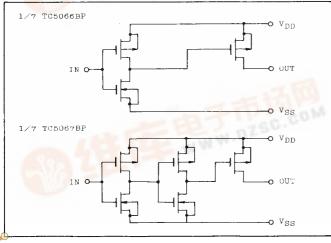
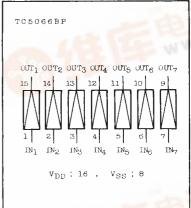

TC5066BP, TC5067BP #8#C C SUGIE CIRCUIT

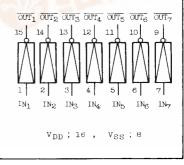
TC5066BP 7-HIGH VOLTAGE BUFFER/NON INVERTING TYPE TC5067BP 7-HIGH VOLTAGE BUFFER/INVERTING TYPE


TC5066BP and TC5067BP contain seven independent circuits of buffers. TC5066BP in non-inverting type and TC5067BP is inverting type. As both have the output of open drain structure with high bleakdown voltage P-channel MOS FET (-50 volts.Maximum Rating), these are suitable for driving fluorescent display tubes and for interfacing with high voltage MOS LSI's.

ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING UI	
DC Supply Voltage	V _{DD}	V _{SS} -0.5~V _{SS} +20	
Input Voltage	VIN	$V_{SS} = 0.5 \sim V_{DD} = 0.5$	
Output Voltage	VOUT	$v_{DD}-50 \sim v_{DD}+0.5$	v
Power Dissipation	PD	300	mW
DC Input Current	IIN	±10	mA
Storage Temperature Range	Tstg	-65~150	°C
Lead Temp./Time	Tsol	260°C • 10sec	

LOGIC DIAGRAM



M 92

PIN ASSIGNMENT

TC5067BP

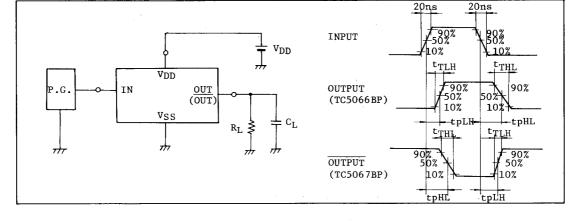
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V _{DD}	3		18	v
Input Voltage	VIN	0	•	VDD	v
Operating Temp.	Topr	-40		85	°C

ELECTRICAL CHARACTERISTICS (VSS=0V)

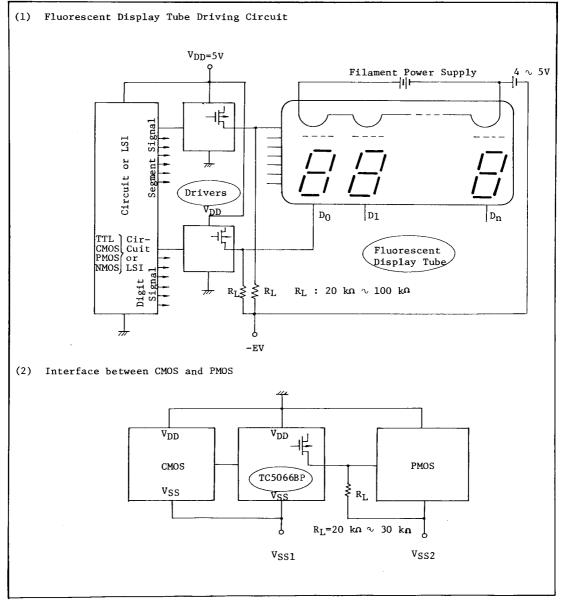
CHARACTERISTIC	SYMBOL	TEST	V _{DD} (V)	-40°C		25°C			85°C		
SIMBO.	STREUL	CONDITIONS		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High Level Output Voltage	VOH	I _{OUT} < 1µA V _{IN} =V _{SS} or V _{DD}	5 10 15	4.95 9.95 14.95	-		5.00 10.00 15.00	-	4.95 9.95 14.95	- - -	v
High Level Output Current	IOH	V _{OH} =3V (V _{DD} -2V) V _{OH} =2V(V _{DD} -3V) V _{OH} =7V(V _{DD} -3V) V _{OH} =12V(V _{DD} -3V)	5 5 10 15	- 6 - 9 -12 -17		- 5 - 8 -10 -15	-10 -13 -25 -35		- 4 - 6 - 8 -12	- - -	mA
High Level Input Voltage (TC5066BP)	VIH	V _{IN} =V _{SS} or V _{DD} V _{OUT} =4.5V V _{OUT} =9.0V V _{OUT} =13.5V *	5 10 15	4.0 8.0 12.5	- - -	4.0 8.0 12.5		- - -	4.0 8.0 12.5		v
Low Level Input Voltage (TC5066BP)	VIL	V _{OUT} =0.5V V _{OUT} =1.0V V _{OUT} =1.5V *	5 10 15		1.0 2.0 2.5	-		1.0 2.0 2.5	- - -	1.0 2.0 2.5	v
High Level Input Voltage (TC5067BP)	VIH	V _{OUT} =0.5V V _{OUT} =1.0V V _{OUT} =1.5V *	5 10 15	3.5 7.0 11.0	-	3.5 7.0 11.0	2.75 5.5 8.25	- -	3.5 7.0 11.0	- - -	
Low Level Input Voltage (TC5067BP)	VIL	VOUT=4.5V VOUT=9.0V VOUT=13.5V *	5 10 15	-	$1.5 \\ 3.0 \\ 4.0$	- - -	2.25 4.5 6.75	1.5 3.0 4.0	- -	1.5 3.0 4.0	V
Output OFF Leak Current	IOFF	$V_{OUT} = 0V$ $V_{OUT} = -30V$	15 15	-	3 10	-	0.01 1	3 10	-	10 20	Au
Input H Level Current	IIH	$V_{IH} = 18V$	18	_	0.3	-	102	0.3	-	1.0	` Aıt
L Level	IIL	VIL = OV	18		-0.3	_	10-5	-0.3	-	-1.0	مىر
Quiescent Supply Current	I _{DD}	V _{IN} = V _{DD} ,V _{SS} Outputs Open	5 10 15		4.0 8.0 16.0	- - -	0.005 0.010 0.015	4.0 8.0 16.0	- - -	30 60 120	Au

* $R_L = 20 k \Omega$



TC5066BP, TC5067BP

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}	$R_{\rm L} = 20 \ k_{\Omega}$	5 10 15		100 50 40	200 100 80	ns
Output Fall Time	t _{THL}	$R_{\rm L}$ = 20 k Ω	5 10 15	- - ·	5.0 5.0 5.0	8.0 8.0 8.0	sىر
(LOW-HIGH) Propagation Delay Time	tpLH	$R_{\rm L} = 20 \ {\rm k}\Omega$	5 10 15	- - -	200 100 80	500 250 200	ns
(HIGH-LOW) Propagation Delay Time	tpHL	$R_{\rm L}$ = 20 kn	5 10 15		2.0 2.0 2.0	4.0 4.0 4.0	sىر
Input Capacity	CIN		1		5	7.5	pF


SWITCHING CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)

SWITCHING TIME TEST CIRCUIT AND WAVEFORM

EXAMPLES OF APPLICABLE CIRCUITS

