ITOMO (maximum value f		
I _{TRMS} (maximum value for continuous operation)		
50 A		
I _{TAV} (sin. 180; T _{case} = 68 °C)		
32 A		
-	SKKH 26/04 D	-
06 D –	SKKH 26/06 D	SKKH 27/06 D
08 D SKKT 27/08 D ¹⁾	SKKH 26/08 D	SKKH 27/08 D
12 E SKKT 27/12 E ¹⁾	SKKH 26/12 E	SKKH 27/12 E
14 E SKKT 27/14 E ¹⁾	SKKH 26/14 E	SKKH 27/14 E
16 E SKKT 27/16 E ¹⁾	SKKH 26/16 E	SKKH 27/16 E
	I _{TAV} (sin. 180; 32 06 D – 08 D SKKT 27/08 D ¹⁾ 12 E SKKT 27/12 E ¹⁾ 14 E SKKT 27/14 E ¹⁾	$I_{TAV} (sin. 180; T_{case} = 68 °C)$ 32 A $- SKKH 26/04 D$ 506 D $- SKKH 26/06 D$ 508 D 500 SKKT 27/08 D ¹⁾ 500 SKKH 26/08 D 500 SKKH 26/12 E 500 SKKT 27/14 E ¹⁾ 500 SKKH 26/14 E

zurück

back

Symbol	Conditions	SKKT 26 SKKH 26 SKKH 27 SKKH 27	Units
I _{TAV}	sin. 180; T _{case} = 68 °C	32	A
	T _{case} = 85 °C	25	A
ID	B2/B6 $T_{amb} = 45 \text{ °C; } P 3/180$	38 / 50	A
	$T_{amb} = 35 \text{ °C; } P 3/180 \text{ F}$	60 / 77	A
I _{RMS}	W1/W3 $T_{amb} = 45 \text{ °C; } P 3/180$	52 / 3 x 37	A
ITSM	$T_{vj} = 25 ^{\circ}C; 10 \text{ms}$	550	A
i²t	$T_{vj} = 125 \text{ °C}; 10 \text{ ms}$	480	A
1-1	$T_{vj} = 25 \text{ °C}; 8,3 \dots 10 \text{ ms}$	1 500	A ² s
	$T_{vj} = 125 \text{ °C}; 8,3 \dots 10 \text{ ms}$	1 150	A ² s
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}$	50.0	
	$di_{G}/dt = 1 A/\mu s$	1	μs
t _{gr}	$V_D = 0.67 \cdot V_{DRM}$	1	μs
(di/dt) _{cr}	$T_{vj} = 125 \text{ °C}$	150	A/μs
t _q	$T_{vj} = 125 \text{ °C}$	typ. 80	μs
I _H	$T_{vj} = 25 \text{ °C}; \text{typ./max}.$	100 / 200	mA mA
	$T_{vj} = 25 \text{ °C}; R_G = 33 \Omega; typ./max.$	250 / 400	mA
VT	$T_{vj} = 25 \text{ °C}; H = 75 \text{ A}$	max. 1,8	V
V _{T(TO)}	$T_{vj} = 125 \text{ °C}$	0,9	V
r _T	$T_{vj} = 125 \text{ °C}$	12	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 125 \text{ °C}; V_{RD} = V_{RRM}$ $V_{DD} = V_{DRM}$	max. 10	mA
V _{GT}	$T_{vi} = 25 \text{ °C; d.c.}$	3	V
I _{GT}	$T_{vi} = 25 ^{\circ}C; d.c.$	150	mA
V _{GD}	$T_{vj} = 25 °C; d.c.$ $T_{vj} = 125 °C; d.c.$	0,25	
I _{GD}	$T_{vj} = 125 ^{\circ}C; d.c.$	5	mA
R _{thjc}	cont.	0,9 / 0,45	°c/w
tiljo	sin. 180 per thyristor /	0,95 / 0,48	°c/w
	rec. 120 per module	1,0 / 0,5	°C/W
R _{thch}) .	0,2 / 0,1	°C/W
T _{vi}		– 40 + 125	°C
T _{stg}		– 40 + 12 <mark>5</mark>	°C
V _{isol}	a. c. 50 Hz; r.m.s; 1 s/1 min	3600 / 3000	V~
M ₁	to heatsink	5 (44 lb. in.) ± 15 % ²⁾	Nm
M ₂	to terminals SI (US) units	3 (26 lb. in.) <u>+</u> 15 %	Nm
a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 9,81	m/s²
w	appr <mark>ox.</mark>	95	g
Case	→ page B 1 – 95 SKKT 26: A 5	SKKT 27: A 46	
1	SKKH 26: A 6	SKKT 27B: A 48	
		SKKH 27: A 47	

捷多邦,专业PCB打栏工产 222 中加速度的 N

SEMIPACK [®] 1 Thyristor / Diode Modules			
SKKT 26 SKKT 27	SKKH 26 SKKH 27		
SKKT 27B	ЭККП 21		

Features

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- · Hard soldered joints for high reliability
- UL recognized, file no. E 63 532

Typical Applications

- DC motor control (e.g. for Contro) (e.g. for Control (e.g. for Control (e.g. for Control (e.g. fo machine tools)
- AC motor soft starters
- Temperature control (e.g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)

¹⁾ Also available in SKKT 27B configuration (case A 48)

2) See the assembly instructions

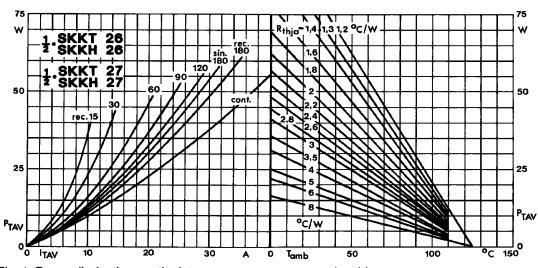


Fig. 1 Power dissipation per thyristor vs. on-state current and ambient temperature

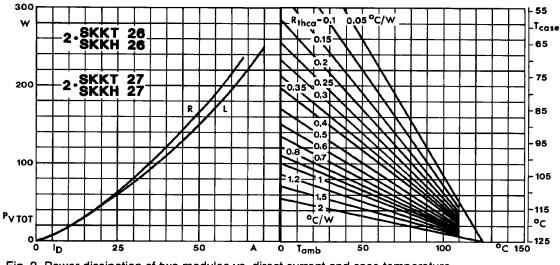
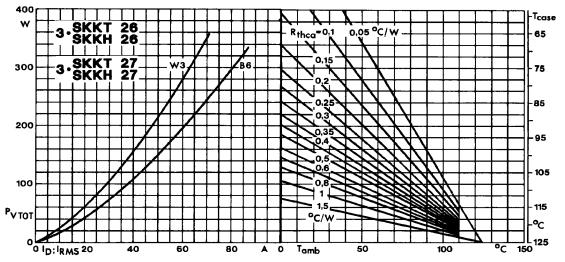
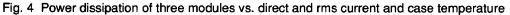




Fig. 3 Power dissipation of two modules vs. direct current and case temperature

<u>semikron</u>

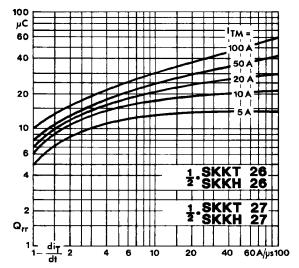
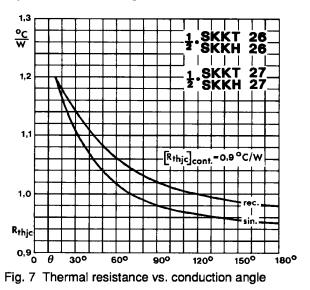
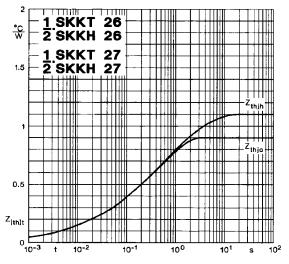
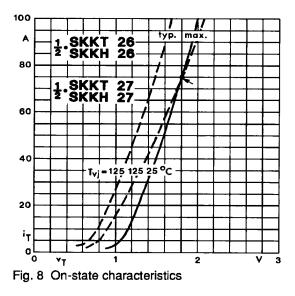
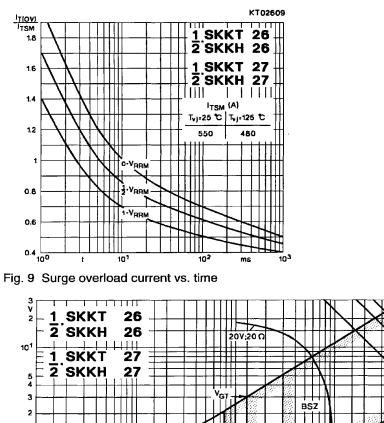
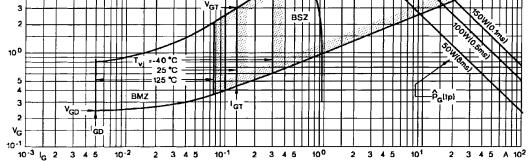
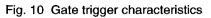
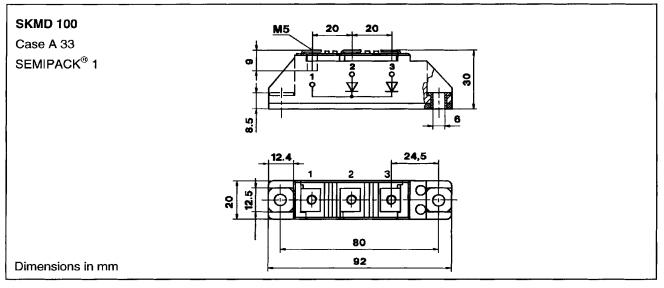



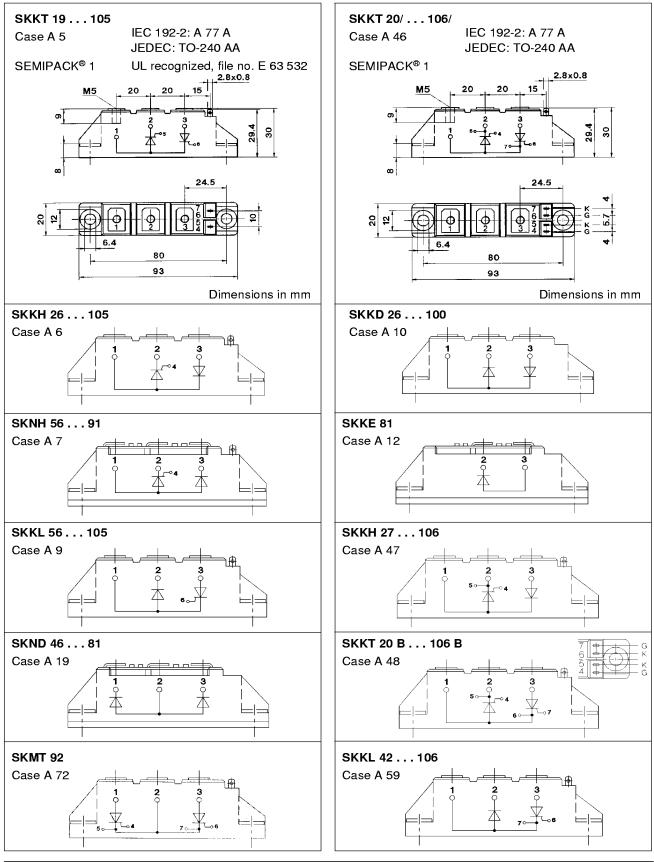
Fig. 5 Recovered charge vs. current decrease


Fig. 6 Transient thermal impedance vs. time




© by SEMIKRON



KT02610

<u>semikron</u>

© by SEMIKRON

