2 level output: VO = 0.8 VLC2

at VLC1 level output: Vo = 0.2 VLC2 + VLC1

at Vss level output: Vo = 0.2 Vss

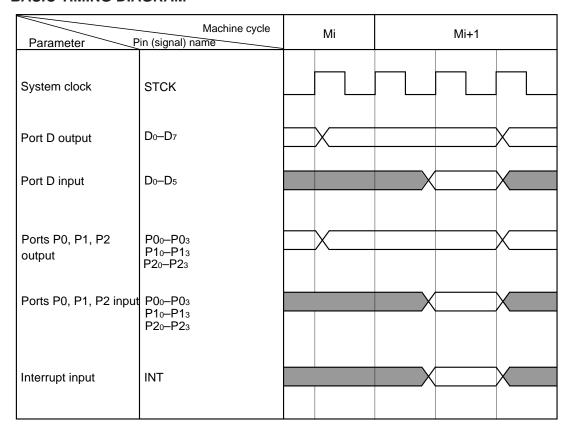
PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

ELECTRICAL CHARACTERISTICS 2

(Mask ROM version: $Ta = -20 \, ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol		Parameter	Test conditions		Limits			- Unit
Symbol		i arameter			Min.	Тур.	Max.	Offic
DD	Supply current	at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		1.2	2.4	mA
		(with a ceramic resonator)	f(XIN) = 6 MHz	f(STCK) = f(XIN)/4		1.3	2.6	
			f(RING) = stop	f(STCK) = f(XIN)/2		1.6	3.2	
			f(XCIN) = stop	f(STCK) = f(XIN)		2.2	4.4	
			VDD = 5 V	f(STCK) = f(XIN)/8		0.9	1.8	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		1	2]
			f(RING) = stop	f(STCK) = f(XIN)/2		1.2	2.4	
			f(XCIN) = stop	f(STCK) = f(XIN)		1.6	3.2	
			VDD = 3 V	f(STCK) = f(XIN)/8		0.3	0.6	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		0.4	0.8	
			f(RING) = stop	f(STCK) = f(XIN)/2		0.5	1.0	
			f(XCIN) = stop	f(STCK) = f(XIN)		0.7	1.4	1
		at active mode	VDD = 5 V	f(STCK) = f(RING)/8		50	100	μΑ
		(with a ring oscillator)	f(XIN) = stop	f(STCK) = f(RING)/4		60	120	1
			f(RING) = active	f(STCK) = f(RING)/2		80	160	1
			f(XCIN) = stop	f(STCK) = f(RING)		120	240	1
			VDD = 3 V	f(STCK) = f(RING)/8		10	20	μΑ
			f(XIN) = stop	f(STCK) = f(RING)/4		13	26	
			f(RING) = active	f(STCK) = f(RING)/2		19	38	1
			f(XCIN) = stop	f(STCK) = f(RING)		31	62	1
		at active mode	VDD = 5 V	f(STCK) = f(XCIN)/8		7	14	μΑ
		(with a quartz-crystal	f(XIN) = stop	f(STCK) = f(XCIN)/4		8	16	1
		oscillator)	f(RING) = stop	f(STCK) = f(XCIN)/2		10	20	1
			f(XCIN) = 32 kHz	f(STCK) = f(XCIN)		14	28	1
			VDD = 3 V	f(STCK) = f(XCIN)/8		5	10	μΑ
			f(XIN) = stop	f(STCK) = f(XCIN)/4		6	12	1
			f(RING) = stop	f(STCK) = f(XCIN)/2		7	14	1
			f(XCIN) = 32 kHz	f(STCK) = f(XCIN)		8	16	
		at clock operation mode	f(XCIN) = 32 kHz	VDD = 5 V		6	12	μA
		(POF instruction execution)		VDD = 3 V		5	10	
		at RAM back-up mode	Ta = 25 °C			0.1	2	μA
		(POF2 instruction execution)	VDD = 5 V				10	1
		,	VDD = 3 V				6	1

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS


(Ta = -20 °C to 85 °C, unless otherwise noted)

Cumbal	Parameter	Toot conditions		Limits			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	- Unit	
VRST-	Detection voltage	Ta = 25 °C	1.6	1.8	2	V	
	(reset occurs) (Note 2)	Ta = -20 to 0 °C	1.7		2.3		
		Ta = 0 to 50 °C	1.4		2.2	-	
		Ta = 50 to 85 °C	1.2		1.9		
VRST+	Detection voltage	Ta = 25 °C	1.7	1.9	2.1	V	
	(reset release) (Note 3)	Ta = -20 to 0 °C	1.8		2.4		
		Ta = 0 to 50 °C	1.5		2.3		
		Ta = 50 to 85 °C	1.3		2		
VRST+-	Detection voltage hysteresis			0.1		V	
VRST-							
IRST	Operation current (Note 4)	VDD = 5 V		50	100	μΑ	
		VDD = 3 V		30	60	1	
TRST	Detection time (Note 5)	$VDD \rightarrow (VRST - 0.1 V)$		0.2	1.2	ms	

Notes 1: The voltage drop detection circuit is equipped with only the H version.

- 2: The detected voltage (VRST-) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.
- 3: The detected voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.
- 4: In the H version, IRST is added to IDD (power current).
- 5: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST- 0.1 V].

BASIC TIMING DIAGRAM

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4556 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 19 shows the product of built-in PROM version. Figure 56 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 19 Product of built-in PROM version

Part number	PROM size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34556G8FP	8192 words	288 words	42P2R-A	One Time PROM [shipped in blank]
M34556G8HFP				

(1) PROM mode

The 4556 Group has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by muddog entry after powering on the VDD pin. In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

(2) Notes on handling

① For the One Time PROM version shipped in blank, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 56 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

(3) Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

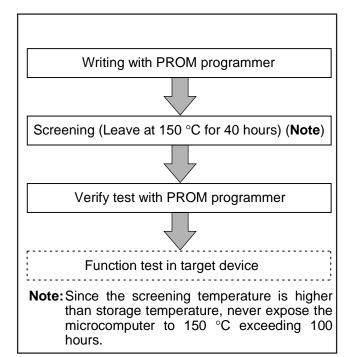


Fig. 56 Flow of writing and test of the product shipped in blank

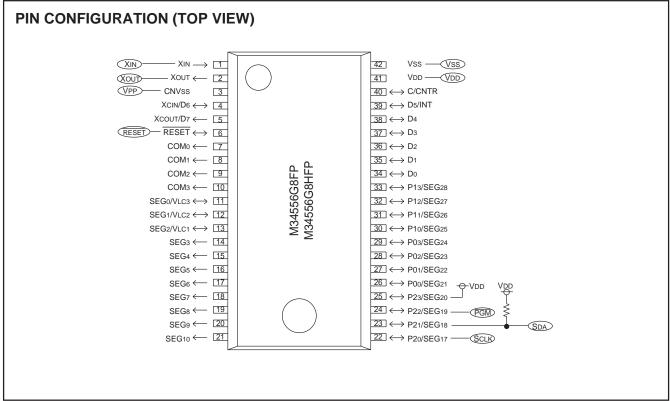


Fig. 57 Pin configuration of built-in PROM version

ROM CODE ACCESS PROTECTION

We would like to support a simple ROM code protection function that prevents a party other than the ROM-code owner to read and reprogram the built-in PROM code of the MCU.

First, Programmers must check the ID-code of the MCU.

If the ID-code is not blank, Programmer verifies it with the input ID-code. When the ID-codes do not match, Programmer will reject all further operations.

The MCU has each 10 bits of dedicated ROM spaces in address 009016 to 009616, as an ID-code (referred to as "the ID-code") enabling a Programmer to verify with the input ID-code and validate further operations.

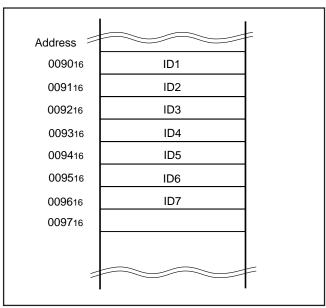
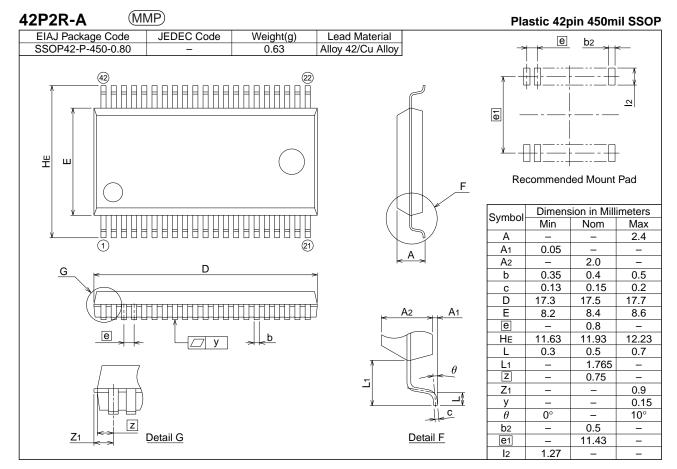



Fig. 58 ROM-Code Protection ID Location

PRELIMINARY Some parametric limits are subject to change.

PACKAGE OUTLINE

REVISION HISTORY

4556 Group Data Sheet

Rev.	Date		Description
l		Page	Summary
1.00	Jul. 23, 2003	_	First edition issued
1.01	Sep. 17, 2003	50 51 61 128	Voltage drop detection circuit (only in H version) revised. Table 15 revised. (Timer functions, Timer control registers, Port level, and Notes 6 and 7) (((Voltage drop detection circuit (only in H version) revised. Fig. 57 revised.

Calca Stratagia Blanning Div	Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-	ku Tokyo 100 0004 Josep
Sales Strategic Flaming Div.	Nippon blug., 2-0-2, Onte-machi, Chiyoua-	nu, runyu ruu-uuu4, Japan

Keep safety first in your circuit designs!

Reep safety instail your circuit designs, in your circuit designs, and in the control of the con nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they
- 1. These materials are intended as a reference to assist our customers in the selection of the referesas Technology Corporation product best suited to the customer's application; may do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

- imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Release contact Renesas Technology Corporation for further details on these materials or the products contained therein.

