02E 17026

TA7282AP

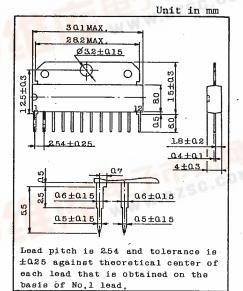
T-74-05-0

LOW FREQUENCY POWER AMPLIFIER

TA7282AP is an audio power IC with built-in two channels developed for portable radio cassette tape recoder with power ON/OFF switch.

Because of the parts reduction and SIP (Single Inline Package), space merit is remarkable.

Thermal shut down protection circuit is built in.


. High Power: POUT=2.5W/CH (Typ.)

(V_{CC} =9V, R_L =4 Ω , f=1kHz, THD=10%)

: POUT=4.6W/CH (Typ.)

(V_{CC}=12V, R_L =4 Ω , f=1kHz, THD=10%)

- . Low Popping Noise at Power ON
- . Small Quiescent Current
 - : I_{CCQ}=19mA (Typ.) (V_{CC}=9V, V_{IN}=0)
- . Soft Clip
- . Built-in Thermal Shut Down Protection Circuit
- . Best for Supply Voltage 9V, 12V
- . Operation Supply Voltage Range : VCC=6~15V

S12CP-P

Weight: 3.2g (Typ.)

JEDEC

TOSHIBA

MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	VCC	16	v	
Output Current (Peak/CH)	IO(peak)	2.5	A	
Power Dissipation	PD	12.5	W	
Operating Temperature	Topr	-20 ~75	°C	
Storage Temperature	Tstg	-55~150	°C	

AUDIO LINEAR IC=

02E 17027 D

T-74-05-01

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{CC}=9V$, $R_L=4\Omega$, $R_g=600\Omega$, f=1kHz, Ta=25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Quiescent Current	ICCQ	- V _{in} =0		-	19	45	mA	
Output Power	POUT(1)	_	- THD=10%		2.5	-	W	
	POUT(2)	_	THD=10%, V _{CC} =12V	-	4.6	-	,,	
Total Harmonic Distortion	THD	-	POUT=1W/CH.	-	0.25	1.0	%	
Voltage Gain	GV(1)	-	R _f =82Ω V _{OUT} =0.775V _{rms}	43	45	47	dB	
	Gy (2)	-	Rf=0, VOUT=0.775Vrms	-	56	-		
Input Resistance	RIN	-	-	_	30	-	kΩ	
Output Noise Voltage	V _{NO}	-	Rg=10kO BW=20Hz~20kHz	ı	0.3	1.0	mVrms	
Ripple Rejection Ratio	R.R.	-	R _g =600 Ω f _{ripple} =100Hz	-	54	-	dB	
Cross Talk	C.T.	-	R _g =10kΩ, Amp1 + 2 VOUT=0dBm, f=1kHz	-	45	- ·	dB	
Input Offset Voltage	V6,V7	-	_	_	20	60	mV	

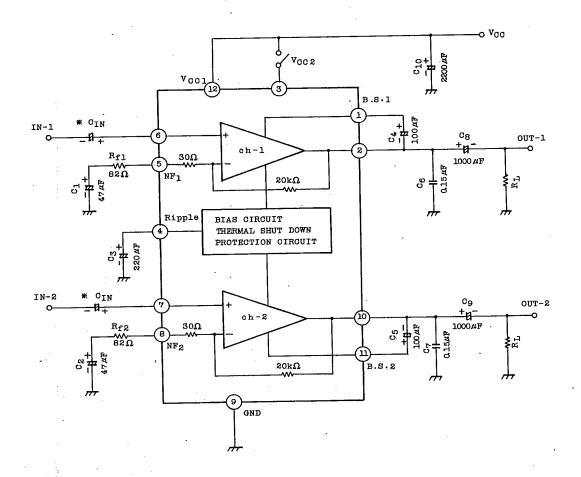
TYPICAL DC VOLTAGE OF EACH TERMINAL (VCC=9V, Ta=25°C)

TERMINAL No.	1	2	3	4	5	6	7	8	9	10	11	12
DC Voltage (V)	8.2	4.5	VCC.	8.9	0.6	0.01	0.01	0.6	GND	4.5	8.2	VCC

^{* 3} pin is connected to Vcc.

TOSHIBA.

02E 17028


D

TA7282AP

T-74-05-01

BLOCK DIAGRAM/TEST CIRCUIT

9097247

* This IC can be used without coupling capacitor (C_{in}). If volume slide noise occured by input offset voltage is undesirable, it needs to use the capacitor (C_{in}).

AUDIO LINEAR IC

T170001D

02E 17029

T-74-05-01

APPLICATION INFORMATION AND APPLICATION METHOD

1. ADJUSTMENT OF VOLTAGE GAIN

The voltage gain Gy is obtained as follows by R1, R2 and Rf in Fig. 1.

$$Gv=20 log \frac{Rf+R_1+R_2}{Rf+R_1}$$

When $R_f=0$ GV=56dB(Typ.) When $R_f=82\Omega$ GV=45dB (Typ.) By increasing R_f , reduction of GV is possible. However, since the feedback increase is liable to produce oscillation, it is recommended to use this at 40dB or over.

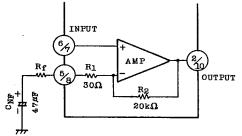
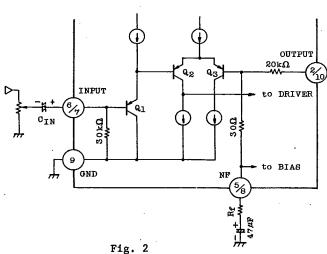


Fig. 1

2. THERMAL SHUT-DOWN CIRCUIT


The thermal shut-down circuit is built in for the purpose of preventing the destruction of IC due to the abnormal temperature rise when the heat radiation is insufficient.

The operation temperature is set at radiation Fin temperature $175^{\circ}C(Typ.)$. At this temperature or over the bias is interrupted to prevent the destruction of IC.

3. INPUT STAGE

The input circuit of this IC is as shown in Fig. 2. PNP Tr:Q1 is provided in the input circuit so as to make its usage possible without the input coupling capacitor.

However, at pins (6) and (7), max 60mV offset voltage is produced.

== TOSHIBA==

02E 17030

D

TA7282AP

T-74-05-01

Application after checking volume slide noise is recommended. For cutting the volume slide noise, insert the input capacitor:Cin in series to interrupt the DC compornent.

4. OSCILLATION PREVENTIVE MEASURES

For oscillation preventive capacitor C6 and C7 between the output terminal and GND, it is recommended to use polyester film capacitor having good characteristics for temperature and for high frequency.

Since the characteristics of the capacitor is liable to be influenced the temperature, use this capacitor after the temperature test to check the oscillation allowance.

In addition, as the position of the electrolytic capacitor has a remarkable influence on the oscillation, connect C10 to V_{CC} at the nearest possible position from power GND.

At using this application with the voltage gain reduced, oscillation is liable to be produced. Apply the capacitor after cheking enough for its capacity, type and mounting position.

* As the oscillation allowance varies according to the printed pattern layout, the standard printed board of TOSHIBA is recommended to be referred to for design it.

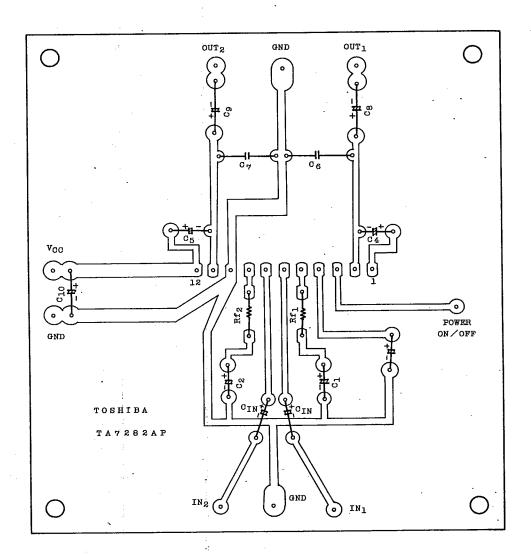
5. POWER ON/OFF SWITCH

There is power ON/OFF switch at 3 pin. However, output power is changed by 3 pin supply voltage when 3 pin supply voltage is not same 12 pin supply voltage, after referring to attached date, select 3 pin supply voltage.

INPUT VOLTAGE

When the excessive signal is input, turning-up is produced in the clip waveform. The turning-up point is $V_{in}=300 \text{mV}_{rms}$ (Typ.): $V_{CC}=9V$, $R_{L}=4\Omega$, f=1kHz:Enough care must be taken for this phenomenon.

7. GND LINE


GND pin is not separated for Pre-GND and for P_W -GND. That is liable to cause distortion and cross talk worse. Before use this IC, please chack it.

AUDIO LINEAR IC=

TA7282AP

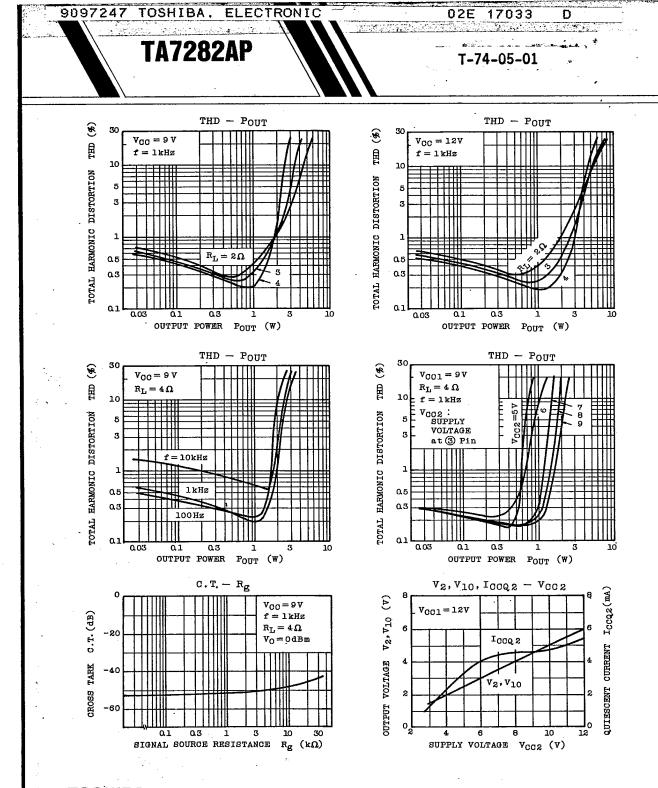
T-74-05-01

STANDARD PRINT PATTERN

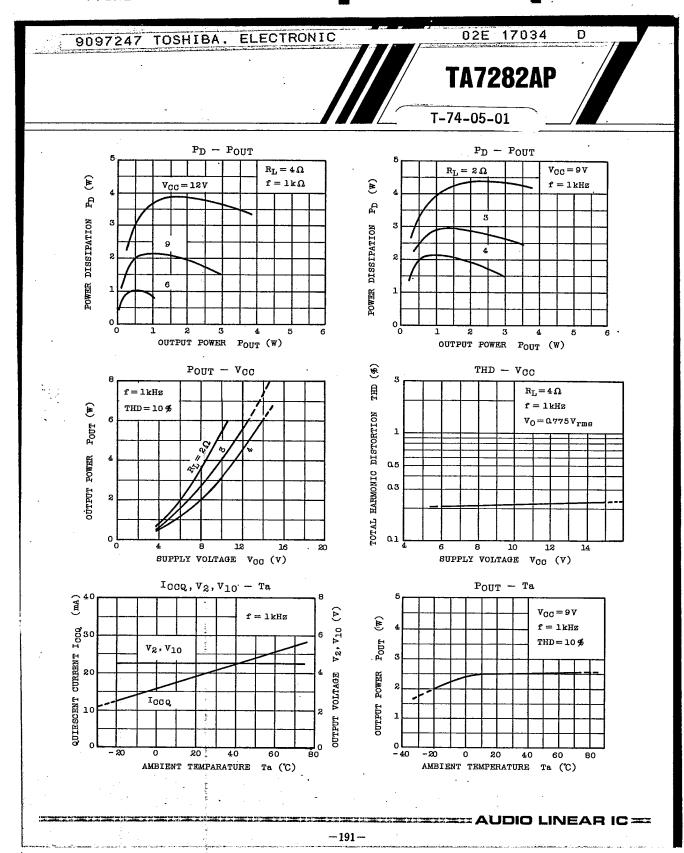
ma Pen 18

9097247 TOSHIBA. ELECTRONIC 02E 17032 D TA7282AP T-74-05-01 ay - f I_{CCQ} , v_2 , $v_{10} - v_{CC}$ 16 $v_{CC} = 9v$ V2, V10 (V) ICCQ (mA) (g. $V_{OUT} = 0.775 V_{rme}$ 30 $R_f = 82 \Omega$ \$ QUIESCENT CURRENT OUTPUT VOLTAGE VOLTAGE GAIN 20 v₂,v₁₀ ᇫ FREQUENCY f (kHz) SUPPLY VOLTAGE VCC (V) R.R. - Rg RIPPLE REJECTION RATIO R.R. (dB) R.R. - f R.R. (dB) $v_{CC} = 9v$ $R_L = 4 \Omega$ $v_{CC} = 9 v$ $f_{rip} = 100 \, \text{Hz}$ $R_L = 4 \Omega$ -20 $v_{rip} = a z v_{rms}$ $v_{rip} = asv_{rms}$ RIPPLE REJECTION RATIO $R_g = 600 \Omega$ -60 SIGNAL SOURCE RESISTANCE $R_{\mathbf{g}}$ (k Ω) -80 100 0.03 0.1 FREQUENCY f (kHz) THD - POUT 8 $f = 1 \, \text{kHz}$ 턘 $v_{NO} - R_{g}$ 10 $v_{OO} = 9v$ HARMONIC DISTORTION $R_{\rm L}\!=\!4\,\Omega$ OUTPUT NOISE VOLTAGE VOT (mV_{rms}) $V_{CC} = 6V$ B.W = 20Hz ~ 20kHz 0.5 TOTAL

. 0.1


0.03

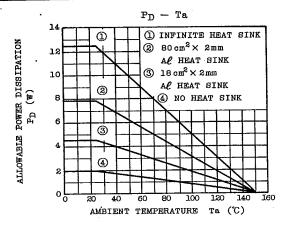
0.3

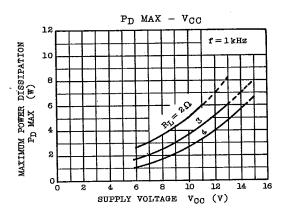

OUTPUT POWER POUT (W)

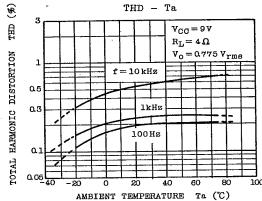
0.3

SIGNAL SOURCE RESISTANCE $R_{\mathbf{g}}$ (k Ω)

ma Pe




02E 17035


D

TA7282AP

T-74-05-01

TOSHIRA

som and and