

S1D13806 Embedded Memory Display Controller

S1D13806 TECHNICAL MANUAL

Document Number: X28B-Q-001-05

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

COMPREHENSIVE SUPPORT TOOLS

EPSON provides the designer and manufacturer a complete set of resources and tools for the development of LCD Graphics Systems.

Documentation

- · Technical manuals
- Evaluation/Demonstration board manual

Evaluation/Demonstration Board

- · Assembled and fully tested Graphics Evaluation/Demonstration board
- · Schematic of Evaluation/Demonstration board
- Parts List
- · Installation Guide
- CPU Independent Software Utilities
- · Evaluation Software
- · Windows CE Display Driver

Application Engineering Support

EPSON offers the following services through their Sales and Marketing Network:

- Sales Technical Support
- Customer Training
- Design Assistance

Application Engineering Support

Engineering and Sales Support is provided by:

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

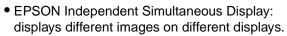
GRAPHICS

S1D13806

S1D13806 Embedded Memory Display Controller

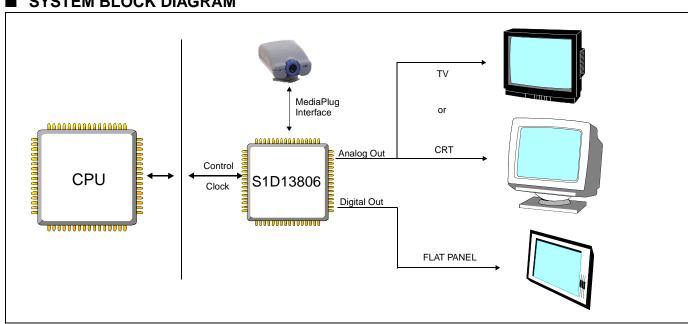
March 2002

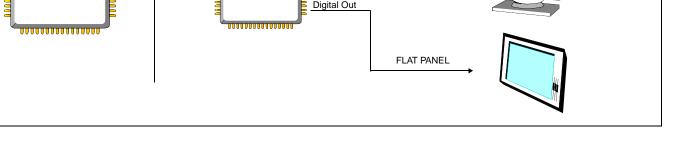
The S1D13806 is a highly integrated color LCD/CRT/TV graphics controller with embedded memory supporting a wide range of CPUs and display devices. The S1D13806 architecture is designed to meet the low cost, low power requirements of the embedded markets, such as Mobile Communications, Hand-Held PC's, and Office Automation.


The S1D13806 supports multiple CPUs, all LCD panel types, CRT, TV, and additionally provides a number of differentiating features. EPSON Independent Simultaneous Display technology allows the user to configure two different images on two different displays, while the SwivelView™, Hardware Cursor, Ink Layer, and BitBLT features offer substantial performance benefits. Products requiring digital camera input can take advantage of the directly supported WINNOV Videum® Cam digital interface. These features, combined with the S1D13806's Operating System independence, make it an ideal display solution for a wide variety of applications.

FEATURES

- 1280K bytes of embedded synchronous DRAM.
- Multiple CPU interface support.
- Resolutions up to:
 - 800x600 at a color depth of 16 bpp. 1024x768 at a color depth of 8 bpp.
- Display Support for:
 - 4/8/16-bit passive panels. 9/12/18/2x9/2x12 TFT/D-TFD panels.


 - NTSC and PAL TV Output.
- WINNOV Videum® Cam digital camera interface.


• SwivelView: 90°, 180°, 270° hardware rotation of displayed image.

- Virtual Display Support
- Hardware Cursor or full screen Ink Layer.
- 2D BitBLT Engine.
- Software initiated Power Save Mode.
- Operating System Independent.

SYSTEM BLOCK DIAGRAM

GRAPHICS

S1D13806

DESCRIPTION

Memory Interface

- 1280K bytes of embedded synchronous DRAM.
- Addressable as a single linear address space.

CPU Interface

Supports the following interfaces:

EPSON E0C33 NEC MIPS VR41xx Hitachi SH-4/SH-3 PC Card (PCMCIA)

ISA bus Philips MIPS PR31500/PR31700

Motorola M68xxx StrongARM (PC Card)
Motorola MPC8xx Toshiba MIPS TX39xx
MPU with programmable READY

CPU Write buffer.

Display Support

LCD Panels: 4/8/16-bit passive LCD interface.

9/12/18/2x9/2x12-bit TFT/D-TFD.

CRT: Embedded RAMDAC for direct analog CRT.

• TV: Composite/S-Video TV output.

NTSC/PAL support. Flicker filter. Luminance filter. Chrominance filter.

Maximum resolution of 800x600 at 16 bpp.

Maximum resolution of 1024x768 at 8 bpp.

Power Down Mode

Software initiated power save mode.

Digital Video Camera Interface

Built-in WINNOV Videum® Cam digital camera interface.

Display Modes

- 4/8/16 bit-per-pixel (bpp) support on LCD, CRT and TV.
- Up to 64 shades of gray on monochrome LCD panels using FRM and Dithering.
- Up to 64K colors on passive LCD, active matrix TFT/D-TFD, CRT and TV in 16 bpp modes.
- SwivelView: 90°, 180°, 270° hardware rotation of displayed image
- EPSON Independent Simultaneous Display: displays different images on different displays.
- Virtual Display Support: displays images larger than the panel size through the use of panning.
- Hardware Cursor or full screen Ink Layer.

Acceleration

• 2D Engine including the following BitBLTs:

Write BLT Move BLT Solid Fill Pattern Fill

Transparent Write BLT Transparent Move BLT
Read BLT Color Expansion
Move BLT with Color Expansion

Operating Voltage

CORE_{VDD} 3.0 to 3.6 volts and IO_{VDD} 3.0 to 3.6 volts.

General Purpose IO Pins

13 General Purpose IO pins.

Package

- 144-pin QFP20
- 220-pin PFBGA

CONTACT YOUR SALES REPRESENTATIVE FOR THESE COMPREHENSIVE DESIGN TOOLS

- S1D13806 Technical Manual QNX® Photon Display Driver
- S5U13806 Evaluation Boards
- VXWorks[®] UGL and WindML Display Drivers
- CPU Independent Software Utilities
- Windows[®] CE Display Driver

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346 http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Etrope Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287
Nanking East Road
Sec. 3, Taipei, Taiwan
Tel: 02-2717-7360
Fax: 02-2712-9164
http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

039192 11 716

http://www.epson.com.sg/
Copyright ©1998, 2002 Epson Research and Development, Inc. All rights reserved.
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko
Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this
document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International
Patent laws. EPSON is a registered trademark of Seiko Epson Corporation. Microsoft, Windows, and the Windows Embedded Partner Logo are registered
trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

S1D13806 Embedded Memory Display Controller

Hardware Functional Specification

Document Number: X28B-A-001-13

Copyright © 2001, 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1	Introduction
	1.1 Scope
	1.2 Overview Description
2	Features
3	Typical System Implementation Diagrams
4	Pins
	4.1 Pinout Diagram
	4.2 Pin Description
	4.2.1 Host Interface
	4.2.2 LCD Interface
	4.2.3 MediaPlug Interface
	4.2.4 CRT Interface
	4.2.5 General Purpose IO
	4.2.6 Configuration
	4.2.7 Miscellaneous
	4.3 Summary of Configuration Options
	4.4 Multiple Function Pin Mapping
	4.5 LCD Interface Pin Mapping
	4.6 CRT/TV Interface
5	D.C. Characteristics
6	A.C. Characteristics
	6.1 Clock Timing
	6.2 Internal Clocks
	6.3 CPU Interface Timing
	6.3.1 Generic Interface Timing
	6.3.2 Hitachi SH-4 Interface Timing
	6.3.3 Hitachi SH-3 Interface Timing
	6.3.4 MIPS/ISA Interface Timing (e.g. NEC VR41xx)
	6.3.5 Motorola MC68K Bus 1 Interface Timing (e.g. MC68000) 50
	6.3.6 Motorola MC68K Bus 2 Interface Timing (e.g. MC68030)
	6.3.7 Motorola PowerPC Interface Timing (e.g. MPC8xx, MC68040, Coldfire) 54
	6.3.8 PC Card Timing (e.g. StrongARM)
	6.3.9 Philips Interface Timing (e.g. PR31500/PR31700)
	6.3.10 Toshiba Interface Timing (e.g. TX39xx)
	6.4 Power Sequencing
	6.4.1 LCD Power Sequencing

	6.4.2	Power Save Status
	6.5 Disp	lay Interface
	6.5.1	Single Monochrome 4-Bit Panel Timing
	6.5.2	Single Monochrome 8-Bit Panel Timing
	6.5.3	Single Color 4-Bit Panel Timing
	6.5.4	Single Color 8-Bit Panel Timing (Format 1)
	6.5.5	Single Color 8-Bit Panel Timing (Format 2)
	6.5.6	Single Color 16-Bit Panel Timing
	6.5.7	Dual Monochrome 8-Bit Panel Timing
	6.5.8	Dual Color 8-Bit Panel Timing
	6.5.9	Dual Color 16-Bit Panel Timing
	6.5.10	TFT/D-TFD Panel Timing
	6.5.11	CRT Timing
	6.6 TV T	Timing
	6.6.1	TV Output Timing
	6.7 Medi	aPlug Interface Timing
7	Clocks .	
	7.1 Clock	k Overview
	7.2 Clock	k Descriptions
	7.2.1	MCLK
	7.2.2	LCD PCLK
	7.2.3	CRT/TV PCLK
	7.2.4	MediaPlug Clock
	7.3 Clock	k Selection
	7.4 Clock	ks vs. Functions
8	Registers	
	8.1 Initia	lizing the S1D13806
	8.1.1	Register Memory Select Bit
	8.1.2	SDRAM Initialization Bit
	8.2 Regi	ster Mapping
	8.3 Regis	ster Set
	8.4 Regis	ster Descriptions
	8.4.1	Basic Registers
	8.4.2	General IO Pins Registers
	8.4.3	Configuration Readback Register
	8.4.4	Clock Configuration Registers
	8.4.5	Memory Configuration Registers
	8.4.6	Panel Configuration Registers
	8.4.7	LCD Display Mode Registers

	8.4.8	CRT/TV Configuration Registers
	8.4.9	CRT/TV Display Mode Registers
	8.4.10	LCD Ink/Cursor Registers
	8.4.11	CRT/TV Ink/Cursor Registers
	8.4.12	BitBLT Configuration Registers
	8.4.13	Look-Up Table Registers
	8.4.14	Power Save Configuration Registers
		Miscellaneous Registers
	8.4.16	Common Display Mode Register
	8.5 Med	iaPlug Registers Descriptions
	8.5.1	MediaPlug Control Registers
	8.5.2	MediaPlug Data Registers
	8.6 BitB	LT Data Registers Descriptions
9	2D BitBL	Г Engine
	9.1 Over	view
	9.2 BitB	LT Operations
10	Display B	uffer
	10.1 Imag	e Buffer
	10.2 Ink I	Layer/Hardware Cursor Buffers
	10.3 Dual	Panel Buffer
11	Display C	onfiguration
	11.1 Disp	lay Mode Data Format
	11.2 Imag	e Manipulation
12	Look-Up	Table Architecture
		ochrome Modes
	12.2 Colo	r Modes
13	TV Consi	derations
		C/PAL Operation
		k Source
	13.3 Filter	
	13.3.1	Chrominance Filter (REG[05Bh] bit 5)
	13.3.2	Luminance Filter (REG[05Bh] bit 4)
	13.3.3	Anti-flicker Filter (REG[1FCh] bits [2:1])
	13.4 TV (Output Levels
	13.4.1	TV Image Display and Positioning
	13.4.2	TV Cursor Operation
14	Ink Layer	/Hardware Cursor Architecture
	-	Layer/Hardware Cursor Buffers
		Cursor Data Format

	14.3 Ink/Cursor Image Manipulation
	14.3.1 Ink Image
	14.3.2 Cursor Image
15	SwivelView™
	15.1 Concept
	15.2 90° SwivelView
	15.2.1 Register Programming
	15.2.2 Physical Memory Requirement
	15.2.3 Limitations
	15.3 180° SwivelView
	15.3.1 Register Programming
	15.3.2 Physical Memory Requirement
	15.3.3 Limitations
	15.4 270° SwivelView
	15.4.1 Register Programming
	15.4.2 Physical Memory Requirement
	15.4.3 Limitations
16	EPSON Independent Simultaneous Display (EISD)
	16.1 Registers
	16.2 Display Mapping
	16.3 Bandwidth Limitation
17	MediaPlug Interface
	17.1 Revision Code
	17.2 How to enable the MediaPlug Slave
	17.3 MediaPlug Interface Pin Mapping
18	Clocking
	18.1 Frame Rate Calculation
	18.1.1 LCD Frame Rate Calculation
	18.1.2 CRT Frame Rate Calculation
	18.1.3 TV Frame Rate Calculation
	18.2 Example Frame Rates
	18.2.1 Frame Rates for 640x480 with EISD Disabled
	18.2.2 Frame Rates for 800x600 with EISD Disabled
	18.2.3 Frame Rates for 1024x768 with EISD Disabled
	18.2.4 Frame Rates for LCD and CRT (640x480) with EISD Enabled
	18.2.5 Frame Rates for LCD and CRT (800x600) with EISD Enabled
	18.2.6 Frame Rates for LCD and CRT (1024x768) with EISD Enabled
	18.2.7 Frame Rates for LCD and NTSC TV with EISD Enabled
	18.2.8 Frame Rates for LCD and PAL TV with EISD Enabled

19	Power Save Mode
	19.1 Overview
	19.2 Power Save Status Bits
	19.3 Power Save Mode Summary
20	Mechanical Data
21	References
22	Sales and Technical Support

List of Tables

Table 2-1: S1D13806 Features	16
Table 4-1: PFBGA 220-pin Mapping	23
Table 4-2: Host Interface Pin Descriptions	24
Table 4-3: LCD Interface Pin Descriptions	30
Table 4-4: MediaPlug Pin Description	31
Table 4-5: CRT Interface Pin Descriptions	31
Table 4-6: General Purpose IO Pin Descriptions	32
Table 4-7: Configuration Pin Descriptions	32
Table 4-8: Miscellaneous Interface Pin Descriptions	33
Table 4-9: Summary of Power-On/Reset Options	34
Table 4-10: CPU Interface Pin Mapping	35
Table 4-11: LCD Interface Pin Mapping	36
Table 5-1: Absolute Maximum Ratings	38
Table 5-2: Recommended Operating Conditions	38
Table 5-3: Electrical Characteristics for VDD = 3.3V typical	38
Table 6-1: Clock Input Requirements for BUSCLK, CLKI, CLKI2, and CLKI3 When Not Divided	39
Table 6-2: Clock Input Requirements for MCLK Source when Source Divided	40
Table 6-3: Clock Input Requirements for LCD PCLK, CRT/TV PCLK, or MediaPlug Source when Source Divided40	
Table 6-4: Internal Clock Requirements	41
Table 6-5: Generic Interface Timing	43
Table 6-6: Hitachi SH-4 Interface Timing	45
Table 6-7: Hitachi SH-3 Interface Timing	47
Table 6-8: MIPS/ISA Interface Timing	49
Table 6-8: MIPS/ISA Interface Timing	
	51
Table 6-9: Motorola MC68K Bus 1 Interface Timing	51 53
Table 6-9: Motorola MC68K Bus 1 Interface Timing	51 53 55
Table 6-9: Motorola MC68K Bus 1 Interface Timing	51 53 55 57
Table 6-9: Motorola MC68K Bus 1 Interface Timing	51 53 55 57 59
Table 6-9: Motorola MC68K Bus 1 Interface Timing. Table 6-10: Motorola MC68K Bus 2 Interface Timing. Table 6-11: Motorola PowerPC Interface Timing. Table 6-12: PC Card Timing. Table 6-13: Philips Interface Timing.	51 53 55 57 59 61
Table 6-9: Motorola MC68K Bus 1 Interface Timing. Table 6-10: Motorola MC68K Bus 2 Interface Timing. Table 6-11: Motorola PowerPC Interface Timing. Table 6-12: PC Card Timing. Table 6-13: Philips Interface Timing. Table 6-14: Toshiba Interface Timing.	51 53 55 57 59 61 62
Table 6-9: Motorola MC68K Bus 1 Interface Timing. Table 6-10: Motorola MC68K Bus 2 Interface Timing. Table 6-11: Motorola PowerPC Interface Timing. Table 6-12: PC Card Timing. Table 6-13: Philips Interface Timing. Table 6-14: Toshiba Interface Timing. Table 6-15: LCD Panel Power-off/Power-on.	51 53 55 57 59 61 62 63
Table 6-9: Motorola MC68K Bus 1 Interface Timing	51 53 55 57 59 61 62 63 63
Table 6-9: Motorola MC68K Bus 1 Interface Timing Table 6-10: Motorola MC68K Bus 2 Interface Timing Table 6-11: Motorola PowerPC Interface Timing Table 6-12: PC Card Timing Table 6-13: Philips Interface Timing Table 6-14: Toshiba Interface Timing Table 6-15: LCD Panel Power-off/Power-on Table 6-16: Power Save Status and Local Bus Memory Access Relative to Power Save Mode Table 6-17: SDRAM Refresh Period Selection	51 53 55 57 59 61 62 63 63 65
Table 6-9: Motorola MC68K Bus 1 Interface Timing. Table 6-10: Motorola MC68K Bus 2 Interface Timing. Table 6-11: Motorola PowerPC Interface Timing. Table 6-12: PC Card Timing. Table 6-13: Philips Interface Timing. Table 6-14: Toshiba Interface Timing. Table 6-15: LCD Panel Power-off/Power-on. Table 6-16: Power Save Status and Local Bus Memory Access Relative to Power Save Mode. Table 6-17: SDRAM Refresh Period Selection. Table 6-18: Single Monochrome 4-Bit Panel A.C. Timing.	513 555 577 599 611 622 633 655 677

fication

Table 6-22: Single Color 8-Bit Panel A.C. Hming (Format 2)
Table 6-23: Single Color 16-Bit Panel A.C. Timing
Table 6-24: Dual Monochrome 8-Bit Panel A.C. Timing
Table 6-25: Dual Color 8-Bit Panel A.C. Timing
Table 6-26: Dual Color 16-Bit Panel A.C. Timing
Table 6-27: TFT/D-TFD A.C. Timing
Table 6-28: CRT A.C. Timing
Table 6-29: Horizontal Timing for NTSC/PAL
Table 6-30: Vertical Timing for NTSC/PAL
Table 6-31: MediaPlug A.C. Timing
Table 7-1: Clock Selection
Table 7-2: Clocks vs. Functions
Table 8-1 : Register Mapping with CS# = 0 and $M/R\# = 0$
Table 8-2: S1D13806 Register Set
Table 8-3: Media Plug/GPIO12 Pin Functionality
Table 8-4: MCLK Source Select
Table 8-5: LCD PCLK Divide Selection
Table 8-6: LCD PCLK Source Selection
Table 8-7: CRT/TV PCLK Divide Selection
Table 8-8: CRT/TV PCLK Source Selection
Table 8-9: MediaPlug Clock Divide Selection
Table 8-10: MediaPlug Clock Source Selection
Table 8-11: Minimum Memory Timing Selection
Table 8-12: SDRAM Refresh Rate Selection
Table 8-13: SDRAM Timings Control Register Settings
Table 8-14: Panel Data Width Selection
Table 8-15: Horizontal Display Width (Pixels)
Table 8-16: LCD FPLINE Polarity Selection
Table 8-17: LCD FPFRAME Polarity Selection
Table 8-18: Setting SwivelView Modes
Table 8-19: LCD Bit-per-pixel Selection
Table 8-20: LCD Pixel Panning Selection
Table 8-21: DAC Output Level Selection
Table 8-22: CRT/TV Bit-per-pixel Selection
Table 8-23: CRT/TV Pixel Panning Selection
Table 8-24: LCD Ink/Cursor Selection
Table 8-25: LCD Ink/Cursor Start Address Encoding
Table 8-26: CRT/TV Ink/Cursor Selection
Table 8-27: CRT/TV Ink/Cursor Start Address Encoding
Table 8-28: BitBLT Active Status

List of Figures

Figure 3-1:	Typical System Diagram (Generic Bus)
Figure 3-2:	Typical System Diagram (Hitachi SH-4 Bus)
Figure 3-3:	Typical System Diagram (Hitachi SH-3 Bus)
Figure 3-4:	Typical System Diagram (MC68K Bus 1, Motorola 16-Bit 68000)
Figure 3-5:	Typical System Diagram (MC68K Bus 2, Motorola 32-Bit 68030)
Figure 3-6:	Typical System Diagram (Motorola Power PC Bus)
Figure 3-7:	Typical System Diagram (NEC MIPS VR41xx Bus)
Figure 3-8:	Typical System Diagram (PC Card Bus)
Figure 3-9:	Typical System Diagram (Philips MIPS PR31500/PR31700 Bus)
Figure 3-10:	Typical System Diagram (Toshiba MIPS TX39xx Bus)
Figure 4-1:	Pinout Diagram 144-Pin QFP20 Surface Mount Packages
Figure 4-2:	Pinout Diagram 220-Pin PFBGA Surface Mount Package
Figure 4-3:	External Circuitry for CRT Interface
Figure 6-1:	Clock Input Requirement
Figure 6-2:	Generic Interface Timing
Figure 6-3:	Hitachi SH-4 Interface Timing
Figure 6-4:	Hitachi SH-3 Interface Timing
Figure 6-5:	MIPS/ISA Interface Timing
Figure 6-6:	Motorola MC68K Bus 1 Interface Timing
Figure 6-7:	Motorola MC68K Bus 2 Interface Timing
Figure 6-8:	Motorola PowerPC Interface Timing
Figure 6-9:	PC Card Timing
Figure 6-10:	Philips Interface Timing
Figure 6-11:	Toshiba Interface Timing
Figure 6-12:	LCD Panel Power-off/Power-on Timing
Figure 6-13:	Power Save Status Bits and Local Bus Memory Access Relative to Power Save Mode63
Figure 6-14:	Single Monochrome 4-Bit Panel Timing
Figure 6-15:	Single Monochrome 4-Bit Panel A.C. Timing
Figure 6-16:	Single Monochrome 8-Bit Panel Timing
Figure 6-17:	Single Monochrome 8-Bit Panel A.C. Timing
Figure 6-18:	Single Color 4-Bit Panel Timing
Figure 6-19:	Single Color 4-Bit Panel A.C. Timing
Figure 6-20:	Single Color 8-Bit Panel Timing (Format 1)
•	Single Color 8-Bit Panel A.C. Timing (Format 1)
Figure 6-22:	Single Color 8-Bit Panel Timing (Format 2)
Figure 6-23:	Single Color 8-Bit Panel A.C. Timing (Format 2)
Figure 6-24.	Single Color 16-Bit Panel Timing 74

Figure 6-25: Single Color 16-Bit Panel A.C. Timing
Figure 6-26: Dual Monochrome 8-Bit Panel Timing
Figure 6-27: Dual Monochrome 8-Bit Panel A.C. Timing
Figure 6-28: Dual Color 8-Bit Panel Timing
Figure 6-29: Dual Color 8-Bit Panel A.C. Timing
Figure 6-30: Dual Color 16-Bit Panel Timing
Figure 6-31: Dual Color 16-Bit Panel A.C. Timing
Figure 6-32: TFT/D-TFD Panel Timing
Figure 6-33: TFT/D-TFD A.C. Timing
Figure 6-34: CRT Timing
Figure 6-35: CRT A.C. Timing
Figure 6-36: NTSC Video Timing
Figure 6-37: PAL Video Timing
Figure 6-38: Horizontal Timing for NTSC/PAL
Figure 6-39: Vertical Timing for NTSC/PAL
Figure 6-40: MediaPlug A.C. Timing
Figure 7-1: Clock Overview Diagram
Figure 7-2: MediaPlug Clock Output Signals
Figure 8-1: SDRAM Initialization Sequence
Figure 10-1: Display Buffer Addressing
Figure 11-1: 4/8/16 Bit-per-pixel Format Memory Organization
Figure 11-2: Image Manipulation
Figure 12-1: 4 Bit-Per-Pixel Monochrome Mode Data Output Path
Figure 12-2: 8 Bit-Per-Pixel Monochrome Mode Data Output Path
Figure 12-3: 4 Bit-Per-Pixel Color Mode Data Output Path
Figure 12-4: 8 Bit-Per-Pixel Color Mode Data Output Path
Figure 13-1: NTSC/PAL SVideo-Y (Luminance) Output Levels
Figure 13-2: NTSC/PAL SVideo-C (Chrominance) Output Levels
Figure 13-3: NTSC/PAL Composite Output Levels
Figure 13-4: NTSC/PAL Image Positioning
Figure 13-5: Typical Display Dimensions and Visible Display Dimensions for NTSC and PAL . $$. $$. 169
Figure 14-1: Ink/Cursor Data Format
Figure 14-2: Unclipped Cursor Positioning
Figure 14-3: Clipped Cursor Positioning
Figure 15-1: Relationship Between Screen Image and 90° Rotated Image in the Display Buffer 175
Figure 20-1: Mechanical Drawing 144-pin QFP20
Figure 20-2: Mechanical Drawing 220-pin PFBGA 202

1 Introduction

1.1 Scope

This User Guide provides technical information for the S1D13806 Embedded Memory Display Controller. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This guide is updated as appropriate. Please check the Epson Electronics America Website at www.eea.epson.com or the Epson Research and Development Website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

1.2 Overview Description

The S1D13806 is a highly integrated color LCD/CRT/TV graphics controller with embedded memory supporting a wide range of CPUs and display devices. The S1D13806 architecture is designed to meet the low cost, low power requirements of the embedded markets, such as Mobile Communications, Hand-Held PC's, and Office Automation.

The S1D13806 supports multiple CPUs, all LCD panel types, CRT, TV, and additionally provides a number of differentiating features. EPSON Independent Simultaneous Display technology allows the user to configure two different images on two different displays, while the SwivelViewTM, Hardware Cursor, Ink Layer, and BitBLT features offer substantial performance benefits. Products requiring digital camera input can take advantage of the directly supported WINNOV Videum® Cam digital interface. While focusing on devices targeted by the Microsoft Windows CE Operating System, the S1D13806's impartiality to CPU type or operating system makes it an ideal display solution for a wide variety of applications.

2 Features

Table 2-1: S1D13806 Features

S1D13806 Features

Embedded Memory

1280K byte embedded synchronous DRAM.

Up to 50MHz data rate (100M Bytes/second).

Display buffer address space is directly and contiguously available through the 21-bit address bus.

CPU Interfaces

Epson E0C33.

Hitachi SH-4.

Hitachi SH-3.

MIPS/ISA.

Motorola MC68000.

Motorola MC68030.

Motorola PowerPC MPC82x.

MPU bus interface with programmable READY.

NEC MIPS VR41xx.

PC Card (PCMCIA).

Philips MIPS PR31500/PR31700.

StrongARM (PC Card).

Toshiba MIPS TX39xx.

One-stage write buffer for minimum wait-state CPU writes.

Registers are memory-mapped – M/R# pin selects between display buffer and register address space.

Display Support

4/8-bit monochrome or 4/8/16-bit color LCD interface for single-panel, single-drive displays.

8-bit monochrome or 8/16-bit color LCD interface for dual-panel, dual-drive displays.

Direct support for 9-bit, 12-bit, 18-bit, 2x9-bit, 2x12-bit TFT/D-TFD.

Direct support for CRT.

Direct support for S-Video/Composite TV output (NTSC or PAL format).

Display Modes

4/8/16 bit-per-pixel (bpp) color depths.

Up to 64K colors on TFT, CRT and TV.

Up to 64K colors in 16 bpp mode on color passive LCD panels using dithering (4096 colors in 4/8 bpp).

Up to 64 shades of gray on monochrome passive panels using Frame Rate Modulation (FRM) and Dithering.

4/8 bit-per-pixel color depths are mapped using three 256x4 Look-Up Tables (LUT).

Separate LUTs for LCD and CRT/TV.

16 bit-per-pixel modes are mapped directly bypassing the LUT.

Display Features

SwivelView™: 90°, 180°, 270° hardware rotation of display image.

EPSON Independent Simultaneous Display (EISD): displays independent images on different displays (CRT or TV and passive or TFT panel).

Virtual Display Support: displays images larger than the physical display size through the use of panning and scrolling.

2D BitBLT Engine.

Hardware Cursor/Ink Layer: separate 64x64x2 hardware cursor or 2-bit ink layer for both LCD and CRT/TV.

Double Buffering/Multi-pages: for smooth animation and instantaneous screen update.

Miscellaneous

Power save mode is initiated by software.

Built-in MediaPlug Interface for Winnov Camera.

Highly Flexible Clocking.

Eight configuration pins (CONF[7:0]) are used to configure the chip at power-on.

13 General Purpose Input/Output pins.

Operating voltage from 3.0 volts to 3.6 volts.

144-pin QFP20 package. 220-pin PFBGA package

3 Typical System Implementation Diagrams

For pin mapping of each system implementation, see Table 4-10, "CPU Interface Pin Mapping," on page 35.

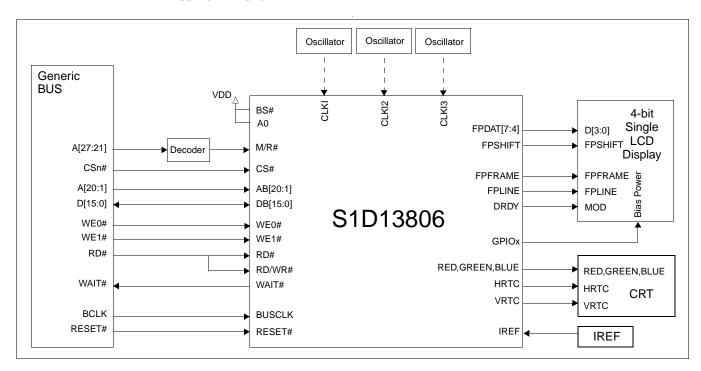


Figure 3-1: Typical System Diagram (Generic Bus)

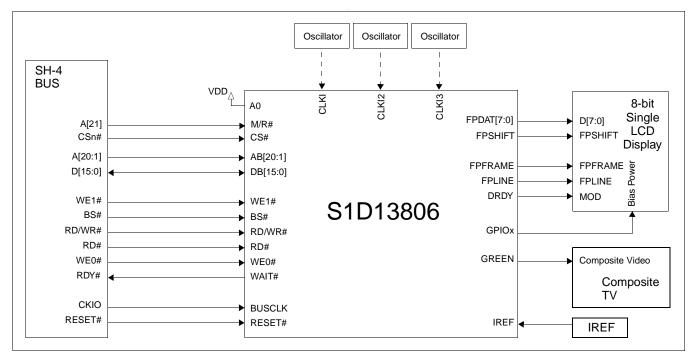


Figure 3-2: Typical System Diagram (Hitachi SH-4 Bus)

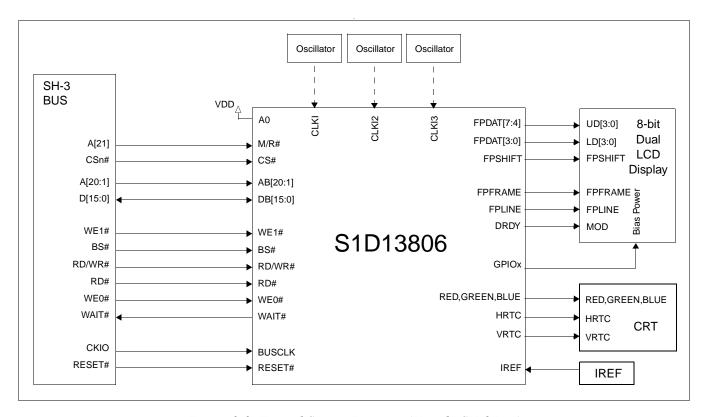


Figure 3-3: Typical System Diagram (Hitachi SH-3 Bus)

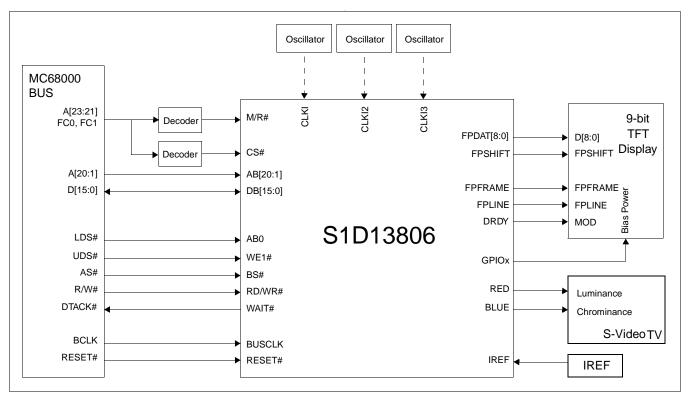


Figure 3-4: Typical System Diagram (MC68K Bus 1, Motorola 16-Bit 68000)

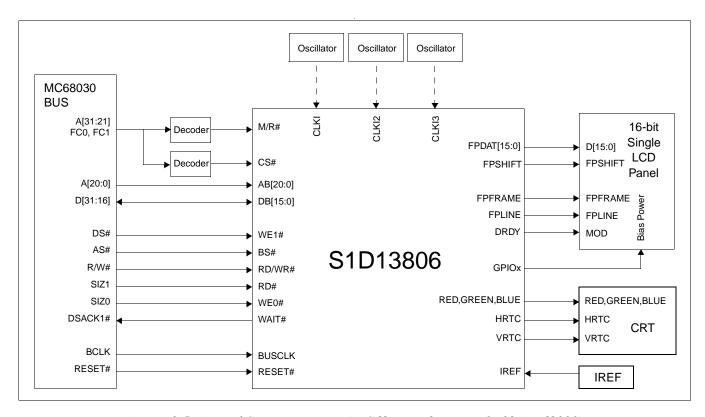


Figure 3-5: Typical System Diagram (MC68K Bus 2, Motorola 32-Bit 68030)

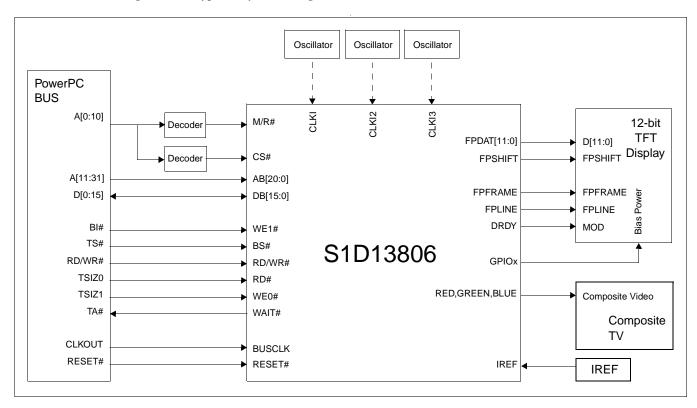


Figure 3-6: Typical System Diagram (Motorola Power PC Bus)

fication

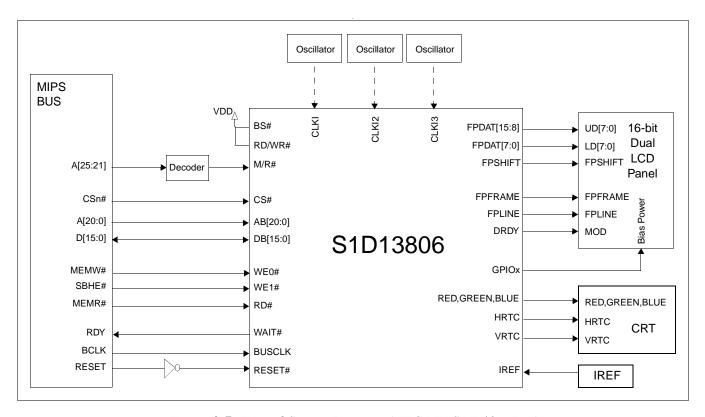


Figure 3-7: Typical System Diagram (NEC MIPS VR41xx Bus)

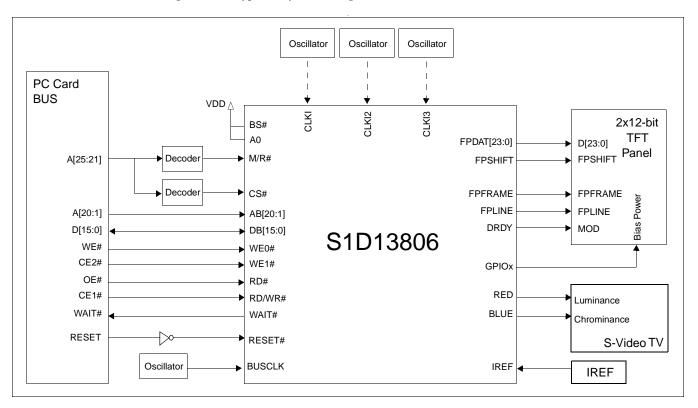


Figure 3-8: Typical System Diagram (PC Card Bus)

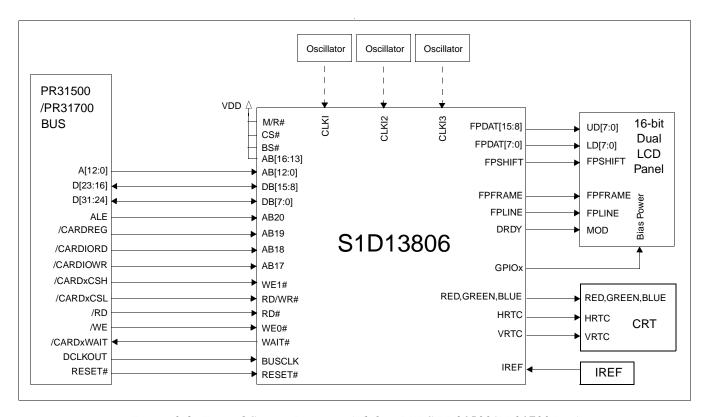


Figure 3-9: Typical System Diagram (Philips MIPS PR31500/PR31700 Bus)

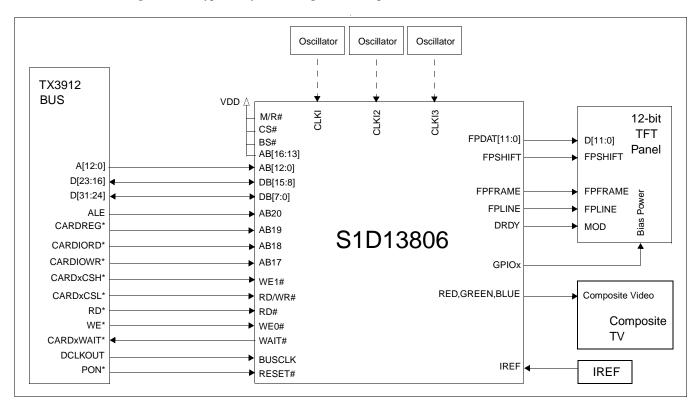


Figure 3-10: Typical System Diagram (Toshiba MIPS TX39xx Bus)

4 Pins

4.1 Pinout Diagram

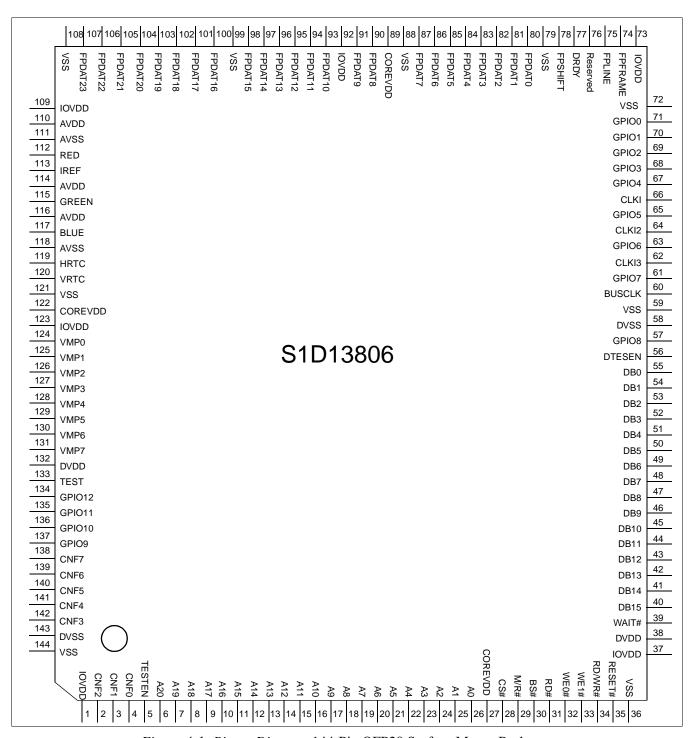


Figure 4-1: Pinout Diagram 144-Pin QFP20 Surface Mount Packages

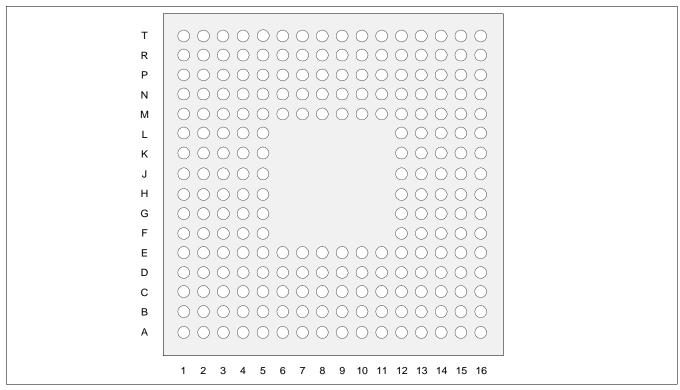


Figure 4-2: Pinout Diagram 220-Pin PFBGA Surface Mount Package

Table 4-1: PFBGA 220-pin Mapping

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Α	NC	NC	DVSS	NC	CNF7	GPIO11	DVDD	VMP4	VMP1	VSS	NC	NC	IREF	AVDD	NC	NC
В	NC	NC	NC	CNF6	GPIO9	TEST	VMP6	NC	IOVDD	VRTC	AVSS	GREEN	AVSS	NC	NC	NC
С	CNF2	NC	NC	CNF3	CNF5	NC	NC	VMP3	COREVDD	HRTC	BLUE	AVDD	NC	NC	NC	FPDAT23
D	NC	NC	CNF1	NC	VSS	NC	GPIO12	VMP5	VMP0	NC	AVDD	IOVDD	NC	FPDAT22	FPDAT19	NC
Ε	AB19	AB20	TESTEN	IOVDD	NC	CNF4	GPIO10	VMP7	VMP2	NC	RED	NC	VSS	FPDAT20	FPDAT17	FPDAT18
F	AB16	NC	AB18	NC	CNF0							FPDAT21	NC	NC	FPDAT14	VSS
G	NC	AB14	AB15	AB13	AB17							FPDAT16	FPDAT15	NC	FPDAT11	FPDAT13
Н	AB9	AB11	AB12	AB10	AB8							FPDAT12	FPDAT10	FPDAT9	NC	IOVDD
J	AB6	NC	AB7	AB5	AB3							FPDAT8	VSS	FPDAT6	PFDAT7	COREVDD
K	AB2	AB4	NC	AB0	CS#							FPDAT2	FPDAT5	FPDAT3	FPDAT4	NC
L	COREVDD	AB1	NC	RD#	NC							Reserved	NC	FPDAT0	FPDAT1	NC
M	BS#	M/R#	WE0#	VSS	NC	DB15	DB9	DB1	VSS	CLKI2	GPIO2	NC	IOVDD	DRDY	FPSHIFT	VSS
N	WE1#	NC	NC	NC	IOVDD	NC	NC	DB3	GPIO8	CLKI3	NC	VSS	NC	FPLINE	NC	NC
Р	RESET#	RD/WR#	NC	WAIT#	DB14	DB11	DB8	DB5	DB0	NC	NC	GPIO3	GPIO1	NC	NC	FPFRAME
R	NC	NC	NC	NC	DB13	DB10	DB7	DB4	NC	DVSS	GPIO7	GPIO5	GPIO4	NC	NC	NC
Т	NC	NC	DVDD	NC	DB12	NC	DB6	DB2	DTESTEN	BUSCLK	GPIO6	CLKI	NC	GPIO0	NC	NC

Note

NC is no connection.

Reserved must be left unconnected and floating.

4.2 Pin Description

Key:

Hi-Z = High impedance

I = Input
O = Output

IO = Bi-Directional (Input/Output)

A = Analog
P = Power pin

C = CMOS level input

CD = CMOS level input with pull down resistor (typical value of $50K\Omega$ at 3.3V)

CS = CMOS level Schmitt input

COx = CMOS output driver, x denotes driver type (1=2/-2mA, 2=6/-6mA @ 3.3V)

TSx = Tri-state CMOS output driver, x denotes driver type (1=2/-2mA, 2=6/-6mA @ 3.3V)

TSxU = Tri-state CMOS output driver with pull up resistor (typical value of $100 \mathrm{K}\Omega$ at 3.3V), x denotes driver type

(1=2/-2mA, 2=6/-6mA @ 3.3V)

TSxD = Tri-state CMOS output driver with pull down resistor (typical value of $100 \text{K}\Omega$ at 3.3V), x denotes driver type

(1=2/-2mA, 2=6/-6mA @ 3.3V)

4.2.1 Host Interface

Table 4-2: Host Interface Pin Descriptions

Pin Name	Туре	QFP Pin #	PFBGA Pin #	Cell	RESET# State	Description						
AB0	ı	26	K4	CS	Hi-Z	 For Generic Bus, this pin must be connected to V_{SS} or IO V_{DD}. For SH-4/SH-3 Bus, this pin must be connected to V_{SS} or IO V_{DD}. For MC68K Bus 1, this pin inputs the lower data strobe (LDS#). For MC68K Bus 2, this pin inputs system address bit 0 (A0). For MIPS/ISA Bus, this pin inputs system address bit 0 (SA0). For PC Card (PCMCIA) Bus, this pin must be connected to V_{SS} or IO V_{DD}. For Phillips PR31500/31700 Bus, this pin inputs system address bit 0 (A0). For Toshiba TX3912 Bus, this pin inputs system address bit 31 (A31). SeeTable 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality. 						
AB[12:1]	I	14-25	H3, H2, H4, H1, H5, J3, J1, J4, K2, J5, K1, L2	С	Hi-Z	 For PowerPC Bus, these pins input the system address bits 19 through 30 (A[19:30]). For all other busses, these pins input the system address bits 12 through 1 (A[12:1]). See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality. 						

Table 4-2: Host Interface Pin Descriptions (Continued)

Pin Name	Туре	QFP Pin #	PFBGA Pin#	Cell	RESET# State	Description
						• For Philips PR31500/31700 Bus, these pins are connected to V _{DD} .
		10-13	F1, G3, G2, G4			 For Toshiba TX3912 Bus, these pins are connected to V_{DD}.
AD[46,42]				С	Hi-Z	 For PowerPC Bus, these pins input the system address bits 15 through 18 (A[15:18]).
AB[16:13]	I					 For all other busses, these pins input the system address bits 16 through 13 (A[16:13]).
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.
						For Philips PR31500/31700 Bus, this pin inputs the IO write command (/CARDIOWR).
10.17			0-			For Toshiba TX3912 Bus, this pin inputs the IO write command (CARDIOWR*).
AB17	l	9	G5	С	Hi-Z	• For PowerPC Bus, this pin inputs the system address bit 14 (A14).
						• For all other busses, this pin inputs the system address bit 17 (A17).
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.
	I	8	F3	С	Hi-Z	For Philips PR31500/31700 Bus, this pin inputs the IO read command (/CARDIORD).
						For Toshiba TX3912 Bus, this pin inputs the IO read command (CARDIORD*).
AB18						• For PowerPC Bus, this pin inputs the system address bit 13 (A13).
						• For all other busses, this pin inputs the system address bit 18 (A18).
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.
		7	E1	С	Hi-Z	For Philips PR31500/31700 Bus, this pin inputs the card control register access (/CARDREG).
						 For Toshiba TX3912 Bus, this pin inputs the card control register access (CARDREG*).
AB19	I					• For PowerPC Bus, this pin inputs the system address bit 12 (A12).
						• For all other busses, this pin inputs the system address bit 19 (A19).
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.
	ı	6	E2	С	Hi-Z	 For the MIPS/ISA Bus, this pin inputs system address bit 20. Note that for the ISA Bus, the unlatched LA20 must first be latched before input to AB20.
						For Philips PR31500/31700 Bus, this pin inputs the address latch enable (ALE).
AB20						For Toshiba TX3912 Bus, this pin inputs the address latch enable (ALE).
						• For PowerPC Bus, this pin inputs the system address bit 11 (A11).
						• For all other busses, this pin inputs the system address bit 20 (A20).
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.

Table 4-2: Host Interface Pin Descriptions (Continued)

Pin Name	Туре	QFP Pin #	PFBGA	Cell	RESET#	Description
	,		Pin #		State	·
						These pins are the system data bus.
						• For SH-3/SH-4 Bus, these pins are connected to D[15:0].
						• For MC68K Bus 1, these pins are connected to D[15:0].
			M6, P5,			 For MC68K Bus 2, these pins are connected to D[31:16] for 32-bit devices (e.g. MC68030) or D[15:0] for 16-bit devices (e.g. MC68340).
			R5, T5, P6,			For Generic Bus, these pins are connected to D[15:0].
DB[15:0]	Ю	40-55	R6, M7, P7, R7, T7,	C/TS2	Hi-Z	• For MIPS/ISA Bus, these pins are connected to SD[15:0].
<i>DB</i> [10.0]		10 00	P8, R8, N8, T8,	0,102	1 2	 For Philips PR31500/31700 Bus, pins DB[15:8] are connected to D[23:16] and pins DB[7:0] are connected to D[31:24].
			M8, P9			 For Toshiba TX3912 Bus, pins DB[15:8] are connected to D[23:16] and pins DB[7:0] are connected to D[31:24].
						For PowerPC Bus, these pins are connected to D[0:15].
						For PC Card (PCMCIA) Bus, these pins are connected to D[15:0].
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.
		33	N1	CS/TS2		This is a multi-purpose pin:
	Ю					For SH-3/SH-4 Bus, this pin inputs the write enable signal for the upper data byte (WE1#).
						• For MC68K Bus 1, this pin inputs the upper data strobe (UDS#).
						 For MC68K Bus 2, this pin inputs the data strobe (DS#).
					Hi-Z	 For Generic Bus, this pin inputs the write enable signal for the upper data byte (WE1#).
WE1#						 For MIPS/ISA Bus, this pin inputs the system byte high enable signal (SBHE#).
VVE 1#						For Philips PR31500/31700 Bus, this pin inputs the odd byte access enable signal (/CARDxCSH).
						 For Toshiba TX3912 Bus, this pin inputs the odd byte access enable signal (CARDxCSH*).
						For PowerPC Bus, this pin outputs the burst inhibit signal (BI#).
						• For PC Card (PCMCIA) Bus, this pin inputs the card enable 2 signal (CE2#).
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.
		29 28	M2 K5	С		• For Philips PR31500/31700 Bus, this pin is connected to V _{DD} .
						 For Toshiba TX3912 Bus, this pin is connected to V_{DD}.
M/R#	I				Hi-Z	 For all other busses, this input pin is used to select between the display buffer and register address spaces of the S1D13806. M/R# is set high to access the display buffer and low to access the registers. See Register Mapping.
						See Table 4-10, "CPU Interface Pin Mapping," on page 35.
						• For Philips PR31500/31700 Bus, this pin is connected to V _{DD} .
				С		For Toshiba TX3912 Bus, this pin is connected to V _{DD} .
CS#	I					For all other busses, this is the Chip Select input.
						See Table 4-10, "CPU Interface Pin Mapping," on page 35. See the respective AC Timing diagram for detailed functionality.

Table 4-2: Host Interface Pin Descriptions (Continued)

Pin Name	Туре	QFP Pin #	PFBGA Pin#	Cell	RESET# State	Description
BUSCLK	I	60	T10	С	Hi-Z	This pin inputs the system bus clock. It is possible to apply a 2x clock and divide it by 2 internally - see CONF5 in Summary of Configuration Options. • For SH-3/SH-4 Bus, this pin is connected to CKIO. • For MC68K Bus 1, this pin is connected to CLK. • For MC68K Bus 2, this pin is connected to CLK. • For Generic Bus, this pin is connected to BCLK. • For MIPS/ISA Bus, this pin is connected to CLK. • For Philips PR31500/31700 Bus, this pin is connected to DCLKOUT. • For Toshiba TX3912 Bus, this pin is connected to DCLKOUT. • For PowerPC Bus, this pin is connected to CLKOUT. • For PC Card (PCMCIA) Bus, this pin is connected to an external input clock source. See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.
BS#	I	30	M1	cs	Hi-Z	This is a multi-purpose pin: For SH-3/SH-4 Bus, this pin inputs the bus start signal (BS#). For MC68K Bus 1, this pin inputs the address strobe (AS#). For MC68K Bus 2, this pin inputs the address strobe (AS#). For Generic Bus, this pin is connected to V _{DD} . For MIPS/ISA Bus, this pin is connected to V _{DD} . For Philips PR31500/31700 Bus, this pin is connected to V _{DD} . For Toshiba TX3912 Bus, this pin is connected to V _{DD} . For PowerPC Bus, this pin inputs the Transfer Start signal (TS#). For PC Card (PCMCIA) Bus, this pin is connected to V _{DD} . See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.
RD/WR#	ı	34	P2	CS	Hi-Z	 This is a multi-purpose pin: For SH-3/SH-4 Bus, this pin inputs the read write signal (RD/WR#). The S1D13806 needs this signal for early decode of the bus cycle. For MC68K Bus 1, this pin inputs the read write signal (R/W#). For MC68K Bus 2, this pin inputs the read write signal (R/W#). For Generic Bus, this pin inputs the read command for the upper data byte (RD1#). For MIPS/ISA Bus, this pin is connected to V_{DD}. For Philips PR31500/31700 Bus, this pin inputs the even byte access enable signal (/CARDxCSL). For Toshiba TX3912 Bus, this pin inputs the even byte access enable signal (CARDxCSL*). For PowerPC Bus, this pin inputs the read write signal (RD/WR#). For PC Card (PCMCIA) Bus, this pin inputs the card enable 1 signal (CE1#). See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.

Table 4-2: Host Interface Pin Descriptions (Continued)

Pin Name	Туре	QFP Pin #	PFBGA Pin #	Cell	RESET# State	Description
						This is a multi-purpose pin:
						• For SH-3/SH-4 Bus, this pin inputs the read signal (RD#).
						 For MC68K Bus 1, this pin is connected to V_{DD}.
						• For MC68K Bus 2, this pin inputs the bus size bit 1 (SIZ1).
						 For Generic Bus, this pin inputs the read command for the lower data byte (RD0#).
						For MIPS/ISA Bus, this pin inputs the memory read signal (MEMR#).
RD#	I	31	L4	CS	Hi-Z	 For Philips PR31500/31700 Bus, this pin inputs the memory read command (/RD).
						• For Toshiba TX3912 Bus, this pin inputs the memory read command (RD*).
						• For PowerPC Bus, this pin inputs the transfer size 0 signal (TSIZ0).
						For PC Card (PCMCIA) Bus, this pin inputs the output enable signal (OE#).
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary.
						See the respective AC Timing diagram for detailed functionality.
	ľ	32	M3	S		This is a multi-purpose pin:
						 For SH-3/SH-4 Bus, this pin inputs the write enable signal for the lower data byte (WE0#).
						For MC68K Bus 1, this pin must be connected to V _{DD}
						• For MC68K Bus 2, this pin inputs the bus size bit 0 (SIZ0).
					Hi-Z	 For Generic Bus, this pin inputs the write enable signal for the lower data byte (WE0#).
WE0#						For MIPS/ISA Bus, this pin inputs the memory write signal (MEMW#).
VVEO#						For Philips PR31500/31700 Bus, this pin inputs the memory write command (/WE).
						• For Toshiba TX391 Bus, this pin inputs the memory write command (WE*).
						• For PowerPC Bus, this pin inputs the Transfer Size 1 signal (TSIZ1).
						For PC Card (PCMCIA) Bus, this pin inputs the write enable signal (WE#).
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.
RESET#	Ţ	35	P1	CS	0	Active low input that clears all internal registers and forces all outputs to their inactive states. Note that active high RESET signals must be inverted before input to this pin.
						For Toshiba TX3912 Bus, this pin is called NOP*.

Table 4-2: Host Interface Pin Descriptions (Continued)

Pin Name	Туре	QFP Pin #	PFBGA Pin#	Cell	RESET# State	Description
			P4	C/TS2		The active polarity of the WAIT# output is configurable; the state of CONF[3:0] on the rising edge of RESET# defines the active polarity of WAIT# for some busses - see "Summary of Configuration Options".
						 For SH-3 Bus, this pin outputs the wait request signal (WAIT#).
						 For SH-4 Bus, this pin outputs the ready signal (RDY#).
	Ю	39				 For MC68K Bus 1, this pin outputs the data transfer acknowledge signal (DTACK#).
						 For MC68K Bus 2, this pin outputs the data transfer and size acknowledge bit 1 (DSACK1#).
						For Generic Bus, this pin outputs the wait signal (WAIT#).
WAIT#						 For MIPS/ISA Bus, this pin outputs the IO channel ready signal (IOCHRDY).
						 For Philips PR31500/31700 Bus, this pin outputs the wait state signal (/CARDxWAIT).
						 For Toshiba TX3912 Bus, this pin outputs the wait state signal (CARDxWAIT*).
						 For PowerPC Bus, this pin outputs the transfer acknowledge signal (TA#).
						 For PC Card (PCMCIA) Bus, this pin outputs the wait signal (WAIT#).
						See Table 4-10, "CPU Interface Pin Mapping," on page 35 for summary. See the respective AC Timing diagram for detailed functionality.

Note

When WAIT# is always driven, WAIT# is in its inactive state at RESET#. CONF[3:0] determines whether WAIT# is active high or low.

4.2.2 LCD Interface

Table 4-3: LCD Interface Pin Descriptions

Pin Name	Туре	QFP Pin #	PFBGA Pin #	Cell	RESET# State	Description
FPDAT[23:0]	0	107-100, 91-90, 98- 93, 87-80	C16, D14, F12, E14, D15, E16, E15, G12, G13, F15, G16, H12, G15, H13, H14, J12, J15, J14, K13, K15, K14, K12, L15, L14	CO2	0	Panel data bus. Not all pins are used for some panels - see Table 4-10, "CPU Interface Pin Mapping," on page 35 for details. Unused pins are driven low.
FPFRAME	0	74	P16	CO2	0	Frame pulse
FPLINE	0	75	N14	CO2	0	Line pulse
FPSHIFT	0	78	M15	CO2	0	Shift clock
DRDY	0	77	M14	CO2	0	This is a multi-purpose pin: • For TFT/D-TFD panels this is the display enable output (DRDY). • For passive LCD with Format 1 interface this is the 2nd Shift Clock (FPSHIFT2). • For all other LCD panels this is the LCD backplane bias signal (MOD). See Table 4-11, "LCD Interface Pin Mapping," on page 36 and REG[030h] for details.

4.2.3 MediaPlug Interface

Table 4-4: MediaPlug Pin Description

Pin Name	Туре	QFP Pin #	PFBGA Pin #	Cell	RESET# State	Description
VMP[7]	0	131	E8	CO2	0	MediaPlug VMPLCTL pin.
						MediaPlug VMPRCTL pin.
VMP[6]	I	130	В7	CD	Hi-Z	Internal pull-down resistors (typical value of $50 \mathrm{K}\Omega$ at $3.3 \mathrm{V}$ respectively) pull the reset states to 0. External pull-up resistors can be used to pull the reset states to 1.
			D0 A0 C0			MediaPlug VMPD[0:3] pins. See Section 17.3, "MediaPlug Interface Pin Mapping" on page 185.
VMP[5:2]	Ю	129-126	D8, A8, C8, E9	C/TS2U		Internal pull-up resistors (typical value of $100 \mathrm{K}\Omega$ at $3.3 \mathrm{V}$ respectively) pull the reset states to 1. External pull-down resistors can be used to pull the reset states to 0.
VMP[1]	0	125	A9	CO2	0	MediaPlug VMPCLK pin.
VMP[0]	0	124	D9	CO2	0	MediaPlug VMPCLKN pin.

Note

The RESET# states of VMP[5:2] are 0 if VMP is enabled, otherwise Hi-Z.

Note

When the MediaPlug interface is enabled, GPIO12 is configured as the MediaPlug output pin VMPEPWR.

4.2.4 CRT Interface

Table 4-5: CRT Interface Pin Descriptions

Pin Name	Туре	QFP Pin #	PFBGA Pin#	Cell	RESET# State	Description
HRTC	0	119	C10	CO2	0	Horizontal retrace signal for CRT
VRTC	0	120	B10	CO2	0	Vertical retrace signal for CRT
RED	0	112	E11	Α	_	Analog output for CRT color Red / S-Video Luminance
GREEN	0	115	B12	Α	_	Analog output for CRT color Green / Composite Video Out
BLUE	0	117	C11	Α	_	Analog output for CRT color Blue / S-Video Chrominance
IREF	I	113	A13	Α	_	Current reference for DAC. If the DAC is not needed, this pin must be left unconnected and floating.

4.2.5 General Purpose IO

Table 4-6: General Purpose IO Pin Descriptions

Pin Name	Туре	QFP Pin #	PFBGA Pin #	Cell	RESET# State	Description
GPIO12	Ю	134	D7	C/TS2		Bi-directional GPIO pin. When the MediaPlug interface is enabled, GPIO12 is configured as the MediaPlug output pin VMPEPWR.
GPIO[11:0]	Ю	135-137, 57, 61, 63, 65, 67-71	A6, E7, B5, N9, R11, T11, R12, R13, P12, M11, P13, T14	C/TS2	Hi-Z	Bi-directional GPIO pin.

Note

The RESET# state of GPIO12 is 1 if MediaPlug is enabled, otherwise Hi-Z.

4.2.6 Configuration

Table 4-7: Configuration Pin Descriptions

Pin Name	Туре	QFP Pin #	PFBGA Pin#	Cell	RESET# State	Description
CONF[7:0]	I	138-142, 2-4	A5, B4, C5, E6, C4, C1, D3, F5	С	Hi-Z	Input Configuration pin. State of pins are latched at RESET# to configure S1D13806 Table 4.3, "Summary of Configuration Options," on page 34 for details.

4.2.7 Miscellaneous

Table 4-8: Miscellaneous Interface Pin Descriptions

Pin Name	Туре	QFP Pin #	PFBGA Pin#	Cell	RESET# State	Description
CLKI	I	66	T12	С	Hi-Z	Input clock for the internal pixel clock (PCLK), memory clock (MCLK), and MediaPlug clock.
CLKI2	I	64	M10	С	Hi-Z	Input clock for the internal pixel clock (PCLK) and MediaPlug clock.
CLKI3	I	62	N10	С	Hi-Z	Input clock for memory clock (MCLK) (Possible to use for PCLK and MediaPlug clock.)
TESTEN	I	5	E3	CD	Hi-Z	Test Enable. This pin should be connected to $V_{\mbox{\footnotesize SS}}$ for normal operation.
DTESEN	I	56	Т9	С	Hi-Z	Test Enable for embedded SDRAM. This pin should be connected to V_{SS} for normal operation.
TEST	_	133	B6	_	_	Test Pin. This pin must be left unconnected and floating.
IOVDD	Р	1, 37, 73, 92, 109, 123	E4, N5, M13, H16, D12, B9	Р	_	V_{DD} for IO (IO V_{DD})
COREVDD	Р	27, 89, 122	L1, J16, C9	Р	_	V _{DD} for core (Core V _{DD})
AVDD	Р	110, 114, 116	A14, C12, D11	Р	_	$\rm V_{DD}$ for DAC (DAC $\rm V_{DD}).$ When the DAC is not used this pin must be connected to DVDD.
DVDD	Р	38, 132	A7, T3	Р	_	V _{DD} for embedded SDRAM (SDRAM V _{DD})
VSS	Р	36, 59, 72, 79, 88, 99, 108, 121, 144	M4, M9, N12, M16, J13, F16, E13, A10, D5	Р	_	V _{SS}
AVSS	Р	111, 118	B13, B11	Р	_	V _{SS} for DAC (DAC V _{SS})
DVSS	Р	58, 143	A3, R10	Р	_	V _{SS} for embedded SDRAM (SDRAM V _{SS})
Reserved	_	76	L12		_	This pin must be left unconnected and floating.

4.3 Summary of Configuration Options

Table 4-9: Summary of Power-On/Reset Options

Din Nama			st	ate of t	his pin a	t rising edge of RESET# is used to configure:	1/0)
Pin Name				1		0	
	Select h	ost bus	interfac	ce as fo	llows:		
	CONF6	CONF3	CONF2	CONF1	CONF0	Host Bus	
	0	0	0	0	0	Generic; Little Endian; Active Low WAIT# with tristate note	
	1	0	0	0	0	Generic; Little Endian; Active Low WAIT# always driven	
	0	0	0	0	1	Generic; Little Endian; Active High WAIT# with tristate note	
	1	0	0	0	1	Reserved	
	0	0	0	1	0	Generic; Big Endian; Active Low WAIT# with tristate note	
	1	0	0	1	0	Generic; Big Endian; Active Low WAIT# always driven	
	0	0	0	1	1	Generic; Big Endian; Active High WAIT# with tristate note	
	1	0	0	1	1	Reserved	
	0	0	1	0	0	MIPS/ISA; Little Endian; Active Low WAIT# with tristate note	
	1	0	1	0	0	MIPS/ISA; Little Endian; Active Low WAIT# always driven	
	0	0	1	0	1	MIPS/ISA; Little Endian; Active High WAIT# with tristate note	
	1	0	1	0	1	Reserved	
	0	0	1	1	0	MC68000; Big Endian; Active High WAIT# with tristate note	
	1	0	1	1	0	Reserved	
CONF6,	0	0	1	1	1	MC68030; Big Endian; Active High WAIT# with tristate note	
CONF[3:0]	1	0	1	1	1	Reserved	
	0	1	0	0	0	PR31500/31700/TX3912; Little Endian; Active Low WAIT# with tr	istate ^{note}
	1	1	0	0	0	PR31500/31700/TX3912; Little Endian; Active Low WAIT# always	
	0	1	0	0	1	PC Card; Little Endian; Active Low WAIT# with tristate note	
	1	1	0	0	1	PC Card; Little Endian; Active Low WAIT# always driven	
	0	1	0	1	0	Reserved	
	1	1	0	1	0	Reserved	
	0	1	0	1	1	MPC821; Big Endian; Active High WAIT# with tristate note	
	1	1	0	1	1	Reserved	
	0	1	1	0	0	SH3; Little Endian; Active Low WAIT# with tristate note	
	1	1	1	0	0	SH3; Little Endian; Active Low WAIT# always driven	
	0	1	1	0	1	SH4; Little Endian; Active High WAIT# with tristate ^{note}	
	1	1	1	0	1	Reserved	
	0	1	1	1	0	SH3; Big Endian; Active Low WAIT# with tristate note	
	1	1	1	1	0	SH3; Big Endian; Active Low WAIT# always driven	
	0	1	1	1	1	SH4; Big Endian; Active High WAIT# with tristate note	
	1	1	1	1	1	Reserved	
CONF4	Reserve	d. Must	t be tied	l to grou	ınd.		
CONF5	BUSCLI	K input	divided	by 2		BUSCLK input not divided	
CONF7					Plug outpu aPlug fun	ut pin Configure GPIO12 for normal use and disables Media ctionality.	aPlug

Note

WAIT# is tristated (high impedance) when the chip is not accessed by the host

4.4 Multiple Function Pin Mapping

Table 4-10: CPU Interface Pin Mapping

S1D13806 Pin Names	Generic	Hitachi SH-4/ SH-3	MIPS/ISA	Motorola MC68K Bus 1	Motorola MC68K Bus 2	Motorola PowerPC	PC Card	Philips PR31500 /PR31700	Toshiba TX3912	
AB20	A20	A20	LatchA20	A20	A20	A11	A20	ALE	ALE	
AB19	A19	A19	SA19	A19	A19	A12	A19	/CARDREG	CARDREG*	
AB18	A18	A18	SA18	A18	A18	A13	A18	/CARDIORD	CARDIORD*	
AB17	A17	A17	SA17	A17	A17	A14	A17	/CARDIOWR	CARDIOWR*	
AB[16:13]	A[16:13]	A[16:13]	SA[16:13]	A[16:13]	A[16:13]	A[15:18]	A[16:13]	Connecte	ed to V _{DD}	
AB[12:1]	A[12:1]	A[12:1]	SA[12:1]	A[12:1]	A[12:1]	A[19:30]	A[12:1]	A[12:1]	A[12:1]	
AB0	Connected to V _{DD} ¹	Connected to V _{DD} ¹	SA0	LDS#	A0	A31	Connected to V _{DD} ¹	A0	A0	
DB[15:8]	D[15:0]	D[15:8]	SD[15:0]	D[15:8]	D[31:24]	D[0:7]	D[15:0]	D[23:16]	D[23:16]	
DB[7:0]	D[7:0]	D[7:0]	SD[7:0]	D[7:0]	D[23:16]	D[8:15]	D[7:0]	D[31:24]	D[31:24]	
WE1#	WE1#	WE1#	SBHE#	UDS#	DS#	BI#	CE2#	/CARDxCSH	CARDxCSH*	
M/R#			Ex	kternal Deco	ode			Connecte	ed to V _{DD}	
CS#			E	kternal Deco	ode			Connected to V _{DD}		
BUSCLK	BCLK	CKIO	CLK	CLK	CLK	CLKOUT	External Oscillator ²	DCLKOUT	DCLKOUT	
BS#	Connected to V _{DD}	BS#	Connected to V _{DD}	AS#	AS#	TS#	Connected to V _{DD}	Connecte	ed to V _{DD}	
RD/WR#	RD1#	RD/WR#	Connected to V _{DD}	R/W#	R/W#	RD/WR#	CE1#	/CARDxCSL	CARDxCSL*	
RD#	RD0#	RD#	MEMR#	Connected to V _{DD}	SIZ1	TSIZ0	OE#	/RD	RD*	
WE0#	WE0#	WE0#	MEMW#	Connected to V _{DD}	SIZ0	TSIZ1	WE#	/WE	WE*	
WAIT#	WAIT#	WAIT#	IOCHRDY	DTACK#	DSACK1#	TA#	WAIT#	/CARDxWAIT	CARDxWAIT*	
RESET#	RESET#	RESET#	inverted RESET	RESET#	RESET#	RESET#	inverted RESET	RESET#	PON*	

Note

All GPIO pins default to input on reset and unless programmed otherwise, must be connected to either V_{SS} or IO V_{DD} if not used.

Note

 1 AB0 is not used internally for these busses and must be connected to either V_{SS} or IO $V_{DD}.\,$

² For further information on interfacing the S1D13806 to the PC Card bus, see *Interfacing to the PC Card Bus*, document number X28B-G-005-xx.

4.5 LCD Interface Pin Mapping

Table 4-11: LCD Interface Pin Mapping

S1D13806	Monod	hrome F Panel	assive			Color Pas	sive Panel				Color	A ativa (T	ET) Bonol	
Pin Names	Sir	ngle	Dual	Single	Single Format 1	Single Format 2	Single	D	ual		Color	Active (1	「FT) Panel	
	4-bit	8-bit	8-bit	4-bit	8-bit	8-bit	16-Bit	8-bit	16-bit	9-bit	12-bit	18-bit	2x9-bit	2x12-bit
FPFRAME							FPFR	AME						
FPLINE							FPL							
FPSHIFT	FPSHIFT													
DRDY	MOD FPSHIFT2 MOD DRDY				, 									
FPDAT0	driven 0	D0	LD0	driven 0	D0 (B5) ¹	D0 (G3) ¹	D0 (R6) ¹	LD0 (241-R2) ¹	LD0 (241-G3) ¹	R2	R3	R5	R02	R03
FPDAT1	driven 0	D1	LD1	driven 0	D1 (R5) ¹	D1 (R3) ¹	D1 (G5) ¹	LD1 (241-B1) ¹	LD1 (241-R3) ¹	R1	R2	R4	R01	R02
FPDAT2	driven 0	D2	LD2	driven 0	D2 (G4) ¹	D2 (B2) ¹	D2 (B4) ¹	LD2 (241-G1) ¹	LD2 (241-B2) ¹	R0	R1	R3	R00	R01
FPDAT3	driven 0	D3	LD3	driven 0	D3 (B3) ¹	D3 (G2) ¹	D3 (R4) ¹	LD3 (241-R1) ¹	LD3 (241-G2) ¹	G2	G3	G5	G02	G03
FPDAT4	D0	D4	UD0	D0 (R2) ¹	D4 (R3) ¹	D4 (R2) ¹	D8 (B5) ¹	UD0 (1-R2) ¹	UD0 (1-G3) ¹	G1	G2	G4	G01	G02
FPDAT5	D1	D5	UD1	D1 (B1) ¹	D5 (G2) ¹	D5 (B1) ¹	D9 (R5) ¹	UD1 (1-B1) ¹	UD1 (1-R3) ¹	G0	G1	G3	G00	G01
FPDAT6	D2	D6	UD2	D2 (G1) ¹	D6 (B1) ¹	D6 (G1) ¹	D10 (G4) ¹	UD2 (1-G1) ¹	UD2 (1-B2) ¹	B2	В3	B5	B02	B03
FPDAT7	D3	D7	UD3	D3 (R1) ¹	D7 (R1) ¹	D7 (R1) ¹	D11 (B3) ¹	UD3 (1-R1) ¹	UD3 (1-G2) ¹	B1	B2	B4	B01	B02
FPDAT8	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D4 (G3) ¹	driven 0	LD4 (241-R2) ¹	В0	B1	В3	B00	B01
FPDAT9	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D5 (B2) ¹	driven 0	LD5 (241-B1) ¹	driven 0	R0	R2	driven 0	R00
FPDAT10	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D6 (R2) ¹	driven 0	LD6 (241-G1) ¹	driven 0	driven 0	R1	R12	R13
FPDAT11	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D7 (G1) ¹	driven 0	LD7 (241-R1) ¹	driven 0	G0	G2	driven 0	G00
FPDAT12	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D12 (R3) ¹	driven 0	UD4 (1-R2) ¹	driven 0	driven 0	G1	G12	G13
FPDAT13	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D13 (G2) ¹	driven 0	UD5 (1-B1) ¹	driven 0	driven 0	G0	G11	G12
FPDAT14	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D14 (B1) ¹	driven 0	UD6 (1-G1) ¹	driven 0	В0	B2	driven 0	B00
FPDAT15	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D15 (R1) ¹	driven 0	UD7 (1-R1) ¹	driven 0	driven 0	B1	B12	B13
FPDAT16	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	B0	B11	B12
FPDAT17	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	R0	R11	R12
FPDAT18	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	R10	R11
FPDAT19	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	R10
FPDAT20	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	G10	G11
FPDAT21	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	G10
FPDAT22	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	B10	B11
FPDAT23	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	B10

Note

¹These pin mappings use signal names commonly used for each panel type, however signal names may differ between panel manufacturers. The values shown in brackets represent the color components as mapped to the corresponding FPDATxx signals at the first valid edge of FPSHIFT. For further FPDATxx to LCD interface mapping, see Section 6.5, "Display Interface" on page 64.

4.6 CRT/TV Interface

The following figure shows external circuitry for the CRT/TV interface.

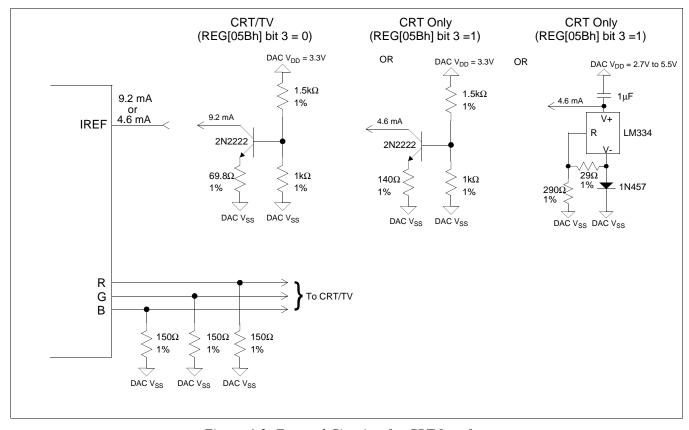


Figure 4-3: External Circuitry for CRT Interface

Note

Example implementation only, individual characteristics of components may affect actual IREF current.

5 D.C. Characteristics

Table 5-1: Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
IO V _{DD}	Supply Voltage	V _{SS} - 0.3 to 4.0	V
Core V _{DD}	Supply Voltage	V _{SS} - 0.3 to 4.0	V
DAC V _{DD}	Supply Voltage	V _{SS} - 0.3 to 4.0	V
SDRAM V _{DD}	Supply Voltage	V _{SS} - 0.3 to 4.0	V
V _{IN}	Input Voltage	V _{SS} - 0.3 to V _{DD} + 0.5	V
V _{OUT}	Output Voltage	V _{SS} - 0.3 to V _{DD} + 0.5	V
T _{STG}	Storage Temperature	-65 to 150	° C
T _{SOL}	Solder Temperature/Time	260 for 10 sec. max at lead	° C

Table 5-2: Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
IO V _{DD}	Supply Voltage	$V_{SS} = 0 V$	3.0	3.3	3.6	V
Core V _{DD}	Supply Voltage	$V_{SS} = 0 V$	3.0	3.3	3.6	V
DAC V _{DD}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
SDRAM V _{DD}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
V _{IN}	Input Voltage		V_{SS}		V_{DD}	V
T _{OPR}	Operating Temperature		-40	25	85	° C

Table 5-3: Electrical Characteristics for VDD = 3.3V typical

Symbol	Parameter	Cond	ition	Min	Тур	Max	Units
I _{DDS}	Quiescent Current	Quiescent Cor	ditions			170	uA
I _{IZ}	Input Leakage Current	_	_	-1		1	μΑ
l _{OZ}	Output Leakage Current	_	_	-1		1	μΑ
V _{OH}	High Level Output Voltage						V
V _{OL}	Low Level Output Voltage		VDD = min			0.3	V
V _{IH}	High Level Input Voltage	LVTTL level, V	_{DD} = max	2.0			V
V_{IL}	Low Level Input Voltage	LVTTL level, V	_{DD} = min			0.8	V
V_{T+}	High Level Input Voltage	LVTTL Schmit	t	1.1		2.4	V
V _{T-}	Low Level Input Voltage	LVTTL Schmit	t	0.6		1.8	V
V _{H1}	Hysteresis Voltage	LVTTL Schmit	t	0.1			V
D	Pull-Down Resistance	V - V	Type 1	20	50	120	kΩ
R _{PD}	Full-Down Resistance	$V_I = V_{DD}$	Type 2	40	100	240	kΩ
D	Dull Un Projetones	V = 0V	Type 1	20	50	120	kΩ
R _{PU}	Pull-Up Resistance	$V_I = 0V$	Type 2	40	100	240	kΩ
C _I	Input Pin Capacitance		•			10	pF
Co	Output Pin Capacitance					10	pF
C _{IO}	Bi-Directional Pin Capacitance					10	pF

6 A.C. Characteristics

Conditions: $V_{DD} = 3.3V \pm 10\%$ (IO and Core)

 $T_A = -40^{\circ} \text{ C to } 85^{\circ} \text{ C}$

 T_{rise} and T_{fall} for all inputs must be ≤ 5 ns (10% $\sim 90\%)$

 $C_L = 50 pF$ (CPU Interface), unless noted

 $C_L = 100pF$ (LCD Panel Interface)

C_L = 10pF (Display Memory Interface)

 $C_L = 10pF$ (CRT Interface)

6.1 Clock Timing

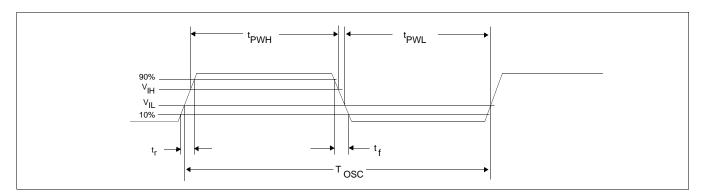


Figure 6-1: Clock Input Requirement

Table 6-1: Clock Input Requirements for BUSCLK, CLKI, CLKI2, and CLKI3 When Not Divided

Symbol	Parameter	Min	Max	Units
fosc	Input Clock Frequency		Note	MHz
T _{osc}	Input Clock Period	1/f _{osc}		ns
t _{PWH}	Input Clock Pulse Width High	6		ns
t _{PWL}	Input Clock Pulse Width Low	6		ns
t _f	Input Clock Fall Time (10% - 90%)		5	ns
t	Input Clock Rise Time (10% - 90%)		5	ns

Note

For maximum internal clock frequency values see Table 6-4:, "Internal Clock Requirements," on page 41.

 $Table \ 6-2: \ Clock \ Input \ Requirements \ for \ MCLK \ Source \ when \ Source \ Divided$

Symbol	Parameter	Min	Max	Units
f _{osc}	Input Clock Frequency		80	MHz
T _{osc}	Input Clock Period	1/f _{OSC}		ns
t _{PWH}	Input Clock Pulse Width High	5.6		ns
t _{PWL}	Input Clock Pulse Width Low	5.6		ns
t _f	Input Clock Fall Time (10% - 90%)		5	ns
t _r	Input Clock Rise Time (10% - 90%)		5	ns

For MCLK source selection see Section 7.3, "Clock Selection" on page 93.

Note

For maximum internal clock frequency values see Table 6-4:, "Internal Clock Requirements," on page 41.

Table 6-3: Clock Input Requirements for LCD PCLK, CRT/TV PCLK, or MediaPlug Source when Source Divided

Symbol	Parameter	Min	Max	Units
fosc	Input Clock Frequency		100	MHz
T _{osc}	Input Clock Period	1/f _{OSC}		ns
t _{PWH}	Input Clock Pulse Width High	4.5		ns
t _{PWL}	Input Clock Pulse Width Low	4.5		ns
t _f	Input Clock Fall Time (10% - 90%)		5	ns
t	Input Clock Rise Time (10% - 90%)		5	ns

Note

For PCLK source selection see Section 7.3, "Clock Selection" on page 93.

Note

For maximum internal clock frequency values see Table 6-4:, "Internal Clock Requirements," on page 41.

6.2 Internal Clocks

This section provides the minimum and maximum required frequencies of the internal clocks used by the S1D13806. For detailed information on the internal clocks, refer to Section 7, "Clocks" on page 91.

Table 6-4: Internal Clock Requirements

Symbol	Parameter	Min	Max	Units
f _{MCLK}	Memory Clock Frequency	5	50	MHz
f _{LCD PCLK}	LCD Pixel Clock Frequency		Note 1	MHz
f _{CRT/TV PCLK}	CRT/TV Pixel Clock Frequency		Note 2	MHz
f _{MediaPlug} Clock	MediaPlug Clock Frequency		20	MHz
f _{BCLK}	Internal Bus Clock Frequency		Note 3	MHz

Note

- 1. The maximum LCD pixel clock for TFT panels is 65MHz. The maximum LCD pixel clock for passive panels is 40MHz.
- 2. The maximum CRT pixel clock is 65MHz.

 The TV pixel clock for NTSC output is fixed at 14.318MHz.

 The TV pixel clock for PAL output is fixed at 17.734MHz.
- 3. For maximum BCLK frequencies refer to the specific CPU Interface Timing in Section 6.3, "CPU Interface Timing" on page 42.

6.3 CPU Interface Timing

6.3.1 Generic Interface Timing

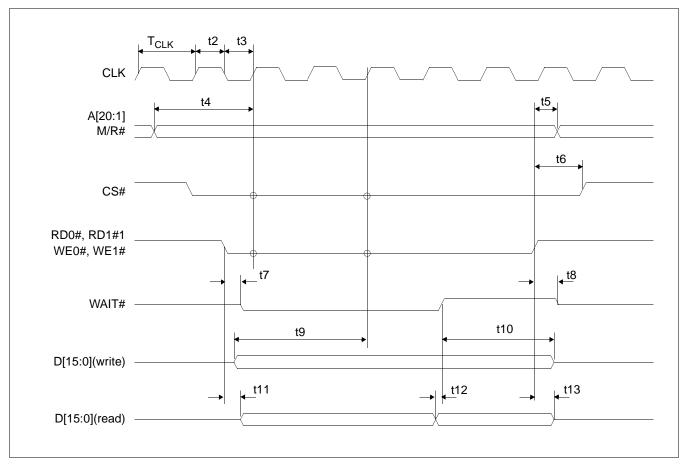


Figure 6-2: Generic Interface Timing

Note

BUSCLK cannot be divided by 2 for this interface. CONF5 must be set to 0 (BUSCLK not divided).

Note

WAIT# is always driven when CONF6 =1.

Table 6-5: Generic Interface Timing

Symbol	Parameter	Min	Max	Units
f _{CLK}	Clock Frequency		50	MHz
T _{CLK}	Clock period	1/f _{CLK}		ns
t2	Clock pulse width high	6		ns
t3	Clock pulse width low	6		ns
t4	A[20:1], M/R# setup to first CLK where CS# = 0 and either RD0#, RD1# = 0 or WE0#, WE1# = 0	4		ns
t5	A[20:1], M/R# hold from rising edge of either RD0#, RD1# or WE0#, WE1#	0		ns
t6	CS# hold from rising edge of either RD0#, RD1# or WE0#, WE1#	0		ns
t7	Falling edge of either RD0#, RD1# or WE0#, WE1# to WAIT# driven low	5	15	ns
t8	Rising edge of either RD0#, RD1# or WE0#, WE1# to WAIT# tri- state	4	13	ns
t9	D[15:0] setup to third CLK where CS# = 0 and WE0#, WE1# = 0 (write cycle)	0		ns
t10	D[15:0] hold (write cycle)	0		ns
t11	Falling edge RD0#, RD1# to D[15:0] driven (read cycle)	3		ns
t12	D[15:0] setup to rising edge WAIT# (read cycle)	0		ns
t13	Rising edge of RD0#, RD1# to D[15:0] tri-state (read cycle)	3	10	ns

6.3.2 Hitachi SH-4 Interface Timing

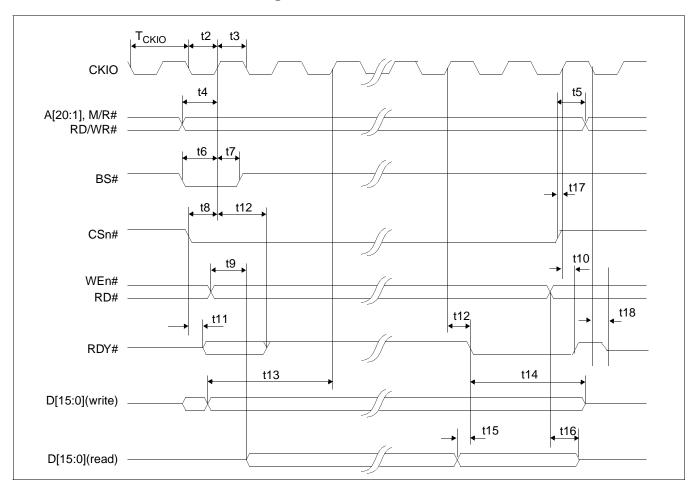


Figure 6-3: Hitachi SH-4 Interface Timing

Note

BUSCLK cannot be divided by 2 for this interface. CONF5 must be set to 0 (BUSCLK not divided).

Note

The SH-4 Wait State Control Register for the area in which the S1D13806 resides must be set to a non-zero value. The SH-4 read-to-write cycle transition must be set to a non-zero value (with reference to BUSCLK).

Note

RDY# is always driven when CONF6 =1.

Table 6-6: Hitachi SH-4 Interface Timing

Symbol	Parameter	Min ¹	Max ¹	Units
f _{CKIO}	Clock Frequency		66	MHz
T _{CKIO}	Clock period	1/f _{CKIO}		ns
t2	Clock pulse width high	6		ns
t3	Clock pulse width low	6		ns
t4	A[20:1], M/R#, RD/WR# setup to CKIO	4		ns
t5	A[20:1], M/R#, RD/WR# hold from CS#	0		ns
t6	BS# setup	4		ns
t7	BS# hold	3		ns
t8	CSn# setup	3		ns
t9	Falling edge RD# to DB[15:0] driven	3		ns
t10	CKIO to RDY# high	4	22	ns
t11	Falling edge CSn# to RDY# driven	3	12	ns
t12	CKIO to RDY# delay	4	13	ns
t13	DB[15:0] setup to 2 nd CKIO after BS# (write cycle)	0		ns
t14	DB[15:0] hold (write cycle)	0		ns
t15	DB[15:0] valid to RDY# falling edge (read cycle)	0		ns
t16	Rising edge RD# to DB[15:0] tri-state (read cycle)	6	29	ns
t17	CSn# high setup to CKIO	3		ns
t18	Falling edge CKIO to RDY# tri-state	3	15	ns

1. Two software WAIT states are required.

6.3.3 Hitachi SH-3 Interface Timing

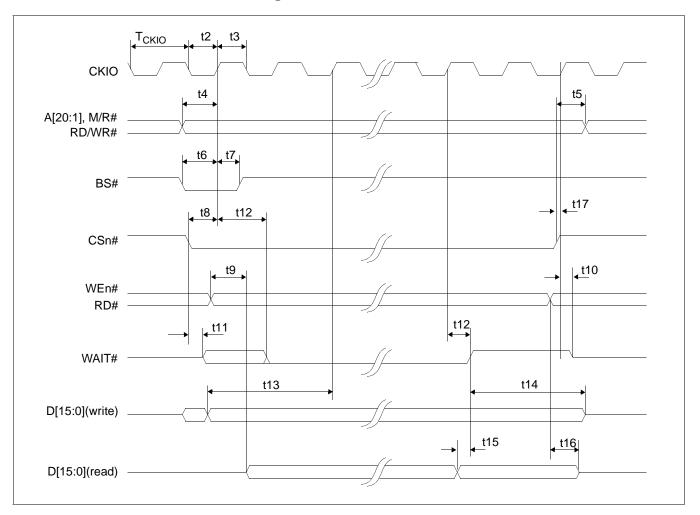


Figure 6-4: Hitachi SH-3 Interface Timing

Note

BUSCLK cannot be divided by 2 for this interface. CONF5 must be set to 0 (BUSCLK not divided).

Note

The SH-3 Wait State Control Register for the area in which the S1D13806 resides must be set to a non-zero value.

Note

WAIT# is always driven when CONF6 =1.

Table 6-7: Hitachi SH-3 Interface Timing

Symbol	Parameter	Min ¹	Max ¹	Units
f _{CKIO}	Clock Frequency		66	MHz
T _{CKIO}	Clock period	1/f _{CKIO}		ns
t2	Clock pulse width high	6		ns
t3	Clock pulse width low	6		ns
t4	A[20:1], M/R#, RD/WR# setup to CKIO	4		ns
t5	A[20:1], M/R#, RD/WR# hold from CS#	0		ns
t6	BS# setup	4		ns
t7	BS# hold	3		ns
t8	CSn# setup	3		ns
t9	Falling edge RD# to DB[15:0] driven	3		ns
t10	Rising edge CSn# to WAIT# tri-state	4	17	ns
t11	Falling edge CSn# to WAIT# driven	3	16	ns
t12	CKIO to WAIT# delay	4	21	ns
t13	DB[15:0] setup to 2 nd CKIO after BS# (write cycle)	0		ns
t14	DB[15:0] hold (write cycle)	0		ns
t15	DB[15:0] valid to WAIT# rising edge (read cycle)	0		ns
t16	Rising edge RD# to DB[15:0] tri-state (read cycle)	6	29	ns
t17	CSn# high setup to CKIO	3		ns

1. Two software WAIT states are required when $f_{\mbox{\scriptsize CKIO}}$ is greater than 33MHz.

6.3.4 MIPS/ISA Interface Timing (e.g. NEC VR41xx)

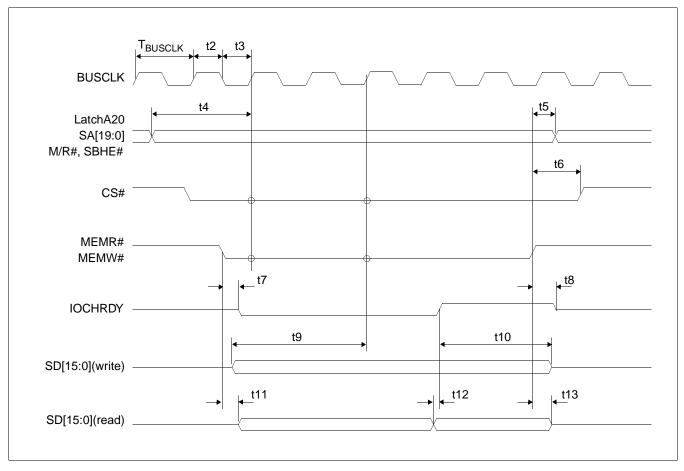


Figure 6-5: MIPS/ISA Interface Timing

Note

BUSCLK cannot be divided by 2 for this interface. CONF5 must be set to 0 (BUSCLK not divided).

Note

IOCHRDY is always driven when CONF6 =1.

Table 6-8: MIPS/ISA Interface Timing

Symbol	Parameter	Min	Max	Units
f _{BUSCLK}	Clock Frequency		50	MHz
T _{BUSCLK}	Clock period	1/f _{BUSCLK}		ns
t2	Clock pulse width high	6		ns
t3	Clock pulse width low	6		ns
t4	LatchA20, SA[19:0], M/R#, SBHE# setup to first BUSCLK where CS# = 0 and either MEMR# = 0 or MEMW# = 0	4		ns
t5	LatchA20, SA[19:0], M/R#, SBHE# hold from rising edge of either MEMR# or MEMW#	0		ns
t6	CS# hold from rising edge of either MEMR# or MEMW#	0		ns
t7	Falling edge of either MEMR# or MEMW# to IOCHRDY# driven low	3	15	ns
t8	Rising edge of either MEMR# or MEMW# to IOCHRDY# tri-state	2	11	ns
t9	SD[15:0] setup to third BUSCLK where CS# = 0 MEMW# = 0 (write cycle)	0		ns
t10	SD[15:0] hold (write cycle)	0		ns
t11	Falling edge MEMR# toSD[15:0] driven (read cycle)	4		ns
t12	SD[15:0] setup to rising edge IOCHRDY# (read cycle)	0		ns
t13	Rising edge of MEMR# toSD[15:0] tri-state (read cycle)	6	29	ns

6.3.5 Motorola MC68K Bus 1 Interface Timing (e.g. MC68000)

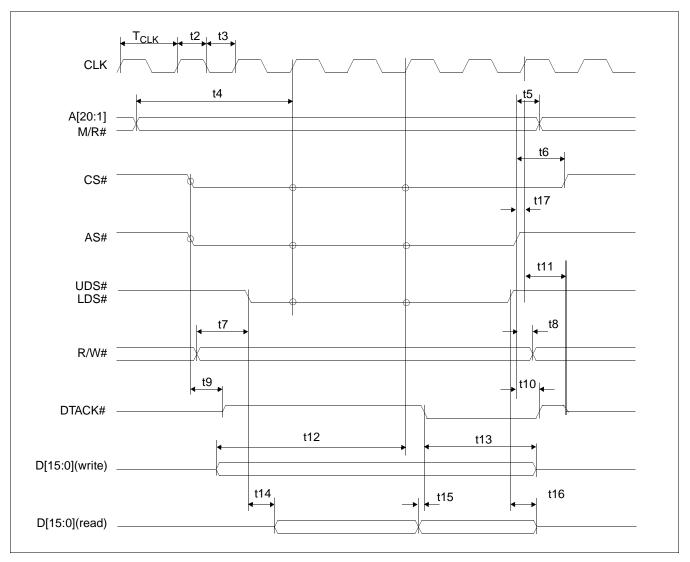


Figure 6-6: Motorola MC68K Bus 1 Interface Timing

Note

BUSCLK cannot be divided by 2 for this interface. CONF5 must be set to 0 (BUSCLK not divided).

Note

DTACK# is always driven when CONF6 =1.

Table 6-9: Motorola MC68K Bus 1 Interface Timing

Symbol	Parameter	Min	Max	Units
f _{CLK}	Clock Frequency		50	MHz
T _{CLK}	Clock period	1/f _{CLK}		ns
t2	Clock pulse width high	6		ns
t3	Clock pulse width low	6		ns
t4	A[20:1], M/R# setup to first CLK where CS# = 0 AS# = 0 , and either UDS#= 0 or LDS# = 0	5		ns
t5	A[20:1], M/R# hold from AS#	0		ns
t6	CS# hold from AS#	0		ns
t7	R/W# setup to before to either UDS#=0 or LDS# = 0	10		ns
t8	R/W# hold from AS#	0		ns
t9	AS# = 0 and CS# = 0 to DTACK# driven high	1		ns
t10	AS# high to DTACK# high	4	19	ns
t11	First BCLK where AS# = 1 to DTACK# high impedance		16	ns
t12	D[15:0] valid to third CLK where CS# = 0 AS# = 0, and either UDS#=0 or LDS# = 0 (write cycle)	0		ns
t13	D[15:0] hold from falling edge of DTACK# (write cycle)	0		ns
t14	Falling edge of UDS#=0 or LDS# = 0 to DB driven (read cycle)	3		ns
t15	D[15:0] valid to DTACK# falling edge (read cycle)	0		ns
t16	UDS# and LDS# high to D[15:0] invalid/high impedance (read cycle)	6	30	ns
t17	AS# high setup to CLK	4		ns

6.3.6 Motorola MC68K Bus 2 Interface Timing (e.g. MC68030)

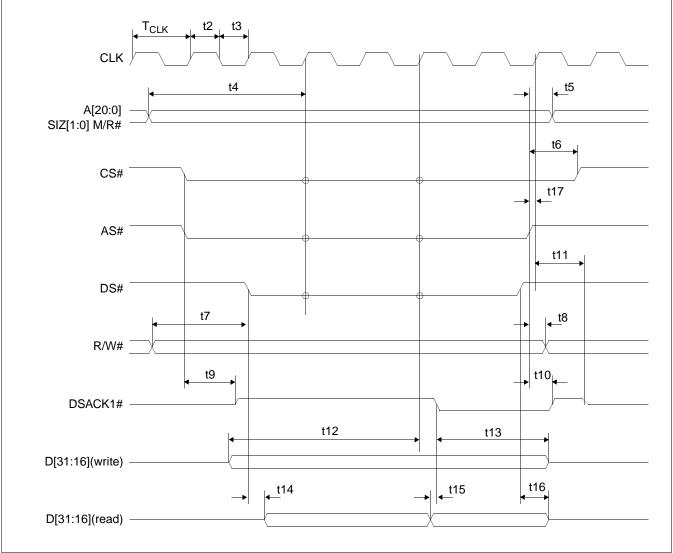
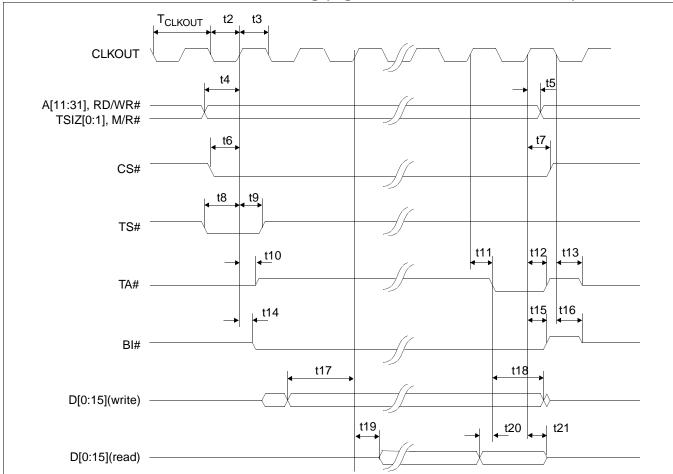


Figure 6-7: Motorola MC68K Bus 2 Interface Timing

Note

BUSCLK cannot be divided by 2 for this interface. CONF5 must be set to 0 (BUSCLK not divided).


Note

DSACK1# is always driven when CONF6 =1.

Table 6-10: Motorola MC68K Bus 2 Interface Timing

Symbol	Parameter	Min	Max	Units
f _{CLK}	Clock Frequency		50	MHz
T _{CLK}	Clock period	1/f _{CLK}		ns
t2	Clock pulse width high	6		ns
t3	Clock pulse width low	6		ns
t4	A[20:0], SIZ[1:0], M/R# setup to first CLK where CS# = 0 AS# = 0, and DS#= 0	5		ns
t5	A[20:0], SIZ[1:0], M/R# hold from AS#	0		ns
t6	CS# hold from AS#	0		ns
t7	R/W# setup to DS#	10		ns
t8	R/W# hold from AS#	0		ns
t9	AS# = 0 and CS# = 0 to DSACK1# driven high	1		ns
t10	AS# high to DSACK1# high	4	19	ns
t11	First BCLK where AS# = 1 to DSACK1# high impedance	3	16	ns
t12	D[31:16] valid to third CLK where CS# = 0 AS# = 0, and DS#= 0 (write cycle)	0		ns
t13	D[31:16] hold from falling edge of DSACK1# (write cycle)	0		ns
t14	Falling edge of DS#= 0 to DB driven (read cycle)	3		ns
t15	D[31:16] valid to DSACK1# falling edge (read cycle)	0		ns
t16	DS# high to D[31:16] invalid/high impedance (read cycle)	6	30	ns
t17	AS# high setup to CLK	4		ns

6.3.7 Motorola PowerPC Interface Timing (e.g. MPC8xx, MC68040, Coldfire)

Figure 6-8: Motorola PowerPC Interface Timing

Note

BUSCLK cannot be divided by 2 for this interface. CONF5 must be set to 0 (BUSCLK not divided).

Note

TA# is always driven when CONF6 = 1.

Table 6-11: Motorola PowerPC Interface Timing

Symbol	Parameter	Min	Max	Units
f _{CLKOUT}	Clock Frequency		45	MHz
T _{CLKOUT}	Clock period	1/f _{CLKOUT}		ns
t2	Clock pulse width low	6		ns
t3	Clock pulse width high	6		ns
t4	AB[11:31], RD/WR#, TSIZ[0:1], M/R# setup	0		ns
t5	AB[11:31], RD/WR#, TSIZ[0:1], M/R# hold	0		ns
t6	CS# setup	1		ns
t7	CS# hold	1		ns
t8	TS# setup	1		ns
t9	TS# hold	1		ns
t10	CLKOUT to TA# driven	5		ns
t11	CLKOUT to TA# low	4	14	ns
t12	CLKOUT to TA# high	5	15	ns
t13	negative edge CLKOUT to TA# tri-state	3	12	ns
t14	CLKOUT to BI# driven	5	15	ns
t15	CLKOUT to BI# high	4	14	ns
t16	negative edge CLKOUT to BI# tri-state	3	9	ns
t17	DB[15:0] setup to 2nd CLKOUT after TS# = 0 (write cycle)	0		ns
t18	DB[15:0] hold (write cycle)	0		ns
t19	CLKOUT to DB driven (read cycle)	0		ns
t20	DB[15:0] valid to TA# falling edge (read cycle)	0		ns
t21	CLKOUT to DB[15:0] tri-state (read cycle)	3	11	ns

Output pin loading on DB[15:0], TA#, BI# is 10pF.

6.3.8 PC Card Timing (e.g. StrongARM)

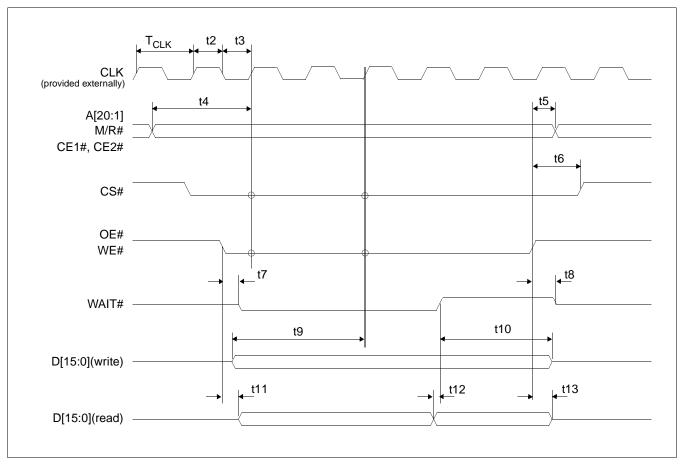


Figure 6-9: PC Card Timing

Note

BUSCLK cannot be divided by 2 for this interface. CONF5 must be set to 0 (BUSCLK not divided).

Table 6-12: PC Card Timing

Symbol	Parameter	Min	Max	Units
f _{CLK}	Clock frequency		50	MHz
T _{CLK}	Clock period	1/f _{CLK}		ns
t2	Clock pulse width high	6		ns
t3	Clock pulse width low	6		ns
t4	A[20:1], M/R# setup to first CLK where CE1# = 0 or CE2# = 0 and either OE# = 0 or WE# = 0	4		ns
t5	A[20:1], M/R# hold from rising edge of either OE# or WE#	0		ns
t6	CS# hold from rising edge of either OE# or WE#	0		ns
t7	Falling edge of either OE# or WE# to WAIT# driven low	5	15	ns
t8	Rising edge of either OE# or WE# to WAIT# tri-state	3	13	ns
t9	D[15:0] setup to third CLK where CE1# = 0, CE2# = 0 and WE# = 0 (write cycle)	0		ns
t10	D[15:0] hold (write cycle)	0		ns
t11	Falling edge OE# to D[15:0] driven (read cycle)	9		ns
t12	D[15:0] setup to rising edge WAIT# (read cycle)	0		ns
t13	Rising edge of OE# to D[15:0] tri-state (read cycle)	3	10	ns

6.3.9 Philips Interface Timing (e.g. PR31500/PR31700)

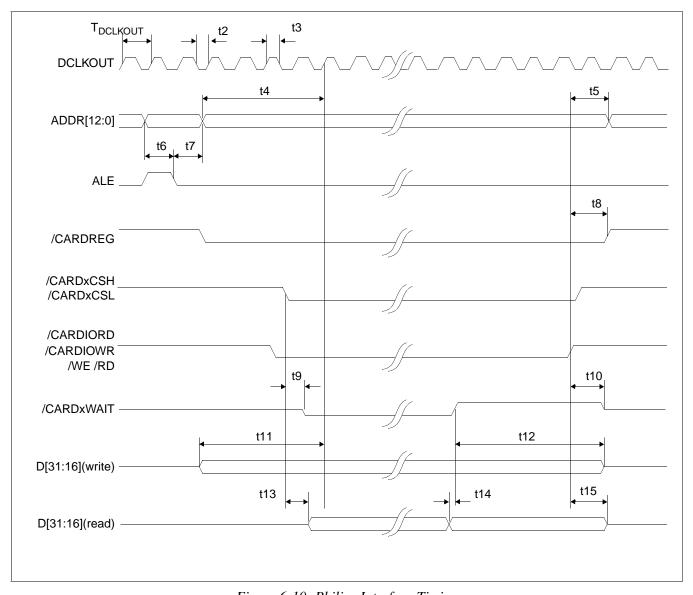


Figure 6-10: Philips Interface Timing

Note

/CARDxWAIT is always driven when CONF6 =1.

Table 6-13: Philips Interface Timing

Symbol	Parameter	Min	Max	Units
f _{DCLKOUT}	Clock frequency		75	MHz
T _{DCLKOUT}	Clock period	1/f _{DCLKOUT}		ns
t2	Clock pulse width low	6		ns
t3	Clock pulse width high	6		ns
t4	ADDR[12:0] setup to first CLK of cycle	10		ns
t5	ADDR[12:0] hold from command invalid	0		ns
t6	ADDR[12:0] setup to falling edge ALE	10		ns
t7	ADDR[12:0] hold from falling edge ALE	5		ns
t8	/CARDREG hold from command invalid	0		ns
t9	Falling edge of chip select to /CARDxWAIT driven	0	15	ns
t10	Command invalid to /CARDxWAIT tri-state	5	25	ns
t11	D[31:16] valid to first CLK of cycle (write cycle)	10		ns
t12	D[31:16] hold from rising edge of /CARDxWAIT	0		
t13	Chip select to D[31:16] driven (read cycle)	1		ns
t14	D[31:16] setup to rising edge /CARDxWAIT (read cycle)	0		ns
t15	Command invalid to D[31:16] tri-state (read cycle)	5	25	ns

If BUSCLK exceeds 37.5MHz, it must be divided by 2 using CONF5 (see Table 4-9, "Summary of Power-On/Reset Options," on page 34).

6.3.10 Toshiba Interface Timing (e.g. TX39xx)

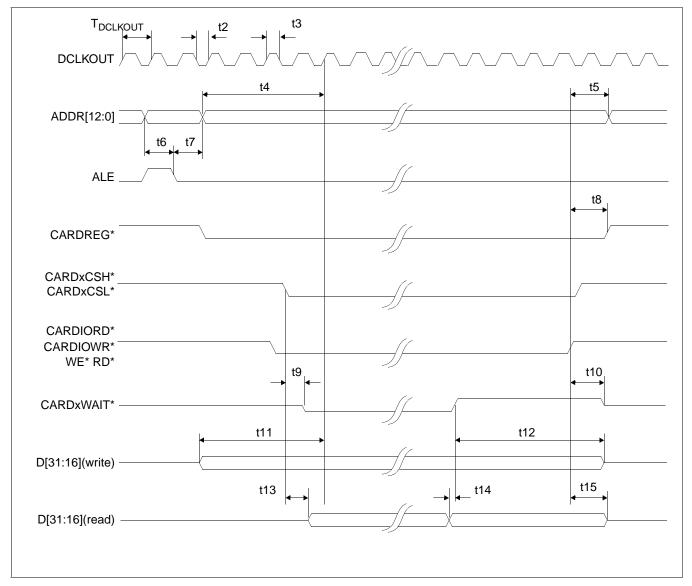


Figure 6-11: Toshiba Interface Timing

Note

CARDxWAIT* is always driven when CONF6 =1.

Table 6-14: Toshiba Interface Timing

Symbol	Parameter	Min	Max	Units
f _{DCLKOUT}	Clock frequency		75	MHz
T _{DCLKOUT}	Clock period	1/f _{DCLKOUT}		ns
t2	Clock pulse width low	6		ns
t3	Clock pulse width high	6		ns
t4	ADDR[12:0] setup to first CLK of cycle	10		ns
t5	ADDR[12:0] hold from command invalid	0		ns
t6	ADDR[12:0] setup to falling edge ALE	10		ns
t7	ADDR[12:0] hold from falling edge ALE	5		ns
t8	CARDREG* hold from command invalid	0		ns
t9	Falling edge of chip select to CARDxWAIT* driven	0	15	ns
t10	Command invalid to CARDxWAIT* tri-state	5	25	ns
t11	D[31:16] valid to first CLK of cycle (write cycle)	10		ns
t12	D[31:16] hold from rising edge of CARDxWAIT*	0		
t13	Chip select to D[31:16] driven (read cycle)	1		ns
t14	D[31:16] setup to rising edge CARDxWAIT* (read cycle)	0		ns
t15	Command invalid to D[31:16] tri-state (read cycle)	5	25	ns

If BUSCLK exceeds 37.5MHz, it must be divided by 2 using CONF5 (see Table 4-9, "Summary of Power-On/Reset Options," on page 34).

6.4 Power Sequencing

6.4.1 LCD Power Sequencing

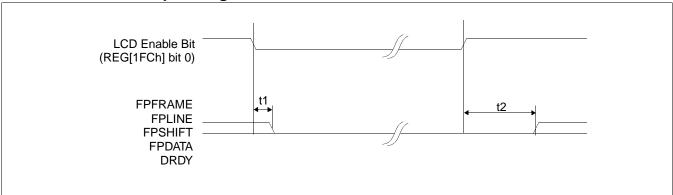


Figure 6-12: LCD Panel Power-off/Power-on Timing

Table 6-15: LCD Panel Power-off/Power-on

Symbol	Parameter	Min	Max	Units
t1	LCD Enable Bit low to FPFRAME, FPLINE, FPSHIFT, FPDATA, DRDY inactive		1	T _{FPLINE}
t2	LCD Enable Bit high to FPFRAME, FPLINE, FPSHIFT, FPDATA, DRDY active	1	2	T _{FPLINE}

Note

Where T_{FPLINE} is the period of FPLINE.

Note

The above timing assumes REG[1F0h] bit 4 is set to 1.

6.4.2 Power Save Status

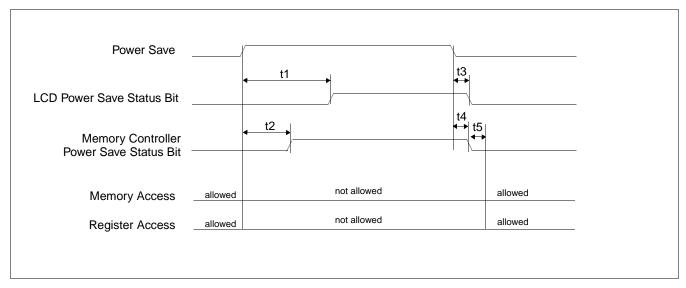


Figure 6-13: Power Save Status Bits and Local Bus Memory Access Relative to Power Save Mode

Note

Memory access should not be performed after Power Save Mode has been initiated.

Note

Power Save is initiated through the Power Save Mode Enable bit (REG[1F0h] bit 0).

Table 6-16: Power Save Status and Local Bus Memory Access Relative to Power Save Mode

Symbol	Parameter	Min	Max	Units
t1	Power Save initiated to rising edge of LCD Power Save Status	1	2	T _{FPLINE}
t2	Power Save initiated to rising edge of Memory Controller Power Save Status		note 1	MCLK
t3	Power Save deactivated to falling edge of LCD Power Save Status		1	T _{FPFRAME}
t4	Power Save deactivated to falling edge of Memory Controller Power Save Status		12	MCLK
t5	Falling edge of Memory Controller Power Save Status to the earliest time where memory access is allowed		8	MCLK

1. $t2_{max}$ = The maximum value for t2 is based on the SDRAM Refresh Rate (REG[021h] bits 2:0) as follows.

Table 6-17: SDRAM Refresh Period Selection

REG[021h] bits 2:0	SDRAM Refresh Period (MCLKs)
000	76
001	140
010	268
011	524

6.5 Display Interface

6.5.1 Single Monochrome 4-Bit Panel Timing

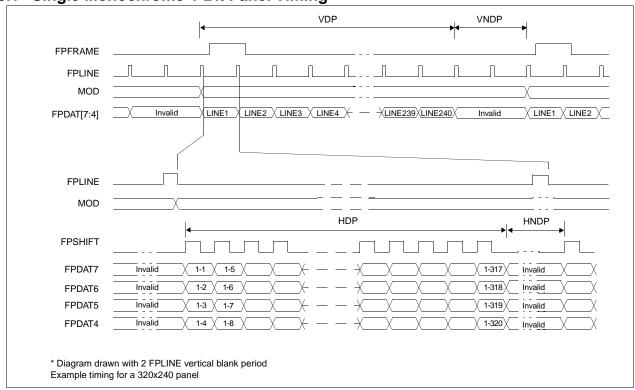


Figure 6-14: Single Monochrome 4-Bit Panel Timing

VDP = Vertical Display Period = (REG[039h] bits [1:0], REG[038h] bits [7:0]) + 1

VNDP = Vertical Non-Display Period = (REG[03Ah] bits [5:0]) + 1

HDP = Horizontal Display Period = ((REG[032h] bits [6:0]) + 1) × 8Ts

 $HNDP = Horizontal Non-Display Period = ((REG[034h] bits [4:0]) + 1) \times 8Ts$

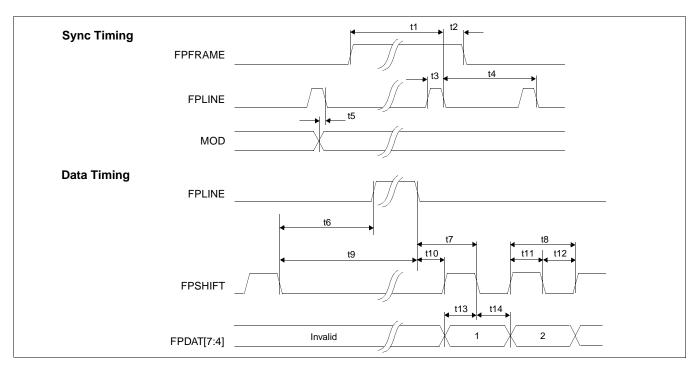


Figure 6-15: Single Monochrome 4-Bit Panel A.C. Timing

<i>Table 6-18</i> :	Single Monoci	hrome 4-Bit Panel	A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	12			Ts
t3	FPLINE pulse width	11			Ts
t4	FPLINE period	note 3			Ts
t5	MOD transition to FPLINE falling edge	3		note 4	Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 5			Ts
t7	FPLINE falling edge to FPSHIFT falling edge	t10 + 2			Ts
t8	FPSHIFT period	4			Ts
t9	FPSHIFT falling edge to FPLINE falling edge	note 6			Ts
t10	FPLINE falling edge to FPSHIFT rising edge	note 7			Ts
t11	FPSHIFT pulse width high	2			Ts
t12	FPSHIFT pulse width low	2			Ts
t13	FPDAT[7:4] setup to FPSHIFT falling edge	2			Ts
t14	FPDAT[7:4] hold to FPSHIFT falling edge	2			Ts

- Ts = LCD pixel clock period. LCD pixel clock frequency is LCD pixel clock source divided by 1, 2, 3 or 4 (see REG[014h]).
- 2. $t1_{min} = t4_{min} 12$
- 3. $t4_{min} = [((REG[032h] bits [6:0]) + 1) \times 8 + ((REG[034h] bits [4:0]) + 1) \times 8]$
- 4. $t5_{max} = [((REG[034h] bits [4:0]) + 1) \times 8 + 3]$
- 5. $t6_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 26]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 25]$ for 16 bpp color depth
- 6. $t9_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 15]$ for 4 bpp or 8 bpp color depth
 - $= [((REG[034h] bits [4:0]) + 1) \times 8 14]$ for 16 bpp color depth
- 7. t10_{min}= 17 for 4 bpp or 8 bpp color depth
 - = 16 for 16 bpp color depth

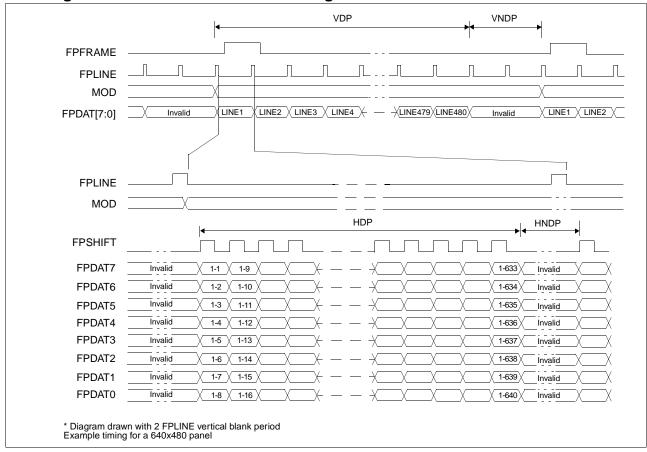


Figure 6-16: Single Monochrome 8-Bit Panel Timing

 $\begin{array}{lll} \text{VDP} &= \text{Vertical Display Period} &= (\text{REG}[039h] \text{ bits } [1:0], \text{ REG}[038h] \text{ bits } [7:0]) + 1 \\ \text{VNDP} &= \text{Vertical Non-Display Period} &= (\text{REG}[034h] \text{ bits } [5:0]) + 1 \\ \text{HDP} &= \text{Horizontal Display Period} &= ((\text{REG}[034h] \text{ bits } [6:0]) + 1) \times 8\text{Ts} \\ \text{HNDP} &= \text{Horizontal Non-Display Period} &= ((\text{REG}[034h] \text{ bits } [4:0]) + 1) \times 8\text{Ts} \\ \end{array}$

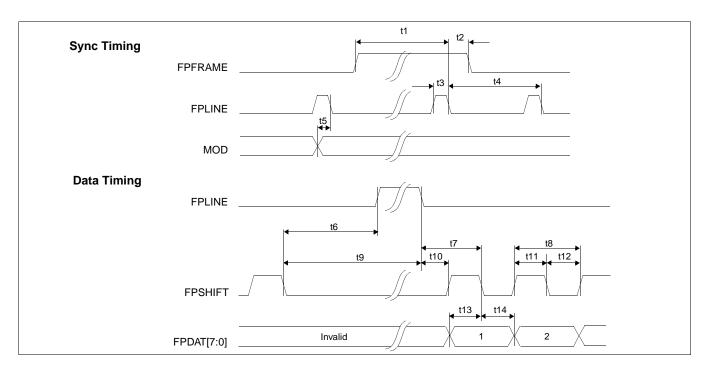


Figure 6-17: Single Monochrome 8-Bit Panel A.C. Timing

TE 11 (10	C 1 1 1 1	7	0 D' D	1 4 0	m· ·
Table 6-19 :	Single Mon	$\alpha chrome$	X_Rit Pai	101 A (Timing
I WULL U-I / .	Duite to Midi	ochi onic	O-Du I ui	<i>ici 11.</i> C.	1 111111112

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	12			Ts
t3	FPLINE pulse width	11			Ts
t4	FPLINE period	note 3			Ts
t5	MOD transition to FPLINE falling edge	3		note 4	Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 5			Ts
t7	FPLINE falling edge to FPSHIFT falling edge	t10 + 4			Ts
t8	FPSHIFT period	8			Ts
t9	FPSHIFT falling edge to FPLINE falling edge	note 6			Ts
t10	FPLINE falling edge to FPSHIFT rising edge	note 7			Ts
t11	FPSHIFT pulse width high	4			Ts
t12	FPSHIFT pulse width low	4			Ts
t13	FPDAT[7:0] setup to FPSHIFT falling edge	4			Ts
t14	FPDAT[7:0] hold to FPSHIFT falling edge	4			Ts

- 1. Ts = LCD pixel clock period. LCD pixel clock frequency is LCD pixel clock source divided by 1, 2, 3 or 4 (see REG[014h]).
- 2. $t1_{min} = t4_{min} 12$
- 3. $t4_{min} = [((REG[032h] bits [6:0]) + 1) \times 8 + ((REG[034h] bits [4:0]) + 1) \times 8]$
- 4. $t5_{max} = [((REG[034h] bits [4:0]) + 1) \times 8 + 3]$
- 5. $t6_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 24]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 23]$ for 16 bpp color depth
- 6. $t9_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 13]$ for 4 bpp or 8 bpp color depth $= [((REG[034h] bits [4:0]) + 1) \times 8 12]$ for 16 bpp color depth
- 7. t10_{min}= 17 for 4 bpp or 8 bpp color depth
 - = 16 for 16 bpp color depth

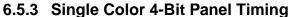


Figure 6-18: Single Color 4-Bit Panel Timing

 $\begin{array}{lll} \text{VDP} &= \text{Vertical Display Period} &= (\text{REG}[039\text{h}] \text{ bits } [1:0], \text{ REG}[038\text{h}] \text{ bits } [7:0]) + 1 \\ \text{VNDP} &= \text{Vertical Non-Display Period} &= (\text{REG}[034\text{h}] \text{ bits } [5:0]) + 1 \\ \text{HDP} &= \text{Horizontal Display Period} &= ((\text{REG}[032\text{h}] \text{ bits } [6:0]) + 1) \times 8\text{Ts} \\ \text{HNDP} &= \text{Horizontal Non-Display Period} &= ((\text{REG}[034\text{h}] \text{ bits } [4:0]) + 1) \times 8\text{Ts} \\ \end{array}$

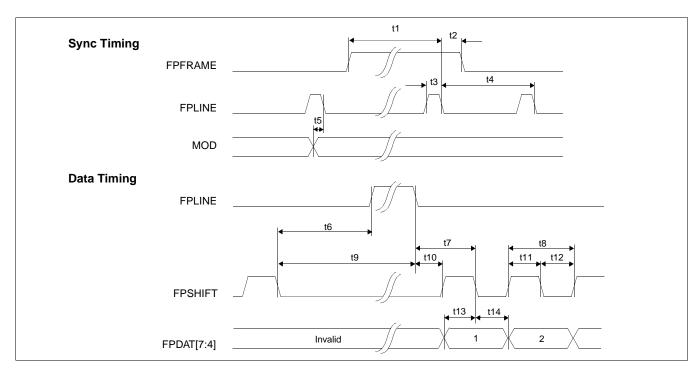


Figure 6-19: Single Color 4-Bit Panel A.C. Timing

Table 6-20: Single Color 4-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	12			Ts
t3	FPLINE pulse width	11			Ts
t4	FPLINE period	note 3			Ts
t5	MOD transition to FPLINE falling edge	3		note 4	Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 5			Ts
t7	FPLINE falling edge to FPSHIFT falling edge	t10 + 0.5			Ts
t8	FPSHIFT period	1			Ts
t9	FPSHIFT falling edge to FPLINE falling edge	note 6			Ts
t10	FPLINE falling edge to FPSHIFT rising edge	note 7			Ts
t11	FPSHIFT pulse width high	0.5			Ts
t12	FPSHIFT pulse width low	0.5			Ts
t13	FPDAT[7:4] setup to FPSHIFT falling edge	0.5			Ts
t14	FPDAT[7:4] hold from FPSHIFT falling edge	0.5			Ts

- = LCD pixel clock period. LCD pixel clock frequency is LCD pixel clock source divided by 1, 2, 3 or 4 1. Ts (see REG[014h]).
- 2. $t1_{min} = t4_{min} 12$ 3. $t4_{min} = [((REG[032h] bits [6:0]) + 1) \times 8 + ((REG[034h] bits [4:0]) + 1) \times 8]$
- 4. $t5_{max} = [((REG[034h] bits [4:0]) + 1) \times 8 + 3]$
- $t6_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 28.5]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 27.5]$ for 16 bpp color depth $t9_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 - 17.5]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 16.5]$ for 16 bpp color depth
- 7. $t10_{min}$ = 18 for 4 bpp or 8 bpp color depth
 - = 17 for 16 bpp color depth

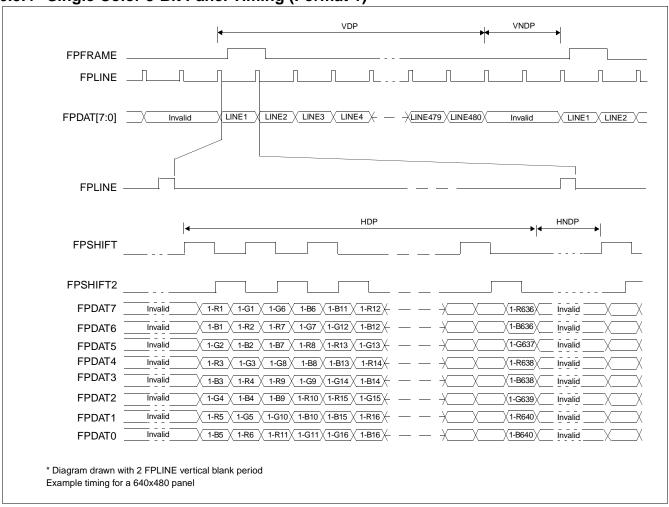


Figure 6-20: Single Color 8-Bit Panel Timing (Format 1)

 $\begin{array}{lll} \text{VDP} &= \text{Vertical Display Period} &= (\text{REG}[039\text{h}] \text{ bits } [1:0], \text{ REG}[038\text{h}] \text{ bits } [7:0]) + 1 \\ \text{VNDP} &= \text{Vertical Non-Display Period} &= (\text{REG}[034\text{h}] \text{ bits } [5:0]) + 1 \\ \text{HDP} &= \text{Horizontal Display Period} &= ((\text{REG}[034\text{h}] \text{ bits } [6:0]) + 1) \times 8\text{Ts} \\ \text{HNDP} &= \text{Horizontal Non-Display Period} &= ((\text{REG}[034\text{h}] \text{ bits } [4:0]) + 1) \times 8\text{Ts} \\ \end{array}$

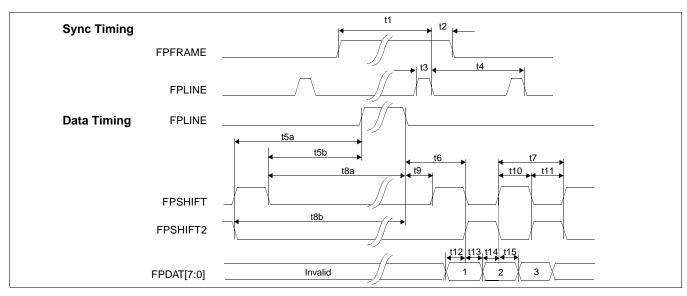


Figure 6-21: Single Color 8-Bit Panel A.C. Timing (Format 1)

<i>Table 6-21 :</i>	Single	Color 8-1	Bit Panel A.	C. Timing	(Format 1)
10000 -1 .	~	- C - C -		C. I	(- 0)

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	12			Ts
t3	FPLINE pulse width	11			Ts
t4	FPLINE period	note 3			Ts
t5a	FPSHIFT2 falling edge to FPLINE rising edge	note 4			Ts
t5b	FPSHIFT falling edge to FPLINE rising edge	note 5			Ts
t6	FPLINE falling edge to FPSHIFT falling, FPSHIFT2 rising edge	t9 + 2			Ts
t7	FPSHIFT, FPSHIFT2 period	4			Ts
t8a	FPSHIFT falling edge to FPLINE falling edge	note 6			Ts
t8b	FPSHIFT2 falling edge to FPLINE falling edge	note 7			Ts
t9	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts
t10	FPSHIFT pulse width high, FPSHIFT2 pulse width low	2			Ts
t11	FPSHIFT pulse width low, FPSHIFT2 pulse width high	2			Ts
t12	FPDAT[7:0] setup to FPSHIFT falling edge	1			Ts
t13	FPDAT[7:0] hold from FPSHIFT falling edge	1			Ts
t14	FPDAT[7:0] setup to FPSHIFT2 falling edge	1			Ts
t15	FPDAT[7:0] hold from FPSHIFT2 falling edge	1			Ts

- 1. Ts = LCD pixel clock period. LCD pixel clock frequency is source divided by 1, 2, 3 or 4(see REG[014h]).
- 2. $t1_{min} = t4_{min} 12Ts$
- 3. $t4_{min} = [((REG[032h] bits [6:0]) + 1) \times 8 + ((REG[034h] bits [4:0]) + 1) \times 8]$
- 4. $t5a_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 26]$ for 4 bpp or 8 bpp color depth
 - $= [((REG[034h] bits [4:0]) + 1) \times 8 25]$ for 16 bpp color depth
- 5. $t5b_{min}$ = [((REG[034h] bits [4:0]) + 1) × 8 28] for 4 bpp or 8 bpp color depth = [((REG[034h] bits [4:0]) + 1) × 8 27] for 16 bpp color depth
- 6. $t8a_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 17]$ for 4 bpp or 8 bpp color depth
 - $= [((REG[034h] bits [4:0]) + 1) \times 8 16]$ for 16 bpp color depth
- 7. $t8b_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 15]$ for 4 bpp or 8 bpp color depth $= [((REG[034h] bits [4:0]) + 1) \times 8 14]$ for 16 bpp color depth
- 8. $t9_{min} = 17$ for 4 bpp or 8 bpp color depth
 - = 16 for 16 bpp color depth

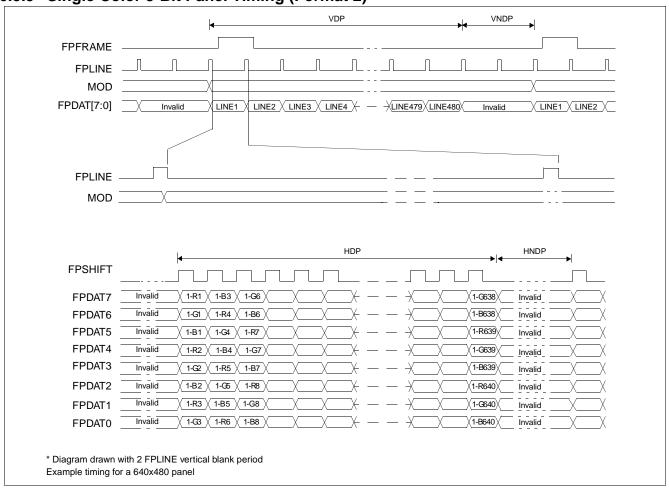


Figure 6-22: Single Color 8-Bit Panel Timing (Format 2)

 $\begin{array}{lll} \text{VDP} &= \text{Vertical Display Period} &= (\text{REG}[039\text{h}] \text{ bits } [1:0], \text{ REG}[038\text{h}] \text{ bits } [7:0]) + 1 \\ \text{VNDP} &= \text{Vertical Non-Display Period} &= (\text{REG}[034\text{h}] \text{ bits } [5:0]) + 1 \\ \text{HDP} &= \text{Horizontal Display Period} &= ((\text{REG}[032\text{h}] \text{ bits } [6:0]) + 1) \times 8\text{Ts} \\ \text{HNDP} &= \text{Horizontal Non-Display Period} &= ((\text{REG}[034\text{h}] \text{ bits } [4:0]) + 1) \times 8\text{Ts} \\ \end{array}$

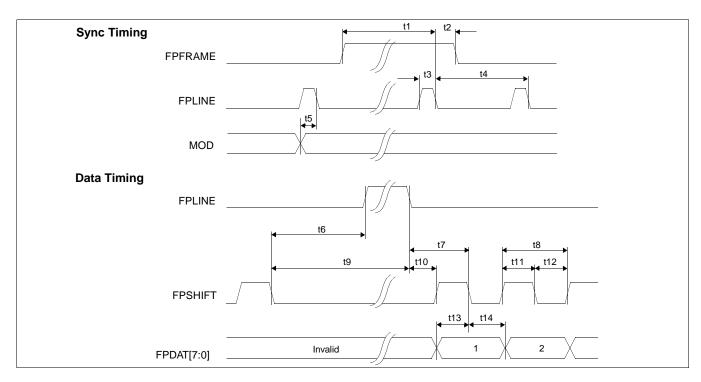


Figure 6-23: Single Color 8-Bit Panel A.C. Timing (Format 2)

Table 6-22: Single Color 8-Bit Panel A.C. Timing (Format 2)

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	12			Ts
t3	FPLINE pulse width	11			Ts
t4	FPLINE period	note 3			Ts
t5	MOD transition to FPLINE falling edge	3		note 4	Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 5			Ts
t7	FPLINE falling edge to FPSHIFT falling edge	t10 + 2			Ts
t8	FPSHIFT period	2			Ts
t9	FPSHIFT falling edge to FPLINE falling edge	note 6			Ts
t10	FPLINE falling edge to FPSHIFT rising edge	note 7			Ts
t11	FPSHIFT pulse width high	1			Ts
t12	FPSHIFT pulse width low	1			Ts
t13	FPDAT[7:0] setup to FPSHIFT falling edge	1			Ts
t14	FPDAT[7:0] hold to FPSHIFT falling edge	1			Ts

- 1. Ts = LCD pixel clock period. LCD pixel clock frequency is source divided by 1, 2, 3 or 4(see REG[014h]).
- 2. $t1_{min} = t3_{min} 12$
- 3. $t3_{min} = [((REG[032h] bits [6:0]) + 1) \times 8 + ((REG[034h] bits [4:0]) + 1) \times 8]$
- 4. $t5_{max} = [((REG[034h] bits [4:0]) + 1) \times 8 + 3]$
- 5. $t6_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 27]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 26]$ for or 16 bpp color depth
- 6. $t9_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 16]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 15]$ for 16 bpp color depth
- 7. t10_{min}= 17 for 4 bpp or 8 bpp color depth
 - = 16 for 16 bpp color depth

6.5.6 Single Color 16-Bit Panel Timing

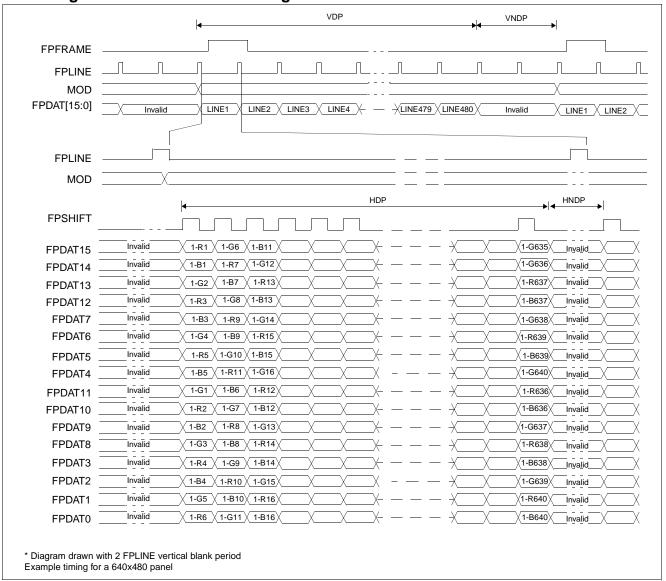


Figure 6-24: Single Color 16-Bit Panel Timing

 $\begin{array}{lll} \text{VDP} &= \text{Vertical Display Period} &= (\text{REG}[039\text{h}] \text{ bits } [1:0], \text{ REG}[038\text{h}] \text{ bits } [7:0]) + 1 \\ \text{VNDP} &= \text{Vertical Non-Display Period} &= (\text{REG}[034\text{h}] \text{ bits } [5:0]) + 1 \\ \text{HDP} &= \text{Horizontal Display Period} &= ((\text{REG}[034\text{h}] \text{ bits } [6:0]) + 1) \times 8\text{Ts} \\ \text{HNDP} &= \text{Horizontal Non-Display Period} &= ((\text{REG}[034\text{h}] \text{ bits } [4:0]) + 1) \times 8\text{Ts} \\ \end{array}$

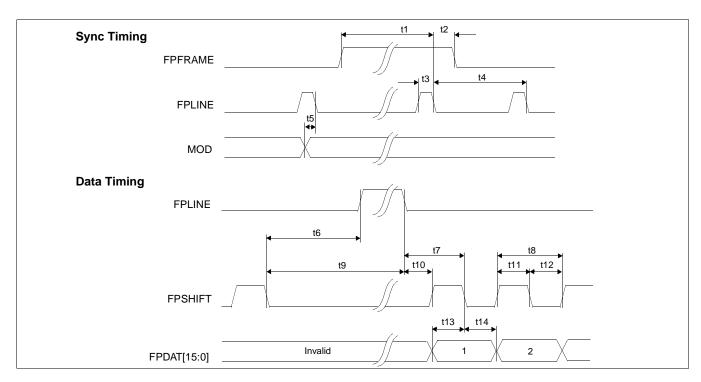


Figure 6-25: Single Color 16-Bit Panel A.C. Timing

Table 6-23: Single Color 16-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	12			Ts
t3	FPLINE pulse width	11			Ts
t4	FPLINE period	note 3			Ts
t5	MOD transition to FPLINE falling edge	3		note 4	Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 5			Ts
t7	FPLINE falling edge to FPSHIFT falling edge	t10 + 3			Ts
t8	FPSHIFT period	5			Ts
t9	FPSHIFT falling edge to FPLINE falling edge	note 6			Ts
t10	FPLINE falling edge to FPSHIFT rising edge	note 7			Ts
t11	FPSHIFT pulse width high	2			Ts
t12	FPSHIFT pulse width low	2			Ts
t13	FPDAT[15:0] setup to FPSHIFT falling edge	2			Ts
t14	FPDAT[15:0] hold to FPSHIFT falling edge	2			Ts

- 1. Ts = LCD pixel clock period. LCD pixel clock frequency is source divided by 1, 2, 3 or 4(see REG[014h]).
- 2. $t1_{min} = t3_{min} 12$
- 3. $t3_{min} = [((REG[032h] bits [6:0]) + 1) \times 8 + ((REG[034h] bits [4:0]) + 1) \times 8]$
- 4. $t5_{max} = [((REG[034h] bits [4:0]) + 1) \times 8 + 3]$
- 5. $t6_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 26]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 25]$ for 16 bpp color depth
- 6. $t9_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 15]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 14]$ for 16 bpp color depth
- 7. t10_{min}= 17 for 4 bpp or 8 bpp color depth
 - = 16 for 16 bpp color depth

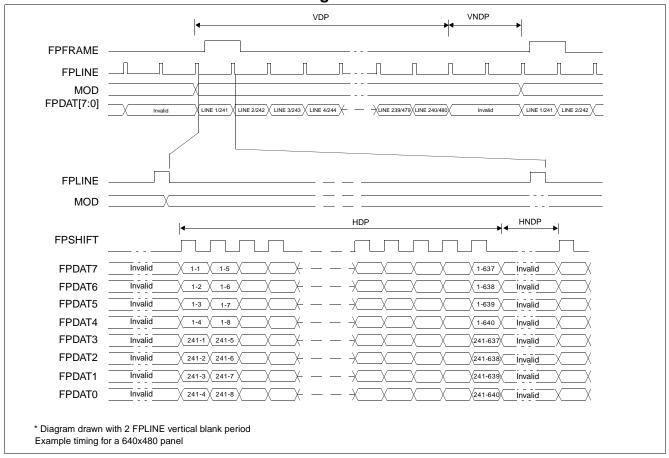


Figure 6-26: Dual Monochrome 8-Bit Panel Timing

VDP = Vertical Display Period = (REG[039h] bits [1:0], REG[038h] bits [7:1])

VNDP = Vertical Non-Display Period = (REG[03Ah] bits [5:0]) + 1

 $\begin{array}{ll} \text{HDP} &= \text{Horizontal Display Period} &= ((\text{REG}[032h] \text{ bits } [6:0]) + 1) \times 8\text{Ts} \\ \text{HNDP} &= \text{Horizontal Non-Display Period} &= ((\text{REG}[034h] \text{ bits } [4:0]) + 1) \times 8\text{Ts} \\ \end{array}$

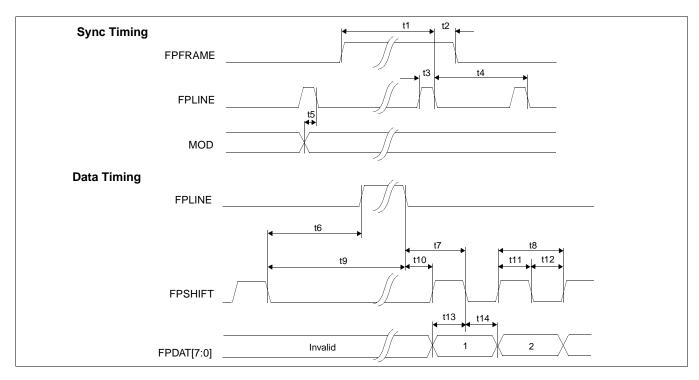
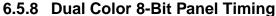



Figure 6-27: Dual Monochrome 8-Bit Panel A.C. Timing

Table 6-24: Dual Monochrome 8-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	12			Ts
t3	FPLINE pulse width	11			Ts
t4	FPLINE period	note 3			Ts
t5	MOD transition to FPLINE falling edge	3		note 4	Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 5			Ts
t7	FPLINE falling edge to FPSHIFT falling edge	t10 + 2			Ts
t8	FPSHIFT period	4			Ts
t9	FPSHIFT falling edge to FPLINE falling edge	note 6			Ts
t10	FPLINE falling edge to FPSHIFT rising edge	note 7			Ts
t12	FPSHIFT pulse width low	2			Ts
t11	FPSHIFT pulse width high	2			Ts
t13	FPDAT[7:0] setup to FPSHIFT falling edge	2			Ts
t14	FPDAT[7:0] hold to FPSHIFT falling edge	2			Ts

- Ts = LCD pixel clock period. LCD pixel clock frequency is source divided by 1, 2, 3 or 4(see REG[014h]).
- 2. $t1_{min} = t3_{min} 12$
- 3. $t3_{min} = [((REG[032h] \text{ bits } [6:0]) + 1) \times 8 + ((REG[034h] \text{ bits } [4:0]) + 1) \times 8]$
- 4. $t5_{max} = [((REG[034h] bits [4:0]) + 1) \times 8 + 3]$
- 5. $t6_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 18]$ for 4 bpp or 8 bpp color depth
 - $= [((REG[034h] bits [4:0]) + 1) \times 8 17]$ for 16 bpp color depth
- 6. $t9_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 7]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 6]$ for 16 bpp color depth
- 7. t10_{min}= 9 for 4 bpp or 8 bpp color depth
 - = 8 for 16 bpp color depth

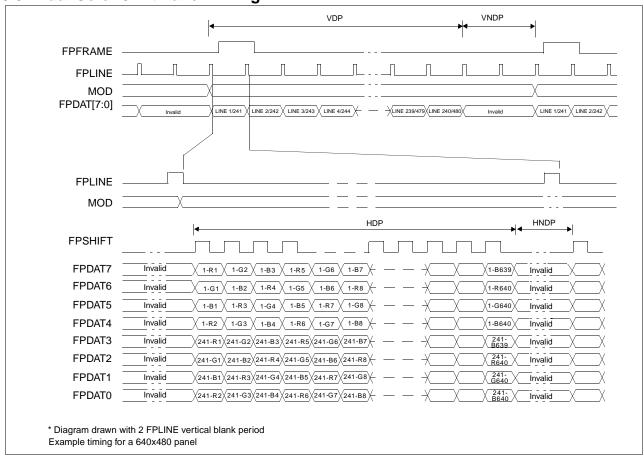


Figure 6-28: Dual Color 8-Bit Panel Timing

 $\begin{array}{lll} \text{VDP} &= \text{Vertical Display Period} &= ((\text{REG}[039h] \text{ bits } [1:0], \text{ REG}[038h] \text{ bits } [7:0]) + 1) \div 2 \\ \text{VNDP} &= \text{Vertical Non-Display Period} &= (\text{REG}[03Ah] \text{ bits } [5:0]) + 1 \\ \text{HDP} &= \text{Horizontal Display Period} &= ((\text{REG}[032h] \text{ bits } [6:0]) + 1) \times 8\text{Ts} \\ \text{HNDP} &= \text{Horizontal Non-Display Period} &= ((\text{REG}[034h] \text{ bits } [4:0]) + 1) \times 8\text{Ts} \\ \end{array}$

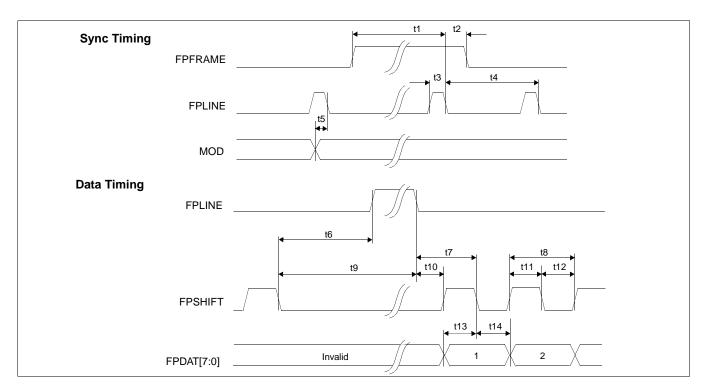


Figure 6-29: Dual Color 8-Bit Panel A.C. Timing

Table 6-25: Dual Color 8-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	12			Ts
t3	FPLINE pulse width	11			Ts
t4	FPLINE period	note 3			Ts
t5	MOD transition to FPLINE falling edge	3		note 4	Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 5			Ts
t7	FPLINE falling edge to FPSHIFT falling edge	t10 + 0.5			Ts
t8	FPSHIFT period	1			Ts
t9	FPSHIFT falling edge to FPLINE falling edge	note 6			Ts
t10	FPLINE falling edge to FPSHIFT rising edge	note 7			Ts
t11	FPSHIFT pulse width high	0.5			Ts
t12	FPSHIFT pulse width low	0.5			Ts
t13	FPDAT[7:0] setup to FPSHIFT falling edge	0.5			Ts
t14	FPDAT[7:0] hold to FPSHIFT falling edge	0.5			Ts

- 1. Ts = LCD pixel clock period. LCD pixel clock frequency is source divided by 1, 2, 3 or 4(see REG[014h]).
- 2. $t1_{min} = t3_{min} 12$
- 3. $t3_{min} = [((REG[032h] bits [6:0]) + 1) \times 8 + ((REG[034h] bits [4:0]) + 1) \times 8]$
- 4. $t5_{max} = [((REG[034h] bits [4:0]) + 1) \times 8 + 3]$
- 5. $t6_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 18.5]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 17.5]$ for 16 bpp color depth
- 6. $t9_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 8.5]$ for 4 bpp or 8 bpp color depth
 - = $[((REG[034h] bits [4:0]) + 1) \times 8 6.5]$ for 16 bpp color depth
- 7. t10_{min}= 10 for 4 bpp or 8 bpp color depth
 - = 9 for 16 bpp color depth

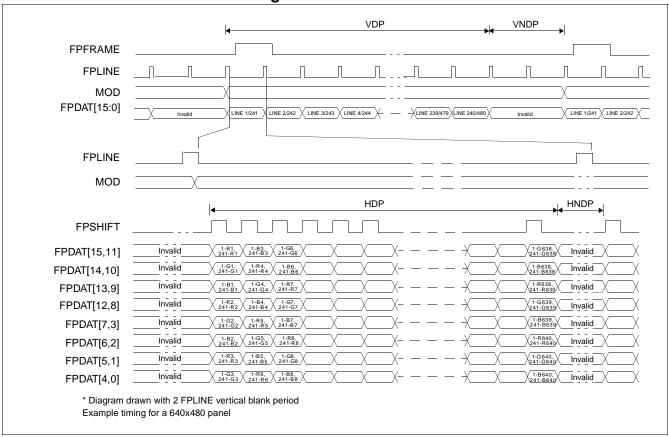


Figure 6-30: Dual Color 16-Bit Panel Timing

VDP = Vertical Display Period = $((REG[039h] bits [1:0], REG[038h] bits [7:0]) + 1) \div 2$ VNDP = Vertical Non-Display Period = ((REG[039h] bits [5:0]) + 1HDP = Horizontal Display Period = $((REG[032h] bits [6:0]) + 1) \times 8Ts$ HNDP = Horizontal Non-Display Period = $((REG[034h] bits [4:0]) + 1) \times 8Ts$

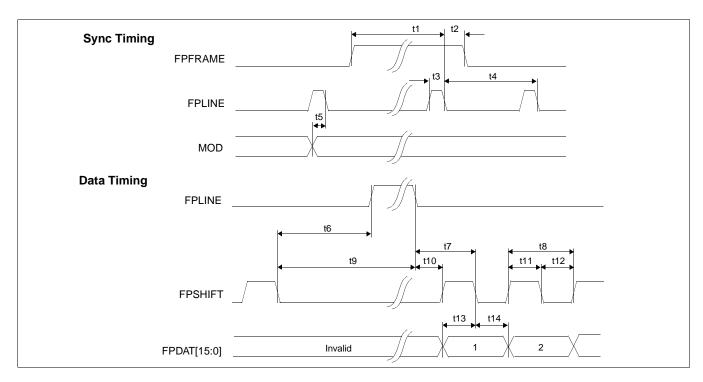


Figure 6-31: Dual Color 16-Bit Panel A.C. Timing

Table 6-26: Dual Color 16-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	12			Ts
t3	FPLINE pulse width	11			Ts
t4	FPLINE period	note 3			Ts
t5	MOD transition to FPLINE falling edge	3		note 4	Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 5			Ts
t7	FPLINE falling edge to FPSHIFT falling edge	t10 + 2			Ts
t8	FPSHIFT period	2			Ts
t9	FPSHIFT falling edge to FPLINE falling edge	note 6			Ts
t10	FPLINE falling edge to FPSHIFT rising edge	note 7			Ts
t11	FPSHIFT pulse width high	1			Ts
t12	FPSHIFT pulse width low	1			Ts
t13	FPDAT[15:0] setup to FPSHIFT falling edge	1			Ts
t14	FPDAT[15:0] hold to FPSHIFT falling edge	1			Ts

- 1. Ts = LCD pixel clock period. LCD pixel clock frequency is source divided by 1, 2, 3 or 4(see REG[014h]).
- 2. $t1_{min} = t3_{min} 12$
- 3. $t3_{min} = [((REG[032h] bits [6:0]) + 1) \times 8 + ((REG[034h] bits [4:0]) + 1) \times 8]$
- 4. $t5_{max} = [((REG[034h] bits [4:0]) + 1) \times 8 + 3]$
- 5. $t6_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 19]$ for 4 bpp or 8 bpp color depth
 - $= [((REG[034h] bits [4:0]) + 1) \times 8 18]$ for 16 bpp color depth
- 6. $t9_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 8]$ for 4 bpp or 8 bpp color depth
 - $= [((REG[034h] bits [4:0]) + 1) \times 8 7]$ for 16 bpp color depth
- 7. $t10_{min}$ = 9 for 4 bpp or 8 bpp color depth
 - = 8 for 16 bpp color depth

6.5.10 TFT/D-TFD Panel Timing

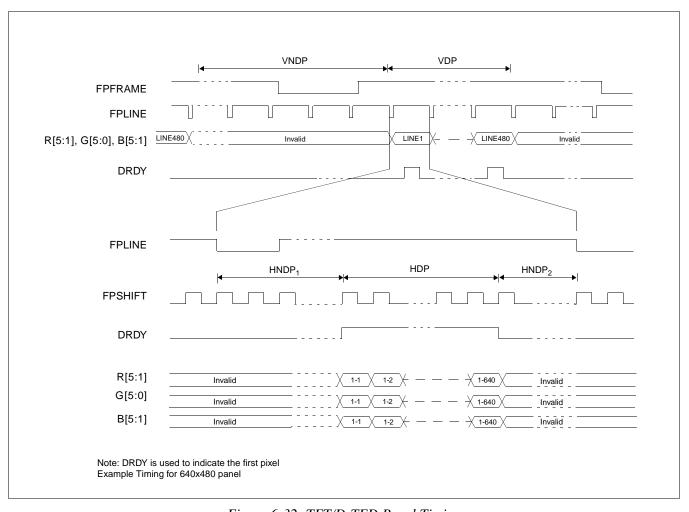


Figure 6-32: TFT/D-TFD Panel Timing

 $\begin{array}{lll} \text{VDP} &= \text{Vertical Display Period} &= (\text{REG}[039\text{h}] \text{ bits } [1:0], \text{ REG}[038\text{h}] \text{ bits } [7:0]) + 1 \\ \text{VNDP} &= \text{Vertical Non-Display Period} &= (\text{REG}[034\text{h}] \text{ bits } [5:0]) + 1 \\ \text{HDP} &= \text{Horizontal Display Period} &= ((\text{REG}[032\text{h}] \text{ bits } [6:0]) + 1) \times 8\text{Ts} \\ \text{HNDP} &= \text{Horizontal Non-Display Period} &= \text{HNDP}_1 + \text{HNDP}_2 = ((\text{REG}[034\text{h}] \text{ bits } [4:0]) + 1) \times 8\text{Ts} \\ \end{array}$

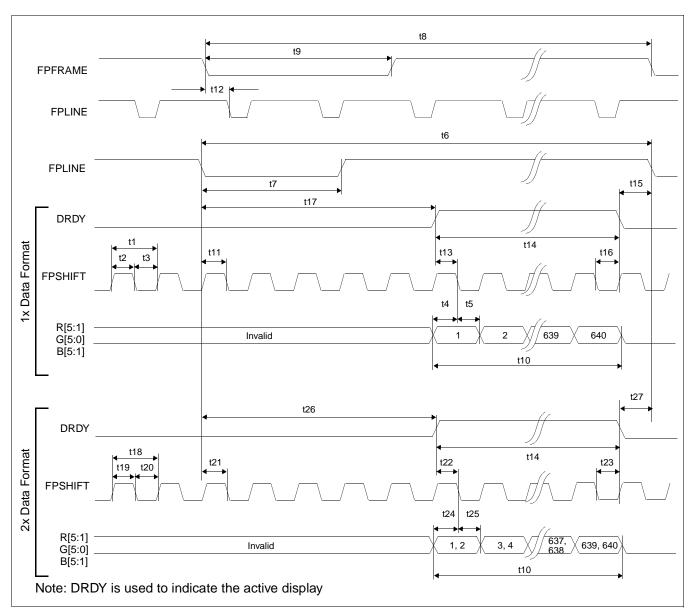


Figure 6-33: TFT/D-TFD A.C. Timing

fication

Symbol	Parameter	Min	Тур	Max	Units
t1	FPSHIFT period	1			Ts (note 1)
t2	FPSHIFT pulse width high	0.45			Ts
t3	FPSHIFT pulse width low	0.45			Ts
t4	data setup to FPSHIFT falling edge	0.45			Ts
t5	data hold from FPSHIFT falling edge	0.45			Ts
t6	FPLINE cycle time	note 2			Ts
t7	FPLINE pulse width low	note 3			Ts
t8	FPFRAME cycle time	note 4			lines
t9	FPFRAME pulse width low	note 5			lines
t10	horizontal display period	note 6			Ts
t11	FPLINE setup to FPSHIFT falling edge	0.45			Ts
t12	FPFRAME falling edge to FPLINE falling edge phase difference	note 7			Ts
t13	DRDY to FPSHIFT falling edge setup time	0.45			Ts
t14	DRDY pulse width	note 8			Ts
t15	DRDY falling edge to FPLINE falling edge (1x)	note 9			Ts
t16	DRDY hold from FPSHIFT falling edge	0.45			Ts
t17	FPLINE Falling edge to DRDY active (1x)	note 10			Ts
t18	FPSHIFT period	2			Ts
t19	FPSHIFT pulse width high	1			Ts
t20	FPSHIFT pulse width low	1			Ts
t21	FPLINE setup to FPSHIFT falling edge	note 11			Ts
t22	DRDY to FPSHIFT falling edge setup time	1			Ts
t23	DRDY hold from FPSHIFT falling edge	1			Ts
t24	data setup to FPSHIFT falling edge	1			Ts
t25	data hold from FPSHIFT falling edge	1			Ts
t26	FPLINE Falling edge to DRDY active (2x)	note 12			Ts
t27	DRDY falling edge to FPLINE falling edge (2x)	note 13			Ts

- 1. Ts = LCD pixel clock period. LCD pixel clock frequency is source divided by 1, 2, 3 or 4(see REG[014h]).
- 2. $t6_{min} = [((REG[032h] bits [6:0]) + 1) \times 8 + ((REG[034h] bits [4:0]) + 1) \times 8]$
- 3. $t7_{min} = [((REG[036h] bits [3:0]) + 1) \times 8]$
- 4. $t8_{min} = [((REG[039h] bits [1:0], REG[038h] bits [7:0]) + 1) + ((REG[03Ah] bits [5:0]) + 1)]$
- 5. $t9_{min} = [((REG[03Ch] bits [2:0]) + 1)]$
- 6. $t10_{min} = [((REG[032h] bits [6:0]) + 1) \times 8]$
- 7. $t12_{min} = [(REG[035h] bits [4:0]) \times 8 + 1]$
- 8. $t14_{min} = [((REG[032h] bits [6:0]) + 1) \times 8]$
- 9. $t15_{min}$ = [(REG[035h] bits [4:0]) × 8 + 5] for 4 bpp or 8 bpp color depth
 - = $[(REG[035h] bits [4:0]) \times 8 + 6]$ for 16 bpp color depth
- 10. $t17_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 (REG[035h] bits [4:0]) \times 8 5]$ for 4 bpp or 8 bpp color depth
 - $= [((REG[034h] bits [4:0]) + 1) \times 8 (REG[035h] bits [4:0]) \times 8 6]$ for 16 bpp color depth
- 11. t21_{min}= 1 for 4 bpp or 8 bpp color depth
 - = 0 for 16 bpp color depth
- 12. $t26_{min} = [((REG[034h] bits [4:0]) + 1) \times 8 (REG[035h] bits [4:0]) \times 8 4]$ for 4 bpp or 8 bpp color depth
 - = [((REG[034h] bits [4:0]) + 1) \times 8 (REG[035h] bits [4:0]) \times 8 5] for 16 bpp color depth
- 13. $t27_{min} = [(REG[035h] bits [4:0]) \times 8 + 4]$ for 4 bpp or 8 bpp color depth
 - = [(REG[035h] bits [4:0]) \times 8 + 5] for 16 bpp color depth

6.5.11 CRT Timing

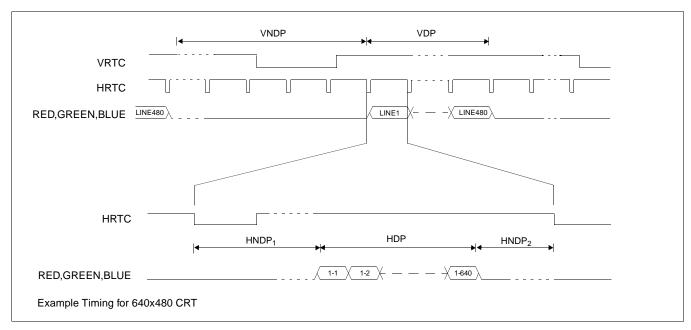
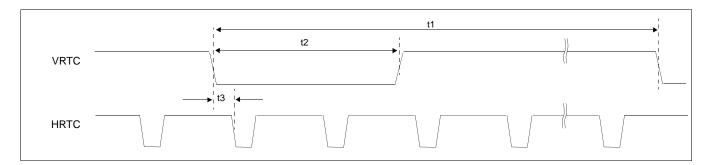



Figure 6-34: CRT Timing

VDP = (REG[057h] bits [1:0], REG[056h] bits [7:0]) + 1 = Vertical Display Period **VNDP** = Vertical Non-Display Period = (REG[058h] bits [6:0]) + 1= $((REG[050h] bits [6:0]) + 1) \times 8Ts$ HDP = Horizontal Display Period **HNDP** = Horizontal Non-Display Period $= HNDP_1 + HNDP_2$ $= ((REG[052h] bits [5:0]) + 1) \times 8Ts$ $HNDP_2$ = HRTC Start Position = (REG[053h] bits [5:0]) \times 8 + 4Ts for 4/8 bpp

= (REG[053h] bits [5:0]) \times 8 + 5Ts for 16 bpp

Figure 6-35: CRT A.C. Timing

Table 6-28: CRT A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	VRTC cycle time		note 1		lines
t2	VRTC pulse width low		note 2		lines
t3	VRTC falling edge to FPLINE falling edge phase difference		note 3		Ts

- 1. t1 = [((REG[057h] bits 1:0, REG[056h] bits 7:0) + 1) + ((REG[058h] bits 6:0) + 1)]
- 2. t2 = [((REG[05Ah] bits 2:0) + 1)]
- 3. t3 = $[((REG[053h] bits 4:0) + 1) \times 8]$

6.6 TV Timing

6.6.1 TV Output Timing

The overall NTSC and PAL video timing is shown in Figure 6-36: and Figure 6-37: respectively.

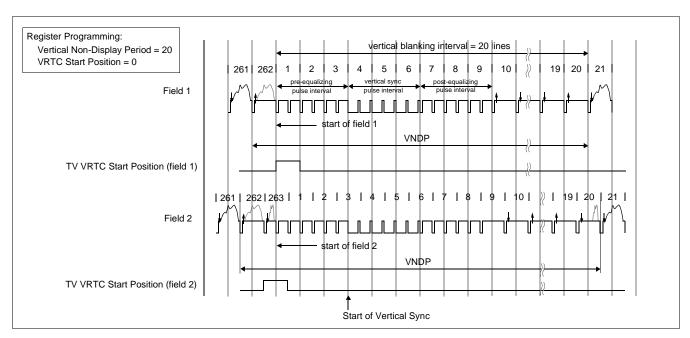


Figure 6-36: NTSC Video Timing

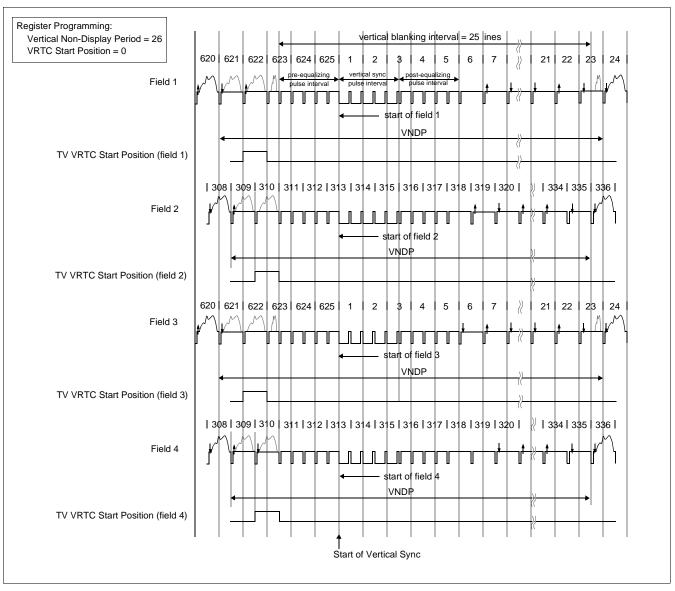


Figure 6-37: PAL Video Timing

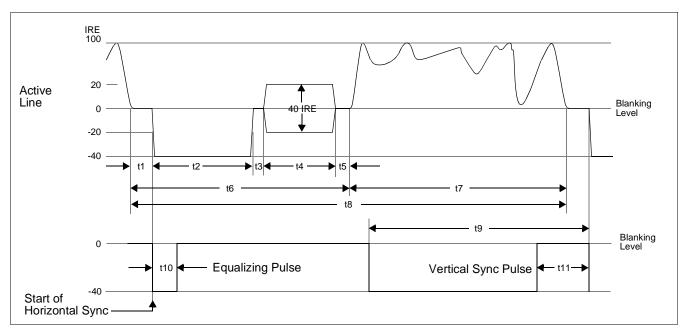


Figure 6-38: Horizontal Timing for NTSC/PAL

Table 6-29: Horizontal Timing for NTSC/PAL

Symbol	Parameter	NTSC	PAL	Units
T _{4SC}	(4x Subcarrier clock) period	69.841	56.387	ns
t1	Front Porch	note 1	note 1	T _{4SC}
t2	Horizontal Sync	67	83	T _{4SC}
t3	Breezeway	9	16	T _{4SC}
t4	Color Burst	39	44	T _{4SC}
t5	Color Back Porch	note 2	note 3	T _{4SC}
t6	Horizontal Blanking	note 4	note 5	T _{4SC}
t7	Active Video	note 6	note 6	T _{4SC}
t8	Line Period	910	1135	T _{4SC}
t9	Half Line Period	455	568 / 567	T _{4SC}
t10	Equalizing Pulse	33	41	T _{4SC}
t11	Vertical Serration	67	83	T _{4SC}

- 1. $t1 = ((REG[053] bits[5:0]) + 1) \times 8 6 (4bpp, 8bpp modes)$
 - $= ((REG[053] bits[5:0]) + 1) \times 8 5 (16bpp mode)$
- 2. $t5_{NTSC} = (((REG[052] bits[5:0]) \times 8) + 6) (((REG[053] bits[5:0]) + 1) \times 8) 109 (4bpp, 8bpp modes)$
 - $= (((REG[052] bits[5:0]) \times 8) + 6) (((REG[053] bits[5:0]) + 1) \times 8) 110 (16bpp mode)$
- 3. $t5_{PAL} = (((REG[052] bits[5:0]) \times 8) + 7) (((REG[053] bits[5:0]) + 1) \times 8) 137 (4bpp, 8bpp modes)$
 - = $(((REG[052] bits[5:0]) \times 8) + 7) (((REG[053] bits[5:0]) + 1) \times 8) 138 (16bpp mode)$
- 4. $t6_{NTSC} = ((REG[052] bits[5:0]) \times 8) + 6$
- 5. $t6_{PAI} = ((REG[052] bits[5:0]) \times 8) + 7$
- 6. $t7 = ((REG[050] bits[6:0]) + 1) \times 8$

Important:

REG[050] and REG[052] must be programmed to satisfy the Line Period (t8).

For NTSC, $(((REG[050] bits[6:0]) + 1) \times 8) + (((REG[052] bits[5:0]) \times 8) + 6) = 910.$

For PAL, $(((REG[050] bits[6:0]) + 1) \times 8) + (((REG[052] bits[5:0]) \times 8) + 7) = 1135$.

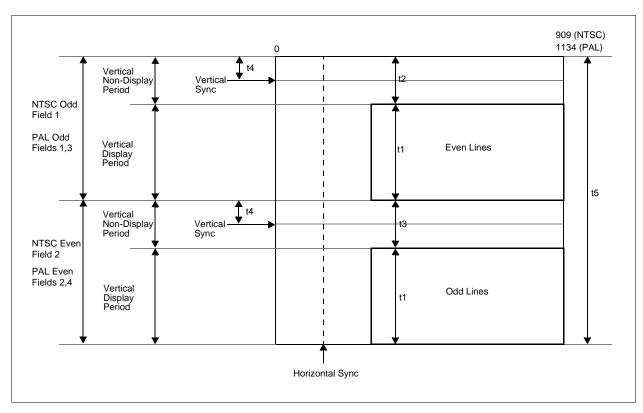


Figure 6-39: Vertical Timing for NTSC/PAL

Table 6-30: Vertical Timing for NTSC/PAL

Symbol	Parameter	NTSC	PAL	Units
T _{LINE}	Line Period	63.55556	63.99964	us
t1	Vertical Field Period	note 1	note 1	T _{LINE}
t2	Vertical Even Blanking	note 2	note 2	T _{LINE}
t3	Vertical Odd Blanking	note 3	note 3	T _{LINE}
t4	Vertical Sync Position	note 4	note 5	T _{LINE}
t5	Frame Period	525	625	T _{LINE}

- 1. $t1 = (\{(REG[057h] bits[1:0]), (REG[056] bits[7:0])\} + 1) \div 2 \text{ (rounded up)}$
- 2. t2 = ((REG[058h] bits[6:0]) + 1) for NTSC field 1
 - = ((REG[058h] bits [6:0]) + 2) for PAL fields 1 and 3
- 3. t3 = ((REG[058h] bits[6:0]) + 2) for NTSC field 2
 - = ((REG[058h] bits [6:0]) + 1) for PAL fields 2 and 4
- 4. $t4_{NTSC} = ((REG[059h] bits[6:0]) + 4)$ for field 1
 - = ((REG[059h] bits[6:0]) + 4.5) for field 2
- 5. $t4_{PAL} = ((REG[059h] bits[6:0]) + 5)$ for field 1 and field 3 = ((REG[059h] bits[6:0]) + 4.5) for field 2 and field 4

Important

REG[056], REG[057], and REG[058] must be programmed to satisfy the Frame Period (t5). For NTSC, ({(REG[057] bits[1:0]), (REG[056] bits[7:0])} + 1) + ((REG[058] bits[6:0]) + 1) \times 2 + 1) = 525 For PAL, ({(REG[057] bits[1:0]), (REG[056] bits[7:0])} + 1) + ((REG[058] bits[6:0]) + 1) \times 2 + 1) = 625.

6.7 MediaPlug Interface Timing

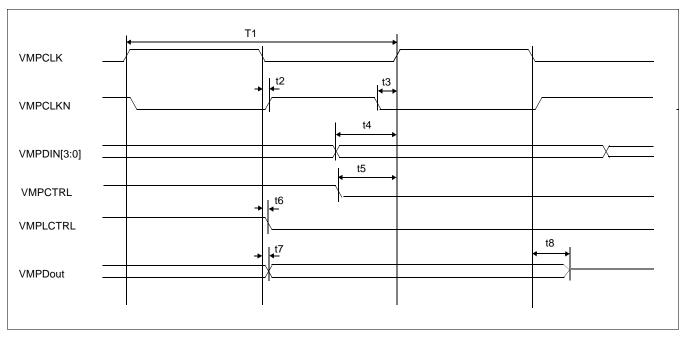


Figure 6-40: MediaPlug A.C. Timing

Note

The above timing diagram assumes no load.

Symbol Parameter Min Max Units T1 VMPCLK clock period 50 ns VMPCLK falling edge to VMPCLKN rising edge skew t2 0.1 0.6 ns VMPCLKN falling edge to VMPCLK rising edge skew .3 1.1 t3 ns Input data setup 17 t4 ns VMPCTRL setup t5 16 ns Local control signal delay from VMPCLK falling edge 0 t6 1.1 ns Output data delay from VMPCLK falling edge t7 0 1.1 ns t8 Output data tristate delay from VMPCLK falling edge 0.4 1.4

Table 6-31: MediaPlug A.C. Timing

Note

VMPCLK, VMPCLKN are twice the period of the MediaPlug Clock. See Section 7, "Clocks" on page 91.

7 Clocks

7.1 Clock Overview

The following diagram provides a logical representation of the S1D13806 internal clocks.

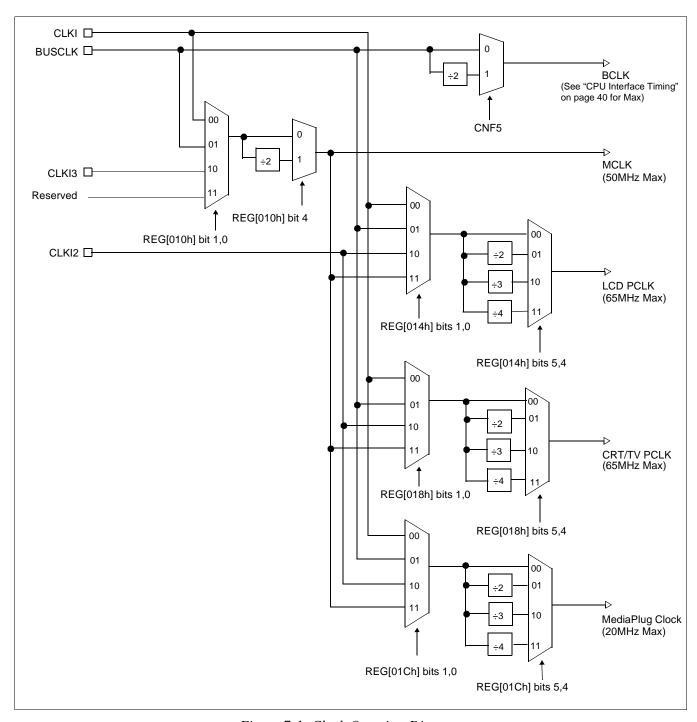


Figure 7-1: Clock Overview Diagram

7.2 Clock Descriptions

7.2.1 MCLK

MCLK should be configured as close to its maximum (50MHz) as possible. The S1D13806 contains sophisticated clock management, therefore, very little power is saved by reducing the MCLK frequency.

The frequency of MCLK is directly proportional to the bandwidth of the video memory. The bandwidth available to the CPU (for screen updates) is that left over after screen refresh takes its share. CPU bandwidth can be seriously reduced when the MCLK frequency is reduced, especially for high-resolution, high-color modes where screen refresh has high bandwidth requirements.

7.2.2 LCD PCLK

LCD PCLK should be chosen to match the optimum frame rate of the panel. See Section 18, "Clocking" on page 186 for details on the relationship between PCLK and frame rate, and for the maximum supportable PCLK frequencies for any given video mode.

Some flexibility is possible in the selection of PCLK. Firstly, panels typically have a range of permissible frame rates. Secondly, it may be possible to choose a higher PCLK frequency and tailor the horizontal non-display period (see REG[052h]) to bring down the frame-rate to its optimal value.

7.2.3 CRT/TV PCLK

TVs and older CRTs usually have very precise frequency requirements, so it may be necessary to dedicate one of the clock inputs to this function. More recent CRTs work within a range of frequencies, so it may be possible to support them with the BUSCLK or MCLK.

7.2.4 MediaPlug Clock

The MediaPlug Clock frequency is internally divided by 2 to provide the output signals VMPCLK and VMPCLKN for the MediaPlug interface. VMPCLK requires a clock in the range of 6-8MHz, therefore the MediaPlug Clock must be in the range of 12-16MHz. For AC timing see Section 6.7, "MediaPlug Interface Timing" on page 90.

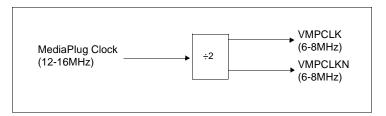


Figure 7-2: MediaPlug Clock Output Signals

7.3 Clock Selection

Table 7-1: Clock Selection

	Clock Source	Internal Clocks						
	Options	MCLK	LCD PCLK	CRT/TV PCLK ¹	MediaPlug Clock			
	CLKI	REG[010h] = 00h	REG[014h] = 00h	REG[018h] = 00h	REG[01Ch] = 00h			
	CLKI ÷ 2	REG[010h] = 10h	REG[014h] = 10h	REG[018h] = 10h	REG[01Ch] = 10h			
	CLKI ÷ 3	_	REG[014h] = 20h	REG[018h] = 20h	REG[01Ch] = 20h			
	CLKI ÷ 4	_	REG[014h] = 30h	REG[018h] = 30h	REG[01Ch] = 30h			
	CLKI2	_	REG[014h] = 02h	REG[018h] = 02h	REG[01Ch] = 02h			
	CLKI2 ÷ 2	_	REG[014h] = 12h	REG[018h] = 12h	REG[01Ch] = 12h			
"	CLKI2 ÷ 3	_	REG[014h] = 22h	REG[018h] = 22h	REG[01Ch] = 22h			
Clocks	CLKI2 ÷ 4	_	REG[014h] = 32h	REG[018h] = 32h	REG[01Ch] = 32h			
	CLKI3	REG[010h] = 02h	_	_	_			
rnal	CLKI3 ÷ 2	REG[010h] = 12h	_	_	_			
External	BUSCLK	REG[010h] = 01h	REG[014h] = 01h	REG[018h] = 01h	REG[01Ch] = 01h			
ш	BUSCLK ÷ 2	REG[010h] = 11h	REG[014h] = 11h	REG[018h] = 11h	REG[01Ch] = 11h			
	BUSCLK ÷ 3	_	REG[014h] = 21h	REG[018h] = 21h	REG[01Ch] = 21h			
	BUSCLK ÷ 4	_	REG[014h] = 31h	REG[018h] = 31h	REG[01Ch] = 31h			
	MCLK ²	_	REG[014h] = 03h	REG[018h] = 03h	REG[01Ch] = 03h			
	MCLK ÷ 2 ²	_	REG[014h] = 13h	REG[018h] = 13h	REG[01Ch] = 13h			
	MCLK ÷ 3 ²	_	REG[014h] = 23h	REG[018h] = 23h	REG[01Ch] = 23h			
	MCLK ÷ 4 ²	_	REG[014h] = 33h	REG[018h] = 33h	REG[01Ch] = 33h			

Note

- 1. The CRT/TV pixel clock may be further multiplied by 2 when TV with Flicker Filter is enabled using REG[018h] bit 7.
- 2. MCLK may be a previously divided down version of CLKI, CLKI3, or BUSCLK.

7.4 Clocks vs. Functions

The S1D13806 has five clock signals. Not all clock signals must be active for certain functions to be carried out. The following table shows which clocks are required for each function.

Required Clocks¹ **Function LCD PCLK BUSCLK CRT/TV PCLK MCLK MediaPlug Clock** Yes² Register read/write No No No No LCD LUT Yes Yes read/write CRT/TV LUT Yes Yes read/write Yes³ Memory read/write Yes 2D Operation Yes Yes MediaPlug Registers Yes Yes read/write Power Save Mode see Section 19, "Power Save Mode" on page 199

Table 7-2: Clocks vs. Functions

Note

¹ The S1D13806 contains sophisticated power management that dynamically shuts down clocks when not required.

² Before turning off the BUSCLK source externally, wait a minimum of 3 BUSCLK after a register read and a minimum of 4 BUSCLK after a register write.

³ Before turning off the MCLK source externally, wait a minimum of 6 MCLK after a memory read and a minimum of 16 MCLK after a memory write.

8 Registers

This section discusses how and where to access the S1D13806 registers. It also provides detailed information about the layout and usage of each register.

8.1 Initializing the S1D13806

Before programming the S1D13806 registers, the following bits must be set.

- Register/Memory Select bit (REG[001h] bit 7)
- SDRAM Initialization bit (REG[020h] bit 7)

8.1.1 Register Memory Select Bit

At reset, the Register/Memory Select bit is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible **until a write to REG[001h] sets bit 7 to 0 making all registers and memory accessible**. When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.

8.1.2 SDRAM Initialization Bit

To initialize the embedded SDRAM in the S1D13806, this bit must be set to 1 a minimum of 200µs after reset. **This bit must be set to 1 before memory access is performed.**

8.2 Register Mapping

The S1D13806 registers are memory-mapped. When the system decodes the input pins as CS#=0 and M/R#=0, the registers may be accessed. The register space is decoded by A[20:0].

When A20 = 1 the BitBLT data register ports are decoded allowing the system to access the display buffer through the 2D BitBLT engine using address lines A[19:0]. When A20 = 0 and A12 = 0 the registers are decoded using A[8:0] as an index. When A20 = 0 and A12 = 1 the MediaPlug register ports are decoded using A[11:0].

The MediaPlug register ports are defined only when the configuration input CONF7 = 1 on reset. When CONF7 = 0 on reset, A12 is always treated as 0 and the MediaPlug register space is not available - see Table 4-9, "Summary of Power-On/Reset Options," on page 34.

Table 8-1, "Register Mapping with CS# = 0 and M/R# = 0" shows the decoding for each register type.

Table 8-1: Register Mapping	with $CS\# = 0$ and $M/R\# = 0$
-----------------------------	---------------------------------

Register Types (Range)	Address A20-A0 Decoding
BitBLT data registers (1M byte)	10 0000 to 1F FFFFh
MediaPlug registers (4K bytes)	1000h to 1FFFh
On-chip registers (512 bytes)	0 to 1FFh

Note

The registers may be aliased within the allocated register space. If aliasing is undesirable, the register space must be fully decoded.

8.3 Register Set

The S1D13806 register set is as follows.

Table 8-2: S1D13806 Register Set

Register	Pg	Register	Pg
	Basic R	egisters	
REG[000h] Revision Code Register	99	REG[001h] Miscellaneous Register	99
Gen	eral IO P	ins Registers	
REG[004h] General IO Pins Configuration Register 0	100	REG[005h] General IO Pins Configuration Register 1	100
REG[008h] General IO Pins Control Register 0	100	REG[009h] General IO Pins Control Register 1	101
Configu	ration R	eadback Register	
REG[00Ch] Configuration Status Register	101		
Clock	Configu	ration Registers	
REG[010h] Memory Clock Configuration Register	101	REG[014h] LCD Pixel Clock Configuration Register	102
REG[018h] CRT/TV Pixel Clock Configuration Register	103	REG[01Ch] MediaPlug Clock Configuration Register	104
REG[01Eh] CPU To memory Wait State Select Register	105		
Memory	/ Configu	uration Registers	
REG[020h] Memory Configuration Register	106	REG[021h] SDRAM Refresh Rate Register	107
REG[02Ah] SDRAM Timing Control Register 0	107	REG[02Bh] SDRAM Timing Control Register 1	107
Panel	Configu	ration Registers	
REG[030h] Panel Type Register	108	REG[031h] MOD Rate Register	109
REG[032h] LCD Horizontal Display Width Register	109	REG[034h] LCD Horizontal Non-Display Period Register	110
REG[036h] TFT FPLINE Pulse Width Register	111	REG[038h] LCD Vertical Display Height Register 0	111
REG[039h] LCD Vertical Display Height Register 1	111	REG[03Ah] LCD Vertical Non-Display Period Register	112
REG[03Bh] TFT FPFRAME Start Position Register	112	REG[03Ch] TFT FPFRAME Pulse Width Register	113
LCD I	Display N	Mode Registers	
REG[040h] LCD Display Mode Register	113	REG[041h] LCD Miscellaneous Register	115
REG[042h] LCD Display Start Address Register 0	116	REG[043h] LCD Display Start Address Register 1	116
REG[044h] LCD Display Start Address Register 2	116	REG[046h] LCD Memory Address Offset Register 0	116
REG[047h] LCD Memory Address Offset Register 1	116	REG[048h] LCD Pixel Panning Register	117
REG[04Ah] LCD Display FIFO High Threshold Control Regist	er117	REG[04Bh] LCD Display FIFO Low Threshold Control Registe	r 118
CRT/TV	Configu	uration Registers	
REG[050h] CRT/TV Horizontal Display Width Register	118	REG[052h] CRT/TV Horizontal Non-Display Period Register	118
REG[053h] CRT/TV HRTC Start Position Register	119	REG[054h] CRT/TV HRTC Pulse Width Register	119
REG[056h] CRT/TV Vertical Display Height Register 0	120	REG[057h] CRT/TV Vertical Display Height Register 1	120
REG[058h] CRT/TV Vertical Non-Display Period Register	120	REG[059h] CRT/TV VRTC Start Position Register	121
REG[05Ah] CRT VRTC Pulse Width Register	121	REG[05Bh] TV Output Control Register	122
CRT/TV	/ Display	Mode Registers	
REG[060h] CRT/TV Display Mode Register	123	REG[062h] CRT/TV Display Start Address Register 0	124
REG[063h] CRT/TV Display Start Address Register 1	124	REG[064h] CRT/TV Display Start Address Register 2	124
REG[066h] CRT/TV Memory Address Offset Register 0	124	REG[067h] CRT/TV Memory Address Offset Register 1	124
-	125	REG[06Ah] CRT/TV FIFO High Threshold Control Register	125
REG[068h] CRT/TV Pixel Panning Register	123	REGIOGALI CK 1/1 V FIFO Flight Threshold Control Register	. — -

Table 8-2: S1D13806 Register Set

	Register	Pg	Register	Pg
	LCD	Ink/Cur	sor Registers	
I	REG[070h] LCD Ink/Cursor Control Register	126	REG[071h] LCD Ink/Cursor Start Address Register	127
I	REG[072h] LCD Cursor X Position Register 0	127	REG[073h] LCD Cursor X Position Register 1	127
I	REG[074h] LCD Cursor Y Position Register 0	128	REG[075h] LCD Cursor Y Position Register 1	128
	REG[076h] LCD Ink/Cursor Blue Color 0 Register	128	REG[077h] LCD Ink/Cursor Green Color 0 Register	129
I	REG[078h] LCD Ink/Cursor Red Color 0 Register	129	REG[07Ah] LCD Ink/Cursor Blue Color 1 Register	129
ı	REG[07Bh] LCD Ink/Cursor Green Color 1 Register	129	REG[07Ch] LCD Ink/Cursor Red Color 1 Register	129
I	REG[07Eh] LCD Ink/Cursor FIFO High Threshold Register	130		
	CRT/T	ัV Ink/Cเ	ursor Registers	
	REG[080h] CRT/TV Ink/Cursor Control Register	130	REG[081h] CRT/TV Ink/Cursor Start Address Register	131
	REG[082h] CRT/TV Cursor X Position Register 0	132	REG[083h] CRT/TV Cursor X Position Register 1	132
I	REG[084h] CRT/TV Cursor Y Position Register 0	132	REG[085h] CRT/TV Cursor Y Position Register 1	132
	REG[086h] CRT/TV Ink/Cursor Blue Color 0 Register	133	REG[087h] CRT/TV Ink/Cursor Green Color 0 Register	133
	REG[088h] CRT/TV Ink/Cursor Red Color 0 Register	133	REG[08Ah] CRT/TV Ink/Cursor Blue Color 1 Register	133
	REG[08Bh] CRT/TV Ink/Cursor Green Color 1 Register	134	REG[08Ch] CRT/TV Ink/Cursor Red Color 1 Register	134
	REG[08Eh] CRT/TV Ink/Cursor FIFO High Threshold Register	r 134		
	BitBLT	Configu	ration Registers	
	REG[100h] BitBLT Control Register 0	135	REG[101h] BitBLT Control Register 1	136
	REG[102h] BitBLT ROP Code/Color Expansion Register	137	REG[103h] BitBLT Operation Register	138
	REG[104h] BitBLT Source Start Address Register 0	139	REG[105h] BitBLT Source Start Address Register 1	139
	REG[106h] BitBLT Source Start Address Register 2	139	REG[108h] BitBLT Destination Start Address Register 0	140
	REG[109h] BitBLT Destination Start Address Register 1	140	REG[10Ah] BitBLT Destination Start Address Register 2	140
	REG[10Ch] BitBLT Memory Address Offset Register 0	140	REG[10Dh] BitBLT Memory Address Offset Register 1	140
I	REG[110h] BitBLT Width Register 0	141	REG[111h] BitBLT Width Register 1	141
	REG[112h] BitBLT Height Register 0	141	REG[113h] BitBLT Height Register 1	141
I	REG[114h] BitBLT Background Color Register 0	142	REG[115h] BitBLT Background Color Register 1	142
	REG[118h] BitBLT Foreground Color Register 0	142	REG[119h] BitBLT Foreground Color Register 1	142
	Loo	k-Up Tal	ble Registers	
	REG[1E0h] Look-Up Table Mode Register	143	REG[1E2h] Look-Up Table Address Register	143
	REG[1E4h] Look-Up Table Data Register	144		
	Power Sa	ve Confi	guration Registers	
I	REG[1F0h] Power Save Configuration Register	144	REG[1F1h] Power Save Status Register	145
	Mis	cellane	ous Register	
I	REG[1F4h] CPU-To-Memory Access Watchdog Timer Registe	er 146		
	Commo	n Displa	y Mode Register	
I	REG[1FCh] Display Mode Register	147		
	Media	Plug Co	ntrol Registers	
I	REG[1000h] MediaPlug LCMD Register	148	REG[1002h] MediaPlug Reserved LCMD Register	150
I	REG[1004h] MediaPlug CMD Register	150	REG[1006h] MediaPlug Reserved CMD Register	151
	Med	iaPlug D	ata Registers	
I	REG[1008h] to REG[1FFEh] MediaPlug Data Registers	152		
	Bit	BLT Dat	a Registers	
I	REG[100000h] to REG[1FFFFEh] BitBLT Data Registers	152		
	•		•	

8.4 Register Descriptions

8.4.1 Basic Registers

Revision Co	de Register						RO
Product Code Bit 5	Product Code Bit 4	Product Code Bit 3	Product Code Bit 2	Product Code Bit 1	Product Code Bit 0	Revision Code Bit 1	Revision Code Bit 0
bits 7-2	This	duct Code Bits s read-only reg D13806 is 0001	gister indicates	the product co	ode of the contr	oller. The prod	duct code for
bits 1-0		, ,		the revision co	ode of the contr	roller. The rev	ision code is

Miscellaneou REG[001h]	us Register						RW
Register/ Memory Select	n/a	n/a	n/a	n/a	Reserved	Reserved	Reserved

bit 7	Register/Memory Select Bit At reset, the Register/Memory Select bit is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible until a write to REG[001h] sets bit 7 to 0 making all registers and memory accessible . When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.
bit 2	Reserved.

	this can sometimes give the to remember to clear this
bit 2	Reserved. This bit must be set to 0.
bit 1	Reserved. This bit must be set to 0.
bit 0	Reserved.

This bit must be set to 0.

8.4.2 General IO Pins Registers

General IO P REG[004h]	ins Configura	ition Register	0				RW
GPIO7 Pin	GPIO6 Pin	GPIO5 Pin	GPIO4 Pin	GPIO3 Pin	GPIO2 Pin	GPIO1 Pin	GPIO0 Pin
IO Config.	IO Config.	IO Config.	IO Config.	IO Config.	IO Config.	IO Config.	IO Config.

bit 7-0

GPIO[7:0] Pin IO Configuration Bits

When bit n = 1, GPIO[n] is configured as an output pin. (where n ranges from 0 to 7) When bit n = 0 (default), GPIO[n] is configured as an input pin. (where n ranges from 0 to 7).

General IO Pins Configuration Register 1 REG[005h] RW							
n/a	n/a	n/a	GPIO12 Pin IO Config.	GPIO11 Pin IO Config.	GPIO10 Pin IO Config.	GPIO9 Pin IO Config.	GPIO8 Pin IO Config.

bit 4-0

GPIO[12:8] Pin IO Configuration Bits

When bit n = 1, GPIO[n+8] is configured as an output pin. (where n ranges from 0 to 4) When bit n = 0 (default), GPIO[n+8] is configured as an input pin. (where n ranges from 0 to 4)

Note

Note that CONF7 must be properly configured at the rising edge of RESET# to enable GPIO12 as an IO pin, otherwise GPIO12 is used for the Media Plug interface and this register has no effect. The following table shows GPIO12 usage.

Table 8-3: Media Plug/GPIO12 Pin Functionality

Pin	CONF7 on Reset			
PIII	0	1		
GPIO12	GPIO12	VMPEPWR		

General IO P REG[008h]	ins Control R	egister 0					RW
GPIO7 Pin	GPIO6 Pin	GPIO5 Pin	GPIO4Pin	GPIO3 Pin	GPIO2 Pin	GPIO1 Pin	GPIO0 Pin
IO Status	IO Status	IO Status	IO Status	IO Status	IO Status	IO Status	IO Status

bit 7-0

GPIO[7:0] Pin IO Status Bits

When GPIO[n] is configured as an output, writing a 1 to bit n drives GPIO[n] high and writing a 0 to this bit drives GPIO[n] low. (n ranges from 0 to 7)

When GPIO[n] is configured as an input, a read from bit n returns the status of GPIO[n]. (n ranges from 0 to 7)

General IO P	General IO Pins Control Register 1							
REG[009h]							RW	
n/a	n/a	n/a	GPIO12 Pin IO Status	GPIO11 Pin IO Status	GPIO10 Pin IO Status	GPIO9 Pin IO Status	GPIO8 Pin IO Status	

bit 4-0

GPIO[12:8] Pin IO Status Bits

When GPIO[n+8] is configured as an output, writing a 1 to bit n drives GPIO[n+8] high and writing a 0 to this bit drives GPIO[n+8] low. (n ranges from 0 to 4)

When GPIO[n+8] is configured as an input, a read from bit n+8 returns the status of GPIO[n+8]. (n ranges from 0 to 4)

Note

CONF7 must be properly configured at the rising edge of RESET# to enable GPIO12 as an IO pin, otherwise GPIO12 is used for the Media Plug interface and this register has no effect on GPIO12. See Table 8-3, "Media Plug/GPIO12 Pin Functionality" for GPIO12 usage.

8.4.3 Configuration Readback Register

Configuration Status Register REG[00Ch] RO							
CONF[7]	CONF[6]	CONF[5]	CONF[4]	CONF[3]	CONF[2]	CONF[1]	CONF[0]
Config. Status	Config. Status	Config. Status	Config. Status	Config. Status	Config. Status	Config. Status	Config. Status

bits 7-0

I

CONF[7:0] Configuration Status Bits

These read-only bits return the status of CONF[7:0] at the rising edge of RESET#.

8.4.4 Clock Configuration Registers

Memory Clock Configuration Register REG[010h] RW							RW
n/a	n/a	n/a	MCLK Divide Select	n/a	n/a	MCLK Source Select Bit 1	MCLK Source Select Bit 0

Note

For further information on MCLK, see Section 7.2, "Clock Descriptions" on page 92.

bit 4 MCLK Divide Select

When this bit = 1, the internal memory clock (MCLK) frequency is half of the MCLK source frequency.

When this bit = 0, the memory clock frequency is equal to the MCLK source frequency.

Note

The MCLK frequency should always be set to the maximum frequency allowed by the SDRAM. This provides maximum performance and minimizes overall system power consumption.

bit 1-0 MCLK Source Select Bits [1:0]

These bits determine the source of the internal memory clock (MCLK).

Table 8-4: MCLK Source Select

MCLK Source Select Bits	MCLK Source
00	CLKI
01	BUSCLK
10	CLKI3
11	Reserved

Note

The MCLK Divide Select bit must be set to 1 before changing the MCLK Source Select bits.

REG[014h] RW							
n/a	n/a	LCD PCLK Divide Select Bit 1	LCD PCLK Divide Select Bit 0	n/a	n/a	LCD PCLK Source Select Bit 1	LCD PCLK Source Select Bit 0

Note

For further information on the LCD PCLK, refer to Section 7.2, "Clock Descriptions" on page 92.

bits 5-4 LCD PCLK Divide Select Bits [1:0]

These bits determine the divide used to generate the LCD pixel clock from the LCD pixel clock source.

Table 8-5: LCD PCLK Divide Selection

LCD PCLK Divide Select Bits	LCD PCLK Source to LPCLK Frequency Ratio
00	1:1
01	2:1
10	3:1
11	4:1

bits 1-0

LCD PCLK Source Select Bits [1:0]

These bits determine the source of the pixel clock for the LCD display.

Table 8-6: LCD PCLK Source Selection

LCD PCLK Source Select Bits	LCD PCLK Source
00	CLKI
01	BUSCLK
10	CLKI2
11	MCLK

Note

MCLK may be a previously divided down version of CLKI, CLKI3, or BUSCLK.

CRT/TV Pixe REG[018h]	l Clock Confi	guration Regi	ster				RW
Flicker Filter Clock Enable	n/a	CRT/TV PCLK Divide Select Bit 1	CRT/TV PCLK Divide Select Bit 0	n/a	n/a	CRT/TV PCLK Source Select Bit 1	CRT/TV PCLK Source Select Bit 0

Note

For further information on the CRT/TV PCLK, refer to Section 7.2, "Clock Descriptions" on page 92.

bit 7 Flicker Filter Clock Enable

This bit must be set to 1 when TV with flicker filter is enabled. For details on TV with

flicker filter, see REG[1FCh] bits 2-0.

bits 5-4 CRT/TV PCLK Divide Select Bits[1:0]

These bits determine the divide used to generate the CRT/TV pixel clock from the

CRT/TV pixel clock source.

Table 8-7: CRT/TV PCLK Divide Selection

CRT/TV PCLK Divide Select Bits	CRT/TV PCLK Source to DPCLK Frequency Ratio
00	1:1
01	2:1
10	3:1
11	4:1

bits 1-0 CRT/TV PCLK Source Select Bits [1:0]

These bits determine the source of the pixel clock for the CRT/TV display.

Table 8-8: CRT/TV PCLK Source Selection

CRT/TV PCLK Source Select Bits	CRT/TV PCLK Source
00	CLKI
01	BUSCLK
10	CLKI2
11	MCLK

Note

MCLK may be a previously divided down version of CLKI, CLKI3, or BUSCLK.

MediaPlug Clock Configuration Register REG[01Ch] RW							
n/a	n/a	MediaPlug Clock Divide Select Bit 1	MediaPlug Clock Divide Select Bit 0	n/a	n/a	MediaPlug Clock Source Select Bit 1	MediaPlug Clock Source Select Bit 0

Note

For further information on the MediaPlug Clock, refer to Section 7.2, "Clock Descriptions" on page 92.

bits 5-4 MediaPlug Clock Divide Select Bits [1:0]

These bits determine the divide used to generate the MediaPlug Clock from the MediaPlug Clock source.

Table 8-9: MediaPlug Clock Divide Selection

MediaPlug Clock Divide Select Bits	MediaPlug Clock Source to MediaPlug Clock Frequency Ratio
00	1:1
01	2:1
10	3:1
11	4:1

bits 1-0

I

MediaPlug Clock Source Select Bits [1:0]

These bits determine the source of the MediaPlug Clock for the MediaPlug Interface. See Section 6.7, "MediaPlug Interface Timing" on page 90 for AC Timing.

Table 8-10: MediaPlug Clock Source Selection

MediaPlug Clock Source Select Bits	MediaPlug Clock Source
00	CLKI
01	BUSCLK
10	CLKI2
11	MCLK

Note

MCLK may be a previously divided down version of CLKI, CLKI3, or BUSCLK.

CPU To Memory Wait State Select Register REG[01Eh] RW								
n/a	n/a	n/a	n/a	n/a	n/a	CPU to Memory Wait State Select Bit 1	CPU to Memory Wait State Select Bit 0	

bits 1-0

CPU to Memory Wait State Select Bits [1:0]

These bits are used to optimize the handshaking between the host interface and the memory controller. The bits should be set according to the relationship between BCLK and MCLK (memory clock)

Note

BCLK can be either BUSCLK or BUSCLK ÷ 2 depending on the setting of CONF5 (see Table 4-9, "Summary of Power-On/Reset Options," on page 34).

Failure to meet the following conditions may lead to system crash which is recoverable only by RESET.

Table 8-11: Minimum Memory Timing Selection

Wait State Bits [1:0]	Condition
00	no restrictions
01	2 × period (MCLK) - 4ns > period(BCLK)
10	period(MCLK) - 4ns > period(BCLK)
11	Reserved

8.4.5 Memory Configuration Registers

Memory Configuration Register REG[020h] RV							
SDRAM Init	n/a						

bit 7

SDRAM Initialization

This bit must be set to 1 before memory accesses are performed. Setting this bit to 1 after reset initializes the embedded SDRAM. Subsequent toggling of this bit after the first initialization has no effect.

When the SDRAM Initialization bit is set, the actual initialization sequence occurs at the first SDRAM refresh cycle. The initialization sequence requires approximately 16 MCLKs to complete and memory accesses cannot be made while the initialization is in progress. Any concurrently issued memory access will occur after the completion of the initialization sequence. At least one SDRAM refresh period must happen before issuing any memory accesses.

Note

The default SDRAM refresh rate is based on the MCLK source frequency and is set using REG[21h] bits 2-0. If the refresh rate or MCLK rate is changed, the wait time will be different.

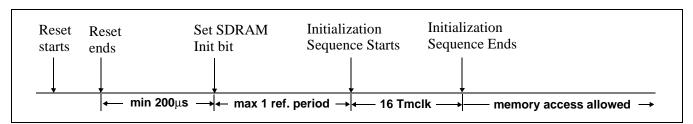


Figure 8-1: SDRAM Initialization Sequence

SDRAM Refresh Rate Register REG[021h]							
n/a	Reserved	n/a	n/a	n/a	Reserved	SDRAM Refresh Rate Bit 1	SDRAM Refresh Rate Bit 0

bit 6 Reserved.

This bit must be set to 0.

bit 2 Reserved.

This bit must be set to 0.

bits 1-0 SDRAM Refresh Rate Select Bits [2:0]

These bits are set according to the MCLK source frequency (i.e., BUSCLK, CLKI, or

CLKI3 as determined by REG[010h] bits 1-0).

Table 8-12: SDRAM Refresh Rate Selection

SDRAM Refresh Rate Bits [1:0]	MCLK Source Frequency (MHz)
00	4.096 <= MClk < 8.192
01	8.192 <= MClk < 16.384
10	16.384 <= MClk < 32.768
11	32.768 <= MClk <= 50.000

SDRAM Timi REG[02Ah]	ng Control Re	egister 0					RW
SDRAM	SDRAM	SDRAM	SDRAM	SDRAM	SDRAM	SDRAM	SDRAM
Timing	Timing	Timing	Timing	Timing	Timing	Timing	Timing
Control Bit 7	Control Bit 6	Control Bit 5	Control Bit 4	Control Bit 3	Control Bit 2	Control Bit 1	Control Bit 0

SDRAM Timing Control Register 1 REG[02Bh] RW							
			SDRAM	SDRAM	SDRAM	SDRAM	SDRAM
n/a	n/a	n/a	Timing	Timing	Timing	Timing	Timing
			Control Bit 12	Control Bit 11	Control Bit 10	Control Bit 9	Control Bit 8

REG[02Ah] bits 7-0 SDRAM Timing Control Bits [12:0]

REG[02Bh] bits 4-0 The SDRAM Timing Control registers must be set according to the frequency of MCLK as follows.

Table 8-13: SDRAM Timings Control Register Settings

MCLK Source Frequency (MHz)	REG[02Ah]	REG[02Bh]
42 ≤ MCLK ≤ 50	00h	01h
33 ≤ MCLK < 42	00h	12h
MCLK < 33	11h	13h

8.4.6 Panel Configuration Registers

Panel Type F REG[030h]	Register						RW
EL Panel Mode Enable	TFT 2x Data Format Select	Panel Data Width Bit 1	Panel Data Width Bit 0	Panel Data Format Select	Color/Mono. Panel Select	Dual/Single Panel Select	TFT/ Passive LCD Panel Select

bit 7 EL Panel Mode Enable

When this bit = 1, EL Panel support circuit is enabled.

When this bit = 0, there is no hardware effect.

This bit enables the S1D13806 built-in circuit for EL panels which require the Frame Rate Modulation (FRM) to remain static for one frame every 262143 frames (approximately 1 hour at 60Hz refresh). When this bit is enabled, the need for external circuitry to perform the above function is eliminated.

bit 6 TFT 2x Data Format Select

For TFT/D-TFD only.

When this bit = 1, the TFT 2x Data format is selected.

When this bit = 0, the standard TFT Data format is selected.

For details on the TFT 2x Data format, see Section 6.5.10, "TFT/D-TFD Panel Timing" on

page 82.

bits 5-4 Panel Data Width Bits [1:0]

These bits select passive LCD/TFT/D-TFD panel data width size.

Table 8-14: Panel Data Width Selection

Panel Data Width	Passive LCD Panel	TFT/D-TFD Pa	nel Data Width
Bits [1:0]	Data Width	1x Data Format	2x Data Format
00	4-bit	9-bit	2 x 9-bit
01	8-bit	12-bit	2 x 12-bit
10	16-bit	18-bit	Reserved
11	Reserved	Reserved	Reserved

bit 3 Panel Data Format Select

When this bit = 1, 8-bit single color passive LCD panel data format 2 is selected. For AC timing see Section 6.5.5, "Single Color 8-Bit Panel Timing (Format 2)" on page 72. When this bit = 0, 8-bit single color passive LCD panel data format 1 is selected. For AC timing see Section 6.5.4, "Single Color 8-Bit Panel Timing (Format 1)" on page 70.

bit 2 Color/Mono Panel Select

When this bit = 1, color passive LCD panel is selected.

When this bit = 0, monochrome passive LCD panel is selected.

bit 1 Dual/Single Panel Select

When this bit = 1, dual passive LCD panel is selected. When this bit = 0, single passive LCD panel is selected.

bit 0 TFT/Passive LCD Panel Select

When this bit = 1, TFT/D-TFD panel is selected. When this bit = 0, passive LCD panel is selected.

MOD Rate Re REG[031h]	egister						RW
n/a	n/a	MOD Rate Bit 5	MOD Rate Bit 4	MOD Rate Bit 3	MOD Rate Bit 2	MOD Rate Bit 1	MOD Rate Bit 0

bits 5-0 MOD Rate Bits [5:0]

For a non-zero value these bits specify the number of FPLINE between toggles of the MOD output signal (DRDY).

When these bits are all 0's the MOD output signal toggles every FPFRAME. These bits are for passive LCD panels only.

LCD Horizor REG[032h]	LCD Horizontal Display Width Register REG[032h] RW							
	LCD	LCD	LCD	LCD	LCD	LCD	LCD	
n/a	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal	
II/a	Display Width	Display Width	Display Width	Display Width	Display Width	Display Width	Display Width	
	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

bits 6-0

LCD Horizontal Display Width Bits [6:0]

These bits specify the LCD panel horizontal display width, in 8 pixel resolution.

Horizontal display width in number of pixels = $((ContentsOfThisRegister) + 1) \times 8$

The Horizontal Display Width has certain limitations on the values that may be used for each type of LCD panel. Use of values that do not meet the limitations listed in the following table result in undefined behavior.

Table 8-15: Horizontal Display Width (Pixels)

Panel Type	Horizontal Display Width (Pixels)
Passive Single	must be divisible by 16
Passive Dual	must be divisible by 32
TFT	must be divisible by 8

Note

This register must be programmed such that $REG[032h] \ge 3$ (32 pixels).

LCD Horizon REG[034h]	LCD Horizontal Non-Display Period Register REG[034h] RW								
			LCD	LCD	LCD	LCD	LCD		
n/a	n/a	n/a	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal		
II/a	II/a	II/a	Non-Display	Non-Display	Non-Display	Non-Display	Non-Display		
			Period Bit 4	Period Bit 3	Period Bit 2	Period Bit 1	Period Bit 0		

bits 4-0

LCD Horizontal Non-Display Period Bits [4:0]

These bits specify the LCD panel HNDP width in 8 pixel resolution.

HNDP width in number of pixels = $((ContentsOfThisRegister) + 1) \times 8$

Note

This register must be programmed such that REG[034h] \geq 3 (32 pixels).

Note

For TFT/D-TFD only:

 $REG[034h] + 1 \ge (REG[035h] + 1) + (REG[036h] \text{ bits } 3-0 + 1)$

TFT FPLINE	TFT FPLINE Start Position Register							
REG[035h]							RW	
			TFT FPLINE					
n/a	n/a	n/a	Start Position					
			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

bits 4-0

TFT FPLINE Start Position Bits [4:0]

For TFT/D-TFD panels only, these bits specify the delay, in 8 pixel resolution, from the start of the horizontal non-display period to the leading edge of the FPLINE pulse.

For TFT 1x Data Format at 4/8 bpp color depth:

FPLINE start position in number of pixels = $[(ContentsOfThisRegister) \times 8 + 5]$

For TFT 1x Data Format at 16 bpp color depth:

FPLINE start position in number of pixels = $[(ContentsOfThisRegister) \times 8 + 6]$

For TFT 2x Data Format at 4/8 bpp color depth:

FPLINE start position in number of pixels = [(ContentsOfThisRegister) $\times 8 + 4$]

For TFT 2x Data Format at 16 bpp color depth:

FPLINE start position in number of pixels = $[(ContentsOfThisRegister) \times 8 + 5]$

Note

 $REG[034h] + 1 \ge (REG[035h] + 1) + (REG[036h] bits 3-0 + 1)$

TFT FPLINE REG[036h]	TFT FPLINE Pulse Width Register REG[036h] RW								
LCD FPLINE Polarity Select	n/a	n/a	n/a	TFT FPLINE Pulse Width Bit 3	TFT FPLINE Pulse Width Bit 2	TFT FPLINE Pulse Width Bit 1	TFT FPLINE Pulse Width Bit 0		

LCD FPLINE Polarity Select

This bit selects the polarity of FPLINE for all LCD panels.

When this bit = 1, the FPLINE pulse is active high for TFT/D-TFD and active low for passive LCD.

When this bit = 0, the FPLINE pulse is active low for TFT/D-TFD and active high for passive LCD.

Table 8-16: LCD FPLINE Polarity Selection

LCD FPLINE Polarity Select	Passive LCD FPLINE Polarity	TFT FPLINE Polarity
0	active high	active low
1	active low	active high

bits 3-0

TFT FPLINE Pulse Width Bits [3:0]

For TFT/D-TFD panels only, these bits specify the pulse width of the FPLINE output signal in 8 pixel resolution.

FPLINE pulse width in number of pixels = $((ContentsOfThisRegister) + 1) \times 8$

The maximum FPLINE pulse width is 128 pixels.

Note

 $REG[034h] + 1 \ge (REG[035h] + 1) + (REG[036h] \text{ bits } 3-0 + 1)$

LCD Vertical Display Height Register 0 REG[038h] RW									
LCD Vertical Display Height Bit 7	LCD Vertical Display Height Bit 6	LCD Vertical Display Height Bit 5	LCD Vertical Display Height Bit 4	LCD Vertical Display Height Bit 3	LCD Vertical Display Height Bit 2	LCD Vertical Display Height Bit 1	LCD Vertical Display Height Bit 0		
LCD Vertical Display Height Pogister 1									

REG[039h] RW									
n/a	n/a	n/a	n/a	n/a	n/a	LCD Vertical Display Height Bit 9	LCD Vertical Display Height Bit 8		

REG[038h] bits 7-0

LCD Vertical Display Height Bits [9:0]

REG[039h] bits 1-0

These bits specify the LCD panel vertical display height, in 1 line resolution.

Vertical display height in number of lines = (ContentsOfThisRegister) + 1

LCD Vertical REG[03Ah]	LCD Vertical Non-Display Period Register REG[03Ah]									
LCD Vertical Non-Display Period Status (RO)	n/a	LCD Vertical Non-Display Period Bit 5	LCD Vertical Non-Display Period Bit 4	LCD Vertical Non-Display Period Bit 3	LCD Vertical Non-Display Period Bit 2	LCD Vertical Non-Display Period Bit 1	LCD Vertical Non-Display Period Bit 0			

bit 7 LCD Vertical Non-Display Period Status

This is a read-only status bit.

When a read from this bit = 1, a LCD panel vertical non-display period is occurring. When a read from this bit = 0, the LCD panel output is in a vertical display period.

bits 5-0 LCD Vertical Non-Display Period Bits [5:0]

These bits specify the LCD panel vertical non-display period height in 1 line resolution.

Vertical non-display period height in number of lines = (ContentsOfThisRegister) + 1

Note

For TFT/D-TFD only: $(REG[03Ah] \text{ bits } 5-0+1) \ge (REG[03Bh] + 1) + (REG[03Ch] \text{ bits } 2-0+1)$

TFT FPFRAME Start Position Register REG[03Bh] RW										
n/a	n/a	TFT FPFRAME	TFT FPFRAME	TFT FPFRAME	TFT FPFRAME	TFT FPFRAME	TFT FPFRAME			
	., .	Start Position Bit 5	Start Position Bit 4	Start Position Bit 3	Start Position Bit 2	Start Position Bit 1	Start Position Bit 0			

bits 5-0 TFT FPFRAME Start Position Bits [5:0]

For TFT/D-TFD panels only, these bits specify the delay in lines from the start of the vertical non-display period to the leading edge of the FPFRAME pulse.

FPFRAME start position in number of lines = (ContentsOfThisRegister) + 1

Note

 $(REG[03Ah] \text{ bits } 5-0+1) \ge (REG[03Bh]+1) + (REG[03Ch] \text{ bits } 2-0+1)$

TFT FPFRAM REG[03Ch]	TFT FPFRAME Pulse Width Register REG[03Ch] RW										
LCD FPFRAME Polarity Select	n/a	n/a	n/a	n/a	TFT FPFRAME Pulse Width Bit 2	TFT FPFRAME Pulse Width Bit 1	TFT FPFRAME Pulse Width Bit 0				

LCD FPFRAME Polarity Select

This bit selects the polarity of FPFRAME for all LCD panels.

When this bit = 1, the FPFRAME pulse is active high for TFT/D-TFD and active low for passive LCD.

When this bit = 0, the FPFRAME pulse is active low for TFT/D-TFD and active high for passive LCD.

Table 8-17: LCD FPFRAME Polarity Selection

LCD FPFRAME Polarity Select	Passive LCD FPFRAME Polarity	TFT FPFRAME Polarity		
0	active high	active low		
1	active low	active high		

bits 2-0

TFT FPFRAME Pulse Width Bits [2:0]

For TFT/D-TFD panels only, these bits specify the pulse width of the FPFRAME output signal in number of lines.

FPFRAME pulse width in number of lines = (ContentsOfThisRegister) + 1

Note

 $(REG[03Ah] \text{ bits } 5-0+1) \ge (REG[03Bh]+1) + (REG[03Ch] \text{ bits } 2-0+1)$

8.4.7 LCD Display Mode Registers

REG[040h] RW									
LCD Display Blank	n/a	n/a	SwivelView Enable Bit 1	n/a	LCD Bit-per- pixel Select Bit 2	LCD Bit-per- pixel Select Bit 1	LCD Bit-per- pixel Select Bit 0		

bit 7

LCD Display Blank

When this bit = 1, the LCD display pipeline is disabled and all LCD data outputs are forced to zero (i.e. the screen is blanked).

When this bit = 0, the LCD display pipeline is enabled.

Note

If a dual panel is used, the Dual Panel Buffer (REG[041h] bit 0) must be disabled (set to 1) before blanking the LCD display.

SwivelView Enable Bit 1

When this bit = 1, the LCD display image is rotated 180° clockwise. Please refer to Section 15, "SwivelViewTM" on page 174 for application and limitations.

When this bit = 0, there is no hardware effect.

This bit in conjunction with SwivelView $^{\rm TM}$ Enable Bit 0 achieves the following hardware rotations.

Table 8-18: Setting SwivelView Modes

SwivelView Enable Bits	SwivelView [™] Modes							
Swiverview Eliable Bits	Normal	SwivelView 90°	SwivelView 180°	SwivelView 270°				
SwivelView Enable Bit 0 (REG[1FCh] bit 6)	0	1	0	1				
SwivelView Enable Bit 1 (REG[040h] bit 4)	0	0	1	1				

bits 2-0

LCD Bit-per-pixel Select Bits [2:0]

These bits select the color depth (bit-per-pixel) for the displayed data.

Note

16 bpp color depth bypasses the LUT and supports up to 64K colors (4096 colors if dithering disabled, see REG[041h] bit 1). TFT/D-TFD panels support up to 64K colors.

Table 8-19: LCD Bit-per-pixel Selection

Bit-per-pixel Select Bits [1:0]	Color Depth (bpp)				
000-001	Reserved				
010	4 bpp				
011	8 bpp				
100	Reserved				
101	16 bpp				
110-111	Reserved				

	LCD Miscellaneous Register										
REG[041h]											
	n/a	n/a	n/a	n/a	n/a	n/a	Dithering Disable	Dual Panel Buffer Disable			

Dithering Disable

When this bit = 0, dithering on the passive LCD panel for 16 bpp mode is enabled allowing a maximum of 64K colors (2^{16}) or 64 gray shades.

When this bit = 1, dithering on the passive LCD panel for 16 bpp mode is disabled, allowing a maximum of 4096 colors (2^{12}) or 16 gray shades.

The dithering algorithm provides more shades of each primary color when in 16 bpp mode. This bit has no effect in 4/8 bpp modes where dithering is not supported.

All passive STN color panels are controlled using 3 bits for each pixel (RGB) for a total of 8 possible colors. LCD controllers use a combination of Frame Rate Modulation (FRM) and dithering to achieve more than 8 colors per pixel. FRM can achieve 16 shades of color for each RGB component resulting in a total of 4096 possible colors (16x16x16). Dithering uses a 4 pixel square formation and applies a set of 4 hard-coded patterns for each of the 16 shades of color. This expands the original 16 shades of color from the FRM logic to 64 shades per RGB component which results in 256K colors per pixel (64x64x64).

For the S1D13806, 16 bpp is arranged as 5-6-5 RGB. In this mode, when dithering is enabled, the LUT is bypassed and the original 16-bit data is used as a pointer into the 64 shades per color in the following manner.

(5-6-5 RGB) 32 possible Red, 64 possible Green, 32 possible Blue

This combination of FRM and dithering results in 256K colors/pixel, however, the 16 bpp limitation of the S1D13806 limits this to 64K colors/pixel.

bit 0

Dual Panel Buffer Disable

This bit is used to disable the dual panel buffer.

When this bit = 1, the dual panel buffer is disabled.

When this bit = 0, the dual panel buffer is enabled.

When a single panel is selected, the dual panel buffer is automatically disabled and this bit has no effect.

Note

The dual panel buffer is needed to fully support dual panels. Disabling the dual panel buffer may allow higher resolution/color display modes than would otherwise be possible. However, disabling the dual panel buffer reduces image contrast and overall display quality. For details on Frame Rate Calculation, see Section 18, "Clocking" on page 186.

LCD Display Start Address Register 0									
REG[042h]									
LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display		
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

LCD Display Start Address Register 1									
REG[043h]									
LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display		
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address		
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		

REG[044h] RW									
n/a	n/a	n/a	n/a	LCD Display Start Address Bit 19	LCD Display Start Address Bit 18	LCD Display Start Address Bit 17	LCD Display Start Address Bit 16		

REG[042h] bits 7-0 LCD Display Start Address Bits [19:0]

REG[043h] bits 7-0 This register forms the 20-bit address of the starting word of the LCD image in the

REG[044h] bits 3-0 display buffer.

This is a word address. An entry of 0 0000h into these registers represents the first word of the display buffer, an entry of 0 0001h represents the second word of the display buffer, and so on.

LCD Memory Address Offset Register 0 REG[046h] RW									
LCD Memory	LCD Memory	LCD Memory	LCD Memory	LCD Memory	LCD Memory	LCD Memory	LCD Memory		
Address	Address	Address	Address	Address	Address	Address	Address		
Offset Bit 7	Offset Bit 6	Offset Bit 5	Offset Bit 4	Offset Bit 3	Offset Bit 2	Offset Bit 1	Offset Bit 0		

LCD Memory Address Offset Register 1 REG[047h] RV										
					LCD Memory	LCD Memory	LCD Memory			
n/a	n/a	n/a	n/a	n/a	Address	Address	Address			
					Offset Bit 10	Offset Bit 9	Offset Bit 8			

REG[046h] bits 7-0 LCD Memory Address Offset Bits [10:0]

REG[047h] bits 2-0 These bits are the LCD display's 11-bit address offset from the starting word of line "n" to the starting word of line "n + 1".

A virtual image can be formed by setting this register to a value greater than the width of the display. The displayed image is a window into the larger virtual image.

LCD Pixel Pa REG[048h]	nning Regist	er					RW
n/a	n/a	n/a	n/a	n/a	n/a	LCD Pixel Panning Bit 1	LCD Pixel Panning Bit 0

bits 1-0

LCD Pixel Panning Bits [1:0]

This register is used to control the horizontal pixel panning of the LCD display. The display can be panned to the left by programming its respective Pixel Panning Bits to a non-zero value. This value represents the number of pixels panned. The maximum pan value is dependent on the display mode as shown in the table below.

Table 8-20: LCD Pixel Panning Selection

Color Depth (bpp)	Screen 2 Pixel Panning Bits Used
4 bpp	Bits [1:0]
8 bpp	Bit 0
16 bpp	

Note

Smooth horizontal panning can be achieved by a combination of this register and the LCD Display Start Address registers (REG[042h], REG[043h], REG[044h]).

LCD Display FIFO High Threshold Control Register REG[04Ah] RW										
7/0	2/2	LCD Display FIFO High								
n/a	n/a	Threshold Bit 5	Threshold Bit 4	Threshold Bit 3	Threshold Bit 2	Threshold Bit 1	Threshold Bit 0			

bits 5-0

LCD Display FIFO High Threshold Bits [5:0]

These bits are used to optimize the display memory request arbitration. When this register is set to 00h, the threshold is automatically set in hardware. However, programming may be required if screen corruption is present (see Section 18.2, "Example Frame Rates" on page 189).

Note

This register does not need to be used in single display modes and may only be required in some display modes where two displays are active (see Section 16.3, "Bandwidth Limitation" on page 184).

LCD Display REG[04Bh]	LCD Display FIFO Low Threshold Control Register REG[04Bh] RW										
7/2	n/a	LCD Display FIFO Low									
n/a	n/a	Threshold Bit 5	Threshold Bit 4	Threshold Bit 3	Threshold Bit 2	Threshold Bit 1	Threshold Bit 0				

its 5-0

LCD Display FIFO Low Threshold Bits [5:0]

When this register is set to 00h, the threshold is automatically set in hardware. If it becomes necessary to adjust REG[04Ah] from its default value, then the following formula must be maintained:

 $REG[04Bh] \ge REG[04Ah]$ and $REG[04Bh] \le 3Ch$

8.4.8 CRT/TV Configuration Registers

CRT/TV Horizontal Display Width Register REG[050h] RW										
	CRT/TV									
n/a	Horizontal									
n/a	Display Width									
	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			

bits 6-0

CRT/TV Horizontal Display Width Bits [6:0]

These bits specify the CRT/TV horizontal display width, in 8 pixel resolution.

Horizontal display width in number of pixels = $((ContentsOfThisRegister) + 1) \times 8$

CRT/TV Horizontal Non-Display Period Register REG[052h] RW									
n/a n/a	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV			
	n/o	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal		
	II/a	Non-Display	Non-Display	Non-Display	Non-Display	Non-Display	Non-Display		
		Period Bit 5	Period Bit 4	Period Bit 3	Period Bit 2	Period Bit 1	Period Bit 0		

bits 5-0

CRT/TV Horizontal Non-Display Period Bits [5:0]

These bits specify the CRT/TV horizontal non-display period width in 8 pixel resolution.

Horizontal non-display period width in number of pixels =

((ContentsOfThisRegister) + 1) × 8 for CRT mode

(ContentsOfThisRegister) \times 8 + 6 for TV mode with NTSC output (ContentsOfThisRegister) \times 8 + 7 for TV mode with PAL output

Note

For CRT, the recommended minimum value which should be programmed into this register is 3 (32 pixels).

Note

 $REG[052h] + 1 \ge (REG[053h] + 1) + (REG[054h] bits 3-0 + 1)$

	CRT/TV HRTC Start Position Register										
REG[053h]							RW				
		CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV				
n/a	n/a	HRTC Start									
		Position Bit 5	Position Bit 4	Position Bit 3	Position Bit 2	Position Bit 1	Position Bit 0				

bits 5-0 CRT/TV HRTC Start Position Bits [5:0]

For CRT/TV, these bits specify the delay, in 8 pixel resolution, from the start of the horizontal non-display period to the leading edge of the HRTC pulse.

The following equations can be used to determine the HRTC start position in number of pixels for each display type:

HRTC start position in number of pixels=:

[(ContentsOfThisRegister) x 8 + 4] for CRT with 4/8 bpp color depth

[(ContentsOfThisRegister) x 8 + 5] for CRT in 16 bpp color depth

[((ContentsOfThisRegister) + 1) x 8 - 7] for TV-NTSC in 4/8 bpp color depth

[((ContentsOfThisRegister) + 1) x 8 - 5] for TV-NTSC in 16 bpp color depth

[((ContentsOfThisRegister) + 1) x 8 - 7] for TV-PAL in 4/8 bpp color depth

[((ContentsOfThisRegister) + 1) x 8 - 5] for TV-PAL in 16 bpp color depth

Note

 $REG[052h] + 1 \ge (REG[053h] + 1) + (REG[054h] bits 3-0 + 1)$

	CRT/TV HRTC Pulse Width Register										
REG[054h] RW											
CRT HRTC				CRT HRTC	CRT HRTC	CRT HRTC	CRT HRTC				
Polarity	n/a	n/a	n/a	Pulse Width	Pulse Width	Pulse Width	Pulse Width				
Select				Bit 3	Bit 2	Bit 1	Bit 0				

bit 7 CRT HRTC Polarity Select

This bit selects the polarity of HRTC for CRTs.

When this bit = 1, the HRTC pulse is active high.

When this bit = 0, the HRTC pulse is active low.

Note

For TV, this bit must be set to 0.

bits 3-0 CRT HRTC Pulse Width Bits [3:0]

These bits specify the pulse width of the CRT HRTC output signal in 8 pixel resolution.

HRTC pulse width in number of pixels = $((ContentsOfThisRegister) + 1) \times 8$

Note

For TV, these bits must be set to 0.

Note

 $REG[052h] + 1 \ge (REG[053h] + 1) + (REG[054h] \text{ bits } 3-0 + 1)$

CRT/TV Verti REG[056h]	CRT/TV Vertical Display Height Register 0 REG[056h] RW									
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV			
Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical			
Display	Display	Display	Display	Display	Display	Display	Display			
Height Bit 7	Height Bit 6	Height Bit 5	Height Bit 4	Height Bit 3	Height Bit 2	Height Bit 1	Height Bit 0			

CRT/TV Verti REG[057h]	ical Display H	leight Registe	r 1				RW
n/a	n/a	n/a	n/a	n/a	n/a	CRT/TV Vertical Display Height Bit 9	CRT/TV Vertical Display Height Bit 8

REG[056h] bits 7-0 CRT/TV Vertical Display Height Bits [9:0]

REG[057h] bits 1-0 These bits specify the CRT/TV vertical display height, in 1 line resolution.

Vertical display height in number of lines = (ContentsOfThisRegister) + 1

CRT/TV Vertical Non-Display Period Register REG[058h] RW							
CRT/TV Vertical Non- Display Period Status (RO)	CRT/TV Vertical Non- Display Period Bit 6	CRT/TV Vertical Non- Display Period Bit 5	CRT/TV Vertical Non- Display Period Bit 4	CRT/TV Vertical Non- Display Period Bit 3	CRT/TV Vertical Non- Display Period Bit 2	CRT/TV Vertical Non- Display Period Bit 1	CRT/TV Vertical Non- Display Period Bit 0

bit 7 CRT/TV Vertical Non-Display Period Status

This is a read-only status bit.

When a read from this bit = 1, a CRT/TV vertical non-display period is occurring. When a read from this bit = 0, the CRT/TV output is in a vertical display period.

bits 6-0 CRT/TV Vertical Non-Display Period Bits [6:0]

These bits specify the CRT/TV vertical non-display period height in 1 line resolution.

Vertical non-display period height in number of lines = (ContentsOfThisRegister) + 1

Note

 $(REG[058h] \text{ bits } 6-0+1) \ge (REG[059h]+1) + (REG[05Ah] \text{ bits } 2-0+1)$

CRT/TV VRTC Start Position Register										
REG[059h]		_					RW			
	CRT/TV									
n/a	VRTC Start									
	Position Bit 6	Position Bit 5	Position Bit 4	Position Bit 3	Position Bit 2	Position Bit 1	Position Bit 0			

bits 6-0

CRT/TV VRTC Start Position Bits [6:0]

For CRT/TV, these bits specify the delay in lines from the start of the vertical non-display period to the leading edge of the VRTC pulse.

VRTC start position in number of lines = (ContentsOfThisRegister) + 1

Note

 $(REG[058h] \text{ bits } 6-0+1) \ge (REG[059h]+1) + (REG[05Ah] \text{ bits } 2-0+1)$

CRT VRTC P	CRT VRTC Pulse Width Register										
REG[05Ah]							RW				
CRT VRTC					CRT VRTC	CRT VRTC	CRT VRTC				
Polarity	n/a	n/a	n/a	n/a	Pulse Width	Pulse Width	Pulse Width				
Select					Bit 2	Bit 1	Bit 0				

bit 7

CRT VRTC Polarity Select

This bit selects the polarity of VRTC for CRT.

When this bit = 1, the VRTC pulse is active high.

When this bit = 0, the VRTC pulse is active low.

Note

For TV, this bit must be set to 0.

bits 2-0

CRT VRTC Pulse Width Bits [2:0]

These bits specify the pulse width of the CRT VRTC output signal in number of lines.

VRTC pulse width in number of lines = (ContentsOfThisRegister) + 1

Note

For TV, these bits must be set to 0.

Note

 $(REG[058h] \text{ bits } 6-0+1) \ge (REG[059h]+1) + (REG[05Ah] \text{ bits } 2-0+1)$

TV Output Co REG[05Bh]	ontrol Registe	er					RW
n/a	n/a	TV Chrominance Filter Enable	TV Luminance Filter Enable	DAC Output Level Select	n/a	TV S-Video/ Composite Output Select	TV PAL/NTSC Output Select

bit 5 TV Chrominance Filter Enable

When this bit = 1, the TV chrominance filter is enabled. When this bit = 0, the TV chrominance filter is disabled.

The chrominance filter adjusts the color of the TV by limiting the bandwidth of the chrominance signal (reducing cross-luminance distortion). This reduces the "ragged edges" seen at boundaries between sharp color transitions. This filter is most useful for composite video output.

bit 4 TV Luminance Filter Enable

When this bit = 1, the TV luminance filter is enabled. When this bit = 0, the TV luminance filter is disabled.

The luminance filter adjusts the brightness of the TV by limiting the bandwidth of the luminance signal (reducing cross-chrominance distortion). This reduces the "rainbow-like" colors at boundaries between sharp luminance transitions. This filter is most useful for composite video output.

bit 3 DAC Output Level Select

When this bit is set to 1 it allows IREF to be reduced. This bit should be set as described in the following table.

Table 8-21: DAC Output Level Selection

LCD	CRT	TV	REG[05Bh] bit 3	IREF (mA)
Enabled	Disabled	Disabled	Х	Х
Х	Enabled	Disabled	1	4.6
Х	Enabled	Enabled	0	9.2

= don't care

Note

Figure 4-3: "External Circuitry for CRT Interface" on page 37 shows an example implementation of the required external CRT/TV IREF circuitry.

bit 1 TV S-Video/Composite Output Select

When this bit = 1, S-Video TV signal output is selected. When this bit = 0, Composite TV signal output is selected.

bit 0 TV PAL/NTSC Output Select

When this bit = 1, PAL format TV signal output is selected. When this bit = 0, NTSC format TV signal output is selected.

This bit must be set to 0 when CRT is enabled.

8.4.9 CRT/TV Display Mode Registers

CRT/TV Disp REG[060h]	lay Mode Reg	jister					RW
CRT/TV Display Blank	n/a	n/a	n/a	n/a	CRT/TV Bit- per-pixel Select Bit 2	CRT/TV Bit- per-pixel Select Bit 1	CRT/TV Bit- per-pixel Select Bit 0

bit 7 CRT/TV Display Blank

When this bit = 1 the CRT/TV display pipeline is disabled and all CRT/TV data outputs

are forced to zero (the screen is blanked).

When this bit = 0 the CRT display pipeline is enabled.

bits 2-0 CRT/TV Bit-per-pixel Select Bits [2:0]

These bits select the bit-per-pixel for the displayed data.

Note

Color depth of 16 bpp bypasses the LUT and support up to 64K colors on the CRT/TV.

Table 8-22: CRT/TV Bit-per-pixel Selection

Bit-per-pixel Select Bits 1:0	Color Depth (bpp)
000	Reserved
001	Reserved
010	4 bpp
011	8 bpp
100	Reserved
101	16 bpp
110-111	Reserved

CRT/TV Display Start Address Register 0 REG[062h]							
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV
Display Start	Display Start	Display Start	Display Start	Display Start	Display Start	Display Start	Display Start
Address	Address	Address	Address	Address	Address	Address	Address
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

CRT/TV Display Start Address Register 1 REG[063h]							
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV
Display Start	Display Start	Display Start	Display Start	Display Start	Display Start	Display Start	Display Start
Address	Address	Address	Address	Address	Address	Address	Address
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8

CRT/TV Disp REG[064h]	lay Start Add	ress Register	2				RW
n/a	n/a	n/a	n/a	CRT/TV Display Start Address Bit 19	CRT/TV Display Start Address Bit 18	CRT/TV Display Start Address Bit 17	CRT/TV Display Start Address Bit 16

REG[062h] bits 7-0 CRT/TV Start Address Bits [19:0]

REG[063h] bits 7-0 This register forms the 20-bit address for the starting word of the CRT/TV image in the

REG[064h] bits 3-0 display buffer.

This is a word address. An entry of 00000h into these registers represents the first word of the display buffer, an entry of 00001h represents the second word of the display buffer, and so on.

CRT/TV Memory Address Offset Register 0 REG[066h]								
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	
Memory	Memory	Memory	Memory	Memory	Memory	Memory	Memory	
Address	Address	Address	Address	Address	Address	Address	Address	
Offset Bit 7	Offset Bit 6	Offset Bit 5	Offset Bit 4	Offset Bit 3	Offset Bit 2	Offset Bit 1	Offset Bit 0	

CRT/TV Memory Address Offset Register 1 REG[067h] RW									
n/a	n/a	n/a	n/a	n/a	CRT/TV Memory Address Offset Bit 10	CRT/TV Memory Address Offset Bit 9	CRT/TV Memory Address Offset Bit 8		

REG[066h] bits 7-0 CRT/TV Memory Address Offset Bits [10:0]

REG[067h] bits 2-0 These bits are the CRT/TV display's 11-bit address offset from the starting word of line "n" to the starting word of line "n + 1". A virtual image can be formed by setting this register to a value greater than the width of the display. The displayed image is a window into the larger virtual image.

CRT/TV Pixe REG[068h]	l Panning Reલ્	gister					RW
n/a	n/a	n/a	n/a	n/a	n/a	CRT/TV Pixel Panning Bit 1	CRT/TV Pixel Panning Bit 0

bits 1-0

CRT/TV Pixel Panning Bits [1:0]

This register is used to control the horizontal pixel panning of the CRT/TV display. The display can be panned to the left by programming its respective Pixel Panning Bits to a non-zero value. This value represents the number of pixels panned. The maximum pan value is dependent on the display mode as shown in the table below.

Table 8-23: CRT/TV Pixel Panning Selection

Color Depth (bpp)	Screen 2 Pixel Panning Bits Used
4 bpp	Bits [1:0]
8 bpp	Bit 0
16 bpp	

Note

Smooth horizontal panning can be achieved by a combination of this register and the CRT/TV Display Start Address registers (REG[062h], REG[063h], REG[064h]).

CRT/TV Display FIFO High Threshold Control Register REG[06Ah] RW									
		CRT/TV Display FIFO							
n/a	n/a	High Threshold Bit 5	High Threshold Bit 4	High Threshold Bit 3	High Threshold Bit 2	High Threshold Bit 1	High Threshold Bit 0		

bits 5-0

CRT/TV Display FIFO High Threshold Bits [5:0]

These bits are used to optimize the display memory request arbitration. When this register is set to 00h, the threshold is automatically set in hardware. However, programming may be required if screen corruption is present (see Section 18.2, "Example Frame Rates" on page 189).

Note

This register does not need to be used in single display modes and may only be required in some display modes where two displays are active (see Section 16.3, "Bandwidth Limitation" on page 184).

CRT/TV Display FIFO Low Threshold Control Register									
REG[06Bh] RW									
		CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV		
		Display FIFO							
n/a	n/a	Low	Low	Low	Low	Low	Low		
		Threshold	Threshold	Threshold	Threshold	Threshold	Threshold		
		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

bits 5-0

CRT/TV Display FIFO Low Threshold Bits [5:0]

When this register is set to 00h, the threshold is automatically set in hardware. If it becomes necessary to adjust REG[06Ah] from its default value, then the following formula must be maintained.

 $REG[06Bh] \ge REG[06Ah]$ and $REG[06Bh] \le 3Ch$

8.4.10 LCD Ink/Cursor Registers

REG[070h]	sor Control R	egister					RW
n/a	n/a	n/a	n/a	n/a	n/a	LCD Ink/Cursor Mode Bit 1	LCD Ink/Cursor Mode Bit 0

bits 1-0

LCD Ink/Cursor Control Bits [1:0]

These bits enable the LCD Ink/Cursor circuitry.

Table 8-24: LCD Ink/Cursor Selection

LCD Ink/Cursor Bits [1:0]	Mode
00	Inactive
01	Cursor
10	Ink
11	Reserved

Note

While in Ink mode, the Cursor X and Y Position registers must be set to 00h.

	LCD Ink/Cursor Start Address Register REG[071h] RW									
REG[071h]										
LCD	LCD	LCD	LCD	LCD	LCD	LCD	LCD			
Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor			
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			

bits 7-0

LCD Ink/Cursor Start Address Bits [7:0]

Encoded bits defining the start address for the LCD Ink/Cursor. For Cursor modes, a start address of 0 should be valid for most applications. For Ink or special Cursor modes, the start address should be set at an address location that does not conflict with the display memory of dual panel buffer, which always takes the top M memory locations in bytes.

 $M = (Panel\ Height \times Panel\ Width\ /\ 16) \times c$

where

c = 1 for monochrome panel

= 4 for color panel

Table 8-25: LCD Ink/Cursor Start Address Encoding

LCD Ink/Cursor Start Address Bits [7:0]	Start Address			
0	Memory Size - 1024			
n = 1601	Memory Size - n × 8192			
n = 255161	invalid			

Note

The effect of this register takes place at the next LCD vertical non-display period.

Note

See Section 10, "Display Buffer" on page 154 for display buffer organization.

LCD Cursor X Position Register 0 REG[072h] RW							
LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X
Position	Position	Position	Position	Position	Position	Position	Position
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

REG[073h]	LCD Cursor X Position Register 1 REG[073h] RW							
LCD Cursor X Sign	n/a	n/a	n/a	n/a	n/a	LCD Cursor X Position Bit 9	LCD Cursor X Position Bit 8	

REG[073h] bit 7

LCD Cursor X Sign

When this bit = 1, it defines the LCD Cursor X Position register to be a negative number. The negative number shall not exceed 63 decimal.

When this bit = 0, it defines the LCD Cursor X Position register to be a positive number.

REG[072h] bits 7-0 REG[073h] bits 1-0 LCD Cursor X Position Bits [9:0]

A 10-bit register that defines the horizontal position of the LCD Cursor's top left hand corner in pixel units. This register is only valid when Cursor has been selected in the LCD Ink/Cursor select registers.

Note

The effect of REG[072h] through REG[074h] takes place only after REG[075h] is written and at the next LCD vertical non-display period. The effect of REG[075h] takes place at the next LCD vertical non-display period.

LCD Cursor Y Position Register 0									
REG[074h] RW									
LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y		
Position	Position	Position	Position	Position	Position	Position	Position		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

LCD Cursor Y Position Register 1 REG[075h] RW							
LCD Cursor Y Sign	n/a	n/a	n/a	n/a	n/a	LCD Cursor Y Position Bit 9	LCD Cursor Y Position Bit 8

REG[075h] bit 7

LCD Cursor Y Sign

When this bit = 1, it defines the LCD Cursor Y Position register to be a negative number. The negative number shall not exceed 63 decimal.

When this bit = 0, it defines the LCD Cursor Y Position register to be a positive number.

REG[074h] bits 7-0

LCD Cursor Y Position Bits [9:0]

REG[075h] bits 1-0

A 10-bit register that defines the vertical position of the LCD Cursor's top left hand corner in pixel units. This register is only valid when Cursor has been selected in the LCD Ink/Cursor select registers.

Note

The effect of REG[072h] through REG[074h] takes place only after REG[075h] is written and at the next LCD vertical non-display period. The effect of REG[075h] takes place at the next LCD vertical non-display period.

REG[076h] RW							
n/a	n/a	n/a	LCD Ink/Cursor Blue Color 0 Bit 4	LCD Ink/Cursor Blue Color 0 Bit 3	LCD Ink/Cursor Blue Color 0 Bit 2	LCD Ink/Cursor Blue Color 0 Bit 1	LCD Ink/Cursor Blue Color 0 Bit 0

bits 4-0 LCD Ink/Cursor Blue Color 0 Bits[4:0]

These bits define the blue LCD Ink/Cursor color 0.

REG[077h] RW							
n/a	n/a	LCD Ink/Cursor Green Color 0 Bit 5	LCD Ink/Cursor Green Color 0 Bit 4	LCD Ink/Cursor Green Color 0 Bit 3	LCD Ink/Cursor Green Color 0 Bit 2	LCD Ink/Cursor Green Color 0 Bit 1	LCD Ink/Cursor Green Color 0 Bit 0

bits 5-0 LCD Ink/Cursor Green Color 0 Bits[5:0]

These bits define the green LCD ink/Cursor color 0.

REG[078h]	sor Red Color	0 Register					RW
n/a	n/a	n/a	LCD Ink/Cursor Red Color 0 Bit 4	LCD Ink/Cursor Red Color 0 Bit 3	LCD Ink/Cursor Red Color 0 Bit 2	LCD Ink/Cursor Red Color 0 Bit 1	LCD Ink/Cursor Red Color 0 Bit 0

bits 4-0 LCD Ink/Cursor Red Color 0 Bits[4:0]

These bits define the red LCD Ink/Cursor color 0.

LCD Ink/Cur REG[07Ah]	sor Blue Colo	r 1 Register					RW
n/a	n/a	n/a	LCD Ink/Cursor Blue Color 1 Bit 4	LCD Ink/Cursor Blue Color 1 Bit 3	LCD Ink/Cursor Blue Color 1 Bit 2	LCD Ink/Cursor Blue Color 1 Bit 1	LCD Ink/Cursor Blue Color 1 Bit 0

bits 4-0 LCD Ink/Cursor Blue Color 1 Bits[4:0]

These bits define the blue LCD Ink/Cursor color 1.

LCD Ink/Cursor Green Color 1 Register REG[07Bh] RW							
		LCD	LCD	LCD	LCD	LCD	LCD
n/o	n/a n/a	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor
II/a		Green Color 1					
		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

bits 5-0 LCD Ink/Cursor Green Color 1 Bits[5:0]

These bits define the green LCD Ink/Cursor color 1.

LCD Ink/Cursor Red Color 1 Register REG[07Ch] RW							
n/a	n/a	n/a	LCD Ink/Cursor Red Color 1 Bit 4	LCD Ink/Cursor Red Color 1 Bit 3	LCD Ink/Cursor Red Color 1 Bit 2	LCD Ink/Cursor Red Color 1 Bit 1	LCD Ink/Cursor Red Color 1 Bit 0

bits 4-0 LCD Ink/Cursor Red Color 1 Bits[4:0]

These bits define the red LCD Ink/Cursor color 1.

LCD Ink/Cursor FIFO High Threshold Register REG[07Eh] RW							
n/a	n/a	n/a	n/a	LCD Ink/Cursor FIFO High Threshold Bit 3	LCD Ink/Cursor FIFO High Threshold Bit 2	LCD Ink/Cursor FIFO High Threshold Bit 1	LCD Ink/Cursor FIFO High Threshold Bit 0

bits 3-0

LCD Ink/Cursor FIFO High Threshold Bits [3:0]

These bits are used to optimize the display memory request arbitration for the Hardware Cursor/Ink Layer. When this register is set to 00h, the threshold is automatically set in hardware.

8.4.11 CRT/TV Ink/Cursor Registers

CRT/TV Ink/OREG[080h]	Cursor Contro	ol Register					RW
n/a	n/a	n/a	n/a	n/a	n/a	CRT/TV Ink/Cursor Mode Bit 1	CRT/TV Ink/Cursor Mode Bit 0

bits 1-0

CRT/TV Ink/Cursor Control Bits [1:0]

These bits enable the CRT/TV Ink/Cursor circuitry.

Table 8-26: CRT/TV Ink/Cursor Selection

CRT/TV Ink/Cursor Bits [1:0]	Mode
00	Inactive
01	Cursor
10	Ink
11	Reserved

Note

While in Ink mode, the Cursor X and Y Position registers must be set to 00h.

CRT/TV Ink/0	CRT/TV Ink/Cursor Start Address Register							
REG[081h]							RW	
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	
Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

bits 7-0

I

CRT/TV Ink/Cursor Start Address Bits [7:0]

Encoded bits defining the start address for the CRT/TV Ink/Cursor. For Cursor modes, a start address of 0 should be valid for most applications. For Ink or special Cursor modes, the start address should be set at an address location that does not conflict with the display memory of dual panel buffer, which always takes the top memory locations (M) in bytes.

 $M = (Panel Height \times Panel Width / 16) \times c$

where

c = 1 for monochrome panel

= 4 for color panel

Table 8-27: CRT/TV Ink/Cursor Start Address Encoding

CRT/TV Ink/Cursor Start Address Bits [7:0]	Start Address
0	Memory Size - 1024
n = 1601	Memory Size - n × 8192
n = 255161	Invalid

Note

The effect of this register takes place at the next CRT/TV vertical non-display period.

Note

See Section 10, "Display Buffer" on page 154 for display buffer organization.

CRT/TV Curs	CRT/TV Cursor X Position Register 0										
REG[082h]							RW				
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV				
Cursor X	Cursor X	Cursor X	Cursor X	Cursor X	Cursor X	Cursor X	Cursor X				
Position Bit 7	Position Bit 6	Position Bit 5	Position Bit 4	Position Bit 3	Position Bit 2	Position Bit 1	Position Bit 0				

CRT/TV Cursor X Position Register 1 REG[083h] RW									
CRT/TV Cursor X Sign	n/a	n/a	n/a	n/a	n/a	CRT/TV Cursor X Position Bit 9	CRT/TV Cursor X Position Bit 8		

REG[083h] bit 7 CRT/TV Cursor X Sign

When this bit = 1, it defines the CRT/TV Cursor X Position register to be a negative number. The negative number should not exceed 63 decimal.

When this bit = 0, it defines the CRT/TV Cursor X Position register to be a positive number.

REG[082h] bits 7-0

CRT/TV Cursor X Position Bits [9:0]

REG[083h] bits 1-0

A 10-bit register that defines the horizontal position of the CRT/TV Cursor's top left hand corner in pixel units. This register is only valid when Cursor has been selected in the CRT/TV Ink/Cursor select registers.

Note

The effect of REG[082h] through REG[084h] takes place only after REG[085h] is written to and at the next CRT/TV vertical non-display period. The effect of REG[085h] takes place at the next CRT/TV vertical non-display period.

CRT/TV Cursor Y Position Register 0 REG[084h] RW								
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	
Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	
Position Bit 7	Position Bit 6	Position Bit 5	Position Bit 4	Position Bit 3	Position Bit 2	Position Bit 1	Position Bit 0	

CRT/TV Curs REG[085h]	or Y Position	Register 1					RW
CRT/TV Cursor Y Sign	n/a	n/a	n/a	n/a	n/a	CRT/TV Cursor Y Position Bit 9	CRT/TV Cursor Y Position Bit 8

REG[084h] bit 7 CRT/TV Cursor YSign

When this bit = 1, it defines the CRT/TV Cursor Y Position register to be a negative number. The negative number shall not exceed 63 decimal.

When this bit = 0, it defines the CRT/TV Cursor Y Position register to be a positive number.

REG[084h] bits 7-0

CRT/TV Cursor Y Position Bits [9:0]

REG[085h] bits 1-0

A 10-bit register that defines the vertical position of the CRT/TV Cursor's top left hand corner in pixel units. This register is only valid when Cursor has been selected in the CRT/TV Ink/Cursor select registers.

Note

The effect of REG[082h] through REG[084h] takes place only after REG[085h] is written to and at the next CRT/TV vertical non-display period. The effect of REG[085h] takes place at the next CRT/TV vertical non-display period.

CRT/TV Ink/Cursor Blue Color 0 Register REG[086h] RW										
		CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV				
n/a	n/a	n/a	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor			
II/a	II/a	II/a	Blue Color 0							
	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									

bits 4-0 CRT/TV Ink/Cursor Blue Color 0 Bits[4:0]

These bits define the blue CRT/TV Ink/Cursor color 0.

CRT/TV Ink/Cursor Green Color 0 Register REG[087h] RW										
	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV				
2/0	n/a	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor			
n/a	n/a	Green Color 0								
		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			

bits 5-0 CRT/TV Ink/Cursor Green Color 0 Bits[5:0]

These bits define the green CRT/TV Ink/Cursor color 0.

CRT/TV Ink/Cursor Red Color 0 Register REG[088h] RW										
n/a	n/a	n/a	CRT/TV Ink/Cursor Red Color 0 Bit 4	CRT/TV Ink/Cursor Red Color 0 Bit 3	CRT/TV Ink/Cursor Red Color 0 Bit 2	CRT/TV Ink/Cursor Red Color 0 Bit 1	CRT/TV Ink/Cursor Red Color 0 Bit 0			

bits 4-0 CRT/TV Ink/Cursor Red Color 0 Bits[4:0]

These bits define the red CRT/TV Ink/Cursor color 0.

CRT/TV Ink/Cursor Blue Color 1 Register REG[08Ah] RW										
			CRT/TV Ink/Cursor	CRT/TV Ink/Cursor	CRT/TV Ink/Cursor	CRT/TV Ink/Cursor	CRT/TV Ink/Cursor			
n/a	n/a	n/a	Blue Color 1 Bit 4	Blue Color 1 Bit 3	Blue Color 1 Bit 2	Blue Color 1 Bit 1	Blue Color 1 Bit 0			

bits 4-0 CRT/TV Ink/Cursor Blue Color 1 Bits[4:0]

These bits define the blue CRT/TV Ink/Cursor color 1.

CRT/TV Ink/Cursor Green Color 1 Register REG[08Bh] RW									
n/a	n/a	CRT/TV Ink/Cursor Green Color 1 Bit 5	CRT/TV Ink/Cursor Green Color 1 Bit 4	CRT/TV Ink/Cursor Green Color 1 Bit 3	CRT/TV Ink/Cursor Green Color 1 Bit 2	CRT/TV Ink/Cursor Green Color 1 Bit 1	CRT/TV Ink/Cursor Green Color 1 Bit 0		

bits 5-0 CRT/TV Ink/Cursor Green Color 1 Bits[5:0]

These bits define the green CRT/TV Ink/Cursor color 1.

CRT/TV Ink/Cursor Red Color 1 Register REG[08Ch] RW									
n/a	n/a	n/a	CRT/TV Ink/Cursor Red Color 1 Bit 4	CRT/TV Ink/Cursor Red Color 1 Bit 3	CRT/TV Ink/Cursor Red Color 1 Bit 2	CRT/TV Ink/Cursor Red Color 1 Bit 1	CRT/TV Ink/Cursor Red Color 1 Bit 0		

bits 4-0 CRT/TV Ink/Cursor Red Color 1 Bits[4:0]

These bits define the red CRT/TV Ink/Cursor color 1.

CRT/TV Ink/0	CRT/TV Ink/Cursor FIFO High Threshold Register											
REG[08Eh] RW												
n/a	n/a	n/a	n/a	CRT/TV Ink/Cursor FIFO High Threshold Bit 3	CRT/TV Ink/Cursor FIFO High Threshold Bit 2	CRT/TV Ink/Cursor FIFO High Threshold Bit 1	CRT/TV Ink/Cursor FIFO High Threshold Bit 0					

bits 3-0 CRT/TV Ink/Cursor FIFO High Threshold Bits [5:0]

These bits are used to optimize the display memory request arbitration for the Hardware Cursor/Ink Layer. When this register is set to 00h, the threshold is automatically set in hardware.

8.4.12 BitBLT Configuration Registers

	BitBLT Control Register 0										
REG[100h]							RW				
BitBLT Active	BitBLT FIFO	BitBLT FIFO	BitBLT FIFO			BitBLT	BitBLT				
Status	Not Empty	Half Full	Full	n/a	n/a	Destination	Source Linear				
Sidius	Status (RO)	Status (RO)	Status(RO)			Linear Select	Select				

bit 7 BitBLT Active Status

This register bit has two data paths, one for write, the other for read.

Write Data Path

When software writes a one to this bit, it initiates the 2D operation.

Read Data Path

The read back of this register indicates the status of the 2D engine.

When a read from this bit = 1, the 2D engine is busy.

When a read from this bit = 0, the 2D engine is idle and is ready for the next operation.

Table 8-28: BitBLT Active Status

BitBLT Ac	tive Status	State		
Write	Read	State		
0	0	ldle		
0	1	Reserved		
1	0	Initiating operation		
1	1	Operation in progress		

bit 6 BitBLT FIFO Not-Empty Status

This is a read-only status bit.

When this bit = 0, the BitBLT FIFO is empty.

When this bit = 1, the BitBLT FiFO has at least one data.

To reduce system memory read latency, software can monitor this bit prior to a BitBLT read burst operation.

The following table shows the number of words available in BitBLT FIFO under different status conditions.

Table 8-29: BitBLT FIFO Words Available

BitBLT FIFO Full Status (REG[100h] Bit 4)	BitBLT FIFO Half Full Status (REG[100h] Bit 5)	BitBLT FIFO Not Empty Status (REG[100h] Bit 6)	Number of Words available in BitBLT FIFO
0	0	0	0
0	0	1	1 to 6
0	1	1	7 to 14
1	1	1	15 to 16

bit 5 BitBLT FIFO Half Full Status

This is a read-only status bit.

When this bit = 1, the BitBLT FIFO is half full or greater than half full.

When this bit = 0, the BitBLT FIFO is less than half full.

bit 4 BitBLT FIFO Full Status

This is a read-only status bit.

When this bit = 1, the BitBLT FIFO is full. When this bit = 0, the BitBLT FIFO is not full.

bit 1 BitBLT Destination Linear Select

When this bit = 1, the Destination BitBLT is stored as a contiguous linear block of

memory.

When this bit = 0, the Destination BitBLT is stored as a rectangular region of memory. The BitBLT Memory Address Offset (REG[10Ch], REG[10Dh]) determines the address

offset from the start of one line to the next line.

bit 0 BitBLT Source Linear Select

When this bit = 1, the Source BitBLT is stored as a contiguous linear block of memory. When this bit = 0, the Source BitBLT is stored as a rectangular region of memory. The BitBLT Memory Address Offset (REG[10Ch], REG[10Dh]) determines the address

offset from the start of one line to the next line.

BitBLT Control Register 1 REG[101h] RV						RW	
n/a	n/a	n/a	Reserved	n/a	n/a	n/a	BitBLT Color Format Select

bit 4 Reserved.

This bit must be set to 0.

bit 0 BitBLT Color Format Select

This bit selects the color format that the 2D operation is applied to.

When this bit = 0, 8 bpp (256 color) format is selected. When this bit = 1, 16 bpp (64K color) format is selected.

BitBLT ROP Code/Color Expansion Register							
REG[102h]							RW
/-	/	/	/-	BitBLT ROP	BitBLT ROP	BitBLT ROP	BitBLT ROP
n/a	n/a	n/a	n/a	Code Bit 3	Code Bit 2	Code Bit 1	Code Bit 0

bits 3-0

BitBLT Raster Operation Code/Color Expansion Bits [3:0]

ROP Code for Write BitBLT and Move BitBLT. Bits 2-0 also specify the start bit position for Color Expansion.

Table 8-30: BitBLT ROP Code/Color Expansion Function Selection

BitBLT ROP Code Bits [3:0]	Boolean Function for Write BitBLT and Move BitBLT	Boolean Function for Pattern Fill	Start Bit Position for Color Expansion
0000	0 (Blackness)	0 (Blackness)	bit 0
0001	~S . ~D or ~(S + D)	~P . ~D or ~(P + D)	bit 1
0010	~S . D	~P . D	bit 2
0011	~S	~P	bit 3
0100	S.~D	P . ~D	bit 4
0101	~D	~D	bit 5
0110	S^D	P^D	bit 6
0111	~S + ~D or ~(S . D)	~P + ~D or ~(P . D)	bit 7
1000	S.D	P.D	bit 0
1001	~(S ^ D)	~(P ^ D)	bit 1
1010	D	D	bit 2
1011	~S + D	~P + D	bit 3
1100	S	Р	bit 4
1101	S + ~D	P + ~D	bit 5
1110	S + D	P + D	bit 6
1111	1 (Whiteness)	1 (Whiteness)	bit 7

Note

S = Source, D = Destination, P = Pattern.

BitBLT Operation Register REG[103h] RW						RW	
n/a	n/a	n/a	n/a	BitBLT Operation Bit 3	BitBLT Operation Bit 2	BitBLT Operation Bit 1	BitBLT Operation Bit 0

bits 3-0

BitBLT Operation Bits [3:0]

Specifies the 2D Operation to be carried out based on the following table.

Table 8-31: BitBLT Operation Selection

BitBLT Operation Bits [3:0]	BitBLT Operation
0000	Write BitBLT with ROP.
0001	Read BitBLT.
0010	Move BitBLT in positive direction with ROP.
0011	Move BitBLT in negative direction with ROP.
0100	Transparent Write BitBLT.
0101	Transparent Move BitBLT in positive direction.
0110	Pattern Fill with ROP.
0111	Pattern Fill with transparency.
1000	Color Expansion.
1001	Color Expansion with transparency.
1010	Move BitBLT with Color Expansion.
1011	Move BitBLT with Color Expansion and transparency.
1100	Solid Fill.
Other combinations	Reserved

Note

The BitBLT operations Pattern Fill with ROP and Pattern Fill with transparency require a BitBLT width > 2 for 8 bpp color depths and a BitBLT width > 1 for 16 bpp color depths. The BitBLT width is set in REG[110h], REG[111h].

BitBLT Source REG[104h]	ce Start Addro	ess Register ()				RW
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT
Source Start	Source Start	Source Start	Source Start	Source Start	Source Start	Source Start	Source Start
Address	Address	Address	Address	Address	Address	Address	Address
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

REG[105h]	ce Start Addro	ess Register ′	1				RW
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT
Source Start	Source Start	Source Start	Source Start	Source Start	Source Start	Source Start	Source Start
Address	Address	Address	Address	Address	Address	Address	Address
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8

BitBLT Sour REG[106h]	ce Start Addr	ess Register 2	2				RW
n/a	n/a	n/a	BitBLT Source Start Address Bit 20	BitBLT Source Start Address Bit 19	BitBLT Source Start Address Bit 18	BitBLT Source Start Address Bit 17	BitBLT Source Start Address Bit 16

REG[104h] bits 7-0

BitBLT Source Start Address Bits [20:0]

REG[105h] bits 7-0

A 21-bit register that specifies the source start address for the BitBLT operation.

REG[106h] bits 4-0

If data is sourced from the CPU, then bit 0 is used for byte alignment within a 16-bit word and the other address bits are ignored. In pattern fill operation, the BitBLT Source Start Address is defined by the following equation.

Value programmed to the Source Start Address Register =
Pattern Base Address + Pattern Line Offset + Pixel Offset.

The following table shows how Source Start Address Register is defined for 8 and 16 bpp color depths.

Table 8-32: BitBLT Source Start Address Selection

Color Format	Pattern Base Address[20:0]	Pattern Line Offset[2:0]	Pixel Offset[3:0]
8 bpp	BitBLT Source Start Address[20:6]	BitBLT Source Start Address[5:3]	BitBLT Source Start Address[2:0]
16 bpp	BitBLT Source Start Address[20:7]	BitBLT Source Start Address[6:4]	BitBLT Source Start Address[3:0]

Note

For further information on the BitBLT Source Start Address register, see the *S1D13806 Programming Notes and Examples*, document number X28B-G-003-xx.

BitBLT Desti REG[108h]	nation Start A	Address Regis	ster 0				RW
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT
Destination	Destination	Destination	Destination	Destination	Destination	Destination	Destination
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

BitBLT Desti REG[109h]	nation Start A	Address Regis	ster 1				RW
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT
Destination	Destination	Destination	Destination	Destination	Destination	Destination	Destination
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8

BitBLT Desti REG[10Ah]	BitBLT Destination Start Address Register 2 REG[10Ah] RW										
n/a	n/a	n/a	BitBLT Destination Start Address Bit 20	BitBLT Destination Start Address Bit 19	BitBLT Destination Start Address Bit 18	BitBLT Destination Start Address Bit 17	BitBLT Destination Start Address Bit 16				

REG[108h] bits 7-0

BitBLT Destination Start Address Bits [20:0]

REG[109h] bits 7-0

A 21-bit register that specifies the destination start address for the BitBLT operation.

REG[10Ah] bits 4-0

BitBLT Memore REG[10Ch]	ory Address (Offset Registe	er O				RW
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT
Memory	Memory	Memory	Memory	Memory	Memory	Memory	Memory
Address	Address	Address	Address	Address	Address	Address	Address
Offset Bit 7	Offset Bit 6	Offset Bit 5	Offset Bit 4	Offset Bit 3	Offset Bit 2	Offset Bit 1	Offset Bit 0

BitBLT Memore REG[10Dh]	ory Address (Offset Registe	er 1				RW
n/a	n/a	n/a	n/a	n/a	BitBLT Memory Address Offset Bit 10	BitBLT Memory Address Offset Bit 9	BitBLT Memory Address Offset Bit 8

REG[10Ch] bits 7-0

BitBLT Memory Address Offset Bits [10:0]

REG[10Dh] bits 2-0

These bits are the display's 11-bit address offset from the starting word of line n to the starting word of line n + 1. They are used only for address calculation when the BitBLT is configured as a rectangular region of memory.

BitBLT Widtl REG[110h]	n Register 0						RW			
BitBLT Width Bit 7	BitBLT Width Bit 6	BitBLT Width Bit 5	BitBLT Width Bit 4	BitBLT Width Bit 3	BitBLT Width Bit 2	BitBLT Width Bit 1	BitBLT Width Bit 0			
BitBLT Width Register 1										

BitBLT Widtl REG[111h]	n Register 1						RW
n/a	n/a	n/a	n/a	n/a	n/a	BitBLT Width Bit 9	BitBLT Width Bit 8

REG[110h] bits 7-0 BitBLT Width Bits [9:0]

REG[111h] bits 1-0 A 10-bit register that specifies the BitBLT width in pixels - 1.

BitBLT width in pixels = (ContentsOfThisRegister) + 1

Note

The BitBLT operations Pattern Fill with ROP and Pattern Fill with transparency require a BitBLT width > 2 for 8 bpp color depths and a BitBLT width > 1 for 16 bpp color depths.

BitBLT Height BitBLT Height BitBLT Height Bit 5 Bit 4 Bit 3 BitBLT Height BitBLT Heigh	BitBLT Heigh REG[112h]	nt Register 0					RW
	9	•	•	•	_	 	•

BitBLT REG[11	nt Register 1						RW
n/a	n/a	n/a	n/a	n/a	n/a	BitBLT Height Bit 9	BitBLT Height Bit 8

REG[112h] bits 7-0 BitBLT Height Bits [9:0]

REG[113h] bits 1-0 A 10-bit register that specifies the BitBLT height in lines - 1.

BitBLT height in lines = (ContentsOfThisRegister) + 1

BitBLT Background Color Register 0 REG[114h] RV									
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT		
Background	Background	Background	Background	Background	Background	Background	Background		
Color	Color	Color	Color	Color	Color	Color	Color		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

BitBLT Background Color Register 1 REG[115h] RW									
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT		
Background	Background	Background	Background	Background	Background	Background	Background		
Color	Color	Color	Color	Color	Color	Color	Color		
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		

REG[114h] bits 7-0

BitBLT Background Color Bits [15:0]

REG[115h] bits 15-8

A 16-bit register that specifies the BitBLT background color for Color Expansion or key color for Transparent BitBLT. For 16 bpp color depths (REG[101h] bit 0 = 1), all 16 bits are used. For 8 bpp color depths (REG[101h] bit 0 = 0), only bits 7-0 are used.

BitBLT Foreground Color Register 0 REG[118h] RW									
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT		
Foreground	Foreground	Foreground	Foreground	Foreground	Foreground	Foreground	Foreground		
Color	Color	Color	Color	Color	Color	Color	Color		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

BitBLT Foreground Color Register 1 REG[119h] RW									
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT		
Foreground	Foreground	Foreground	Foreground	Foreground	Foreground	Foreground	Foreground		
Color	Color	Color	Color	Color	Color	Color	Color		
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		

REG[118h] bits 7-0

BitBLT Foreground Color Bits [15:0]

REG[119h] bits 7-0

A 16-bit register that specifies the BitBLT foreground color for Color Expansion or Solid Fill. For 16 bpp color depths (REG[101h] bit 0 = 1), all 16 bits are used. For 8 bpp color depths (REG[101h] bit 0 = 0), only bits 7-0 are used.

8.4.13 Look-Up Table Registers

Note

Accessing the LCD Look-Up Table (LUT) requires an active LCD PCLK and accessing the CRT/TV LUT requires an active CRT/TV PCLK. For further information on the clocks, see Section 7, "Clocks" on page 91.

Look-Up Table Mode Register REG[1E0h] RW								
n/a	n/a	n/a	n/a	n/a	n/a	LUT Mode Bit 1	LUT Mode Bit 0	

bits 1-0

Look-Up Table Mode Bits [1:0]

These bits determine which of the on-chip Look-Up Tables (LUT) (LCD and CRT/TV) are accessible by REG[1E2h] and REG[1E4h].

Table 8-33 .	LUT Mode Selection
Tunie 0-55 .	LOT MOde Selection

LUT Mode Bits [1:0]	Read	Write		
00	LCD LUT	LCD and CRT/TV LUT's		
01	LCD LUT	LCD LUT		
10	CRT/TV LUT	CRT/TV LUT		
11	Reserved	Reserved		

Look-Up Table Address Register REG[1E2h] RW								
LUT Address	LUT Address	LUT Address	LUT Address	LUT Address	LUT Address	LUT Address	LUT Address	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

bits 7-0

LUT Address Bits [7:0]

These 8 bits control a pointer into the Look-Up Tables (LUT). The S1D13806 has three 256-position, 4-bit wide LUTs, one for each of red, green, and blue – refer to Section 12, "Look-Up Table Architecture" on page 158 for details.

This register selects which LUT entry is read/write accessible through the LUT Data Register (REG[1E4h]). Writing the LUT Address Register automatically sets the pointer to the Red LUT. Accesses to the LUT Data Register automatically increment the pointer.

For example, writing a value 03h into the LUT Address Register sets the pointer to R[3]. A subsequent access to the LUT Data Register accesses R[3] and moves the pointer onto G[3]. Subsequent accesses to the LUT Data Register move the pointer onto B[3], R[4], G[4], B[4], R[5], etc.

Note

The RGB data is inserted into the LUT after the Blue data is written, i.e. all three colors must be written before the LUT is updated.

Look-Up Table Data Register REG[1E4h] RW								
LUT Data Bit 3	LUT Data Bit 2	LUT Data Bit 1	LUT Data Bit 0	n/a	n/a	n/a	n/a	

bits 7-4 LUT Data Bits [3:0]

This register is used to read/write the RGB Look-Up Tables. This register accesses the entry at the pointer controlled by the Look-Up Table Address register (REG[1E2h]). Accesses to the Look-Up Table Data register automatically increment the pointer.

Note

The RGB data is inserted into the LUT after the Blue data is written, i.e. all three colors must be written before the LUT is updated.

8.4.14 Power Save Configuration Registers

For further information on Power Save Mode, refer to Section 19, "Power Save Mode" on page 199.

Power Save Configuration Register REG[1F0h] RW								
n/a	n/a	n/a	Reserved	n/a	n/a	n/a	Power Save Mode Enable	

bit 4 Reserved.

This bit must be set to 1.

bit 0 Power Save Mode Enable

When this bit = 1, power save mode is enabled. When this bit = 0, power save mode is disabled.

Note

For details on Power Save Mode, see Section 19, "Power Save Mode" on page 199.

Power Save Status Register REG[1F1h] RO									
n/a	n/a	n/a	n/a	n/a	n/a	LCD Power Save Status	Memory Controller Power Save Status		

bit 1

LCD Power Save Status

This bit indicates the power save state of the LCD panel.

When this bit = 1, the panel is powered down.

When this bit = 0, the panel is powered up, or in transition of powering up or down.

Note

When this bit reads a 1, the system may safely shut down the LCD pixel clock source.

Note

When the LCD panel is not enabled (REG[1FCh] bit 0 = 0), this bit returns a 1.

bit 0

Memory Controller Power Save Status

This bit indicates the power save state of the memory controller.

When this bit = 1, the memory controller is powered down and the SDRAM is in self refresh mode.

When this bit = 0, the memory controller is powered up and is in normal mode.

Note

When this bit reads a 1, the system may safely shut down the memory clock source.

8.4.15 Miscellaneous Registers

CPU-to-Memory Access Watchdog Timer Register REG[1F4h]							RW
n/a	n/a	Mem. Access Watchdog Timer bit 5	Mem. Access Watchdog Timer bit 4	Mem. Access Watchdog Timer bit 3	Mem. Access Watchdog Timer bit 2	Mem. Access Watchdog Timer bit 1	Mem. Access Watchdog Timer bit 0

bits 5-0

CPU-to-Memory Access Watchdog Timer Bits [5:0]

A non-zero value in this register enables the watchdog timer for CPU-to-memory access. When enabled, any CPU-to-memory access cycle is completed successfully within a time determined by the following equation.

Maximum CPU-to-memory access cycle time = $(8n + 7) \times T_{bclk} + 13 \times T_{mclk}$

where:

n = A non-zero value in this register

 T_{bclk} = Bus clock period, or Bus clock period x 2 (if CONF5 = 1, see

Table 4-9 on page 34)

 T_{mclk} = Memory clock period

This function is required by some busses which time-out if the cycle duration exceeds a certain time period. This function is **not intended to arbitrarily shorten the CPU-to-memory access cycle time** in order gain higher CPU bandwidth. Doing so may significantly reduce the available display refresh bandwidth which may cause display corruption. This register does not affect CPU-to-register access or BitBLT access.

8.4.16 Common Display Mode Register

Display Mod REG[1FCh]	e Register						RW
n/a	SwivelView Enable Bit 0	n/a	n/a	n/a	Display Mode Select Bit 2	Display Mode Select Bit 1	Display Mode Select Bit 0

bit 6

SwivelView Enable Bit 0

When this bit = 1, the LCD and CRT display image is rotated 90° clockwise.

When this bit = 0, there is no hardware effect.

This bit in conjunction with SwivelView[™] Enable Bit 1 achieves the following hardware rotations.

Table 8-34: Setting SwivelView Modes

SwivelView Enable Bits	SwivelView [™] Modes						
Swiverview Enable bits	Normal	SwivelView 90°	SwivelView 180°	SwivelView 270°			
SwivelView Enable Bit 0 (REG[1FCh] bit 6)	0	1	0	1			
SwivelView Enable Bit 1 (REG[040h] bit 4)	0	0	1	1			

Note

Please refer to Section 15, "SwivelViewTM" on page 174 for application and limitations.

bits 2-0

Display Mode Select Bits [2:0]

These bits select the display model according to the following table. The LCD display mode is enabled/disabled using bit 0.

Table 8-35: Display Mode Selection

Display Mode Select Bits [2:0]	Display Mode Enabled
000	no display
001	LCD only
010	CRT only
011	EISD (CRT and LCD)
100	TV with flicker filter off
101	EISD (TV with flicker filter off and LCD)
110	TV with flicker filter on
111	EISD (TV with flicker filter on and LCD)

Note

REG[018h] bit 7 must be set to 1 when the flicker filter is enabled.

Note

The **Flicker Filter** reduces the "flickering" effect seen on interlaced displays by averaging adjacent lines on the TV display. This "flickering" is caused by sharp vertical image transitions that occur over one line (1 vertical pixel). For example, one pixel high lines, edges of window boxes, etc. Flickering occurs because these high resolution lines are effectively displayed at half the refresh frequency due to interlacing.

8.5 MediaPlug Registers Descriptions

The S1D13806 has built-in support for Winnov's MediaPlug connection designed for video cameras. The following registers are used to control the connection and accept data from the camera. The MediaPlug registers decode A11-A0 and require A20 = 0 and A12 = 1. The MediaPlug registers are 16-bit wide. Byte access to the MediaPlug registers is not allowed. For further information, see Section 17, "MediaPlug Interface" on page 185.

Note

The MediaPlug control registers must not be accessed while Power Save Mode is enabled (REG[1F0h] bit 0 = 1).

8.5.1 MediaPlug Control Registers

MediaPlug LCMD Register REG[1000h] RW							RW
LCMD Bit 7	LCMD Bit 6	LCMD Bit 5	LCMD Bit 4	LCMD Bit 3	LCMD Bit 2	LCMD Bit 1	LCMD Bit 0
LCMD Bit 15	LCMD Bit 14	LCMD Bit 13	LCMD Bit 12	LCMD Bit 11	LCMD Bit 10	LCMD Bit 9	LCMD Bit 8

REG[1000h] bits 15-0 MediaPlug LCMD Bits [15:0]

A 16-bit register for setting and detecting various modes of operation of the MediaPlug Local Slave. This register is handled differently for reads and writes. The following table shows the MediaPlug description of the LCMD Register. See bit descriptions for details.

Table 8-36: MediaPlug LCMD Read/Write Descriptions

Data	D15	D14	D13	D12	D11	D10	D9	D8	
Write	e TO[2:0]			Xxxxxx					
Read	TO[[2:0]	00	Ob	Rev[3:0]				
Data	D7	D6	D5	D4	D3	D2	D1	D0	
Write	Xxxx				IC	MC	Р	W	
Read		Rstat[2:0]		0b	IC	MC	Р	W	

bits 15-14 Timeout Option

These bits select the timeout delay in MediaPlug clock cycles.

Table 8-37: Timeout Option Delay

Timeout Option Bits[15:14]	Timeout (MediaPlug clock cycles)
00	1023 (default)
01	64
10	128
11	64

bits 13-12 A read from these bits always returns 00b.

A write to these bits has no hardware effect.

bits 11-8 MediaPlug IC Revision

The revision for this MediaPlug IC is "0011b". A write to these bits has no hardware effect.

bit 7 Cable Detected Status

The cable detected status as determined by the MPD(1) pin.

When this bit = 0, a MediaPlug cable is connected. When this bit = 1, a MediaPlug cable is not detected.

A write to this bit has no hardware effect.

bit 6 A read from this bit always returns 0b.

A write to this bit has no hardware effect.

bit 5 Remote Powered Status

The remote powered status as determined by the RCTRL pin.

When this bit = 0, the remote is not powered.

When this bit = 1, the remote is powered and connected.

A write to this bit has no hardware effect.

Table 8-38: Cable Detect and Remote Powered Status

Cable Detected Status [bit 7]	Remote Powered Status [bit 5]	Status
0	0	cable connected but remote not powered
0	1	cable connected and remote powered
1	х	cable not connected

bit 4 A read from this bit always returns 0b.

A write to this bit has no hardware effect.

bit 3 MediaPlug Clock Enable

When this bit = 0, the MediaPlug clock is disabled (default).

When this bit = 1, the MediaPlug clock is enabled.

bit 2 MediaPlug Clock

When this bit = 0, the MediaPlug cable clock (VMPCLK) is disabled (default).

When this bit = 1, the MediaPlug cable clock (VMPCLK) is enabled.

bit 1 Power Enable to Remote

When this bit = 0, power to remote is off (default).

When this bit =1, power to remote is on.

bit 0 Watchdog Disable

When this bit = 0, the MediaPlug watchdog is enabled (default).

When this bit = 1, the MediaPlug watchdog is disabled.

MediaPlug Reserved LCMD Register REG[1002h] RW							RW
LCMD Bit 23	LCMD Bit 22	LCMD Bit 21	LCMD Bit 20	LCMD Bit 19	LCMD Bit 18	LCMD Bit 17	LCMD Bit 16
LCMD Bit 31	LCMD Bit 30	LCMD Bit 29	LCMD Bit 28	LCMD Bit 27	LCMD Bit 26	LCMD Bit 25	LCMD Bit 24

REG[1002h] bits 15-0 MediaPlug Reserved LCMD Bits [15:0]

This register is not implemented and is reserved for future expansion of the LCMD register. A write to this register has no hardware effect. A read from this register always return 0000h.

MediaPlug C REG[1004h]	MD Register						RW
CMD Bit 7	CMD Bit 6	CMD Bit 5	CMD Bit 4	CMD Bit 3	CMD Bit 2	CMD Bit 1	CMD Bit 0
CMD Bit 15	CMD Bit 14	CMD Bit 13	CMD Bit 12	CMD Bit 11	CMD Bit 10	CMD Bit 9	CMD Bit 8

REG[1002h] bits 15-0 MediaPlug CMD Bits [15:0]

A 16-bit register for setting the MediaPlug commands. This register is handled differently for reads and writes. The following table shows the MediaPlug description of the CMD Register. See bit descriptions for details.

Table 8-39: MediaPlug CMD Read/Write Descriptions

Data	D15	D14	D13	D12	D11	D10	D9	D8
Write			I[12:5]					
Read	D	Т	I[10:5]					
Data	D7	D6	D5	D4	D3	D2	D1	D0
	01	50		D -7	D 0		υ,	D 0
Write	- 51		I[4:0]	54			C[2:0]	

bit 15 Dirty Bit

This bit is set by the hardware when the command register is written.

It is cleared by hardware by the following conditions:

- 1. Remote-Reset (After this command has been acknowledged by remote.
- 2. End_Stream (After this command has been acknowledged by remote.
- 3. Write to DATA register if the CCC field is Write_Reg.
- 4. Read to DATA register if the CCC field is Read_Reg.

It is also set when the Remote Machine loses power or the cable is disconnected.

bit 14 Timeout Bit

It is set when Watchdog is enabled and MediaPlug read or write cycle takes longer than

64, 128, 1024 cycles of MediaPlug clock depending on LCMD register settings.

It is also set when the remote is not powered.

It is cleared at the beginning of every command write by the host.

bits 13-3 Index Field

This field is the address presented by the remote to the remote function. MediaPlug transmits the entire 16-bits of the first word of the command Register as written, but I12 (D15)

and I11 (D14) are hidden from readback by the dirty bit and Watchdog error bit.

bit 2-0 Command Field

Selects the command as follows:

Table 8-40: MediaPlug Commands

Command Field [bits 2:0]	Command
000	Remote-Reset: Hardware reset of remote.
001	Stream-End: Indicates end of data streaming operation.
010	Write-Register: Write remote register INDEX[5:0] with DATA.
011	Read-Register: Read remote register INDEX[5:0] to DATA.
100	Write_Stream: Begin streaming data to the remote.
101	NOP: The command is sent across the MediaPlug. There is no other effect.
110	NOP: The command is sent across the MediaPlug. There is no other effect.
111	Read-Stream: Begin streaming data from the remote.

MediaPlug Reserved CMD Register REG[1006h] RW							RW
CMD Bit 23	CMD Bit 22	CMD Bit 21	CMD Bit 20	CMD Bit 19	CMD Bit 18	CMD Bit 17	CMD Bit 16
CMD Bit 31	CMD Bit 30	CMD Bit 29	CMD Bit 28	CMD Bit 27	CMD Bit 26	CMD Bit 25	CMD Bit 24

REG[1006h] bits 15-0 MediaPlug Reserved CMD Bits [15:0]

This register is not implemented and is reserved for future expansion of the CMD register. A write to this register has no hardware effect. A read from this register always return 0000h.

8.5.2 MediaPlug Data Registers

MediaPlug D REG[1008h] t	•], even addres	s				RW
Data Bit 7	Data Bit 6	Data Bit 5	Data Bit 4	Data Bit 3	Data Bit 2	Data Bit 1	Data Bit 0
Data Bit 15	Data Bit 14	Data Bit 13	Data Bit 12	Data Bit 11	Data Bit 10	Data Bit 9	Data Bit 8

Data Register bits 15-0 MediaPlug Data Bits [15:0]

A 16-bit register used for read/write and streaming read/write of MediaPlug data. This register is loosely decoded from 1008h to 1FFEh so that the port may be accessed using DWORD block transfer instructions.

8.6 BitBLT Data Registers Descriptions

The BitBLT data registers decode A19-A0 and require A20 = 1. The BitBLT data registers are 16-bit wide. Byte access to the BitBLT data registers is not allowed.

BitBLT Data A20-A0 = 100	Register 0 0000h-1FFFFE	h, even addre	SS				RW
Data Bit 7	Data Bit 6	Data Bit 5	Data Bit 4	Data Bit 3	Data Bit 2	Data Bit 1	Data Bit 0
Data Bit 15	Data Bit 14	Data Bit 13	Data Bit 12	Data Bit 11	Data Bit 10	Data Bit 9	Data Bit 8

Data Register bits 15-0 BitBLT Data Bits [15:0]

A 16-bit register that specifies the BitBLT data. This register is loosely decoded from 100000h to 1FFFFEh.

9 2D BitBLT Engine

9.1 Overview

The S1D13806 is designed with a built-in 2D BitBLT engine which increases the performance of Bit Block Transfers (BitBLT). It supports 8 and 16 bit-per-pixel color depths.

The BitBLT engine supports rectangular and linear addressing modes for source and destination in a positive direction for all BitBLT operations except the move BitBLT which also supports in a negative direction.

The BitBLT operations support byte alignment of all types. The BitBLT engine has a dedicated BitBLT IO access space allowing it to support multi-tasking applications. This allows the BitBLT engine to support simultaneous BitBLT and CPU read/write operations.

9.2 BitBLT Operations

The S1D13806 2D BitBLT engine supports the following BitBLTs. For detailed information on using the individual BitBLT operations, refer to the S1D13806 Programming Notes and Examples, document number X28B-G-003-xx.

- Write BitBLT.
- · Move BitBLT.
- Solid Fill BitBLT.
- Pattern Fill BitBLT.
- Transparent Write BitBLT.
- Transparent Move BitBLT.
- Read BitBLT.
- Color Expansion BitBLT.
- Move BitBLT with Color Expansion.

Note

For details on the BitBLT registers, see Section 8.4.12, "BitBLT Configuration Registers" on page 135.

10 Display Buffer

The system addresses the display buffer using CS#, M/R#, and the input pins AB[20:0]. When CS# = 0 and M/R# = 1, the display buffer is addressed by bits AB[20:0]. See the table below:

CS#	M/R#	Access
		Register access - see Section 8.2, "Register Mapping" on page 96.
0	0	• REG[000h] is addressed when AB[12:0] = 0
		• REG[001h] is addressed when AB[12:0] = 1
		REG[n] is addressed when AB[12:0] = n
0	1	Memory access: the 1.25M byte display buffer is addressed by AB[20:0]
1	Х	S1D13806 not selected

Table 10-1: S1D13806 Addressing

The display buffer address space is always 2M bytes. However, the physical display buffer is 1280k bytes. The space above the 1280k boundary is unavailable (see Figure 10-1: "Display Buffer Addressing").

The display buffer can contain an image buffer, one or more Ink Layer/Hardware Cursor buffers, and a dual panel buffer.

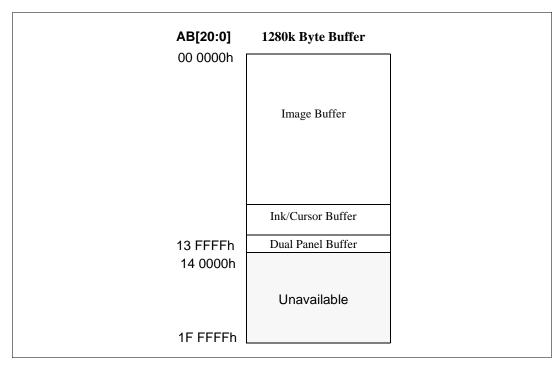


Figure 10-1: Display Buffer Addressing

10.1 Image Buffer

The image buffer contains the formatted display mode data – see Section 11.1, "Display Mode Data Format" on page 156.

The displayed image(s) may occupy only a portion of this space with the remaining area used for multiple images – possibly for animation or general storage. Section 11, "Display Configuration" on page 156 for the relationship between the image buffer and the displayed image.

10.2 Ink Layer/Hardware Cursor Buffers

The Ink Layer/Hardware Cursor buffers contain formatted image data for the Ink Layer and Hardware Cursor. There may be several Ink Layer/Hardware Cursor images stored in the display buffer but only one may be active at any given time.

For further information, see Section 14, "Ink Layer/Hardware Cursor Architecture" on page 170.

10.3 Dual Panel Buffer

In dual panel mode with the dual panel buffer enabled, the top of the display buffer is allocated to the dual panel buffer. The size of the dual panel buffer is a function of the panel resolution and the type of panel (color or monochrome).

Dual Panel Buffer Size (in bytes) = (panel width x panel height) \times factor \div 16

where factor: = 4 for color panel = 1 for monochrome panel

Note

Calculating the size of the dual panel buffer is required to avoid overwriting the Hardware Cursor/Ink Layer buffer.

Example 1: For a 800x600 color panel the dual panel buffer size is 120,000 bytes.

With a 1280k byte display buffer, the dual panel buffer resides from 12 2b40h to 13 FFFFh.

11 Display Configuration

11.1 Display Mode Data Format

The following diagram show the display mode data formats for a little endian system.

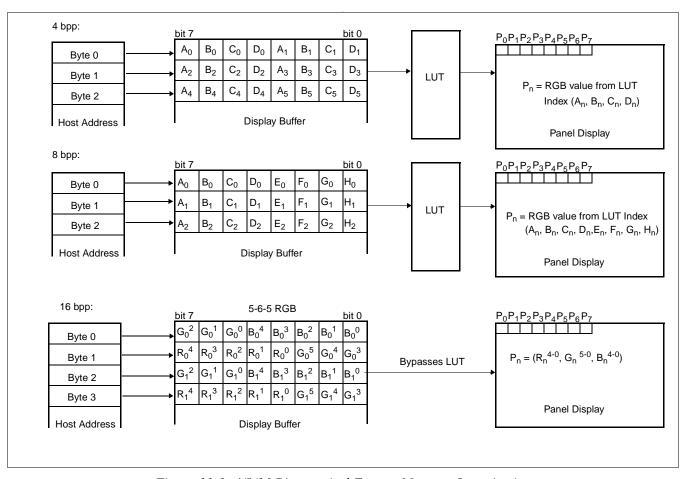


Figure 11-1: 4/8/16 Bit-per-pixel Format Memory Organization

Note

- 1. The Host-to-Display mapping shown here is for a little endian system.
- 2. For the 16 bit-per-pixel format, R_n, G_n, B_n represent the red, green, and blue color components.

11.2 Image Manipulation

The figure below shows how the screen image is stored in the image buffer and positioned on the LCD display. The screen image on the CRT/TV is manipulated similarly. When EISD is enabled (see Section 16, "EPSON Independent Simultaneous Display (EISD)" on page 183), the images on the LCD and on the CRT/TV are independent of each other.

- For LCD: (REG[047h], REG[046h]) define the width of the virtual image. For CRT/TV: (REG[067h], REG[066h]) define the width of the virtual image.
- For LCD: (REG[044h], REG[043h], REG[042h]) define the starting word of the displayed image. For CRT/TV: (REG[064h], REG[063h], REG[062h]) define the starting word of the displayed image.
- For LCD: REG[048h] defines the starting pixel within the starting word. For CRT/TV: REG[068h] defines the starting pixel within the starting word.
- For LCD: REG[032h] defines the width of the LCD display. For CRT/TV: REG[050h] defines the width of the CRT/TV display.
- For LCD: (REG[039h], REG[038h]) define the height of the LCD display. For CRT/TV: (REG[057h], REG[056h]) define the height of the CRT/TV display.

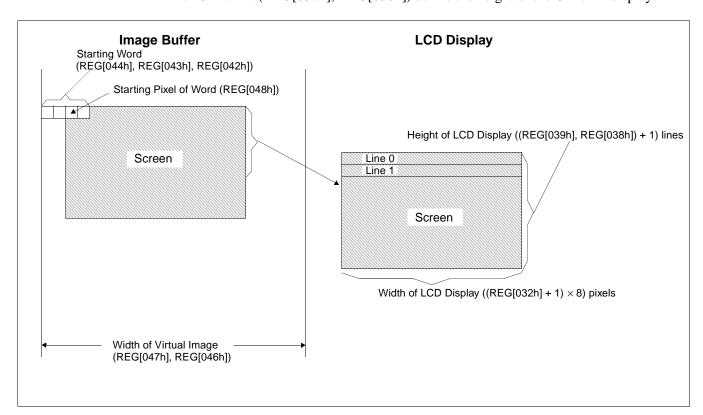


Figure 11-2: Image Manipulation

fication

12 Look-Up Table Architecture

The following depictions are intended to show the display data output path only.

12.1 Monochrome Modes

The green LUT is used for all monochrome modes.

4 Bit-Per-Pixel Monochrome Mode

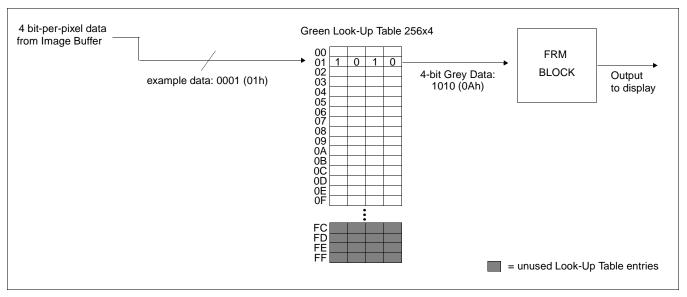


Figure 12-1: 4 Bit-Per-Pixel Monochrome Mode Data Output Path

8 Bit-Per-Pixel Monochrome Mode

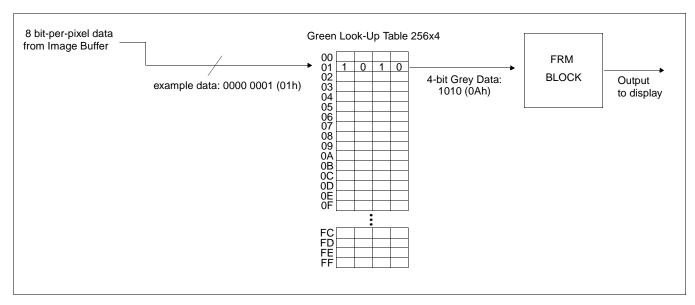


Figure 12-2: 8 Bit-Per-Pixel Monochrome Mode Data Output Path

16 Bit-Per-Pixel Monochrome Mode

A color depth of 16 bpp is required to achieve 64 gray shades in monochrome mode. In this mode the LUT is bypassed and the green component of the pixel is mapped to the FRM.

12.2 Color Modes

4 Bit-Per-Pixel Color Mode

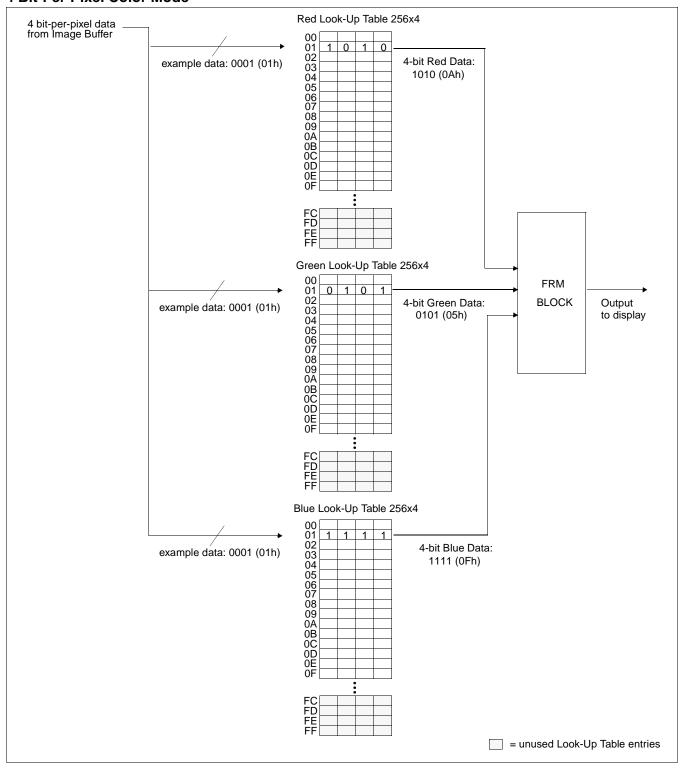


Figure 12-3: 4 Bit-Per-Pixel Color Mode Data Output Path

8 Bit-Per-Pixel Color Mode

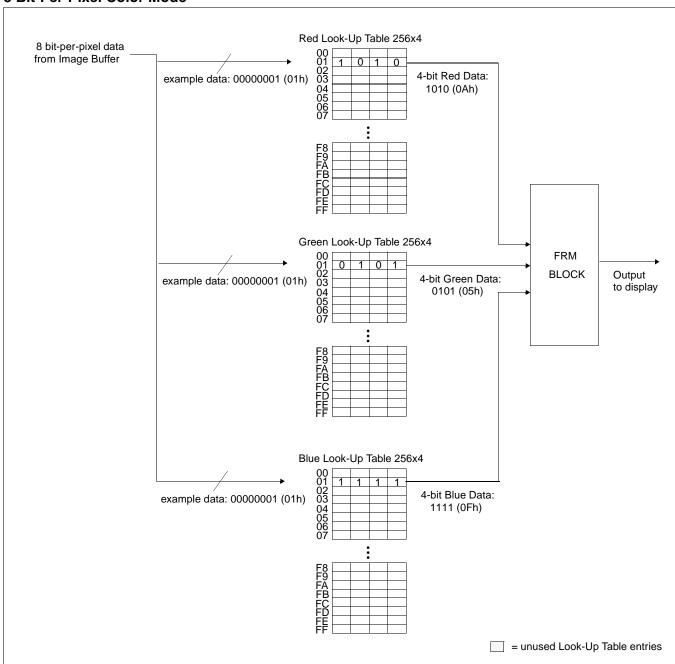


Figure 12-4: 8 Bit-Per-Pixel Color Mode Data Output Path

16 Bit-Per-Pixel Color Modes

The LUT is bypassed and the color data is directly mapped for this color mode – Section 11, "Display Configuration" on page 156.

13 TV Considerations

13.1 NTSC/PAL Operation

NTSC or PAL video is supported in either composite or S-video format. Filters may be enabled to reduce the distortion associated with displaying high resolution computer images on an interlaced TV display. The image can be vertically and horizontally positioned on the TV. Additionally, a dedicated Hardware Cursor (independent from the LCD display) is supported.

13.2 Clock Source

The required clock frequencies for NTSC/PAL are given in the following table.

Table 13-1: Required Clock Frequencies for NTSC/PAL

TV Format	Required Clock Frequency
NTSC	14.318180 MHz (3.579545 MHz subcarrier)
PAL	17.734475 MHz (4.43361875 MHz subcarrier)

13.3 Filters

When displaying computer images on a TV, several image distortions are likely to arise:

- cross-luminance distortion.
- cross-chrominance distortion.
- flickering.

These distortions are caused by the high-resolution nature of computer images which typically contain sharp color transitions, and sharp luminance transitions (e.g., high contrast one pixel wide lines and fonts, window edges, etc.). Three filters are available to reduce these distortions.

13.3.1 Chrominance Filter (REG[05Bh] bit 5)

The chrominance filter adjusts the color of the TV by limiting the bandwidth of the chrominance signal (reducing cross-luminance distortion). This reduces the "ragged edges" seen at boundaries between sharp color transitions. This filter is controlled using REG[05Bh] bit 5 and is most useful for composite video output.

13.3.2 Luminance Filter (REG[05Bh] bit 4)

The luminance filter adjusts the brightness of the TV by limiting the bandwidth of the luminance signal (reducing cross-chrominance distortion). This reduces the "rainbow-like" colors at boundaries between sharp luminance transitions. This filter is controlled using REG[05Bh] bit 4 and is most useful for composite video output.

13.3.3 Anti-flicker Filter (REG[1FCh] bits [2:1])

The "flickering" effect seen on interlaced displays is caused by sharp vertical image transitions that occur over one line (1 vertical pixel). For example, one pixel high lines, edges of window boxes, etc. Flickering occurs because these high resolution lines are effectively displayed at half the refresh frequency due to interlacing. The anti-flicker filter averages adjacent lines on the TV display to reduce flickering. This filter is controlled using the Display Mode register (REG[1FCh] bits [2:1]).

Note

When TV with anti-flicker filter is enabled, the Flicker Filter Clock Enable bit (REG[18h] bit 7) must be set to 1.

13.4 TV Output Levels

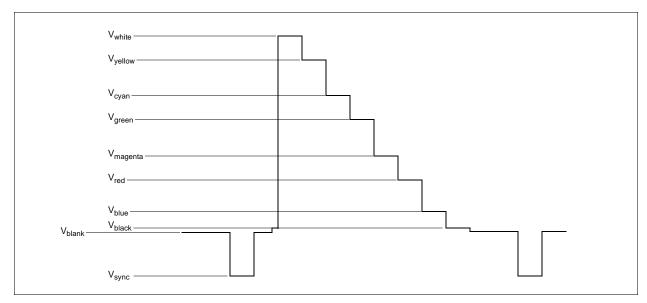


Figure 13-1: NTSC/PAL SVideo-Y (Luminance) Output Levels

Table 13-2: NTSC/PAL SVideo-Y (Luminance) Output Levels

Symbol	Parameter	RGB	NTSC / PAL (mv)	NTSC / PAL (IRE)
V _{white}	White	1F 3F 1F	996	99.5
V _{yellow}	Yellow	1F 3F 00	923	89
V _{cyan}	Cyan	00 3F 1F	798	72
V _{green}	Green	00 3F 00	725	62
V _{magenta}	Magenta	1F 00 1F	608	45
V_{red}	Red	1F 00 00	536	35
V _{blue}	Blue	00 00 1F	410	17
V_{black}	Black	00 00 00	338	7.3
V _{blanking}	Blanking	N.A.	284	0
$V_{\rm sync}$	Sync Tip	N.A.	0	-40

Note

RGB values assume a 16 bpp color depth with 5-6-5 pixel packing.

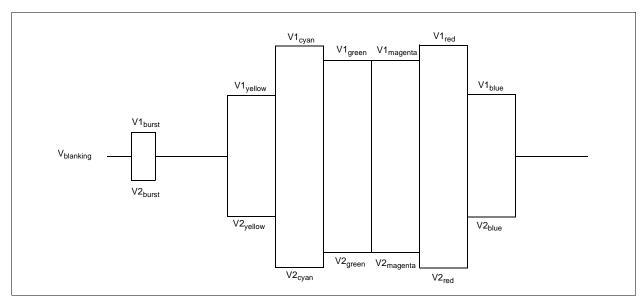


Figure 13-2: NTSC/PAL SVideo-C (Chrominance) Output Levels

Table 13-3 ·	NTSC/PAL SVideo-	C (Chrominance	Output Levels
1 uvie 15-5.	TVIDC/I AL DVIUCO	c	I Ouidui Leveis

Symbol	Parameter	RGB	NTSC / PAL (mv)	NTSC / PAL (IRE)
V1 _{burst}	Burst positive peak	N.A.	552 / 541	20 / 18.5
V1 _{yellow}	Yellow positive peak	1F 3F 00	700	40.8
V1 _{cyan}	Cyan positive peak	00 3F 1F	815	57
V1 _{green}	Green positive peak	00 3F 00	751	48
V1 _{magenta}	Magenta positive peak	1F 00 1F	751	48
V1 _{red}	Red positive peak	1F 00 00	815	57
V1 _{blue}	Blue positive peak	00 00 1F	700	40.8
V _{blanking}	Blanking	N.A.	410	0
V2 _{burst}	Burst negative peak	N.A.	268 / 279	-20 / -18.5
V2 _{yellow}	Yellow negative peak	1F 3F 00	121	-40.8
V2 _{cyan}	Cyan negative peak	00 3F 1F	5	-57
V2 _{green}	Green negative peak	00 3F 00	70	-48
V2 _{magenta}	Magenta negative peak	1F 00 1F	70	-48
V2 _{red}	Red negative peak	1F 00 00	5	-57
V2 _{blue}	Blue negative peak	00 00 1F	121	-40.8

Note

RGB values assume a 16 bpp color depth with 5-6-5 pixel packing.

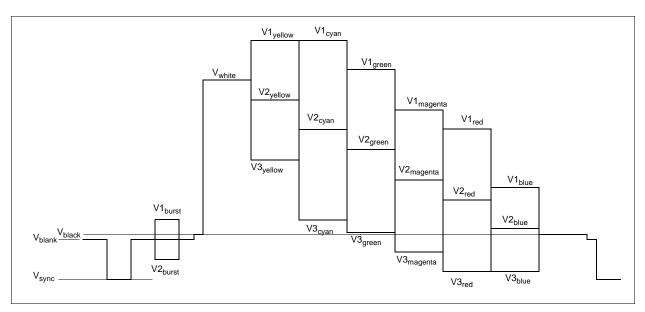


Figure 13-3: NTSC/PAL Composite Output Levels

Table 13-4: NTSC/PAL Composite Output Levels

Symbol	Parameter	RGB	NTSC / PAL (mv)	NTSC / PAL (IRE)
V1 _{yellow}	Yellow chrominance positive peak	1F 3F 00	1211	130
V1 _{cyan}	Cyan chrominance positive peak	00 3F 1F	1202	128
V1 _{green}	Green chrominance positive peak	00 3F 00	1065	109
V1 _{magenta}	Magenta chrominance positive peak	1F 00 1F	948	93
V1 _{red}	Red chrominance positive peak	1F 00 00	939	92
V1 _{blue}	Blue chrominance positive peak	00 00 1F	699	58
V _{white}	White luminance level	1F 3F 1F	995	99
V2 _{vellow}	Yellow luminance level	1F 3F 00	923	89
V2 _{cyan}	Cyan luminance level	00 3F 1F	797	72
V2 _{green}	Green luminance level	00 3F 00	725	62
V2 _{magenta}	Magenta luminance level	1F 00 1F	608	45
V2 _{red}	Red luminance level	1F 00 00	535	35
V2 _{blue}	Blue luminance level	00 00 1F	411	18
V _{black}	Black luminance level	00 00 00	338	7.3
V3 _{yellow}	Yellow chrominance negative peak	1F 3F 00	634	49
V3 _{cyan}	Cyan chrominance negative peak	00 3F 1F	392	15
V3 _{green}	Green chrominance negative peak	00 3F 00	384	14
V3 _{magenta}	Magenta chrominance negative peak	1F 00 1F	267	-2.6
V3 _{red}	Red chrominance negative peak	1F 00 00	130	-22
V3 _{blue}	Blue chrominance negative peak	00 00 1F	122	-23
V_{blank}	Blank Level	N.A.	284	0
V1 _{burst}	Burst positive peak	N.A.	426 / 415	20 / 18
V2 _{burst}	Burst negative peak	N.A.	142 / 153	-20 / -19
V _{sync}	Sync Tip	N.A.	0	-40

Note

RGB values assume a 16 bpp color depth with 5-6-5 pixel packing.

13.4.1 TV Image Display and Positioning

This section describes how to setup and position an image to be displayed on a TV. Figure 13-4: "NTSC/PAL Image Positioning" shows an image positioned in the TV display with the related programmable parameters. The TV display area is shaded.

The size of the display image determines the register values for the Horizontal Display Period, Horizontal Non-Display Period, Vertical Display Period, and Vertical Non-Display Period. The maximum and minimum values for these registers are given in Table 13-5, "Minimum and Maximum Values for NTSC/PAL TV," on page 168. The line period and frame period determined by these registers must also satisfy the following equations.

NTSC:

```
 (((REG[050] \ bits[6:0]) + 1) \times 8) + (((REG[052] \ bits[5:0]) \times 8) + 6) = 910   (((REG[057] \ bits[1:0]), \ (REG[056] \ bits[7:0])) + 1) + ((REG[058] \ bits[6:0]) + 1) \times 2 + 1) = 525   PAL:   ((((REG[050] \ bits[6:0]) + 1) \times 8) + ((((REG[052] \ bits[5:0]) \times 8) + 7) = 1135   ((((REG[057] \ bits[1:0]), \ (REG[056] \ bits[7:0])) + 1) + (((REG[058] \ bits[6:0]) + 1) \times 2 + 1) = 625
```

The HRTC Start Position and VRTC Start Position registers position the image horizontally and vertically. The maximum and minimum register values for these registers are given in Table 13-5, "Minimum and Maximum Values for NTSC/PAL TV". Increasing the HRTC Start Position moves the image left, while increasing the VRTC Start Position moves the image up.

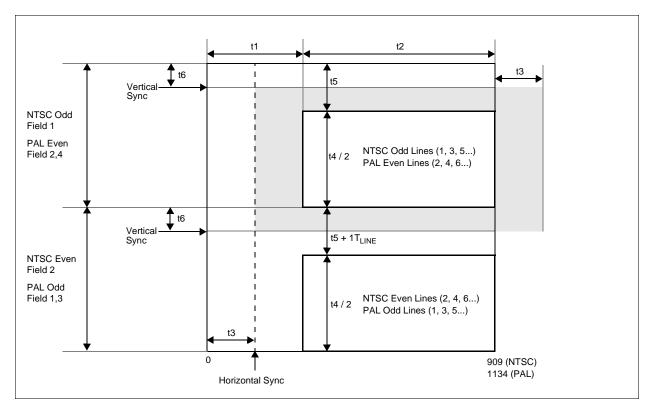


Figure 13-4: NTSC/PAL Image Positioning

The maximum Horizontal and Vertical Display Widths shown in Table 13-5, "Minimum and Maximum Values for NTSC/PAL TV" include display areas that are normally hidden by the edges of the TV. The visible display dimensions are shown in Figure 13-5: "Typical Display Dimensions and Visible Display Dimensions for NTSC and PAL" as a guideline. The actual visible display area for a particular television may differ slightly from those dimensions given. Table 13-6, "Register Values for Example NTSC/PAL Images" lists some register values for some example images.

NTSC PAL **Symbol Parameter** Register(s) **Units** min max min max 52 t1 TV Horizontal Non-Display Period 511 T_{4SC} 158 510 215 400 t2 TV Horizontal Display Width 50 752 624 920 T_{4SC} t3 53 25 t2 - 215 TV HRTC Start Position t2 - 158 25 T_{4SC} t4 TV Vertical Display Height 57, 56 270 484 370 572 TLINE t5 TV Vertical Non-Display Period 58 20 (21) 127 (128) 26 (27) 127 (128) $\mathsf{T}_{\mathsf{LINE}}$ TV Vertical Start Position t5 - 20 t6 59 t5 - 26 0 0 $\mathsf{T}_{\mathsf{LINE}}$

Table 13-5: Minimum and Maximum Values for NTSC/PAL TV

Note

The TV Vertical Non-Display Period (t5) varies by 1 line depending on the field that it follows.

Note

For NTSC panels the minimum and maximum values will vary for each application.

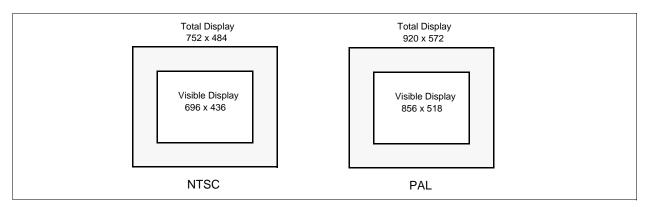


Figure 13-5: Typical Display Dimensions and Visible Display Dimensions for NTSC and PAL

Note

For most implementations, the visible display does not equal the total display. The total display dimensions and the visible display dimensions must be determined for each specific implementation.

	<i>Table 13-6 :</i>	Register V	alues for	Example	NTSC/PAL Images
--	---------------------	------------	-----------	---------	-----------------

Parameter	Register	NTSC			PAL			
raiametei	Negistei	752x484	696x436	640x480	920x572	856x518	800x572	640x480
TV Horizontal Display Width	50	5Dh	56h	4Fh	72h	6Ah	63h	4Fh
TV Horizontal Non-Display Period	52	13h	1Ah	21h	1Ah	22h	29h	3Dh
TV HRTC Start Position	53	02h	04h	09h	02h	05h	09h	15h
TV Vertical Display Height	57	01h	01h	01h	02h	02h	02h	01h
1 v vertical Display Height	56	E3h	B3h	DFh	3Bh	05h	3Bh	DFh
TV Vertical Non-Display Period	58	13h	2Bh	15h	19h	34h	19h	47h
TV Vertical Start Position	59	00h	0Ch	00h	00h	0Dh	00h	17h

13.4.2 TV Cursor Operation

See Section 14, "Ink Layer/Hardware Cursor Architecture" on page 170.

14 Ink Layer/Hardware Cursor Architecture

14.1 Ink Layer/Hardware Cursor Buffers

The Ink Layer/Hardware Cursor buffers contain formatted image data for the Ink Layer or Hardware Cursor. There may be several Ink Layer/Hardware Cursor images stored in the display buffer but only one may be active at any given time. The active Ink Layer/Hardware Cursor buffer is selected by the Ink/Cursor Start Address register (REG[071h] for LCD, REG[081h] for CRT/TV). This register defines the start address for the active Ink/Cursor buffer. The Ink/Cursor buffer must be positioned where it does not conflict with the image buffer and dual panel buffer. The start address for the Ink/Cursor buffer is programmed as shown in the following table.

Ink/Cursor Start Start Address (Bytes) Comments Address Bits [7:0] This default value is suitable for a Hardware 0 1280K - 1024 Cursor when there is no dual panel buffer. These positions can be used to: • position an Ink Layer buffer at the top of the display buffer; • position an Ink Layer buffer between the 1280K image and dual panel buffers; n = 160...1 $(n \times 8192)$ position a Hardware Cursor buffer between the image and dual panel buffers; select from a multiple of Hardware Cursor n = 255...161 Invalid

Table 14-1: Ink/Cursor Start Address Encoding

The Ink/Cursor image is stored contiguously. The address offset from the starting word of line n to the starting word of line n+1 is calculated as follows:

LCD Ink Address Offset (words) = REG[032h] + 1 CRT/TV Ink Address Offset (words) = REG[050h] + 1 LCD or CRT/TV Cursor Address Offset (words) = 8

14.2 Ink/Cursor Data Format

The Ink/Cursor image is always 2 bit-per-pixel. The following diagram shows the Ink/Cursor data format for a little endian system.

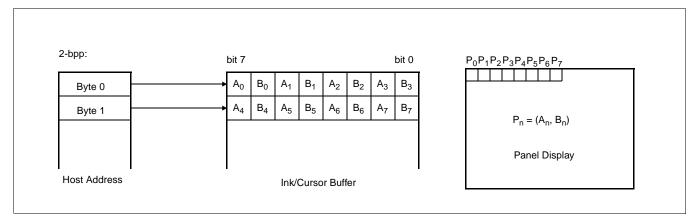


Figure 14-1: Ink/Cursor Data Format

The image data for pixel n, (A_n, B_n) , selects the color for pixel n as follows.

(A _n ,B _n)	Color	Comments
00	Color 0	Ink/Cursor Color 0 Register, (REG[078h], REG[077h], REG[076h] for LCD, REG[088h], REG[087h], REG[086h] for CRT/TV)
01	Color 1	Ink/Cursor Color 1 Register, (REG[07Ah], REG[07Bh],REG[07Ah] for LCD, REG[08Ah], REG[08Bh], REG[08Ah] for CRT/TV)
10	Background	Ink/Cursor is transparent – show background
11	Inverted Background	Ink/Cursor is transparent – show inverted background

Table 14-2: Ink/Cursor Color Select

14.3 Ink/Cursor Image Manipulation

14.3.1 Ink Image

The Ink image should always start at the top left pixel (i.e. Cursor X Position and Cursor Y Position registers should always be set to zero). The width and height of the ink image are automatically calculated to completely cover the display.

14.3.2 Cursor Image

The Cursor image size is always 64 x 64 pixels. The Cursor X Position and Cursor Y Position registers specify the position of the top left pixel. The following diagram shows how to position an unclipped cursor.

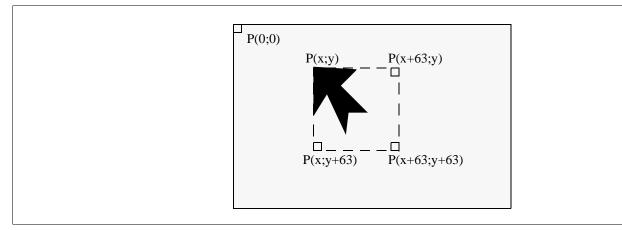


Figure 14-2: Unclipped Cursor Positioning

where

For LCD:

x = (REG[073h] bits [1:0], REG[072h]) and REG[073h] bit 7 = 0

y = (REG[075h] bits [1:0], REG[074h]) and REG[075h] bit 7 = 0

For CRT/TV:

x = (REG[083h] bits [1:0], REG[082h]) and REG[083h] bit 7 = 0

y = (REG[085h] bits [1:0], REG[084h]) and REG[085h] bit 7 = 0

The following diagram shows how to position a cursor that is clipped at the top and left sides of the display.

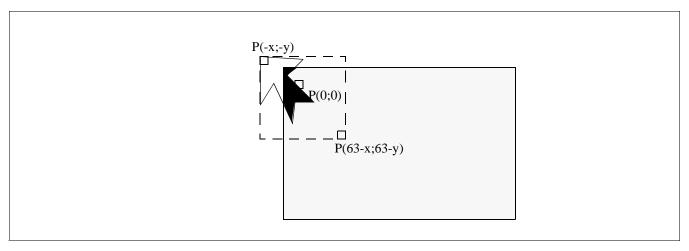


Figure 14-3: Clipped Cursor Positioning

where

```
For LCD:
```

```
x = (REG[073h] \text{ bits } [1:0], REG[072h]) \le 63 \text{ and } REG[073h] \text{ bit } 7 = 1
y = (REG[075h] \text{ bits } [1:0], REG[074h]) \le 63 \text{ and } REG[075h] \text{ bit } 7 = 1
```

For CRT/TV:

```
x = (REG[083h] \text{ bits } [1:0], REG[082h]) \le 63 \text{ and } REG[083h] \text{ bit } 7 = 1
y = (REG[085h] \text{ bits } [1:0], REG[084h]) \le 63 \text{ and } REG[085h] \text{ bit } 7 = 1
```

15 SwivelView™

15.1 Concept

Most computer displays are refreshed in landscape – from left to right and top to bottom. Computer images are stored in the same manner. SwivelView is designed to rotate the displayed image on an LCD by 90°, 180°, or 270° in a clockwise direction. 90° rotation is also available on CRT.

The rotation is done in hardware and is transparent to the user for all display buffer reads and writes. By processing the rotation in hardware, SwivelView offers a performance advantage over software rotation of the displayed image.

15.2 90° SwivelView

 90° SwivelView uses a 1024×1024 pixel virtual window. The following figures show how the display buffer memory map changes in 90° SwivelView. The display is refreshed in the following sense: C-A-D-B. The application image is written to the S1D13806 in the following sense: A-B-C-D. The S1D13806 rotates and stores the application image in the following sense: C-A-D-B, the same sense as display refresh.

The user can read/write to the display buffer naturally, without the need to rotate the image first in software. The registers that control the panning and scrolling of the panel window are designed for a landscape window. However, it is still possible to pan and scroll the portrait window in 90° SwivelView, but the user must program these registers somewhat differently (See Section 15.2.1, "Register Programming" on page 175).

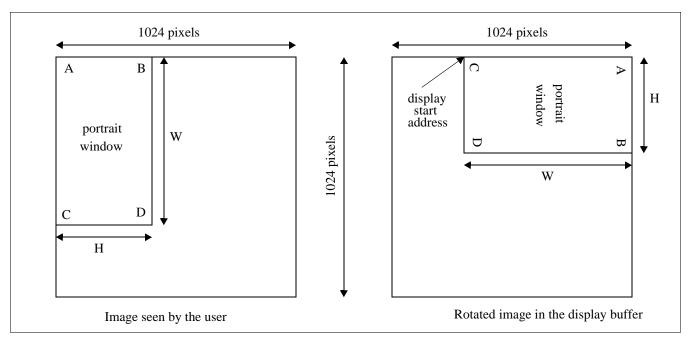


Figure 15-1: Relationship Between Screen Image and 90° Rotated Image in the Display Buffer

Note

W is the width of the LCD panel/CRT in number of pixels, (or the height of the portrait window in number of lines).

H is the height of the LCD panel/CRT in number of lines, (or the width of the portrait window in number of pixels).

Note

The image must be written with a 1024 pixel offset between adjacent lines (1024 bytes for 8 bpp color depth or 2048 bytes for 16 bpp color depth) and the display start address must be calculated (see below).

15.2.1 Register Programming

Enabling 90° Rotation on CPU Read/Write to Display Buffer

Set SwivelView Enable bits 1:0 to 01b. All CPU accesses to the display buffer are translated to provide 90° clockwise rotation of the display image.

Memory Address Offset

The LCD/CRT Memory Address Offset register (REG[046h], REG[047h] for LCD, or REG[066h], REG[067h] for CRT) must be set for a 1024 pixel offset:

LCD/CRT Memory Address Offset (words)

= 1024 for 16 bpp color depth

= 512 for 8 bpp color depth

Display Start Address

As seen in Figure 15-1: "Relationship Between Screen Image and 90° Rotated Image in the Display Buffer" on page 175, the Display Start Address is determined by the location of the image corner "C", and it is generally non-zero. The LCD/CRT Display Start Address register (REG[042h], REG[043h], REG[044h] for LCD, or REG[062h], REG[063h], REG[064h] for CRT) must be set accordingly.

LCD/CRT Display Start Address (words)

```
= (1024 - W) for 16 bpp color depth
= (1024 - W) / 2 for 8 bpp color depth
```

where W is the width of the panel in number of pixels.

Horizontal Panning

Horizontal panning is achieved by changing the LCD/CRT Display Start Address register:

• Increase/decrease LCD/CRT Display Start Address register by 1024 (16 bpp color depth) or 512 (8 bpp color depth) pans the display window to the right/left by 1 pixel.

The amount the display window can be panned to the right is limited to 1024 pixels and limited by the amount of physical memory installed.

Vertical Scrolling

Vertical scrolling is achieved by changing the LCD/CRT Display Start Address register and/or the LCD/CRT Pixel Panning register:

- Increment/decrement LCD/CRT Display Start Address register in 8 bpp color depth scrolls the display window up/down by 2 lines.
- Increment/decrement LCD/CRT Display Start Address register in 16 bpp color depth scrolls the display window up/down by 1 line.
- Increment/decrement LCD/CRT Pixel Panning register in 8 bpp color depth scrolls the display window up/down by 1 line.

15.2.2 Physical Memory Requirement

Because the user must now deal with a virtual image of 1024×1024, the amount of image buffer required for a particular display mode has increased. The minimum amount of image buffer required is:

Minimum Required Image Buffer (bytes)

 $= (1024 \times H) \times 2$ for 16 bpp color depth = $(1024 \times H)$ for 8 bpp color depth

where H is the height of the panel in number of lines.

This minimum amount is required to display a 90° SwivelView image without panning; scrolling, however, is permissible. The degree an image can be panned depends on the amount of physical memory installed and how much of that is used by the dual panel buffer, Ink Layer, or Hardware Cursor. An image cannot be panned outside the 1024×1024 virtual display. Often it cannot be panned within the entire virtual display because part of the virtual display memory may be taken up by the dual panel buffer, Ink Layer, Hardware Cursor, or even the CRT/TV display buffer.

The dual panel buffer is used for dual panel mode and has the following memory requirements.

Dual Panel Buffer (bytes) $=(W \times H)/4$ for color mode $=(W \times H) / 16$ for monochrome mode

where W is the width of the panel in number of pixels, and H is the height of the panel in number of lines.

The dual panel buffer is always located at the end of the physical memory.

The Hardware Cursor or Ink Layer also takes up memory. If this memory is > 1KB, it must be located at an 8KB boundary, otherwise it may be located at the last 1KB area. The Hardware Cursor or Ink Layer must not overlap the image buffer or the dual panel buffer.

Even though the virtual display is 1024×1024 pixels, the actual panel window is always smaller. Thus it is possible for the display buffer to be smaller than the virtual display but large enough to fit both the required image buffer and the dual panel buffer. This situation limits the maximum "accessible" horizontal virtual size as follows.

Maximum Accessible Horizontal Virtual Size (pixels)

- = (Physical Memory Dual Panel Buffer Ink Layer) / 2048 for 16 bpp color depth
- = (Physical Memory Dual Panel Buffer Ink Layer) / 1024 for 8 bpp color depth

For example, a 800×600 TFT panel running a color depth of 16 bpp requires 1200K byte of image buffer, 0K byte of dual panel buffer memory and 0K byte of ink layer memory (ink layer is not supported in this configuration, see Table 15-1, "Memory Size Required for SwivelView 90° and 270°," on page 178). The virtual display size is $2048 \times 2048 = 2M$ byte. This display can still be supported by the 1280K embedded DRAM even though it is smaller than the 2M byte virtual display because the size of the embedded DRAM is larger than the 1200K byte minimum required image buffer. The maximum accessible horizontal virtual size is = (1280K byte - 0K byte - 0K byte) / 2048 = 640. The programmer therefore has room to pan the portrait window to the right by 640 - 600 = 40 pixels. The programmer also should not read/write to the memory beyond the maximum accessible horizontal virtual size because that memory is either reserved for the dual panel buffer or not associated with any real memory at all.

fication

The following table summarizes the SwivelView 90° and 270° memory requirements for different panel sizes and display modes. Note that the S1D13806 memory size is 1280K byte. The calculation of the minimum required image buffer size is based on the image buffer and the dual panel buffer only. As noted in the table, the memory requirements of the Hardware Cursor/Ink Layer are not taken into account. The Hardware Cursor requires 1K byte of memory and the 2-bit Ink Layer requires $(W \times H)/4$ bytes of memory. Both the Hardware cursor and Ink Layer must reside at 8K byte boundaries, but only one is supported at a time. The following table shows only one possible Hardware Cursor/Ink Layer location – at the highest possible 8K byte boundary below the dual panel buffer which is always at the top.

Image Buffer Dual Panel Ink/Cursor Ink/Cursor **Panel Size Panel Type Color Depth Buffer Size** Size **Buffer Size** Location 240KB 8 bpp Color 480KB 16 bpp Single 0KB 320×240 18.75KB/1KB 1256KB/1279KB 8 bpp 240KB Mono 16 bpp 480KB 480KB 8 bpp Color 16 bpp 960KB 0KB Single 1200KB/1279KB 8 bpp 480KB Mono 16 bpp 960KB 640×480 75KB/1KB 8 bpp 480KB Color 75KB 1128KB/1200KB 16 bpp 960KB Dual 8 bpp 480KB Mono 18.75KB 1184KB/1256KB 16 bpp 960KB 600KB 1160KB/1279KB 8 bpp Color 16 bpp 1200KB --/1279KB Single 0KB 600KB 1160KB/1279KB 8 bpp Mono 1200KB --/1279KB 16 bpp 800×600 117.19KB/1KB 8 bpp 600KB Color 117.19KB 1040KB/1160KB 16 bpp¹ Not Supported Dual 600KB 8 bpp Mono 29.30KB --/1248KB 1200KB 16 bpp

Table 15-1: Memory Size Required for SwivelView 90° and 270°

Note

1. 800x600 color 16bpp dual panel is not supported as there is not enough memory to support the Dual Panel Buffer.

Note

Where KB = 1024 bytes, and MB = 1024K bytes.

15.2.3 Limitations

The following limitations apply to 90° SwivelView:

- Only 8/16 bpp color depths are supported 4 bpp color depth is not supported.
- Hardware cursor and ink images are not rotated software rotation must be used.
 SwivelView Enable bit 0 must be set to 0 when the user is accessing the Hardware Cursor or the Ink Layer buffer.
- For 90° SwivelView modes, BitBLT (Bit Block Transfer) operations are still supported. However, the BitBLT data must first be rotated by software. For further information, refer to the *S1D13806 Programmers Notes And Examples*, document number X28B-G-003-xx.

15.3 180° SwivelView

180° SwivelView is where the image is simply **displayed** 180° clockwise rotated. For 180° SwivelView a virtual window is not required and all color depths (4/8/16 bpp) are supported.

15.3.1 Register Programming

Reverse Display Buffer Fetching Address Direction

Set SwivelView Enable bits 1:0 to 10b. During screen refresh, the direction of the address for display buffer fetching is reversed. This setting does not affect CPU to display buffer access in any way.

Display Start Address

The Display Start Address must be programmed to be at the bottom-right corner of the image, since the display is now refreshed in the reverse direction. The LCD Display Start Address register (REG[042h], REG[043h], REG[044h]) must be set accordingly.

LCD Display Start Address (words)

```
= (MA\_Offset \times H) - (MA\_Offset - W) - 1 \qquad \text{for 16 bpp color depth} \\ = (MA\_Offset \times H) - (MA\_Offset - W/2) - 1 \qquad \text{for 8 bpp color depth} \\ = (MA\_Offset \times H) - (MA\_Offset - W/4) - 1 \qquad \text{for 4 bpp color depth} \\
```

where H is the height of the panel in number of lines, W is the width of the panel in number of pixels, and MA_Offset is the LCD Memory Address Offset.

Horizontal Panning

Horizontal panning works in the same way as when SwivelView is not enabled, except that the effect of the LCD Pixel Panning register is reversed:

- Increment/decrement LCD Display Start Address register pans the display window to the right/left.
- Increment/decrement LCD Pixel Panning register pans the display window to the left/right.

Vertical Panning

Vertical panning works in the same way as when SwivelView is not enabled:

• Increase/decrease LCD Display Start Address register by one memory address offset scrolls the display window down/up by 1 line.

15.3.2 Physical Memory Requirement

180° SwivelView mode requires the same physical memory as 0° SwivelView (un-rotated display).

15.3.3 Limitations

The following limitations apply to 180° SwivelView:

- Hardware Cursor and Ink Layer images are not rotated software rotation must be used.
- CRT/TV mode is not supported.
- For 180° SwivelView modes, BitBLT (Bit Block Transfer) operations are supported normally. For further information, refer to the *S1D13806 Programmers Notes And Examples*, document number X28B-G-003-xx.

15.4 270° SwivelView

 270° SwivelView is where the image is displayed 270° clockwise rotated. A 1024×1024 pixel virtual window is required as in 90° SwivelView. See Figure 15-1: "Relationship Between Screen Image and 90° Rotated Image in the Display Buffer" on page 175.

15.4.1 Register Programming

Enabling 270° Rotation on CPU Read/Write to Display Buffer

Set SwivelView Enable bits 1:0 to 11b.

The LCD Memory Address Offset register (REG[046h], REG[047h]) must be set for a 1024 pixel offset.

LCD Memory Address Offset (words)

= 1024 for 16 bpp color depth = 512 for 8 bpp color depth

Display Start Address

The Display Start Address must be programmed to be at the bottom-right corner of the image, since the display is now refreshed in the reverse direction. The LCD Display Start Address register (REG[042h], REG[043h], REG[044h]) must be set accordingly.

```
LCD Display Start Address (words)
= ((LCD Memory Address Offset) \times H) - 1
```

where H is the height of the panel in number of lines.

Horizontal Panning

Horizontal panning is achieved by changing the LCD Display Start Address register. It works in the same way as in 90° SwivelView mode:

• Increase/decrease LCD Display Start Address register by 1024 (16 bpp color depth) or 512 (8 bpp color depth) pans the display window to the right/left by 1 pixel.

The amount the display window can be panned to the right is limited to 1024 pixels and limited by the amount of physical memory installed.

Vertical Scrolling

Vertical scrolling is achieved by changing the LCD Display Start Address register and/or the LCD Pixel Panning register. It works in the same way as in 90° SwivelView mode, except that the effect of the LCD Pixel Panning register is reversed:

- Increment/decrement LCD Display Start Address register in 8 bpp color depth scrolls the display window up/down by 2 lines.
- Increment/decrement LCD Display Start Address register in 16 bpp color depth scrolls the display window up/down by 1 line.
- Increment/decrement LCD Pixel Panning register in 8 bpp color depth scrolls the display window down/up by 1 line.

15.4.2 Physical Memory Requirement

270° SwivelView mode has the same physical memory requirement as in 90° SwivelView mode. See Section 15.2.2, "Physical Memory Requirement" on page 176.

15.4.3 Limitations

The following limitations apply to 270° SwivelView:

- Only 8/16 bpp color depths are supported 4 bpp color depth is not supported.
- Hardware Cursor and Ink Layer images are not rotated software rotation must be used.
 SwivelView Enable bit 0 must be set to 0 when the user is accessing the Hardware Cursor or the Ink Layer memory.
- CRT/TV mode is not supported. SwivelView Enable bit 0 must be set to 0 when the user is accessing the CRT/TV display buffer.
- For 270° SwivelView modes, BitBLT (Bit Block Transfer) operations are still supported. However, the BitBLT data must first be rotated by software. For further information, refer to the *S1D13806 Programmers Notes And Examples*, document number X28B-G-003-xx.

16 EPSON Independent Simultaneous Display (EISD)

EPSON Independent Simultaneous Display (EISD) allows the S1D13806 to display independent images on two different displays (LCD panel and CRT or TV).

16.1 Registers

The LCD panel timings and mode setup are programmed through the Panel Configuration Registers (REG[03Xh]) and the LCD Display Mode Registers (REG[04Xh]). The CRT/TV timings and mode setup are programmed through the CRT/TV Configuration Registers (REG[05Xh]) and the CRT/TV Display Mode Registers (REG[06Xh]). The Ink Layer or Hardware Cursor can also be independently controlled on the two displays. The LCD Ink/Cursor Registers (REG[07Xh]) control the Ink/Cursor on the LCD display; the CRT/TV Ink/Cursor Registers (REG[08Xh]) control the Ink/Cursor on the CRT or TV. Each display uses its own Look-Up Table (LUT), although there is only one set of LUT Registers (REG[1E0h], REG[1E2h], REG[1E4h]). Use the LUT Mode Register (REG[1E0h]) to select access to the LCD and/or CRT/TV LUTs.

The pixel clock source for the two displays may be independent. Use the Clock Configuration Registers (REG[014h], REG[018h]) to select the LCD pixel clock source and the CRT/TV pixel clock source, respectively. Typically, CLKI2 is used for the CRT/TV display, while CLKI is used for the LCD display. Memory clock may come from CLKI or BUSCLK.

16.2 Display Mapping

To display different images on the LCD and CRT/TV, the two images should reside in non-overlapping areas of the display buffer, and the display start addresses point to the corresponding areas. The display buffer is mapped to the CPU address AB[20:0] linearly.

The LCD and CRT/TV may display identical images by setting the display start addresses for the LCD and the CRT/TV to the same address. In this case only one image is needed in the display buffer.

16.3 Bandwidth Limitation

When EISD is enabled, the LCD and CRT/TV displays must share the total bandwidth available to the S1D13806. The result is that display modes with a high resolution or color depth may not be supported. In some cases, Ink Layers may not be possible on one or both of the displays. EISD increases the total demand for display refresh bandwidth and reduces CPU bandwidth, resulting in lower CPU performance.

In a few cases when EISD is enabled, the default LCD and CRT/TV Display FIFO High Threshold Control register values are not optimally set, causing display problems with one or both of the displays. This condition may be corrected by adjusting the values of the LCD and CRT/TV Display FIFO High Threshold Control registers (REG[04Ah] for LCD and REG[06Ah] for CRT/TV). See Section 18.2, "Example Frame Rates" on page 189 for required FIFO settings.

Changing this register to a non-zero value sets the high threshold FIFO level to this value. This register may not exceed 59 decimal. The high threshold FIFO level controls how often display fetch requests are issued by the FIFO. In general, a higher high threshold FIFO level increases the bandwidth to that display pipe, and a lower level reduces it.

When the FIFO High Threshold Control register is set to 00h (default), the following settings are used:

- 11h for 4 bpp color depth
- 21h for 8 bpp color depth
- 23h for 16 bpp color depth

Most display problems may be corrected by increasing the associated high threshold FIFO level for that display. However, because the total available bandwidth is fixed, this change may create display problem for the other display. In this case, reducing the high threshold FIFO level for the other display instead may work. Sometimes, a combination of these two methods is required. Correcting EISD display problems by adjusting the FIFO High Threshold Control registers is mostly a trial-and-error process.

Note

While the user is free to experiment with these registers, recommended FIFO level settings for some of the more common EISD modes requiring non-default FIFO level settings are listed in Section 18.2, "Example Frame Rates" on page 189.

17 MediaPlug Interface

Winnov's MediaPlug Slave interface has been incorporated into the S1D13806. The MediaPlug Slave follows the *Specification For Winnov MediaPlug Slave, Local module*, Document Rev 0.3 with the following exceptions.

17.1 Revision Code

The MediaPlug Slave Revision Code can be determined by reading bits 11:8 of the LCMD register. The revision code for this implementation is 0011b.

17.2 How to enable the MediaPlug Slave

The MediaPlug Slave interface is enabled/disabled at the rising edge of RESET# by the state of CONF7. When CONF7 is set to 1, the MediaPlug functionality is enabled and GPIO12 is configured as the MediaPlug power control output pin (VMPEPWR) - see Table 4-9, "Summary of Power-On/Reset Options," on page 34.

17.3 MediaPlug Interface Pin Mapping

The S1D13806 provides 8 pins for use by the MediaPlug interface (VMP[7:0]). GPIO12 is also used as the MediaPlug power control output pin (VMPEPWR) when the MediaPlug interface is enabled. The following table lists the MediaPlug pin mapping when the interface is enabled.

S1D13806 Pin Names	IO Type	MediaPlug I/F
VMP0	0	VMPCLKN
VMP1	0	VMPCLK
VMP2	Ю	VMPD3
VMP3	Ю	VMPD2
VMP4	Ю	VMPD1
VMP5	Ю	VMPD0
VMP6	I	VMPRCTL
VMP7	0	VMPLCRL
GPIO12	0	VMPEPWR

Table 17-1: MediaPlug Interface Pin Mapping

Note

VMPEPWR is controlled by bit 1 of the MediaPlug LCMD register.

18 Clocking

18.1 Frame Rate Calculation

18.1.1 LCD Frame Rate Calculation

The maximum LCD frame rate is calculated using the following formula.

$$max. \ LCD \ Frame \ Rate \ = \ \frac{LPCLK_{max}}{(LHDP + LHNDP) \times \left(\frac{LVDP}{n} + LVNDP\right)}$$

Where:

LPCLKmax = maximum LCD pixel clock frequency

LVDP = LCD Vertical Display Height

= REG[039h] bits [1:0], REG[038h] bits [7:0] + 1

LVNDP = LCD Vertical Non-Display Period

= REG[03Ah] bits [5:0] + 1

LHDP = LCD Horizontal Display Width

 $= ((REG[032h] bits [6:0]) + 1) \times 8Ts$

LHNDP = LCD Horizontal Non-Display Period

 $= ((REG[034h] bits [4:0]) + 1) \times 8Ts$

Ts = minimum LCD pixel clock (LPCLK) period

n = 1 for single panel

= 2 for dual panel

18.1.2 CRT Frame Rate Calculation

The maximum CRT frame rate is calculated using the following formula.

max. CRT Frame Rate =
$$\frac{\text{CPCLK}_{\text{max}}}{(\text{CHDP} + \text{CHNDP}) \times (\text{CVDP} + \text{CVNDP})}$$

Where:

CPCLKmax = maximum CRT pixel clock frequency

CVDP = CRT Vertical Display Height

= REG[057h] bits [1:0], REG[056h] bits [7:0] + 1

CVNDP = CRT Vertical Non-Display Period

= REG[058h] bits [6:0] + 1

CHDP = CRT Horizontal Display Width

 $= ((REG[050h] bits [6:0]) + 1) \times 8Ts$

CHNDP = CRT Horizontal Non-Display Period

 $= ((REG[052h] bits [5:0]) + 1) \times 8Ts$

Ts = minimum CRT pixel clock (CPCLK) period

18.1.3 TV Frame Rate Calculation

The maximum TV frame rate is calculated using the following formula.

$$max. \ TV \ Frame \ Rate \ = \ \frac{TPCLK_{max}}{\left(THDP + THNDP\right) \times \left(\frac{TVDP}{2} + TVNDP + 0.5\right)}$$

Where:

TPCLKmax = maximum TV pixel clock frequency

TVDP = TV Vertical Display Height

= REG[057h] bits [1:0], REG[056h] bits [7:0] + 1

TVNDP = TV Vertical Non-Display Period

= REG[058h] bits [6:0] + 1

THDP = TV Horizontal Display Width

 $= ((REG[050h] bits [6:0]) + 1) \times 8Ts$

THNDP = TV Horizontal Non-Display Period

= for NTSC output use ((REG[052h] bits [5:0]) \times 8Ts) + 6 = for PAL output use ((REG[052h] bits [5:0]) \times 8Ts) + 7

Ts = minimum TV pixel clock (TPCLK) period

18.2 Example Frame Rates

For all example frame rates the following conditions apply:

- Dual panel buffer is enabled for dual panel.
- TV Flicker Filter is enabled for TV.
- MCLK is 50MHz.

18.2.1 Frame Rates for 640x480 with EISD Disabled

Table 18-1: Frame Rates for 640x480 with EISD Disabled

LCD T	Гуре	lnk	Horiz Res (pixels)	Vert Res (lines)	bpp	max PCLK (MHz)	min HNDP (pixels)	min VNDP (lines)	max Frame Rate (Hz)	CRT/ TV	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	PCLK (MHz)	HNDP (pixels)	VNDP (lines)	Frame Rate (Hz)
		No	640	480	4	40	56	1	119.5					-				-
Passi Single /		No	640	480	8	40	64	1	118.1					-				
Cg.c ,		No	640	480	16	40	64	1	118.1									
		No	640	480	4	40	64	1	235.8									
Mono Pa Dua		No	640	480	8	40	72	1	233.1									
		No	640	480	16	31	72	1	181.0									
		No	640	480	4	40	64	1	235.8									
Color Pa Dua		No	640	480	8	40	72	1	233.1									
		No	640	480	16	30	64	1	176.8									
		Yes	640	480	4	40	56	1	119.5									
Passi Single /	-	Yes	640	480	8	40	64	1	118.1									
og.c.,		Yes	640	480	16	40	64	1	118.1									
		Yes	640	480	4	40	64	1	235.8									
Mono Pa Dua		Yes	640	480	8	40	72	1	233.1									
		Yes	640	480	16	30	64	1	176.8									
		Yes	640	480	4	40	64	1	235.8									
Color Pa		Yes	640	480	8	36	72	1	209.8									
		Yes	640	480	16	26	56	1	155.0									
										CRT	No	640	480	4	36	192	29	85.0
										CRT	No	640	480	8	36	192	29	85.0
										CRT	No	640	480	16	36	192	29	85.0
					1					NTSC TV	No	640	480	4	14.32	270	22	60
					1					NTSC TV	No	640	480	8	14.32	270	22	60
										NTSC TV	No	640	480	16	14.32	270	22	60
					1					PAL TV	No	640	480	4	17.73	495	72	50
										PAL TV	No	640	480	8	17.73	495	72	50
										PAL TV	No	640	480	16	17.73	495	72	50

Example Frame Rates with Ink Layer Enabled

S1D13806

Table 18-1: Frame Rates for 640x480 with EISD Disabled

LCD	Туре	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	min HNDP (pixels)	min VNDP (lines)	max Frame Rate (Hz)	CRT/ TV	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	PCLK (MHz)			Frame Rate (Hz)
						 			CRT	Yes	640	480	4	36	192	29	85.0
						 			CRT	Yes	640	480	8	36	192	29	85.0
						 			CRT	Yes	640	480	16	36	200	20	85.7
						 			NTSC TV	Yes	640	480	4	14.32	270	22	60
						 			NTSC TV	Yes	640	480	8	14.32	270	22	60
						 			NTSC TV	Yes	640	480	16	14.32	270	22	60
						 			PAL TV	Yes	640	480	4	17.73	495	72	50
						 			PAL TV	Yes	640	480	8	17.73	495	72	50
						 			PAL TV	Yes	640	480	16	17.73	495	72	50

Example Frame Rates with Ink Layer Enabled

18.2.2 Frame Rates for 800x600 with EISD Disabled

Table 18-2: Frame Rates for 800x600 with EISD Disabled

LCD	Туре	lnk	Horiz Res (pixels)	Vert Res (lines)	bpp	max PCLK (MHz)	min HNDP (pixels)	min VNDP (lines)	max Frame Rate (Hz)	CRT/ TV	lnk	Horiz Res (pixels)	Vert Res (lines)	bpp	PCLK (MHz)	HNDP (pixels)	VNDP (lines)	Frame Rate (Hz)
TF	т	No	800	600	8	65	232	35	99.2									
11	1	No	800	600	16	44.4	160	35	72.8									
0 0		No	800	600	4	40	64	1	153.8	-	-		1	1		1	1	
Color P		No	800	600	8	40	72	1	152.4	I	1	-	I	1		1	ŀ	
		No	800	600	16	30	64	1	115.3									
TF	-T	Yes	800	600	8	65	232	35	99.2									
TF	T ¹	Yes	800	600	16	40	144	35	66.7									
		Yes	800	600	4	38	64	1	146.1									
Color P		Yes	800	600	8	36	72	1	137.2									
		Yes	800	600	16	26	56	1	100.9									
										CRT	No	800	600	4	40	256	28	60.3
										CRT	No	800	600	8	40	256	28	60.3
										CRT	No	800	600	16	40	224	25	62.5
										CRT	No	800	600	4	49.5	256	28	74.6
										CRT	No	800	600	8	49.5	256	28	74.6
										CRT	No	800	600	4	56.25	256	28	84.8
										CRT	No	800	600	8	56.25	256	28	84.8
										CRT	Yes	800	600	4	40	256	28	60.3
	-				1					CRT	Yes	800	600	8	40	256	28	60.3
	-				1					CRT ²	Yes	800	600	16	40	224	25	62.5
										CRT	Yes	800	600	4	49.5	256	28	74.6
										CRT	Yes	800	600	8	49.5	256	28	74.6
										CRT	Yes	800	600	4	56.25	256	28	84.8
										CRT	Yes	800	600	8	56.25	256	28	84.8

Example Frame Rates with Ink Layer Enabled

The FIFO values for these display modes must be set as follows:

- 1. REG[07Eh] = 0Ch.
- 2. REG[08Eh] = 0Ah.

18.2.3 Frame Rates for 1024x768 with EISD Disabled

Table 18-3: Frame Rates for 1024x768 with EISD Disabled

LCD	Туре	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp		min HNDP (pixels)	min VNDP (lines)	max Frame Rate (Hz)	CRT/ TV	Ink	Horiz Res (pixels)	Vert Res (lines)		PCLK (MHz)			Frame Rate (Hz)
TI	FΤ	No	1024	768	8	65	160	37	68.2									
TF	T ¹	Yes	1024	768	8	65	160	37	68.2									
										CRT	No	1024	768	4	65	320	41	59.8
										CRT	No	1024	768	8	65	320	41	59.8
										CRT	Yes	1024	768	4	65	320	41	59.8
										CRT	Yes	1024	768	8	65	320	41	59.8

Example Frame Rates with Ink Layer Enabled

The FIFO values for these display modes must be set as follows:

1. REG[07Eh] = 0Ch.

18.2.4 Frame Rates for LCD and CRT (640x480) with EISD Enabled

Table 18-4: Frame Rates for LCD and CRT (640x480) with EISD Enabled

									,		, ,						
LCD Type	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	max PCLK (MHz)	min HNDP (pixels)	min VNDP (lines)	max Frame Rate (Hz)	CRT/ TV	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	PCLK(MHz)	HNDP (pixels)	VNDP (lines)	Frame Rate (Hz)
	No	320	240	16	17	64	1	183.7	CRT	No	640	480	16	25.18	160	44	60.1
Passive	No	640	240	16	17	64	1	100.2	CRT	No	640	480	16	25.18	160	44	60.1
Single	No	640	480	4	40	112	1	110.6	CRT	No	640	480	4	25.18	160	44	60.1
	No	640	480	8	40	144	1	106.1	CRT	No	640	480	8	25.18	160	44	60.1
Color Passive Dual	No	640	480	16	12	56	1	71.5	CRT	No	640	480	16	25.18	160	44	60.1
TFT	No	800	600	8	41	144	26	69.4	CRT	No	640	480	8	25.18	160	44	60.1
TFT	No	1024	768	8	41	112	37	44.8	CRT	No	640	480	8	25.18	160	44	60.1
Color Passive	No	800	600	4	38	120	1	137.2	CRT	No	640	480	4	25.18	160	44	60.1
Dual	No	800	600	8	27.6	104	1	101.4	CRT	No	640	480	8	25.18	160	44	60.1
Passive	Yes	640	480	4	40	112	1	110.6	CRT	No	640	480	4	25.18	160	44	60.1
Single	Yes	640	480	8	31.6	112	1	87.4	CRT	No	640	480	8	25.18	160	44	60.1
TFT	Yes	800	600	8	31.6	112	26	55.4	CRT	No	640	480	8	25.18	160	44	60.1
Mono Passive Dual	Yes	640	480	8	27.6	104	1	153.9	CRT	No	640	480	8	25.18	160	44	60.1
Color Passive Dual	Yes	640	480	8	23.2	88	1	132.2	CRT	No	640	480	8	25.18	160	44	60.1
Color Passive Dual ¹	Yes	640	480	16	11.6	48	1	70.0	CRT	No	640	480	16	25.18	160	44	60.1
Color Passive Dual	Yes	800	600	8	23.2	88	1	86.8	CRT	No	640	480	8	25.18	160	44	60.1
Passive Single ²	No	640	240	16	13.7	56	1	81.7	CRT	Yes	640	480	16	25.18	160	44	60.1
Passive Single	No	640	480	8	31.7	112	1	87.6	CRT	Yes	640	480	8	25.18	160	44	60.1
Mono Passive	No	640	480	8	27.1	104	1	151.1	CRT	Yes	640	480	8	25.18	160	44	60.1
Dual ²	No	640	480	16	11	48	1	66.4	CRT	Yes	640	480	16	25.18	160	44	60.1
Color Passive Dual	No	640	480	8	19	88	1	108.3	CRT	Yes	640	480	8	25.18	160	44	60.1
Color Passive Dual	No	800	600	4	33.2	104	1	122.0	CRT	Yes	640	480	4	25.18	160	44	60.1
Color Passive Dual ²	No	800	600	8	22.6	88	1	84.6	CRT	Yes	640	480	8	25.18	160	44	60.1
Passive Single ³	Yes	640	240	16	11.8	48	1	71.2	CRT	Yes	640	480	16	25.18	160	44	60.1
Passive Single	Yes	640	480	8	25.7	96	1	72.6	CRT	Yes	640	480	8	25.18	160	44	60.1
Mono Passive Dual ²	Yes	640	480	8	22.6	88	1	128.8	CRT	Yes	640	480	8	25.18	160	44	60.1
Color Passive Dual	Yes	640	480	8	15	72	1	87.4	CRT	Yes	640	480	8	25.18	160	44	60.1

Example Frame Rates with Ink Layer Enabled

Table 18-4: Frame Rates for LCD and CRT (640x480) with EISD Enabled

LCD Type	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	max PCLK (MHz)			max Frame Rate (Hz)	CRT/ TV	lnk	Horiz Res (pixels)	Vert Res (lines)	bpp	PCLK(MHz)	HNDP (pixels)		
Color Passive Dual ³	Yes	640	480	16	9.57	40	1	58.4	CRT	Yes	640	480	16	25.18	160	44	60.1
Color Passive Dual ²	Yes	800	600	8	19.4	72	1	73.9	CRT	Yes	640	480	8	25.18	160	44	60.1

Example Frame Rates with Ink Layer Enabled

The FIFO values for these display modes must be set as follows:

- 1. REG[06Ah] = 3Ch. REG[06Bh] = 3Ch.
- 2. REG[08Eh] = 0Ch.
- 3. REG[06Ah] = 3Ch. REG[06Bh] = 3Ch. REG[07Eh] = 0Ch. REG[08Eh] = 0Ch.

18.2.5 Frame Rates for LCD and CRT (800x600) with EISD Enabled

Table 18-5: Frame Rates for LCD and CRT (800x600) with EISD Enabled

						Ü			,								
LCD Type	lnk	Horiz Res (pixels)	Vert Res (lines)	bpp	max PCLK (MHz)	min HNDP (pixels)	min VNDP (lines)	max Frame Rate (Hz)	CRT/ TV	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	PCLK (MHz)	HNDP (pixels)	VNDP (lines)	Frame Rate (Hz)
Passive	No	640	240	8	34	120	1	185.6	CRT	No	800	600	8	40	256	28	60.3
Single	No	640	480	8	34	120	1	93.0	CRT	No	800	600	8	40	256	28	60.3
Color Passive Dual	No	640	480	8	22.5	88	1	128.2	CRT	No	800	600	8	40	256	28	60.3
TFT ¹	No	800	600	8	34	120	28	58.8	CRT	No	800	600	8	40	256	28	60.3
Color Passive	No	800	600	4	38.6	112	1	140.6	CRT	No	800	600	4	40	256	28	60.3
Dual	No	800	600	8	22.5	88	1	84.2	CRT	No	800	600	8	40	256	28	60.3
Passive	Yes	640	240	8	26.2	96	1	147.7	CRT	No	800	600	8	40	256	28	60.3
Single	Yes	640	480	8	26.2	96	1	74.0	CRT	No	800	600	8	40	256	28	60.3
Mono Passive Dual	Yes	640	480	8	22.5	88	1	128.2	CRT	No	800	600	8	40	256	28	60.3
Color Passive Dual ²	Yes	640	480	8	19	72	1	110.7	CRT	No	800	600	8	40	256	28	60.3
Passive Single ³	No	640	240	8	24.4	88	1	139.1	CRT	Yes	800	600	8	40	256	28	60.3
Passive Single	No	640	480	8	24.4	88	1	69.7	CRT	Yes	800	600	8	40	256	28	60.3
Mono Passive Dual ⁴	No	640	480	8	20.6	80	1	118.7	CRT	Yes	800	600	8	40	256	28	60.3
Color Passive	No	640	480	8	17.2	64	1	101.4	CRT	Yes	800	600	8	40	256	28	60.3
Dual ⁵	No	800	600	8	17.2	64	1	66.1	CRT	Yes	800	600	8	40	256	28	60.3
Passive Single ³	Yes	640	240	8	19.8	72	1	115.4	CRT	Yes	800	600	8	40	256	28	60.3
Passive Single	Yes	640	480	8	19.8	72	1	57.8	CRT	Yes	800	600	8	40	256	28	60.3
Mono Passive Dual ⁶	Yes	640	480	8	17.2	64	1	101.4	CRT	Yes	800	600	8	40	256	28	60.3
Color Passive Dual ⁶	Yes	640	480	8	14.7	56	1	87.6	CRT	Yes	800	600	8	40	256	28	60.3

Example Frame Rates with Ink Layer Enabled

The FIFO values for these display modes must be set as follows:

- 1. REG[04Ah] = 30h. REG[06Ah] = 30h. REG[04Bh] = 3Ch. REG[06Bh] = 3Ch.
- 2. REG[04Ah] = 1Ah. REG[06Bh] = 25h.
- 3. REG[06Ah] = 23h. REG[08Eh] = 0Ch.
- 4. REG[08Eh] = 0Ch.

fication

18.2.6 Frame Rates for LCD and CRT (1024x768) with EISD Enabled

Table 18-6: Frame Rates for LCD and CRT (1024x768) with EISD Enabled

LCD Type	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp		min HNDP (pixels)	min VNDP (lines)	max Frame Rate (Hz)	CRT/ TV	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	PCLK (MHz)	HNDP (pixels)	VNDP (lines)	Frame Rate (Hz)
Passive Single ¹	No	320	240	8	31	144	1	277.2	CRT	No	1024	768	8	65	320	41	59.8
Passive Single ²	No	640	240	8	21.1	80	1	121.6	CRT	No	1024	768	8	65	320	41	59.8
Passive Single	No	640	480	8	21.1	80	1	60.9	CRT	No	1024	768	8	65	320	41	59.8
Color Passive Dual ²	No	640	480	8	13.8	56	1	82.3	CRT	No	1024	768	8	65	320	41	59.8
Passive	Yes	320	240	8	16.2	56	1	178.8	CRT	No	1024	768	8	65	320	41	59.8
Single ³	Yes	640	240	8	16.2	56	1	96.6	CRT	No	1024	768	8	65	320	41	59.8
Passive Single	Yes	640	480	8	20	72	1	58.4	CRT	No	1024	768	8	65	320	41	59.8

Example Frame Rates with Ink Layer Enabled

The FIFO values for these display modes must be set as follows:

- 1. REG[04Ah] = 25h. REG[04Bh] = 3Ch. REG[06Ah] = 30h. REG[06Bh] = 3Ch.
- 2. REG[04Ah] = 1Ah. REG[06Ah] = 30h. REG[06Bh] = 3Ch.
- 3. REG[07Eh] = 0Ch.

18.2.7 Frame Rates for LCD and NTSC TV with EISD Enabled

Table 18-7: Frame Rates for LCD and NTSC TV with EISD Enabled

· · · · · · · · · · · · · · · · · · ·								1	1			1	1				
LCD Type	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	max PCLK (MHz)	min HNDP (pixels)	min VNDP (lines)	max Frame Rate (Hz)	CRT/ TV	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	PCLK (MHz)	HNDP (pixels)	VNDP (lines)	Frame Rate (Hz)
	No	320	240	16	10.7	56	1	118.1	NTSC TV	No	640	480	16	14.32	270	22	60
Passive	No	640	240	16	10.7	56	1	63.8	NTSC TV	No	640	480	16	14.32	270	22	60
Single / TFT	No	640	480	4	40	152	1	105.0	NTSC TV	No	640	480	4	14.32	270	22	60
	No	640	480	8	27.6	136	1	73.9	NTSC TV	No	640	480	8	14.32	270	22	60
Mono Passive Dual	No	640	480	8	24	128	1	129.6	NTSC TV	No	640	480	8	14.32	270	22	60
Color Passive Dual	No	640	480	8	21.1	112	1	116.4	NTSC TV	No	640	480	8	14.32	270	22	60
TFT	No	800	600	8	27.6	136	35	46.4	NTSC TV	No	640	480	8	14.32	270	22	60
Color Passive Dual	No	800	600	8	21.1	112	1	76.9	NTSC TV	No	640	480	8	14.32	270	22	60
Passive Single	Yes	640	480	4	39	144	1	103.4	NTSC TV	No	640	480	4	14.32	270	22	60
Mono Passive Dual	Yes	640	480	8	20.5	112	1	113.1	NTSC TV	No	640	480	8	14.32	270	22	60
Color Passive	Yes	640	480	4	28.1	112	1	155.0	NTSC TV	No	640	480	4	14.32	270	22	60
Dual	Yes	640	480	8	18.2	96	1	102.6	NTSC TV	No	640	480	8	14.32	270	22	60
Passive	No	640	240	8	20.4	104	1	113.8	NTSC TV	Yes	640	480	8	14.32	270	22	60
Single	No	640	480	4	33.7	128	1	91.2	NTSC TV	Yes	640	480	4	14.32	270	22	60
Mono Passive Dual	No	640	480	8	18.4	96	1	103.7	NTSC TV	Yes	640	480	8	14.32	270	22	60
Color Passive	No	640	480	4	23.7	96	1	133.6	NTSC TV	Yes	640	480	4	14.32	270	22	60
Dual	No	640	480	8	16	88	1	91.2	NTSC TV	Yes	640	480	8	14.32	270	22	60
Passive Single	Yes	640	240	4	27.4	104	1	152.8	NTSC TV	Yes	640	480	4	14.32	270	22	60
Passive Single ¹	Yes	640	240	8	17.5	88	1	99.7	NTSC TV	Yes	640	480	8	14.32	270	22	60
Mono Passive Dual	Yes	640	480	4	23.7	96	1	133.6	NTSC TV	Yes	640	480	4	14.32	270	22	60
Mono Passive Dual ¹	Yes	640	480	8	15.6	80	1	89.9	NTSC TV	Yes	640	480	8	14.32	270	22	60
Color Passive	Yes	640	480	4	20.4	88	1	116.3	NTSC TV	Yes	640	480	4	14.32	270	22	60
Dual	Yes	640	480	8	14.2	80	1	81.8	NTSC TV	Yes	640	480	4	14.32	270	22	60

Example Frame Rates with Ink Layer Enabled

The FIFO values for these display modes must be set as follows:

1. REG[07Eh] = 0Ch.

18.2.8 Frame Rates for LCD and PAL TV with EISD Enabled

Table 18-8: Frame Rates for LCD and PAL TV with EISD Enabled

LCD Type	Ink	Horiz Res (pixels)	Vert Res (lines)	bpp	max PCLK (MHz)	min HNDP (pixels)	min VNDP (lines)	max Frame Rate (Hz)	CRT/ TV	lnk	Horiz Res (pixels)	Vert Res (lines)	bpp	PCLK (MHz)	HNDP (pixels)	VNDP (lines)	Frame Rate (Hz)
	No	320	240	16	7.5	40	1	86.4	PAL TV	No	640	480	16	17.73	495	72	50
Passive	No	640	240	16	9	40	1	55.0	PAL TV	No	640	480	16	17.73	495	72	50
Single	No	640	480	4	40	152	1	105.0	PAL TV	No	640	480	4	17.73	495	72	50
	No	640	480	8	25.8	128	1	69.8	PAL TV	No	640	480	8	17.73	495	72	50
Mono Passive Dual	No	640	480	8	22.2	120	1	121.2	PAL TV	No	640	480	8	17.73	495	72	50
Color Passive Dual	No	640	480	8	19	104	1	106.0	PAL TV	No	640	480	8	17.73	495	72	50
TFT ¹	No	800	600	8	43	136	35	72.3	PAL TV	No	640	480	8	17.73	495	72	50
Color Passive Dual	No	800	600	8	19	104	1	69.8	PAL TV	No	640	480	8	17.73	495	72	50
Passive Single	Yes	640	480	4	37.2	144	1	98.6	PAL TV	No	640	480	4	17.73	495	72	50
Mono Passive Dual ²	Yes	640	480	8	19	104	1	106.0	PAL TV	No	640	480	8	17.73	495	72	50
Color Passive	Yes	640	480	4	26.2	104	1	146.1	PAL TV	No	640	480	4	17.73	495	72	50
Dual	Yes	640	480	8	16.3	88	1	92.9	PAL TV	No	640	480	8	17.73	495	72	50
Passive	No	640	240	8	18.1	96	1	102.0	PAL TV	Yes	640	480	8	17.73	495	72	50
Single	No	640	480	4	31.7	120	1	86.7	PAL TV	Yes	640	480	4	17.73	495	72	50
Mono Passive	No	640	480	4	26	112	1	143.4	PAL TV	Yes	640	480	4	17.73	495	72	50
Dual	No	640	480	8	16.1	88	1	91.8	PAL TV	Yes	640	480	8	17.73	495	72	50
Color Passive	No	640	480	4	22.7	96	1	128.0	PAL TV	Yes	640	480	4	17.73	495	72	50
Dual	No	640	480	8	13.9	72	1	81.0	PAL TV	Yes	640	480	8	17.73	495	72	50
Passive Single	Yes	640	240	4	21	96	1	118.4	PAL TV	Yes	640	480	4	17.73	495	72	50
Passive Single ²	Yes	640	240	8	15.4	80	1	88.8	PAL TV	Yes	640	480	8	17.73	495	72	50
Mono Passive Dual	Yes	640	480	4	22.7	96	1	128.0	PAL TV	Yes	640	480	4	17.73	495	72	50
Mono Passive Dual ²	Yes	640	480	8	13.9	72	1	81.0	PAL TV	Yes	640	480	8	17.73	495	72	50
Color Passive	Yes	640	480	4	19.6	80	1	113.0	PAL TV	Yes	640	480	4	17.73	495	72	50
Dual	Yes	640	480	8	12.3	64	1	72.5	PAL TV	Yes	640	480	4	17.73	495	72	50

Example Frame Rates with Ink Layer Enabled

The FIFO values for these display modes must be set as follows:

- 1. REG[04Ah] = 3Ch. REG[04Bh] = 3Ch.
- 2. REG[07Eh] = 7Ch.

19 Power Save Mode

The S1D13806 includes a software initiated power save mode designed for very low-power applications. In addition, the S1D13806 dynamically disables internal clock networks when not required. Similarly, the LCD and/or CRT/TV pipelines are shut down when not required for the selected display mode.

For power save mode AC Timing, see Section 6.4.2, "Power Save Status" on page 63.

19.1 Overview

Power save mode is initiated by setting REG[1F0h] bit 0 to 1. When power save mode is enabled the following conditions apply.

- LCD display is disabled.
- CRT/TV display is disabled.
- Memory access is not allowed.
- Memory is in self-refresh mode.
- Register access is allowed.

19.2 Power Save Status Bits

LCD Power Save Status bit

The LCD Power Save Status bit (REG[1F1h] bit 0) indicates the state of the LCD panel. When this bit returns a 1, the panel is powered down. When this bit returns a 0, the panel is powered up, or in transition of powering up or down.

The system may disable the LCD pixel clock source when this bit returns a 1. The LCD Power Save Status bit is set to 1 after chip reset.

Memory Controller Power Save Status bit

The Memory Controller Power Save Status bit (REG[1F1h] bit 1) indicates the state of the SDRAM interface. When this bit returns a 1, the SDRAM interface is powered down and the SDRAM is in self-refresh mode. This condition occurs shortly after power save mode is invoked. When this bit returns a 0, the SDRAM interface is active.

The system may disable the memory clock source when this bit returns a 1. The Memory Controller Power Save Status bit is set to 0 after chip reset.

19.3 Power Save Mode Summary

Table 19-1: Power Save Mode Summary

Function	LCD Disabled	CRT/TV Disabled	Power Save Mode Enabled
LCD Display Active?	no		No
CRT/TV Display Active?		no	No
Register Access Possible?	Yes	Yes	Yes
Memory Access Possible?	Yes	Yes	No
LCD LUT Access Possible?	Yes ¹		Yes
CRT/TV LUT Access Possible?		Yes ²	Yes
LCD interface	Forced Low		Forced Low
CRT/TV interface		Disabled	Disabled
SDRAM interface	Active	Active	Self-Refresh
Host Interface	Active	Active	Active

Note

1. LCD pixel clock required.

Note

2. CRT/TV pixel clock required.

20 Mechanical Data

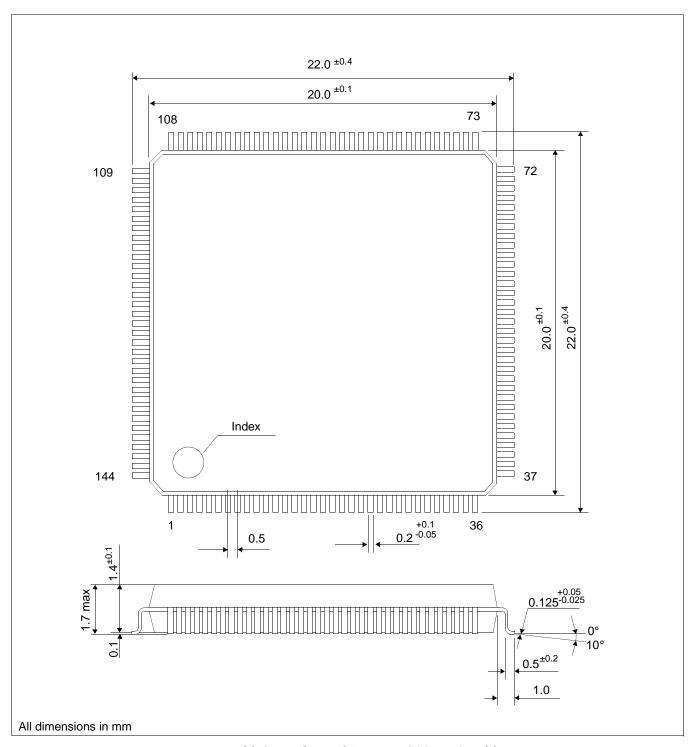


Figure 20-1: Mechanical Drawing 144-pin QFP20

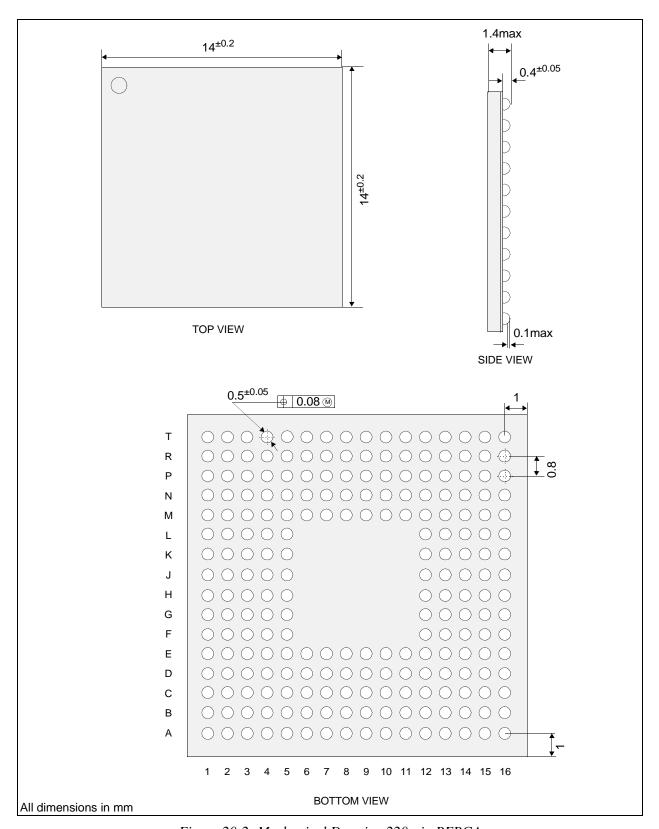


Figure 20-2: Mechanical Drawing 220-pin PFBGA

21 References

The following documents contain additional information related to the S1D13806. Document numbers are listed in parenthesis after the document name. All documents can be found at the Epson Electronics America website at **www.eea.epson.com** or the Epson Research and Development Website at **www.erd.epson.com**.

- 13806CFG Configuration Utility Users Manual (X28B-B-001-xx)
- 13806SHOW Demonstration Program Users Manual (X28B-B-002-xx)
- 13806PLAY Diagnostic Utility Users Manual (X28B-B-003-xx)
- 13806BMP Demonstration Program Users Manual (X28B-B-004-xx)
- 13806FILT Test Utility Users Manual (X28B-B-005-xx)
- 13806SWIVEL Demonstration Utility Users Manual (X28B-B-006-xx)
- S1D13806 Product Brief (X28B-C-001-xx)
- S1D13806 Windows CE v2.x Display Driver (X28B-E-001-xx)
- S1D13806 Wind River WindML v2.0 Display Driver (X28B-E-002-xx)
- S1D13806 Wind River UGL v1.2 Display Driver (X28B-E-003-xx)
- S1D13806 Linux Console Driver (X28B-E-004-xx)
- S1D13806 QNX Photon v2.0 Display Driver (X28B-E-005-xx)
- S1D13806 Windows CE v3.x Display Driver (X28B-E-006-xx)
- S1D13806 Programming Notes And Examples (X28B-G-003-xx)
- S5U13806B00C Rev. 1.0 Evaluation Board User Manual (X28B-G-004-xx)
- Interfacing to the PC Card Bus (X28B-G-005-xx)
- S1D13806 Power Consumption (X28B-G-006-xx)
- Interfacing to the NEC VR4102/VR4111 Microprocessors (X28B-G-007-xx)
- Interfacing to the Motorola MPC821 Microprocessor (X28B-G-008-xx)
- Interfacing to the Philips MIPS PR31500/PR31700 Microprocessors (X28B-G-009-xx)
- Interfacing to the Toshiba MIPS TX3912 Microprocessor (X28B-G-010-xx)
- Interfacing to the NEC VR4121 Microprocessor (X28B-G-011-xx)
- Interfacing to the StrongArm SA-1110 Microprocessor (X28B-G-012-xx)
- S1D13806 Register Summary (X28B-R-001-xx)

fication

22 Sales and Technical Support

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

S1D13806 Embedded Memory Display Controller

Programming Notes and Examples

Document Number: X28B-G-003-07

Copyright © 2001, 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1	Introduction	11				
2	Initialization	12				
3	Memory Models	16				
	3.1 Display Buffer Location	16				
	3.2 Memory Organization for 4 Bpp (16 Colors/16 Gray Shades)	16				
	3.3 Memory Organization for 8 Bpp (256 Colors/16 Gray Shades)	17				
	3.4 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)	18				
4	Look-Up Table (LUT)	19				
	4.1 Registers	19				
	4.2 Look-Up Table Organization	20				
	4.2.1 Color Modes	21				
	4.2.2 Gray Shade Modes	24				
5	Virtual Displays					
	5.1 Virtual Display	26				
	5.1.1 Registers	27				
	5.1.2 Examples	28				
	5.2 Panning and Scrolling	30				
	5.2.1 Registers	31				
	5.2.2 Examples	33				
6	Power Save Mode	35				
	6.1 Overview	35				
	6.2 Registers					
	6.2.1 Enabling Power Save Mode					
	6.2.2 Power Save Status Bits					
	6.3 Enabling Power Save Mode					
	6.4 Disabling Power Save Mode	37				
7	LCD Power Sequencing	38				
	7.1 Enabling the LCD Panel					
	7.2 Disabling the LCD Panel	39				
8	Hardware Cursor/Ink Layer	40				
	8.1 Introduction	40				
	8.2 Registers	41				
	8.3 Initialization					
	8.3.1 Memory Considerations					
	8.3.2 Examples	48				
	8.4 Writing Cursor/Ink Layer Images	50				

		8.4.1	Hardware Cursor/Ink Layer Data Format
		8.4.2	Cursor Image
		8.4.3	Ink Layer Image
	8.5	Curso	or Movement
		8.5.1	Move Cursor in Landscape Mode (no rotation)
		8.5.2	Move Cursor in SwivelView 90° Rotation
		8.5.3	Move Cursor in SwivelView 180° Rotation
		8.5.4	Move Cursor in SwivelView 270° Rotation
9	Sw	ivelVie	$\mathbf{w}^{\sf TM}$
	9.1	Swiv	elView 90°
	9.2	Swiv	elView 180°
	9.3	Swiv	elView 270°
	9.4	Swiv	elView Registers
		9.4.1	SwivelView 0° (Landscape)
		9.4.2	SwivelView 90°
		9.4.3	SwivelView 180°
		9.4.4	SwivelView 270°
	9.5	Limit	rations
	9.6	Simu	Itaneous Display Considerations
	9.7	Exan	nples
10	2D	BitBL1	- 「Engine
			sters
		•	LT Descriptions
		10.2.1	Write BitBLT with ROP
		10.2.2	Color Expand BitBLT
		10.2.3	Color Expand BitBLT With Transparency
			Solid Fill BitBLT
			Move BitBLT in a Positive Direction with ROP
			Move BitBLT in Negative Direction with ROP
		10.2.7	Transparent Write BitBLT
		10.2.8	Transparent Move BitBLT in Positive Direction
		10.2.9	Pattern Fill BitBLT with ROP
		10.2.10	Pattern Fill BitBLT with Transparency
			Move BitBLT with Color Expansion
			Transparent Move BitBLT with Color Expansion
			Read BitBLT
	10.3		3806 BitBLT Synchronization
	10.4		13806 BitBLT Known Limitations
	10 4		ole Code

11	CRI/IV Considerations	. 109
	11.1 CRT Considerations	. 109
	11.1.1 Generating CRT timings with 1386CFG	. 109
	11.1.2 DAC Output Level Selection	. 109
	11.1.3 Examples	.110
	11.2 TV Considerations	.110
	11.2.1 NTSC Timings	.110
	11.2.2 PAL Timings	.110
	11.2.3 TV Filters	.111
	11.2.4 Examples	.112
	11.3 Simultaneous Display	.112
12	MediaPlug	. 113
	12.1 Programming	
	12.2 Considerations	. 114
13	Identifying the S1D13806	. 115
14	Hardware Abstraction Layer (HAL)	. 116
	14.1 API for 1386HAL	. 116
	14.2 Initialization	. 121
	14.2.1 General HAL Support	. 124
	14.2.2 Advanced HAL Functions	. 129
	14.2.3 Surface Support	. 131
	14.2.4 Register Access	. 134
	14.2.5 Memory Access	. 136
	14.2.6 Color Manipulation	. 138
	14.2.7 Virtual Display	. 142
	14.2.8 Drawing	. 144
	14.2.9 Hardware Cursor	. 150
	14.2.10 Ink Layer	. 157
	14.2.11 Register/Display Memory	. 164
	14.3 Porting LIBSE to a new target platform	. 165
	14.3.1 Building the LIBSE library for SH3 target example	. 166
	14.3.2 Building a complete application for the target example	. 166
15	Sample Code	167

THIS PAGE LEFT BLANK

List of Tables

Table 2-1:	S1D13806 Initialization Sequence	12
Table 4-1:	Look-Up Table Configurations	20
Table 4-2:	Suggested LUT Values to Simulate VGA Default 16 Color Palette	21
Table 4-3:	Suggested LUT Values to Simulate VGA Default 256 Color Palette	22
Table 4-4:	Suggested LUT Values for 4 Bpp Gray Shade	24
Table 5-1:	Number of Pixels Panned When Start Address Changed By 1	31
Table 5-2:	Active Pixel Pan Bits	32
Table 8-1:	Ink/Cursor Mode	41
Table 8-2:	Cursor/Ink Start Address Encoding	41
Table 8-3:	LCD Hardware Cursor Initialization Sequence	48
Table 8-4:	Ink Layer Start Address Encoding	49
Table 8-5:	LCD Ink Layer Initialization Sequence	49
Table 8-6:	Ink/Cursor Color Select	5(
Table 9-1:	SwivelView Enable Bits	60
Table 10-1:	BitBLT ROP Code/Color Expansion Function Selection	75
Table 10-2:	BitBLT Operation Selection	76
Table 10-3:	BitBLT Source Start Address Selection	77
Table 10-4:	Possible BitBLT FIFO Writes	83
Table 10-5:	Possible BitBLT FIFO Writes	88
Table 10-6:	Possible BitBLT FIFO Writes	96
Table 10-7:	Possible BitBLT FIFO Reads	07
Table 14-1:	HAL Functions	16

THIS PAGE LEFT BLANK

List of Figures

Figure 3-1:	Pixel Storage for 4 Bpp in One Byte of Display Buffer	16
Figure 3-2:	Pixel Storage for 8 Bpp in One Byte of Display Buffer	17
Figure 3-3:	Pixel Storage for 16 Bpp in Two Bytes of Display Buffer	18
Figure 5-1:	Viewport Inside a Virtual Display	26
Figure 8-1:	Hardware Cursor/Ink Layer Data Format	5(
Figure 10-1:	Move BitBLT Usage	9(
Figure 14-1:	Components needed to build 1386 HAL application	55

THIS PAGE LEFT BLANK

1 Introduction

This guide provides information on programming the S1D13806 Embedded Memory Display Controller. Included are algorithms which demonstrate how to program the S1D13806. This guide discusses Power-on Initialization, Panning and Scrolling, LUT initialization, LCD Power Sequencing, SwivelViewTM, etc. The example source code referenced in this guide is available on the web at www.erd.epson.com.

This guide also introduces the Hardware Abstraction Layer (HAL), which is designed to simplify the programming of the S1D13806. Most S1D1350x, S1D1370x, and S1D1380x products have HAL support, thus allowing OEMs to do multiple designs with a common code base.

This document will be updated as appropriate. Please check the Epson Electronics America website at www.eea.epson.com, or the Epson Research and Development website at www.erd.epson.com for the latest revision of this document and source before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

amples

2 Initialization

This section describes how to initialize the S1D13806. Sample code for performing initialization of the S1D13806 is provided in the file **init1386.c**, which is part of the file **86sample.zip** and available on the internet at www.erd.epson.com.

S1D13806 initialization can be broken into three steps.

- Enable the S1D13806 controller (if necessary identify the specific controller).
- Set all the registers to their initial values.
- Program the Look-Up Table (LUT) with color values. This section does not deal with programming the LUT, for details see Section 4, "Look-Up Table (LUT)".

The simplest way to generate initialization tables for the S1D13806 is to use the utility program **1386cfg.exe** which to generates a header file that can be used by Windows CE or the HAL. Otherwise modify the **init1386.c** file directly.

The following table represents the sequence and values written to the S1D13806 registers to control a configuration with these specifications:

- 640x480 color format 1 dual passive LCD @ 78Hz.
- 16-bit data interface.
- 8 bit-per-pixel (bpp) color depth 256 colors.
- 40 MHz input clock CLKI.
- CLKI used for BUSCLK (1:1); PCLK (2:1); MCLK (1:1).
- Embedded SDRAM.

Table 2-1: S1D13806 Initialization Sequence

Register	Value	Notes	See Also
[001h]	0000 0000	Enable the Memory/Register Select Bit.	
[1FCh]	0000 0000	Disable the display outputs.	
[004h]	0000 0000		
[005h]	0000 0000	Setup GPIO as inputs; force low if outputs. The OEM may wish	
[008h]	0000 0000	GPIO for other purposes which our example does not accommodate for.	
[009h]	0000 0000		
		Program the Clock Source selects.	
[010h]	0000 0000	In this case we have a single input clock source attached to the	
[014h]	0001 0000	CLKI pin. This example uses this as BUSCLK, as MCLK and divide by 2 for PCLK. The CRT clock and MediaPlug clocks are	
[018h]	0000 0010	set to CLKI2 reducing power consumption (there is no CLKI2 in	
[01Ch]	0000 0010	this example). If either the CRT or MediaPlug is to be used an input clock must be enabled before accessing the control registers or LUT.	
[01Eh]	0000 0001	Program CPU Wait States.	see REG[01Eh] for details

Table 2-1: S1D13806 Initialization Sequence (Continued)

Register	Value	Notes	See Also
[020h]	1000 0000	Program the Frame Buffer Memory Configuration	
[021h]	0000 0011	Registers.	see REG[020h] -
[02Ah]	0000 0000		REG[02Bh] for details
[02Bh]	0001 0010		
[030h]	0010 0110	Program the LCD Panel type and Panel Timing Registers.	
[031h]	0000 0000	Panel width = 16-bit; Color Format = don't care; Color Panel	
[032h]	0100 1111	selected; Dual Panel selected; Passive LCD selected.	
[034h]	0001 1111	MOD rate = don't care;	
[035h]	0000 0000	Display width = 640 pixels = 4Fh.	
[036h]	0000 0000	Horizontal and Vertical Non-display time has been adjusted to provide 78Hz frame rate.	
[038h]	1101 1111	TFT FPLINE registers = don't care for passive panels.	
[039h]	0000 0001	Display height = 480 therefore register = 1DFh	
[03Ah]	0010 1100	TFT FPFRAME = don't care for passive panels.	
[03Bh]	0000 0000		
[03Ch]	0000 0000		
[040h]	0000 0003	Program the Display Output Format and Start Locations for	
[041h]	0000 0000	the LCD output. This includes programming the FIFOs.	
[042h]	0000 0000	Select 8 bpp in REG[040h]	
[043h]	0000 0000	Ensure that the Dual Panel Buffer is enabled REG [41h] bit 0 = 0	
[044h]	0000 0000	LCD Start Address should typically be from location 0 in the	
[046h]	0100 0000	frame buffer.	
[047h]	0000 0001	Pixel Pan register is 0 for normal operation.	
[048h]	0000 0000	Memory offset register is set to 'the panel width for normal operation, therefore $640 \div 2$ for words = 320 words= 140h	
[04Ah]	0000 0000	words	
[04Bh]	0000 0000	Set FIFO values to 0 for "automatic" calculation.	
[050h]	0000 0000	Program the CRT/TV Timing control registers.	
[052h]	0000 0000	All values are = don't care for this example.	
[053h]	0000 0000		
[054h]	0000 0000		
[056h]	0000 0000		
[057h]	0000 0000		
[058h]	0000 0000		
[059h]	0000 0000		
[05Ah]	0000 0000		
[05Bh]	0000 0000		

Table 2-1: S1D13806 Initialization Sequence (Continued)

Register	Value	Notes	See Also
[060h]	0000 0000	Program the CRT/TV Display Output Format and	
[062h]	0000 0000	Configuration Registers including the FIFOs.	
[063h]	0000 0000		
[064h]	0000 0000	For this example, these values are = don't care.	
[066h]	0000 0000		
[067h]	0000 0000		
[068h]	0000 0000		
[06Ah]	0000 0000		
[06Bh]	0000 0000		
[070h]	0000 0000	Program the LCD Ink Layer/Cursor Control, Position, Color	
[071h]	0000 0000	and FIFO registers.	
[072h]	0000 0000		
[073h]	0000 0000	For this example, since no lnk Layer or Cursor is used, these	
[074h]	0000 0000	registers are = don't care.	
[075h]	0000 0000		
[076h]	0000 0000		
[077h]	0000 0000		
[078h]	0000 0000		
[07Ah]	0000 0000		
[07Bh]	0000 0000		
[07Ch]	0000 0000		
[07Eh]	0000 0000		
[080h]	0000 0000	Program the CRT/TV Ink Layer/Cursor Control, Position, Color and FIFO registers.	
[081h]	0000 0000	Color and in o registers.	
[082h]	0000 0000	For this example, since no Ink Layer or Cursor is used, these	
[083h]	0000 0000	registers are = don't care.	
[084h]	0000 0000		
[085h]	0000 0000		
[086h]	0000 0000		
[087h]	0000 0000		
[088h]	0000 0000		
[08Ah]	0000 0000		
[08Bh]	0000 0000		
[08Ch]	0000 0000		
[08Eh]	0000 0000		

Table 2-1: S1D13806 Initialization Sequence (Continued)

Register	Value	Notes	See Also
[100h]	0000 0000	Program the 2D acceleration (BitBLT) registers to a known	
[101h]	0000 0000	state.	
[102h]	0000 0000		
[103h]	0000 0000		
[104h]	0000 0000		
[105h]	0000 0000		
[106h]	0000 0000		
[108h]	0000 0000		
[109h]	0000 0000		
[10Ah]	0000 0000		
[10Ch]	0000 0000		
[10Dh]	0000 0000		
[110h]	0000 0000		
[111h]	0000 0000		
[112h]	0000 0000		
[113h]	0000 0000		
[114h]	0000 0000		
[115h]	0000 0000		
[118h]	0000 0000		
[119h]	0000 0000		
[1E0]h	0000 0001	Program the Look-Up Table to a known state.	see Section Section 4,
[1E2h]	0000 0000	Selects LUT access to the LCD LUT only. Programming the	"Look-Up Table (LUT)" on
[1E4h]	0000 0000	Look-Up Table is dealt with in a separate section of this document. The init1386.c file shows the example.	page 19.
[1F0h]]	0001 0000	Turn off Power Save Mode.	
[TFOII]]	0001 0000	Sets reserved bit to 1.	
[1F4h]	0000 0000	Disable Watchdog Timer.	4
		Enable the Display.	
[1FCh]	0000 0001	For this example, enable the LCD panel only. Note that the LCD Power Sequencing procedures outlined in Section 7.1, "Enabling the LCD Panel" should be used when enabling the LCD panel.	see REG[1FCh]

3 Memory Models

The S1D13806 is capable of several color depths. The memory model for each color depth is packed pixel. The S1D13806 supports 4, 8, and 16 bit-per-pixel (bpp) memory models.

3.1 Display Buffer Location

The S1D13806 supports a display buffer of 1.25M byte embedded SDRAM. The display buffer is memory mapped and is accessible directly by software. The memory block location assigned to the S1D13806 display buffer varies with each individual hardware platform.

For further information on the display buffer, see the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx.

3.2 Memory Organization for 4 Bpp (16 Colors/16 Gray Shades)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		el 0 s 3-0			Pix Bits	el 1 s 3-0	

Figure 3-1: Pixel Storage for 4 Bpp in One Byte of Display Buffer

In this memory format each byte of display buffer contains two adjacent pixels. Setting or resetting any pixel will require reading the entire byte, masking out the upper or lower nibble (4 bits) and setting the appropriate bits to 1.

Four bit pixels provide 16 gray shades/color possibilities. For monochrome panels the gray shades are generated by indexing into the first 16 elements of the green component of the Look-Up Table (LUT). For color panels the 16 colors are derived by indexing into the first 16 positions of the LUT.

3.3 Memory Organization for 8 Bpp (256 Colors/16 Gray Shades)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Pixel 0 Bits 7-0									

Figure 3-2: Pixel Storage for 8 Bpp in One Byte of Display Buffer

At a color depth of eight bpp each byte of display buffer represents one pixel on the display. At this color depth the read-modify-write cycles of 4 bpp are eliminated making the update of each pixel faster.

Each byte indexes into one of the 256 positions of the LUT. The S1D13806 LUT supports four bits per primary color. This translates into 4096 possible colors when color mode is selected. Therefore the displayed mode has 256 colors available out of a possible 4096.

When a monochrome panel is selected, the green component of the LUT is used to determine the gray shade intensity. The green indices, with only four bits, can resolve 16 gray shades.

Note

When a monochrome panel (REG[030h] bit 2 = 0) is selected, a four bpp color depth also provides 16 gray shades and uses less display buffer.

3.4 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Red Component					Green Component		
Bits 4-0					Bits 5-3		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Green Component			Blue Component				
Bits 2-0			Bits 4-0				

Figure 3-3: Pixel Storage for 16 Bpp in Two Bytes of Display Buffer

At a color depth of 16 bpp the S1D13806 is capable of displaying 65536 colors. The 65536 color pixel is divided into three parts: five bits for red, six bits for green, and five bits for blue. In this mode the LUT is bypassed and output goes directly into the Frame Rate Modulator.

When dithering is enabled (REG[041h) bit 1) the full color range is available on all display types. If dithering is disabled the full color range is only available on TFT/D-TFD or CRT displays. Passive LCD displays are limited to using the four most significant bits from each of the red, green and blue portions of each color resulting in 4096 ($2^4 \times 2^4 \times 2^4$) possible colors.

Should monochrome mode be chosen at this color depth, the output sends the six bits of the green LUT component to the modulator for a total of 64 possible gray shades. If dithering is disabled, the maximum number of gray shades is 16.

4 Look-Up Table (LUT)

This section discusses programming the S1D13806 Look-Up Table (LUT). Included is a summary of the LUT registers, recommendations for color/gray shade LUT values, and additional programming considerations. For a discussion of the LUT architecture, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

The S1D13806 is designed with a separate LUT for both the LCD and CRT/TV. Each LUT consists of 256 indexed red/green/blue entries. Each LUT entry is four bits wide. The color depth determines how many indices are used to output the image to the display. 4 bpp uses the first 16 indices, 8 bpp uses all 256 indices, and 16 bpp color depths bypass the LUT entirely.

In color modes, the pixel values stored in the display buffer index directly to an RGB value stored in the LUT. In monochrome modes, the pixel value indexes into the green component of the LUT and the amount of green at that index controls the intensity. Monochrome mode look-ups are done based on the Color/Mono Panel Select bit (REG[030h] bit 2). The CRT interface receives the RGB values from the LUT even if simultaneous display is used with a monochrome panel. Therefore, it is important to program the R, G, and B components of the CRT LUT either with a unique set of values, or with R, G, and B values all equivalent.

4.1 Registers

REG[1E0h] Look-Up Table Mode Register									
n/a	n/a	n/a	n/a	n/a	n/a	LUT Mode Bit 1	LUT Mode Bit 0		

The S1D13806 is designed with a separate LUT for both the LCD and CRT/TV. The LUT Mode register selects which of the LUTs will be accessed by the CPU when reads/writes are made to REG[1E2h] and REG[1E4h]. LUT mode selection allows the LUTs to be individually written or have identical data written to both LUTs. Individual writes to these registers are useful for Epson Independent Simultaneous Display (EISD) modes where independent images are displayed on the LCD and the CRT/TV. For further information on Epson Independent Simultaneous Display, see the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

For normal operation, this register should be set to 00h which will read the LCD LUT and write both the LCD and CRT/TV LUTs with identical data. For selection of other LUT modes, see REG[1E0h] in the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx.

REG[1E2h] Look-Up Table Address Register									
LUT Address	LUT Address	LUT Address	LUT Address	LUT Address	LUT Address	LUT Address	LUT Address		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

The LUT address register selects which of the 256 LUT entries will be accessed. Writing to this register will select the red bank. After three successive reads or writes to the data register (REG[1E4h]) this register is automatically incremented by one.

REG[1E4h] Look-Up Table Data Register									
LUT Data Bit 3	LUT Data Bit 2	LUT Data Bit 1	LUT Data Bit 0	n/a	n/a	n/a	n/a		

This register is where the 4-bit red/green/blue data is written to/read from. With each successive read or write the **internal bank select** is incremented. Three successive reads from this register will result in reading the red, then the green, and finally the blue values associated with the index set in the LUT address register.

After the third read the LUT address register is incremented and the internal bank select points to the red bank again.

4.2 Look-Up Table Organization

- The Look-Up Table treats the value of a pixel as an index into an array of colors or gray shades. For example, a pixel value of zero would point to the first LUT entry, whereas a pixel value of seven would point to the eighth LUT entry.
- The value contained in each LUT entry represents the intensity of the given color or gray shade. This intensity can range in value between 0 and 0Fh.
- The S1D13806 Look-Up Table is linear. This means increasing the LUT entry number results in a lighter color or gray shade. For example, a LUT entry of 0Fh in the red bank results in bright red output while a LUT entry of 05h results in dull red.

Display Mode	4-E	4-Bit Wide Look-Up Table		Effective Gray Shades/Colors on an Passive Panel With Dithering Disabled	Effective Gray Shades/Colors on a Passive Panel With Dithering Enabled
	RED	GREEN	BLUE		
4 bpp gray		16		16 gray shades	16 gray shades
8 bpp gray		16		16 gray shades	16 gray shades
16 bpp gray				16 gray shades	64 gray shades
4 bpp color	16	16	16	16 colors	16 colors
8 bpp color	256	256	256	256 colors	256 colors
16 bpp color				4096 colors	65536 colors

Table 4-1: Look-Up Table Configurations

= Indicates the Look-Up Table is not used for that display mode

4.2.1 Color Modes

In color display modes, the number of LUT entries used is automatically selected depending on the color depth.

4 bpp color

When the S1D13806 is configured for 4 bpp color mode the first 16 entries in the LUT are used. Each byte in the display buffer contains two adjacent pixels. The upper and lower nibbles of the byte are used as indices into the LUT.

The following table shows LUT values that will simulate those of a VGA operating in 16 color mode.

Table 4-2: Suggested LUT Values to Simulate VGA Default 16 Color Palette

Index	Red	Green	Blue
00	00	00	00
01	00	00	0A
02	00	0A	00
03	00	0A	0A
04	0A	00	00
05	0A	00	0A
06	0A	0A	00
07	0A	0A	0A
08	00	00	00
09	00	00	0F
0A	00	0F	00
0B	00	0F	0F
0C	0F	00	00
0D	0F	00	0F
0E	0F	0F	00
0F	0F	0F	0F
10	00	00	00
	00	00	00
FF	00	00	00

= Indicates unused entries in the LUT

8 bpp color

When the S1D13806 is configured for 8 bpp color mode all 256 entries in the LUT are used. Each byte in the display buffer corresponds to one pixel and is used as an index value into the LUT.

The S1D13806 LUT has four bits (16 intensities) of intensity control per primary color while a standard VGA RAMDAC has six bits (64 intensities). This four to one difference must be considered when attempting to match colors between a VGA RAMDAC and the S1D13806 LUT. (i.e. VGA levels 0 - 3 map to LUT level 0, VGA levels 4 - 7 map to LUT level 1...). Additionally, the significant bits of the color tables are located at different offsets within their respective bytes. After calculating the equivalent intensity value the result must be shifted into the correct bit positions.

The following table shows LUT values that will approximate the VGA default color palette.

										- Jejann					
Index	R	G	В	Index	R	G	В	Index	R	G	В	Index	R	G	В
00	00	00	00	40	F0	70	70	80	30	30	70	C0	00	40	00
01	00	00	A0	41	F0	90	70	81	40	30	70	C1	00	40	10
02	00	A0	00	42	F0	B0	70	82	50	30	70	C2	00	40	20
03	00	A0	A0	43	F0	D0	70	83	60	30	70	C3	00	40	30
04	A0	00	00	44	F0	F0	70	84	70	30	70	C4	00	40	40
05	A0	00	A0	45	D0	F0	70	85	70	30	60	C5	00	30	40
06	A0	50	00	46	B0	F0	70	86	70	30	50	C6	00	20	40
07	A0	A0	A0	47	90	F0	70	87	70	30	40	C7	00	10	40
08	50	50	50	48	70	F0	70	88	70	30	30	C8	20	20	40
09	50	50	F0	49	70	F0	90	89	70	40	30	C9	20	20	40
0A	50	F0	50	4A	70	F0	B0	8A	70	50	30	CA	30	20	40
0B	50	F0	F0	4B	70	F0	D0	8B	70	60	30	СВ	30	20	40
0C	F0	50	50	4C	70	F0	F0	8C	70	70	30	CC	40	20	40
0D	F0	50	F0	4D	70	D0	F0	8D	60	70	30	CD	40	20	30
0E	F0	F0	50	4E	70	B0	F0	8E	50	70	30	CE	40	20	30
0F	F0	F0	F0	4F	70	90	F0	8F	40	70	30	CF	40	20	20
10	00	00	00	50	B0	B0	F0	90	30	70	30	D0	40	20	20
11	10	10	10	51	C0	B0	F0	91	30	70	40	D1	40	20	20
12	20	20	20	52	D0	B0	F0	92	30	70	50	D2	40	30	20
13	20	20	20	53	E0	B0	F0	93	30	70	60	D3	40	30	20
14	30	30	30	54	F0	B0	F0	94	30	70	70	D4	40	40	20
15	40	40	40	55	F0	B0	E0	95	30	60	70	D5	30	40	20
16	50	50	50	56	F0	B0	D0	96	30	50	70	D6	30	40	20
17	60	60	60	57	F0	B0	C0	97	30	40	70	D7	20	40	20
18	70	70	70	58	F0	B0	B0	98	50	50	70	D8	20	40	20
19	80	80	80	59	F0	C0	B0	99	50	50	70	D9	20	40	20
1A	90	90	90	5A	F0	D0	B0	9A	60	50	70	DA	20	40	30
1B	A0	A0	A0	5B	F0	E0	B0	9B	60	50	70	DB	20	40	30
1C	В0	В0	В0	5C	F0	F0	B0	9C	70	50	70	DC	20	40	40
1D	C0	C0	C0	5D	E0	F0	B0	9D	70	50	60	DD	20	30	40
1E	E0	E0	E0	5E	D0	F0	B0	9E	70	50	60	DE	20	30	40

Table 4-3: Suggested LUT Values to Simulate VGA Default 256 Color Palette

Table 4-3: Suggested LUT Values to Simulate VGA Default 256 Color Palette (Continued)

Index	R	G	В												
1F	F0	F0	F0	5F	C0	F0	B0	9F	70	50	50	DF	20	20	40
20	00	00	F0	60	В0	F0	В0	A0	70	50	50	E0	20	20	40
21	40	00	F0	61	B0	F0	C0	A1	70	50	50	E1	30	20	40
22	70	00	F0	62	B0	F0	D0	A2	70	60	50	E2	30	20	40
23	B0	00	F0	63	В0	F0	E0	А3	70	60	50	E3	30	20	40
24	F0	00	F0	64	В0	F0	F0	A4	70	70	50	E4	40	20	40
25	F0	00	B0	65	B0	E0	F0	A5	60	70	50	E5	40	20	30
26	F0	00	70	66	В0	D0	F0	A6	60	70	50	E6	40	20	30
27	F0	00	40	67	В0	C0	F0	A7	50	70	50	E7	40	20	30
28	F0	00	00	68	00	00	70	A8	50	70	50	E8	40	20	20
29	F0	40	00	69	10	00	70	A9	50	70	50	E9	40	30	20
2A	F0	70	00	6A	30	00	70	AA	50	70	60	EA	40	30	20
2B	F0	B0	00	6B	50	00	70	AB	50	70	60	EB	40	30	20
2C	F0	F0	00	6C	70	00	70	AC	50	70	70	EC	40	40	20
2D	B0	F0	00	6D	70	00	50	AD	50	60	70	ED	30	40	20
2E	70	F0	00	6E	70	00	30	AE	50	60	70	EE	30	40	20
2F	40	F0	00	6F	70	00	10	AF	50	50	70	EF	30	40	20
30	00	F0	00	70	70	00	00	B0	00	00	40	F0	20	40	20
31	00	F0	40	71	70	10	00	B1	10	00	40	F1	20	40	30
32	00	F0	70	72	70	30	00	B2	20	00	40	F2	20	40	30
33	00	F0	B0	73	70	50	00	В3	30	00	40	F3	20	40	30
34	00	F0	F0	74	70	70	00	B4	40	00	40	F4	20	40	40
35	00	B0	F0	75	50	70	00	B5	40	00	30	F5	20	30	40
36	00	70	F0	76	30	70	00	B6	40	00	20	F6	20	30	40
37	00	40	F0	77	10	70	00	B7	40	00	10	F7	20	30	40
38	70	70	F0	78	00	70	00	B8	40	00	00	F8	00	00	00
39	90	70	F0	79	00	70	10	B9	40	10	00	F9	00	00	00
3A	B0	70	F0	7A	00	70	30	BA	40	20	00	FA	00	00	00
3B	D0	70	F0	7B	00	70	50	BB	40	30	00	FB	00	00	00
3C	F0	70	F0	7C	00	70	70	BC	40	40	00	FC	00	00	00
3D	F0	70	D0	7D	00	50	70	BD	30	40	00	FD	00	00	00
3E	F0	70	B0	7E	00	30	70	BE	20	40	00	FE	00	00	00
3F	F0	70	90	7F	00	10	70	BF	10	40	00	FF	00	00	00

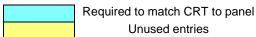
16 bpp color

The Look-Up Table is bypassed at this color depth, hence programming the LUT is not required.

4.2.2 Gray Shade Modes

This discussion of gray shade (monochrome) modes only applies to the panel interface. Monochrome mode is selected when REG[030h] bit 2 returns a 0. In this mode the value output to the panel is derived solely from the green component of the LUT. The CRT/TV image is formed from all three LUT components (RGB).

Note


In order to match the colors on a CRT/TV with the colors on a monochrome panel when displaying identical images on the panel and CRT/TV, the red and blue components of the LUT must be set to the same intensity as the green component.

4 bpp gray shade

The 4 bpp gray shade mode uses the green component of the first 16 LUT entries. The remaining indices of the LUT are unused.

Table 4-4: Suggested LUT Values for 4 Bpp Gray Shade

Index	Red	Green	Blue
00	00	00	00
01	10	10	10
02	20	20	20
03	30	30	30
04	40	40	40
05	50	50	50
06	60	60	60
07	70	70	70
08	80	80	80
09	90	90	90
0A	A0	A0	A0
0B	B0	B0	B0
0C	C0	C0	C0
0D	D0	D0	D0
0E	E0	E0	E
0F	F0	F0	F0
10	00	00	00
	00	00	00
FF	00	00	00

8 bpp gray shade

The 8 bpp gray shade mode uses the green component of the first 16 LUT entries, providing 16 possible intensities. There is no increase in gray shades when selecting 8 bpp mode over 4 bpp mode; however, Swivelview and the BitBLT engine can be used in 8 bpp mode but not in 4 bpp mode.

16 bpp gray shade

The Look-Up Table is bypassed at this color depth, hence programming the LUT is not required.

As with 8 bpp there are limitations to the colors which can be displayed. In this mode six bits of green are used to set the absolute intensity of the image. This results in 64 gray shades when dithering is enabled and 16 gray shades when dithering is disabled.

5 Virtual Displays

This section discusses the concept of a virtual display and covers navigation within a virtual display using panning and scrolling.

5.1 Virtual Display

Virtual display is where the image to be viewed is larger than the physical display. This can be in the horizontal, vertical or both dimensions. To view the image, the display is used as a window (or viewport) into the display buffer. At any given time only a portion of the image is visible. Panning and scrolling are used to view the full image. For further information on panning and scrolling, see Section 5.2, "Panning and Scrolling" on page 30.

The Memory Address Offset registers determine the number of horizontal pixels in the virtual image. The offset registers can be set for a maximum of 2^{11} or 2048 words. At a color depth of 4 bpp, 2048 words cover 8,192 pixels. At a color depth of 16 bpp, 2048 words cover 2048 pixels.

The maximum number of lines of the virtual image is the size of the display buffer divided by the number of bytes per horizontal line. The number of bytes per line equals the number of words in the offset register multiplied by two. At the maximum horizontal size, the greatest number of lines that can be displayed using 1.25M bytes of display memory is 320. Reducing the horizontal size makes more display buffer available, thus increasing the available virtual vertical size.

In addition to the calculated limit, the virtual vertical size is limited by the size and location of the Dual Panel Buffer and the Ink Layer/Hardware Cursor (if present).

The maximum horizontal/vertical sizes are seldom used. Figure 5-1: "Viewport Inside a Virtual Display," shows a more typical use of a virtual display. With a display panel of 320x240 pixels, an image of 640x480 pixels can be viewed by navigating a 320x240 pixel viewport around the image using panning and scrolling.

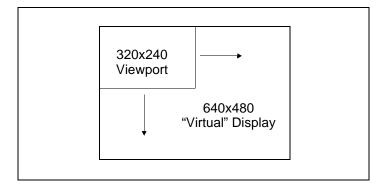


Figure 5-1: Viewport Inside a Virtual Display

5.1.1 Registers

REG[046h] LCD Memory Address Offset Register 0										
LCD Memory	LCD Memory	LCD Memory	LCD Memory	LCD Memory	LCD Memory	LCD Memory	LCD Memory			
Address	Address	Address	Address	Address	Address	Address	Address			
Offset Bit 7	Offset Bit 6	Offset Bit 5	Offset Bit 4	Offset Bit 3	Offset Bit 2	Offset Bit 1	Offset Bit 0			

REG[047h] L	REG[047h] LCD Memory Address Offset Register 1											
n/a	n/a	n/a	n/a	n/a	LCD Memory Address Offset Bit 10	LCD Memory Address Offset Bit 9	LCD Memory Address Offset Bit 8					

These registers form the 11-bit memory address offset for the LCD display. This offset equals the number of words from the beginning of one line of the LCD display to the beginning of the next line.

To maintain a constant virtual width as color depth changes, the memory address offset must also change. At a color depth of 4 bpp each word contains 4 pixels, at 16 bpp each word contains one pixel. The formula to determine the value for the memory address registers is:

This value may not necessarily represent the number of words shown on the LCD display. This is the virtual width of the display image and may be greater than or equal to the physical display width. If PixelsPerVirtualLine equals the physical display width as set in the LCD Horizontal Display Width register (REG[032h]), then the virtual display and physical display are the same size.

REG[066h] C	REG[066h] CRT/TV Memory Address Offset Register 0										
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV				
Memory	Memory	Memory	Memory	Memory	Memory	Memory	Memory				
Address	Address	Address	Address	Address	Address	Address	Address				
Offset Bit 7	Offset Bit 6	Offset Bit 5	Offset Bit 4	Offset Bit 3	Offset Bit 2	Offset Bit 1	Offset Bit 0				

REG[067h] C	REG[067h] CRT/TV Memory Address Offset Register 1											
					CRT/TV	CRT/TV	CRT/TV					
n/a	n/o	n/a	n/a	n/a	Memory	Memory	Memory					
II/a	n/a	II/a	II/a	II/a	Address	Address	Address					
					Offset Bit 10	Offset Bit 9	Offset Bit 8					

These registers form the 11-bit memory address offset for the CRT/TV display. This offset equals the number of words form the beginning of one line of the CRT/TV display to the beginning of the next line.

To maintain a constant virtual width as color depth changes, the memory address offset must also change. At a color depth of 4 bpp each word contains 4 pixels, at 16 bpp each word contains one pixel. The formula to determine the value for the memory address registers is:

This value may not necessarily represent the number of words shown on the CRT/TV display. This is the virtual width of the display image and may be greater than or equal to the physical display width. If PixelsPerVirtualLine equals the physical display width as set in the CRT/TV Horizontal Display Width register (REG[050h]), then the virtual display and physical display are the same size.

5.1.2 Examples

Example 1: Determine the offset value required for a line of 800 pixels at a color depth of 8 bpp.

At a color depth of 8 bpp each byte contains one pixel, therefore each word contains two pixels.

PixelsPerWord =
$$16 \div bpp$$

= $16 \div 8$
= 2

To calculate the offset value for this example, the following formula is used.

For the LCD, REG[047h] is set to 01h and REG[046h] is set to 90h. For the CRT/TV, REG[067h] is set to 01h and REG[066h] is set to 90h.

Example 2: Program the Memory Address Offset Registers to support a 16 color (4 bpp) 800x600 virtual display on a 640x480 LCD panel.

To create a virtual display the offset registers must be programmed to the horizontal size of the larger "virtual" image. After determining the amount of memory used by each line (see example 1), calculate whether there is enough memory to support the desired number of lines.

- 1. Initialize the S1D13806 registers for a 640x480 panel. (See Section 2, "Initialization" on page 12).
- 2. Calculate the number of pixels per word.

PixelsPerWord =
$$16 \div bpp$$

= $16 \div 4$
= 4

3. Determine the offset register value.

For the LCD, REG[047h] is set to 00h and REG[046h] is set to C8h. For the CRT/TV, REG[067h] is set to 00h and REG[066h] is set to C8h.

4. To confirm whether there is enough memory for the required virtual height, the following formula is used.

The S1D13806 contains 1.25M bytes of embedded SDRAM (or 1,310,720 bytes). As long as the calculated value is less than this, it is safe to continue with these values.

5.2 Panning and Scrolling

The terms panning and scrolling refer to the actions used to move a viewport about a virtual display. Although the entire image is stored in the display buffer, only a portion is visible at any given time.

Panning describes the horizontal (side to side) motion of the viewport. When panning to the right the image in the viewport appears to slide to the left. When panning to the left the image to appears to slide to the right. Scrolling describes the vertical (up and down) motion of the viewport. Scrolling down causes the image to appear to slide up and scrolling up causes the image to appear to slide down.

Both panning and scrolling are performed by modifying the start address registers. The start address refers to the word offset in the display buffer where the beginning of the image is displayed from. At color depths other than 16 bpp, another register is required for smooth movement. The pixel pan registers (REG[048h] for LCD, REG[068h] for CRT/TV) allow panning in smaller increments than changing the start address alone.

Internally, the S1D13806 latches different signals at different times. Due to this internal sequence, the start address and pixel pan registers should be accessed in a specific order during panning and scrolling operations, in order to provide the smoothest scrolling. Setting the registers in the wrong sequence, or at the wrong time, results in a "tearing" or jitter effect on the display.

The start address is latched at the beginning of each frame, so the start address can be set within the vertical non-display period (VNDP). The pixel pan register values are latched at the beginning of each display line and must be set during the vertical non-display period. The correct sequence for programing these registers is:

- 1. Wait for the beginning of the vertical non-display period For the LCD, REG[03Ah] bit 7 will return a 1 during VNDP; for the CRT/TV, REG[058h] bit 7 will return a 1 during VNDP. Wait for the transition of the appropriate bit to go from 0 to 1. This ensures the register updates are carried out at the beginning of VNDP.
- 2. Update the start address registers For the LCD, REG[042h], REG[043h], REG[044h]; for the CRT/TV, REG[062h], REG[063h], REG[064h].
- 3. Update the pixel panning register For the LCD, REG[048h] bits 1-0; for the CRT/TV REG[068h] bits 1-0.

Sample code for panning and scrolling is available in the file **hal_virt.c** which is included in the HAL source code available on the internet at www.erd.epson.com.

5.2.1 Registers

REG[042h] L	CD Display S	tart Address	Register 0				
LCD Display							
Start Address							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
REG[043h] L	CD Display S	tart Address	Register 1				
LCD Display							
Start Address							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
REG[044h] L	CD Display S	tart Address	Register 2				
				LCD Display	LCD Display	LCD Display	LCD Display
n/a	n/a	n/a	n/a	Start Address	Start Address	Start Address	Start Address
				Bit 19	Bit 18	Bit 17	Bit 16
REG[062h] C	RT/TV Displa	y Start Addre	ss Register 0				
CRT/TV							
Display Start							
Address							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
REG[063h] C	RT/TV Displa	y Start Addre	ss Register 1				
CRT/TV							
Display Start							
Address							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
REG[064h] C	RT/TV Displa	y Start Addre	ss Register 2				
				CRT/TV	CRT/TV	CRT/TV	CRT/TV
- 1-	- 1-	- 1-	- 1-	Display Start	Display Start	Display Start	Display Start
n/a	n/a	n/a	n/a	Address	Address	Address	Address
				Bit 19	Bit 18	Bit 17	Bit 16

The Display Start Address registers form the word address to the display buffer where the LCD or CRT/TV starts displaying from. An address of 0 points to the beginning of the display buffer. Changing the start address registers by one pans from 1 to 4 pixels depending on the current color depth. The following table lists the maximum number of pixels affected by a change of one to these registers.

Table 5-1: Number of Pixels Panned When Start Address Changed By 1

Color Depth (bpp)	Pixels per Word	Number of Pixels Panned
4	4	4
8	2	2
16	1	1

REG[048h] L	CD Pixel Pan	ning Register									
n/a	n/a	n/a	n/a	Reserved	Reserved	LCD Pixel Panning Bit 1	LCD Pixel Panning Bit 0				
REG[068h] C	REG[068h] CRT/TV Pixel Panning Register										
n/a	n/a	n/a	n/a	Reserved	Reserved	CRT/TV Pixel Panning Bit 1	CRT/TV Pixel Panning Bit 0				

The pixel panning register offers finer control over panning than is available using the start address registers. Using the pixel panning register, it is possible to pan the displayed image one pixel at a time. The number of bits required to pan a single pixel at a time, change with the color depth. The following table shows the bits of the pixel pan register which are used for each color depth.

Table 5-2: Active Pixel Pan Bits

Color Depth (bpp)	Pixel Pan bits used
4	bits [1:0]
8	bit 0
16	none

Note

The pixel panning registers are not required for color depths of 16 bpp.

The pixel panning registers must be updated in conjunction with the start address registers. The pixel panning registers can be thought of as the least significant bit(s) of the start address registers.

When panning to the right on an LCD set for a color depth of 4 bpp, the registers would be updated as follows.

- 1. Pan right by 1 pixel increment the pixel panning register by 1: REG[048h] = 01b.
- 2. Pan right by 1 pixel increment the pixel panning register by 1: REG[048h] = 10b.
- 3. Pan right by 1 pixel increment the pixel panning register by 1: REG[048h] = 11b.
- 4. Pan right by 1 pixel reset the pixel panning register to 0: REG[048h] = 00b.
 increment the start address register by 1: (REG[042h], REG[043h], REG[044h]) + 1.

Note

The above example assumes the pixel panning register is initially set at 0.

When panning to the left on an LCD set for a color depth of 4 bpp, the registers would be updated as follows.

1. Pan left by 1 pixel - decrement the pixel panning register by 1: REG[048h] = 11b.

- decrement the start address register by 1: (REG[042h],

REG[043h], REG[044h]) - 1.

2. Pan left by 1 pixel - decrement the pixel panning register by 1: REG[048h] = 10b.

3. Pan left by 1 pixel - decrement the pixel panning register by 1: REG[048h] = 01b.

4. Pan left by 1 pixel - decrement the pixel panning register by 1: REG[048h] = 00b.

Note

The above example assumes the pixel panning register is initially set at 0.

5.2.2 Examples

The following examples assume the display system has been configured to view a 800x600 pixel image in a 640x480 viewport. Refer to Section 2, "Initialization" on page 12 and Section 5.1, "Virtual Display" on page 26 for assistance with these settings.

Example 3: Panning - Right and Left

To pan to the right, increment the value in the pixel panning register (REG[048h] for LCD, REG[068h] for CRT/TV). When the pixel pan value reaches the maximum value for the current color depth (i.e. 11b for 4 bpp, 1b for 8 bpp) then set the pixel pan value to zero and increment the start address value. To pan to the left (assuming the pixel panning register is zero), decrement the value in the pixel panning register and decrement the start address register. When the pixel pan value reaches zero then decrement both the pixel panning register and start address register again. If the pixel panning register contains a value other than zero, decrement the value in the pixel panning register only and when the pixel pan value reaches zero, decrement both the pixel panning register and start address register.

Note

Panning operations are easier to follow if a variable (e.g. PanValue) is used to track both the pixel panning and start address registers. The least significant bits of PanValue will represent the pixel panning register value and the more significant bits are the start address register value.

The following example pans to the right by one pixel when the color depth is 4 bpp.

1. Increment PanValue.

PanValue = PanValue + 1

2. Mask off the values from PanValue for the pixel panning and start address register portions. In this case, 4 bpp, the lower two bits are the pixel panning value and the upper bits are the start address.

PixelPan = PanValue AND 3

StartAddress = PanValue SHR 2 (remove PixelPan bits)

3. Write the pixel panning and start address register values using the procedure outlined in Section 5.2.1, "Registers" on page 31.

Example 4: Scrolling - Up and Down

To scroll down, increase the value in the Display Start Address Registers (REG[042h], REG[043h], REG[044h] for LCD, REG[062h], REG[063h], REG[064h] for CRT/TV) by the number of words in one *virtual* scan line. To scroll up, decrease the value in the Display Start Address Registers by the number of words in one *virtual* scan line.

The following example scrolls down one line for a 16 color (4 bpp) 800x600 virtual image using a 640x480 single panel LCD.

1. Determine the number of words in each line of the virtual image. For a color depth of 4 bpp each byte contains two pixels so each word contains 4 pixels.

OffsetWords = PixelsPerVirtualLine ÷ PixelsPerWord

 $= 800 \div 4$ = 200 = C8h

2. Increment the display start address by the number of words per virtual line.

StartAddress = StartAddress + OffsetWords = StartAddress + C8h

3. Separate the display start address value into three bytes. For the LCD, write the LSB to REG[042h] and the MSB to REG[044h]. For the CRT/TV, write the LSB to REG[062h] and the MSB to REG[064h].

For the LCD, REG[044h] is set to 00h, REG[043h] is set to 00h, and REG[042h] is set to C8h.

For the CRT/TV, REG[064h] is set to 00h, REG[063h] is set to 00h, and REG[062h] is set to C8h.

Note

The above example assumes the display start address was initially 0 (the beginning of the display buffer).

6 Power Save Mode

The S1D13806 has been designed for very low-power applications. During normal operation, the internal clocks are dynamically disabled when not required. The S1D13806 design also includes a Power Save Mode to further save power. When Power Save Mode is initiated, LCD power sequencing is required to ensure the LCD bias power supply is disabled properly. For further information on LCD power sequencing, see Section 7, "LCD Power Sequencing" on page 38.

For Power Save Mode AC Timing, see the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx.

6.1 Overview

The S1D13806 supports a software initiated Power Save Mode. Enabling/disabling Power Save Mode is controlled using the Power Save Mode Enable bit (REG[1F0h] bit 0).

While Power Save Mode is enabled the following conditions apply.

- Display(s) are inactive.
- Registers are accessible.
- Memory is in-accessible.
- LUT is accessible.
- MediaPlug registers are not accessible.

6.2 Registers

6.2.1 Enabling Power Save Mode

REG[1F0h] Power Save Configuration Register							
n/a	n/a	n/a	Reserved	n/a	n/a	n/a	Power Save Mode Enable

The Power Save Mode Enable bit initiates Power Save Mode when set to 1. Setting the bit back to 0 returns the S1D13806 back to normal mode.

Note

Bit 4 is a reserved bit and must be programmed to 1.

Note

Enabling/disabling Power Save Mode requires proper LCD Power Sequencing. See Section 7, "LCD Power Sequencing" on page 38.

amples

6.2.2 Power Save Status Bits

REG[1F1h] Power Save Status Register							
n/a	n/a	n/a	n/a	n/a	n/a		Memory Controller Power Save Status

The LCD Power Save Status bit is a read-only status bit which indicates the power save state of the LCD panel. When this bit returns a 1, the panel is powered-off. When this bit returns a 0, the LCD panel is powered up or in transition of powering up or down. This bit will return a 1 after a chip reset.

Note

The LCD pixel clock source may be disabled when this bit returns a 1.

REG[1F1h] Power Save Status Register							
n/a	n/a	n/a	n/a	n/a	n/a	LCD Power	Memory Controller Power Save Status

The Memory Controller Power Save Status bit is a read-only status bit which indicates the power save state of the S1D13806 SDRAM interface. When this bit returns a 1, the SDRAM interface is powered down (the SDRAM is in self-refresh mode). When this bit returns a 0, the SDRAM interface is active. This bit will return a 0 after a chip reset.

Note

The memory clock source may be disabled when this bit returns a 1.

6.3 Enabling Power Save Mode

Power Save Mode must be enabled using the following steps.

1. Disable the LCD power using GPIO11.

Note

The S5U13806B00C uses GPIO11 to control the LCD bias power supplies. Your system design may vary.

- 2. Wait for the LCD bias power supply to discharge as well as the delay time specified in the LCD panel specification.
- 3. Enable Power Save Mode set REG[1F0h] bit 0 to 1.
- 4. At this time, the LCD pixel clock source may be disabled (Optional). Note the LUT must not be accessed if the pixel clock is not active.

6.4 Disabling Power Save Mode

Power Save Mode must be disabled using the following steps.

- 1. Disable Power Save Mode set REG[1F0h] bit 0 to 0.
- 2. Enable the LCD signals Set Display Mode Select bit 0 (REG[1FCh] bit 0) to 1.
- 3. Wait the required delay time as specified in the LCD panel specification.
- 4. Enable GPIO11 to activate the LCD bias power.

Note

The S55U13806B00C uses GPIO11 to control the LCD bias power supplies. Your system design may vary.

7 LCD Power Sequencing

The S1D13806 requires LCD power sequencing (the process of powering-on and powering-off the LCD panel). LCD power sequencing allows the LCD bias voltage to discharge prior to shutting down the LCD signals, preventing long term damage to the panel and avoiding unsightly "lines" at power-on/power-off.

Proper LCD power sequencing for power-off requires a delay from the time the LCD power is disabled to the time the LCD signals are shut down. Power-on requires the LCD signals to be active prior to applying power to the LCD. This time interval depends on the LCD bias power supply design. For example, the LCD bias power supply on the S5U13806 Evaluation board requires 0.5 seconds to fully discharge. Other power supply designs may vary.

This section assumes the LCD bias power is controlled through GPIO11. The S1D13806 GPIO pins are multi-use pins and may not be available in all system designs. For further information on the availability of GPIO pins, see the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx.

Note

REG[1F0h] bit 4 must be set to 1 for proper LCD power sequencing.

7.1 Enabling the LCD Panel

The HAL function seLcdDisplayEnable(TRUE) can be used to enable the LCD panel. The function enables the LCD panel using the following steps.

- 1. Enable the LCD signals Set Display Mode Select bit 0 (REG[1FCh] bit 0) to 1.
- 2. Wait the required delay time as specified in the LCD panel specification (must be set using 1386CFG, document number X28B-B-001-xx).
- 3. Enable GPIO11 to activate the LCD bias power.

Note

seLcdDisplayEnable is included in the C source file **hal_misc.c** available on the internet at www.erd.epson.com.

7.2 Disabling the LCD Panel

The HAL function seLcdDisplayEnable(FALSE) can be used to disable the LCD panel. function disables the LCD panel using the following steps.

- 1. Disable the LCD power using GPIO11.
- 2. Wait for the LCD bias power supply to discharge (based on the delay time as specified in the LCD panel specification).
- 3. Disable the LCD signals Set Display Mode Select bit 0 (REG[1FCh] bit 0) to 0.
- 4. At this time, the LCD pixel clock source may be disabled (Optional). Note the LUT must not be accessed if the pixel clock is not active.

Note

seLcdDisplayEnable is included in the C source file **hal_misc.c** available on the internet at www.erd.epson.com.

8 Hardware Cursor/Ink Layer

8.1 Introduction

The S1D13806 supports either a Hardware Cursor or an Ink Layer for the LCD, and either a Hardware Cursor or an Ink Layer for the CRT/TV. The LCD and CRT/TV are supported independently, so it is possible to select combinations such as a Hardware Cursor on the LCD and an Ink Layer on the CRT/TV.

A Hardware Cursor improves video throughput in graphical operating systems by off-loading much of the work typically assigned to software. For example, consider the actions which must be performed when the user moves the mouse. On a system without hardware support, the operating system must restore the area under the current cursor position, save the area under the new location, and finally draw the cursor shape. Contrast that with the hardware assisted system where the operating system must simply update the cursor X and cursor Y position registers.

An Ink Layer is designed to support stylus or pen input. Without an ink layer, the operating system must save the area of the display buffer (possibly all) where pen input is to occur. After the system recognizes the characters entered, the display would have to be restored and the characters redrawn in a system font. When an Ink Layer is present, the stylus path is drawn in the Ink Layer where it overlays the displayed image. After character recognition finishes the display is updated with the new characters and the ink layer is simply cleared. Saving and restoring the display data is not required providing faster throughput.

The S1D13806 Hardware Cursor/Ink Layer supports a 2 bpp (four color) overlay image. Two of the available colors are transparent and invert. The remaining two colors are user definable.

The Hardware Cursor uses many of the same registers as the Ink Layer. Additionally, the cursor has positional registers for movement. The cursor resolution is 64x64 at a color depth of 2 bpp. The Ink Layer resolution is the width of the display by the height of the display at a color depth of 2 bpp. Both the Hardware Cursor and the Ink Layer use the same pixel values to select colors. The Hardware Cursor requires 1024 bytes of display buffer and the Ink Layer requires (display width x display height ÷ 4) bytes of display buffer.

8.2 Registers

REG[070h] L	.CD Ink/Curso	r Control Reg	ister						
n/a	n/a	n/a	n/a	n/a	n/a	LCD Ink/Cursor Mode Bit 1	LCD Ink/Cursor Mode Bit 0		
REG[080h] C	REG[080h] CRT/TV Ink/Cursor Control Register								
n/a	n/a	n/a	n/a	n/a	n/a	CRT/TV Ink/Cursor Mode Bit 1	CRT/TV Ink/Cursor Mode Bit 0		

The Ink/Cursor mode bits determine which of the Hardware Cursor or Ink Layer is active as shown in following table.

Ink/Cursor Control **Operating Mode** bit 1 bit 0 0 0 Inactive 0 1 Cursor 0 1 Ink 1 1 Reserved

Table 8-1: Ink/Cursor Mode

Note

When cursor mode is selected the cursor image is always 64x64 pixels. Selecting an ink layer will result in an area which completely covers the display.

REG[071h] LCD Ink/Cursor Start Address Register							
LCD	LCD	LCD	LCD	LCD	LCD	LCD	LCD
Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		•			•		

REG[081h] CRT/TV Ink/Cursor Start Address Register								
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	
Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

REG[071h] and REG[081h] determine the display buffer location of the Hardware Cursor/Ink Layer for the LCD and CRT/TV respectively. The Ink/Cursor Start Address register does not contain an actual address, but a value based on the following table.

Table 8-2: Cursor/Ink Start Address Encoding

Ink/Cursor Start Address Bits [7:0]	Start Address (Bytes)
0	1280K - 1024
01h - A0h	1280K - (n × 8192)
A1h - FFh	Invalid

REG[072h] LCD Cursor X Position Register 0								
LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X	LCD Cursor X	
Position	Position	Position	Position	Position	Position	Position	Position	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
REG[073h] LCD Cursor X Position Register 1								
LCD Cursor X Sign	n/a	n/a	n/a	n/a	n/a	LCD Cursor X Position Bit 9	LCD Cursor X Position Bit 8	
REG[082h] C	RT/TV Curso	r X Position R	egister 0					
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	
Cursor X	Cursor X	Cursor X	Cursor X	Cursor X	Cursor X	Cursor X	Cursor X	
Position Bit 7	Position Bit 6	Position Bit 5	Position Bit 4	Position Bit 3	Position Bit 2	Position Bit 1	Position Bit 0	
REG[083h] CRT/TV Cursor X Position Register 1								
CRT/TV Cursor X Sign	n/a	n/a	n/a	n/a	n/a	CRT/TV Cursor X Position Bit 9	CRT/TV Cursor X Position Bit 8	

REG[072h], REG[073h] and REG[082h], REG[083h] control the horizontal position of the Hardware Cursor for the LCD and CRT/TV respectively. The value in these registers specify the location of the left edge of the cursor. When ink mode is selected these registers must be set to zero.

The Cursor X Position supports values of the range -63 to 1023. Negative values allow for the Cursor to be clipped (partially off the screen). The following procedure sets the Cursor X Position.

- 1. Write the absolute (non-negative) value of the position in bits 9-0.
- 2. If the position is negative, write a 1 in the Cursor X Sign bit; otherwise write a 0 to the sign bit.

Note

The cursor position is not updated until the Cursor Y Position Register 1 is written (REG[075h] or REG[085h]). When updating the cursor position, always update both the X and Y registers; X first and Y second.

REG[074h] L	REG[074h] LCD Cursor Y Position Register 0									
LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y	LCD Cursor Y			
Position	Position	Position	Position	Position	Position	Position	Position			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
REG[075h] LCD Cursor Y Position Register 1										
LCD Cursor Y Sign	n/a	n/a	n/a	n/a	n/a	LCD Cursor Y Position Bit 9	LCD Cursor Y Position Bit 8			
REG[084h] C	RT/TV Curso	r Y Position R	legister 0							
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV			
Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y	Cursor Y			
Position Bit 7	Position Bit 6	Position Bit 5	Position Bit 4	Position Bit 3	Position Bit 2	Position Bit 1	Position Bit 0			
REG[085h] C	REG[085h] CRT/TV Cursor Y Position Register 1									
CRT/TV Cursor Y Sign	n/a	n/a	n/a	n/a	n/a	CRT/TV Cursor Y Position Bit 9	CRT/TV Cursor Y Position Bit 8			

REG[074h], REG[075h] and REG[084h], REG[085h] control the vertical position of the Hardware Cursor for the LCD and CRT/TV respectively. The value in these registers specify the location of the top edge of the cursor. When ink mode is selected these registers must be set to zero.

The Cursor Y Position supports values of the range -63 to 1023. Negative values allow for the Cursor to be clipped (partially off the screen). The following procedure sets the Cursor X Position.

- 1. Write the absolute (non-negative) value of the position in bits 9-0.
- 2. If the position is negative, write a 1 in the Cursor Y Sign bit; otherwise write a 0 to the sign bit.

Note

The cursor position is not updated until the Cursor Y Position Register 1 is written (REG[075h] or REG[085h]). When updating the cursor position, always update both the X and Y registers; X first and Y second.

REG[076h] L	CD Ink/Curso	r Blue Color () Register						
		-1-	LCD	LCD	LCD	LCD	LCD		
n/a	n/o		Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor		
II/a	n/a	n/a	Blue Color 0						
			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
REG[077h] LCD Ink/Cursor Green Color 0 Register									
	n/a	LCD	LCD	LCD	LCD	LCD	LCD		
n/a		Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor		
II/a		Green Color 0	Green Color 0	Green Color 0	Green Color 0	Green Color 0	Green Color 0		
		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
REG[078h] L	CD Ink/Curso	r Red Color 0	Register						
			LCD	LCD	LCD	LCD	LCD		
n/a	n/a	n/a	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor		
11/4	11/4	11/4	Red Color 0						
			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

These registers form the 16 bpp (5-6-5) RGB values of user-defined color 0 for the LCD Ink Layer/Hardware Cursor.

REG[07Ah] L	REG[07Ah] LCD Ink/Cursor Blue Color 1 Register									
			LCD	LCD	LCD	LCD	LCD			
n/a	n/a	n/a	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor			
II/a	II/a	II/a	Blue Color 1							
			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
REG[07Bh] L	REG[07Bh] LCD Ink/Cursor Green Color 1 Register									
	n/a	LCD	LCD	LCD	LCD	LCD	LCD			
n/a		Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor			
II/a	II/a	Green Color 1	Green Color 1	Green Color 1	Green Color 1	Green Color 1	Green Color 1			
		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
DEC[07Ch] L	CD Ink/Cures	or Red Color 1	Dogistor							
KEG[U/Ch] L	.CD ink/curso	r Red Color I	Register							
			LCD	LCD	LCD	LCD	LCD			
n/a	n/a	n/a	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor			
II/a	11/α	11/4	Red Color 1							
			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			

These registers form the 16 bpp (5-6-5) RGB values of user-defined color 1 for the LCD Ink Layer/Hardware Cursor.

REG[086h] C	REG[086h] CRT/TV Ink/Cursor Blue Color 0 Register								
n/a	n/a	n/a	CRT/TV Ink/Cursor Blue Color 0 Bit 4	CRT/TV Ink/Cursor Blue Color 0 Bit 3	CRT/TV Ink/Cursor Blue Color 0 Bit 2	CRT/TV Ink/Cursor Blue Color 0 Bit 1	CRT/TV Ink/Cursor Blue Color 0 Bit 0		
REG[087h] C	REG[087h] CRT/TV Ink/Cursor Green Color 0 Register								
n/a	n/a	CRT/TV Ink/Cursor Green Color 0 Bit 5	CRT/TV Ink/Cursor Green Color 0 Bit 4	CRT/TV Ink/Cursor Green Color 0 Bit 3	CRT/TV Ink/Cursor Green Color 0 Bit 2	CRT/TV Ink/Cursor Green Color 0 Bit 1	CRT/TV Ink/Cursor Green Color 0 Bit 0		
REG[088h] C	RT/TV Ink/Cu	rsor Red Colo	or 0 Register						
n/a	n/a	n/a	CRT/TV Ink/Cursor Red Color 0 Bit 4	CRT/TV Ink/Cursor Red Color 0 Bit 3	CRT/TV Ink/Cursor Red Color 0 Bit 2	CRT/TV Ink/Cursor Red Color 0 Bit 1	CRT/TV Ink/Cursor Red Color 0 Bit 0		

These registers form the 16 bpp (5-6-5) RGB values of user-defined color 0 for the CRT/TV Ink Layer/Hardware Cursor.

REG[08Ah] C	REG[08Ah] CRT/TV Ink/Cursor Blue Color 1 Register								
n/a	n/a	n/a	CRT/TV Ink/Cursor Blue Color 1 Bit 4	CRT/TV Ink/Cursor Blue Color 1 Bit 3	CRT/TV Ink/Cursor Blue Color 1 Bit 2	CRT/TV Ink/Cursor Blue Color 1 Bit 1	CRT/TV Ink/Cursor Blue Color 1 Bit 0		
REG[08Bh] (REG[08Bh] CRT/TV Ink/Cursor Green Color 1 Register								
n/a	n/a	CRT/TV Ink/Cursor Green Color 1 Bit 5	CRT/TV Ink/Cursor Green Color 1 Bit 4	CRT/TV Ink/Cursor Green Color 1 Bit 3	CRT/TV Ink/Cursor Green Color 1 Bit 2	CRT/TV Ink/Cursor Green Color 1 Bit 1	CRT/TV Ink/Cursor Green Color 1 Bit 0		
REG[08Ch] C	CRT/TV Ink/Cu	ırsor Red Col	or 1 Register						
n/a	n/a	n/a	CRT/TV Ink/Cursor Red Color 1 Bit 4	CRT/TV Ink/Cursor Red Color 1 Bit 3	CRT/TV Ink/Cursor Red Color 1 Bit 2	CRT/TV Ink/Cursor Red Color 1 Bit 1	CRT/TV Ink/Cursor Red Color 1 Bit 0		

These registers form the 16 bpp (5-6-5) RGB values of user-defined color 1 for the CRT/TV Ink Layer/Hardware Cursor.

REG[07Eh] LCD Ink/Cursor FIFO High Threshold Register									
				LCD	LCD	LCD	LCD		
				Ink/Cursor	Ink/Cursor	Ink/Cursor	Ink/Cursor		
n/a	n/a	n/a	n/a	FIFO High	FIFO High	FIFO High	FIFO High		
				Threshold	Threshold	Threshold	Threshold		
				Bit 3	Bit 2	Bit 1	Bit 0		

REG[08Eh] CRT/TV Ink/Cursor FIFO High Threshold Register									
n/a	n/a	n/a	n/a	CRT/TV Ink/Cursor FIFO High Threshold Bit 3	CRT/TV Ink/Cursor FIFO High Threshold Bit 2	CRT/TV Ink/Cursor FIFO High Threshold Bit 1	CRT/TV Ink/Cursor FIFO High Threshold Bit 0		

These registers control the Ink Layer/Hardware Cursor FIFO depth in order to sustain uninterrupted display fetches.

REG[07Eh] determines the FIFO high threshold for the LCD Hardware Cursor/Ink Layer. REG[08Eh] determines the FIFO high threshold for the CRT/TV Hardware Cursor/Ink Layer. When this register is set to 00h, the threshold is automatically set in hardware. For further information, see the *1386 Hardware Functional Specification*, document number X28B-A-001-xx.

8.3 Initialization

This section describes the process of initializing the S1D13806 for a Hardware Cursor or Ink Layer.

8.3.1 Memory Considerations

Both the Hardware Cursor and Ink Layer are positioned in the display buffer by the LCD Ink/Cursor Start Address register (REG[071h]) and CRT/TV Ink/Cursor Start Address register (REG[081h]). The Hardware Cursor and Ink Layer should be allocated the highest possible available memory address. If a Dual Panel Buffer is required, or if another Hardware Cursor or Ink Layer is required, additional memory must be allocated and programmed in the appropriate Ink/Cursor Start Address register.

The size of the Dual Panel Buffer is determined by the following.

Dual Panel Buffer Size (in bytes) = (Panel Width x Panel Height) x factor \div 16

where:

factor = 4 for color panel

= 1 for monochrome panel

Note

The dual panel buffer always starts at (1280K - Dual Panel Buffer Size).

The size of a hardware cursor is always 1024 bytes.

The size of the ink layer in bytes is (display width x display height \div 4).

8.3.2 Examples

Example 5: Initializing the Hardware Cursor

The following example places an LCD Hardware Cursor at the end of a 1.25M byte display buffer. SwivelViewTM modes require software rotation of the Ink Layer. This can only occur when a Dual Panel Buffer is not required. Color 0 is set to black, and color 1 is set to white.

Note

The Hardware Cursor always requires 1024 (400h) bytes.

Table 8-3: LCD Hardware Cursor Initialization Sequence

Register	Value	Notes
[070h]	0000 0001	Enable LCD hardware cursor
[071h]	0000 0000	Set cursor start address to Memory Size - 1024
[072h] [073h]	0000 0000 0000 0000	Set LCD Cursor X Position to 0
[074h] [075h]	0000 0000 0000 0000	Set LCD Cursor Y Position to 0
[076h] [077h] [078h]	0000 0000 0000 0000 0000 0000	Set Color 0 to black
[07Ah] [07Bh] [07Ch]	0001 1111 0011 1111 0001 1111	Set Color 1 to white
[07Eh]	0000 0000	Set FIFO High Threshold to default

Example 6: Initializing the Ink Layer

The following example places an Ink Layer at the end of a 1.25M byte display buffer. SwivelViewTM modes require software rotation of the Ink Layer. Color 0 is set to black, and color 1 is set to white.

For a system with a 640x480 LCD display, the ink layer size is calculated as follows.

InkLayerSize = (PanelWidth x PanelHeight)
$$\div$$
 4
= (640 x 480) \div 4
= 76,800 bytes

The Ink Layer must be allocated in 8K byte blocks. The value of the LCD Ink/Cursor Start Address register is determined from the following table and calculation.

Table 8-4: Ink Layer Start Address Encoding

Ink/Cursor Start Address Bits [7:0]	Start Address (Bytes)
0	1280K - 1024
01h - A0h	1280K - (n x 8192)
A1h - FFh	Invalid

Fractional values cannot be programmed, therefore round up to an address of 10 (0Ah). This reserves $10 \times 8192 = 81,920$ bytes for the Ink Layer from the end of display buffer.

Note

Always round up the Ink/Cursor Start Address when calculating, otherwise insufficient memory will be allocated for the Ink Layer.

Table 8-5: LCD Ink Layer Initialization Sequence

Register	Value	Notes
[070h]	0000 0010	Enable LCD ink layer
[071h]	0000 1010	Set cursor start address to 0Ah (Memory Size - (8192 x 10))
[076h]	0000 0000	
[077h]	0000 0000	Set Color 0 to black
[078h]	0000 0000	
[07Ah]	0001 1111	
[07Bh]	0011 1111	Set Color 1 to white
[07Ch]	0001 1111	
[07Eh]	0000 0000	Set FIFO High Threshold to default

8.4 Writing Cursor/Ink Layer Images

This section describes how to write images to the Hardware Cursor and Ink Layer. The Hardware Cursor is a 64x64 image at a color depth of 2 bpp. The Ink Layer is the same size as the virtual display (width x height) at a color depth of 2 bpp. The Ink Layer may be described as a non-moveable cursor with the same resolution as the display device.

8.4.1 Hardware Cursor/Ink Layer Data Format

The Hardware Cursor/Ink Layer image is fixed at a color depth of 2 bpp. The following diagram shows the Hardware Cursor/Ink Layer data format for a little endian system.

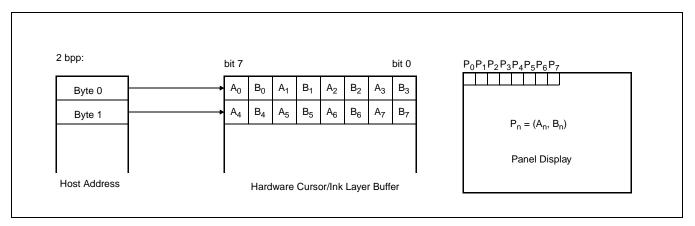


Figure 8-1: Hardware Cursor/Ink Layer Data Format

The image data for pixel n, (A_n,B_n) , selects the color for pixel n as follows:

(A _n ,B _n)	Color	Comments
00	Color 0	Ink/Cursor Color 0 Register: For LCD, REG[076h], REG[077h], REG[078h]. For CRT/TV, REG[086h], REG[087h], REG[088h].
01	Color 1	Ink/Cursor Color 1 Register: For LCD, REG[07Ah], REG[07Bh],REG[07Ch]. For CRT/TV, REG[08Ah], REG[08Bh], REG[08Ch].
10	Background	Ink/Cursor is transparent – show background
11	Inverted Background	Ink/Cursor is transparent – show inverted background

Table 8-6: Ink/Cursor Color Select

8.4.2 Cursor Image

The following procedures demonstrate how to write an image to the Hardware Cursor buffer.

Landscape Mode (no rotation)

- 1. For the LCD cursor, calculate the start address based on the value in REG[071h]. For the CRT/TV cursor, calculate the start address based on the value in REG[081h]. Refer to the REG[071h] and REG[081h] register descriptions for more information.
- 2. Write the cursor image to the display buffer. The image must be exactly 1024 bytes.

SwivelView Modes

- 1. Save the current state of REG[1FCh] bit 6.
- 2. Set REG[1FCh] bit 6 to 0.
- 3. For the LCD cursor, calculate the start address based on the value in REG[071h]. For the CRT/TV cursor, calculate the start address based on the value in REG[081h]. Refer to the REG[071h] and REG[081h] register descriptions for more information.
- 4. Perform a software rotate of the cursor image.
- 5. Write the rotated cursor image to the display buffer. The image must be exactly 1024 bytes.
- 6. Restore the original state of REG[1FCh] bit 6.

Note

It is possible to use the same cursor image for both LCD and CRT/TV displays. Program the LCD and CRT/TV Ink/Cursor Start Address registers (REG[071h] and REG[081h]) to the same location. This saves some display buffer which would otherwise be used by a second cursor image. Note this saves 8192 bytes of display buffer, not 1024 bytes, because the start address moves in steps of 8192 bytes.

8.4.3 Ink Layer Image

The following procedures demonstrate how to write an image to the Ink Layer buffer.

Landscape Mode (no rotation)

- 1. For the LCD, calculate the start address based on the value in REG[071h]. For the CRT/TV, calculate the start address based on the value in REG[081h]. Refer to the REG[071h] and REG[081h] register descriptions for more information.
- 2. Write the Ink Layer image to the display buffer. The image must be exactly (display width x display height \div 4) bytes.

SwivelView Modes

- 1. Save the current state of REG[1FCh] bit 6.
- 2. Set REG[1FCh] bit 6 to 0.
- 3. For the LCD, calculate the start address based on the value in REG[071h]. For the CRT/TV, calculate the start address based on the value in REG[081h]. Refer to the REG[071h] and REG[081h] register descriptions for more information.
- 4. Perform a software rotate of the Ink Layer image.
- 5. Write the rotated Ink Layer image to the display buffer. The image must be exactly (display width x display height \div 4) bytes.
- 6. Restore the original state of REG[1FCh] bit 6.

Note

It is possible to use the same Ink Layer image for both LCD and CRT/TV displays. Program the LCD and CRT/TV Ink/Cursor Start Address registers (REG[071h] and REG[081h]) to the same location. This save some display buffer which would otherwise be used by a second Ink Layer.

8.5 Cursor Movement

The following section discusses cursor movement in landscape, SwivelView 90°, SwivelView 180°, and SwivelView 270° modes.

It is possible to move the top left corner of the cursor to a negative position (-63, -63). This allows the cursor to be clipped (only a portion is visible on-screen).

Cursor positions don't take effect until the most significant byte of the Y position register is written. Therefore, the following register write order is recommended.

- 1. Set X Position Register 0
- 2. Set X Position Register 1
- 3. Set Y Position Register 0
- 4. Set Y Position Register 1.

8.5.1 Move Cursor in Landscape Mode (no rotation)

In the following example, (x, y) represents the desired cursor position.

- 1. Calculate abs(x), the absolute (non-negative) value of x.
- 2. Write the least significant byte of abs(x) to X Position Register 0.
- 3. **If x is negative**, take the value of the most significant byte of abs(x) and logically OR with 80h. Write the result to X Position Register 1. **If x is positive**, write the most significant byte of abs(x) to X Position Register 1.
- 4. Calculate abs(y), the absolute (non-negative) value of y.
- 5. Write the least significant byte of abs(y) to Y Position Register 0.
- 6. **If y is negative**, take the value of the most significant byte of abs(y) and logically OR with 80h. Write the result to Y Position Register 1.
 - If y is positive, take the value of the most significant byte of abs(y) and write to Y Position Register 1.

8.5.2 Move Cursor in SwivelView 90° Rotation

In the following example, (x, y) represent the desired cursor position.

- 1. Calculate abs(x), the absolute (non-negative) value of x.
- 2. Write the least significant byte of abs(x) to Y Position Register 0.
- 3. **If x is negative**, take the value of the most significant byte of abs(x) and logically OR with 80h. Write the result to Y Position Register 1. **If x is positive**, write the most significant byte of abs(x) to Y Position Register 1.
- 4. Calculate a value for y2, where y2 = display width - y - 64.
- 5. Calculate abs(y2), the absolute (non-negative) value of y2.
- 6. Write the least significant byte of abs(y2) to X Position Register 0.
- 7. **If y2 is negative**, take the value of the most significant byte of abs(y2) and logically OR with 80h. Write the result to X Position Register 1. **If y2 is positive**, write the most significant byte of abs(y2) to X Position Register 1.

8.5.3 Move Cursor in SwivelView 180° Rotation

In the following example, (x, y) represent the desired cursor position.

- 1. Calculate the value of x^2 , where $x^2 = display$ width x 64
- 2. Calculate abs(x2), the absolute (non-negative) value of x2.
- 3. Write the least significant byte of abs(x2) to X Position Register 0.
- 4. **If x2 is negative**, take the value of the most significant byte of abs(x2) and logically OR with 80h. Write the result to X Position Register 1. **If x2 is positive**, write the most significant byte of abs(x2) to X Position Register 1.
- 5. Calculate the value of y2, where y2 = display height - y - 64
- 6. Calculate abs(y2), the absolute (non-negative) value of y2.
- 7. Write the least significant byte of abs(y2) to Y Position Register 0.
- 8. **If y2 is negative**, take the value of the most significant byte of abs(y2) and logically OR with 80h. Write the result to Y Position Register 1. **If y2 is positive**, write the most significant byte of abs(y2) to Y Position Register 1.

8.5.4 Move Cursor in SwivelView 270° Rotation

In the following example, (x, y) represent the desired cursor position.

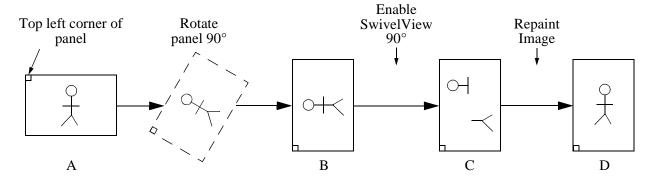
- 1. Calculate the value of x2, where x2 = display width x 64
- 2. Calculate abs(x2), the absolute (non-negative) value of x2.
- 3. Write the least significant byte of abs(x2) to Y Position Register 0.
- 4. **If x2 is negative**, take the value of the most significant byte of abs(x2) and logically OR with 80h. Write the result to Y Position Register 1. **If x2 is positive**, write the most significant byte of abs(x2) to Y Position Register 1.
- 5. Calculate abs(y), the absolute (non-negative) value of y.
- 6. Write the least significant byte of abs(y) to X Position Register 0.
- 7. **If y is negative**, take the value of the most significant byte of abs(y) and logically OR with 80h. Write the result to X Position Register 1. **If y is positive**, write the most significant byte of abs(y) to X Position Register 1.

9 SwivelView™

Computer displays typically show images in an orientation which is wider than it is high. For example, a display size of 320x240 is 320 pixels wide and 240 lines high. When design constraints do not allow for a typical installation of the display, SwivelView may be used to rotate the image.

SwivelView rotates the display image clockwise in ninety degree increments. Rotating the image on a 320x240 display by 90° or 270° yields a display that is now 240 pixels wide and 320 lines high.

The S1D13806 provides hardware support for SwivelView in the following configurations:

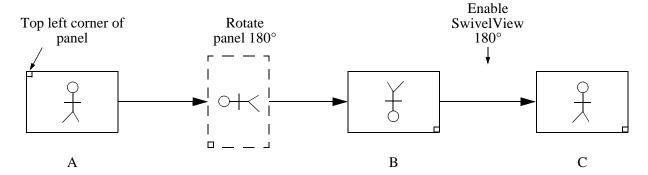

- SwivelView 0° (landscape) is supported for LCD, CRT, and TV in 4, 8, and 16 bpp
- SwivelView 90° is supported for LCD, CRT, and TV in 8 and 16 bpp
- SwivelView 180° is supported for LCD in 4, 8, and 16 bpp
- SwivelView 270° is supported for LCD in 8 and 16 bpp

The SwivelView feature only affects the main display window; features such as hardware cursor, ink layer, or half-frame buffer are not rotated.

9.1 SwivelView 90°

SwivelView 90° rotates the image clockwise by 90° in order to meet design constraints. The following shows the actual display, such as an LCD panel, which will first be physically rotated counterclockwise by 90° . Afterwards the Display Controller will be programmed for SwivelView 90° . Finally, the image is repainted. Note that the top left corner of the panel is marked for reference.

The above illustration shows a series of transitions:


- A to B shows the display device, such as an LCD panel, being physically rotated.
- B to C shows the effect of writing to the S1D13806 registers to select SwivelView 90°. The broken figure in C indicates that after registers are programmed, the image in display memory is invalid and must be repainted.

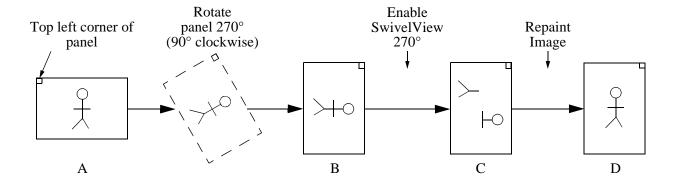
The following register values must be updated to select SwivelView 90°:

- SwivelView Enable bits (REG[01FCh] bit 6 and REG[040h] bit 4)
- Memory Address Offset (REG[046h-047h] for the LCD, and REG[066h-067h] for the CRT/TV)
- Display Start Address (REG[042h-044h] for the LCD, and REG[062h-064h] for the CRT/TV)
- C to D shows the effect of repainting the display in SwivelView 90°. Note that the image must be drawn based on the new display resolution. Also note that although the display is rotated counterclockwise, the image is rotated clockwise.

9.2 SwivelView 180°

SwivelView 180° rotates the image by 180° in order to meet design constraints. The following shows an LCD panel which will first be physically rotated by 180°. Afterwards the Display Controller will be programmed for SwivelView 180°. Note that the top left corner of the panel is marked for reference.

The above illustration shows a series of transitions:


- A to B shows the LCD panel being physically rotated.
- B to C shows the effect of writing to the S1D13806 registers to select SwivelView 180°.

The following register values must be updated to select SwivelView 180°:

- SwivelView Enable bits (REG[01FCh] bit 6 and REG[040h] bit 4)
- LCD Display Start Address (REG[042h-044h])

9.3 SwivelView 270°

SwivelView 270° rotates the image clockwise by 270° in order to meet design constraints. The following shows an LCD panel which will first be physically rotated counterclockwise 270° (same as rotating clockwise by 90°). Afterwards the Display Controller will be programmed for SwivelView 270°. Finally, the image is repainted. Note that the top left corner of the panel (non-rotated) is marked for reference.

The above illustration shows a series of transitions:

- A to B shows the LCD panel being physically rotated. Note that rotating counterclockwise by 270° is the same as rotating clockwise by 90°.
- B to C shows the effect of writing to the S1D13806 registers to select SwivelView 270°. The broken image in C indicates that after registers are programmed, the image currently in display memory is invalid and must be repainted. The following register values must be updated to select SwivelView 270°:
 - SwivelView Enable bits (REG[01FCh] bit 6 and REG[040h] bit 4)
 - LCD Memory Address Offset (REG[046h-047h])
 - LCD Display Start Address (REG[042h-044h])
- C to D shows the image must be repainted in SwivelView 270°. The image must be drawn based on the new display resolution.

amples

9.4 SwivelView Registers

Display Mod REG[1FCh]	e Register						RW		
n/a	SwivelView Enable Bit 0	n/a	n/a	n/a	Display Mode Select Bit 2	Display Mode Select Bit 1	Display Mode Select Bit 0		
LCD Display REG[040h]	LCD Display Mode Register REG[040h] RW								
LCD Display Blank	n/a	n/a	SwivelView Enable Bit 1	n/a	LCD Bit-per- pixel Select Bit 2	LCD Bit-per- pixel Select Bit 1	LCD Bit-per- pixel Select Bit 0		

The SwivelView modes are enabled using a combination of 2 enable bits - SwivelView Enable Bit 0 (REG[1FCh]) and SwivelView Enable Bit 1 (REG[040h]). The combinations of these bits provide the following rotations:

Table 9-1: SwivelView Enable Bits

SwivelView Enable Bit 1	SwivelView Enable Bit 0	SwivelView Orientation
0	0	0°
0	1	90°
1	0	180°
1	1	270°

LCD Memory REG[046h]	/ Address Off	set Register 0)				RW			
LCD Memory Address Offset Bit 7	LCD Memory Address Offset Bit 6	LCD Memory Address Offset Bit 5	LCD Memory Address Offset Bit 4	LCD Memory Address Offset Bit 3	LCD Memory Address Offset Bit 2	LCD Memory Address Offset Bit 1	LCD Memory Address Offset Bit 0			
LCD Memory Address Offset Register 1 REG[047h] RW										
n/a	n/a	n/a	n/a	n/a	LCD Memory Address Offset Bit 10	LCD Memory Address Offset Bit 9	LCD Memory Address Offset Bit 8			
CRT/TV Mem REG[066h]	CRT/TV Memory Address Offset Register 0 REG[066h] RW									
CRT/TV Memory Address Offset Bit 7	CRT/TV Memory Address Offset Bit 6	CRT/TV Memory Address Offset Bit 5	CRT/TV Memory Address Offset Bit 4	CRT/TV Memory Address Offset Bit 3	CRT/TV Memory Address Offset Bit 2	CRT/TV Memory Address Offset Bit 1	CRT/TV Memory Address Offset Bit 0			

CRT/TV Mem REG[067h]	nory Address	Offset Regist	er 1				RW
n/a	n/a	n/a	n/a	n/a	CRT/TV Memory Address Offset Bit 10	CRT/TV Memory Address Offset Bit 9	CRT/TV Memory Address Offset Bit 8

The LCD and CRT/TV Memory Address Offset Registers must be adjusted according to the desired SwivelView rotation and color depth. To program the Memory Address Offset Registers, this section will present four equations for the four SwivelView modes. Some equations refer to the following terms:

- *Non-rotated display width* is the width of the panel as seen in SwivelView 0 (landscape) mode.
- bpp is the bits-per-pixel (4, 8, or 16)

SwivelView Mode	Equations
0°	<i>Memory Address Offset</i> = non-rotated display width \times bpp \div 16
90°	$Memory\ Address\ Offset = 1024 \times bpp \div 16$
180°	<i>Memory Address Offset</i> = non-rotated display width \times bpp \div 16
270°	$Memory\ Address\ Offset = 1024 \times bpp \div 16$

LCD Display	Start Address	s Register 0								
REG[042h]		_					RW			
LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display			
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
LCD Display Start Address Register 1										
REG[043h]							RW			
LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display	LCD Display			
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address			
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8			
LCD Display REG[044h]	Start Address	s Register 2					RW			
1.LO[01 m]				LCD Display	LCD Display	LCD Display	LCD Display			
n/a	n/a	n/a	n/a	Start Address	Start Address	Start Address	Start Address			
11/4	11/α	11/α	11/4	Bit 19	Bit 18	Bit 17	Bit 16			

Bit 15

Bit 14

Bit 13

Bit 8

CRT/TV Display Start Address Register 0										
REG[062h]							RW			
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV			
Display Start	Display Start	Display Start	Display Start	Display Start	Display Start	Display Start	Display Start			
Address	Address	Address	Address	Address	Address	Address	Address			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CRT/TV Disn	CRT/TV Display Start Address Register 1									
REG[063h]	iay Otart Add	ress register	•				RW			
CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV	CRT/TV			
Display Start	Display Start	Display Start	Display Start	Display Start	Display Start	Display Start	Display Start			
Address	Address	Address	Address	Address	Address	Address	Address			

CRT/TV Disp REG[064h]	lay Start Add	ress Register	2				RW
n/a	n/a	n/a	n/a	CRT/TV Display Start Address Bit 19	CRT/TV Display Start Address Bit 18	CRT/TV Display Start Address Bit 17	CRT/TV Display Start Address Bit 16

Bit 11

Bit 10

Bit 9

Bit 12

The LCD and CRT/TV Display Start Address registers represent a WORD address which points to the start of the image in the display buffer. Programming the Display Start Address registers requires equations for each of the four SwivelView modes. The equations refer to the following terms:

- *offset* is the image offset address. An offset of 0 is the address of the top left pixel after rotation.
- *xStart* and *yStart* represent the panning/scrolling coordinates, and are typically set to (0, 0). These coordinates are another way of representing the *offset* address. For example, if *offset* is 0, then (*xStart*, *yStart*) must also be (0, 0). If the programmer would like to pan the image, increase *xStart* by a given pixel increment. If the programmer would like to scroll the image, increase *yStart* by a given number of lines.
- rotated display width and rotated display height is the width and height of the display as seen after rotation. For example, a 320x240 panel rotated 90° will have a rotated display width of 240 and a rotated display height of 320.
- bpp is the bits-per-pixel (4, 8, or 16).
- *stride*, in bytes, represents the amount of display memory needed from the first pixel in one image line to the first pixel in the following line. In SwivelView 90° and 270°, the stride must be set to the number of bytes required for 1024 pixels.

9.4.1 SwivelView 0° (Landscape)

This section describes how to program the Display Start Address registers for SwivelView 0° in a series of steps. Calculations in each step must be truncated to integers. To make this section more complete, the Memory Address Offset registers are also programmed.

Note

SwivelView 0° supports the following configurations:

LCD in 4, 8, and 16 bpp CRT/TV in 4, 8, and 16 bpp

1. Determine and program the Memory Address Offset registers for the given display (LCD or CRT/TV).

Memory Address Offset = non-rotated display width \times bpp \div 16

For the LCD, program REG[47h:46h] = Memory Address Offset For the CRT/TV, program REG[67h:66h] = Memory Address Offset

2. Determine the stride for the given display (LCD or CRT/TV).

For the LCD, stride = LCD Memory Address Offset Reg[47h:46h] \times 2 For the CRT/TV, stride = CRT/TV Memory Address Offset Reg[67h:66h] \times 2

3. Determine the offset address to the top left corner of the image. Note that xStart must be a multiple of $16 \div bpp$.

```
offset = (stride \times yStart) + (xStart \times bpp \div 8)
```

4. Determine and program the Display Start Address for the given display (LCD or CRT/TV).

 $Start\ Address = offset \div 2$

For the LCD, program REG[44h:42h] = Start Address For the CRT/TV, program REG[64h:62h] = Start Address

9.4.2 SwivelView 90°

This section describes how to program the Display Start Address registers for SwivelView 90° in a series of steps. Calculations in each step must be truncated to integers. To make this section more complete, the Memory Address Offset registers are also programmed.

Note

SwivelView 90° supports the following configurations:

LCD in 8 and 16 bpp CRT/TV in 8 and 16 bpp

1. Determine and program the Memory Address Offset registers for the given display (LCD or CRT/TV).

Memory Address Offset = $1024 \times bpp \div 16$

For the LCD, program REG[47h:46h] = Memory Address Offset For the CRT/TV, program REG[67h:66h] = Memory Address Offset

2. Determine the offset address to the top left corner of the image. *Note that yStart must be a multiple of 16 ÷ bpp.*

$$offset = (1024 \times yStart + xStart) \times bpp \div 8)$$

3. Determine and program the Display Start Address for the given display (LCD or CRT/TV).

Start Address =
$$(1024 - \text{rotated display height} - \text{yStart} + (1024 \times \text{xStart})) \times \text{bpp} \div 16$$

For the LCD, program REG[44h:42h] = Start Address For the CRT/TV, program REG[64h:62h] = Start Address

9.4.3 SwivelView 180°

This section describes how to program the Display Start Address registers for SwivelView 180° in a series of steps. Calculations in each step must be truncated to integers. To make this section more complete, the Memory Address Offset registers are also programmed.

Note

SwivelView 180° supports the following configurations: LCD in 4, 8, and 16 bpp (CRT/TV not supported)

1. Determine and program the Memory Address Offset registers for the LCD.

Memory Address Offset = non-rotated display width \times bpp \div 16

Program REG[47h:46h] = Memory Address Offset

2. Determine the stride for the LCD.

stride = LCD Memory Address Offset Reg[47h:46h] \times 2

3. Determine the offset address to the top left corner of the image. Note that xStart must be a multiple of $16 \div bpp$.

$$offset = (stride \times yStart) + (xStart \times bpp \div 8)$$

4. Determine and program the Display Start Address for the LCD.

```
Start Address = (stride × (rotated display height + yStart - 1) + (rotated display width + xStart - 1) × bpp \div 8) \div 2
```

Program REG[44h:42h] = Start Address

9.4.4 SwivelView 270°

This section describes how to program the Display Start Address registers for SwivelView 270° in a series of steps. Calculations in each step must be truncated to integers. To make this section more complete, the Memory Address Offset registers are also programmed.

Note

SwivelView 270° supports the following configurations: LCD in 8 and 16 bpp (CRT/TV not supported)

1. Determine and program the Memory Address Offset registers for the LCD.

Memory Address Offset = $1024 \times bpp \div 16$

Program REG[47h:46h] = Memory Address Offset

2. Determine the offset address to the top left corner of the image. *Note that yStart must be a multiple of 16 \div bpp.*

$$offset = (1024 \times yStart + xStart) \times bpp \div 8)$$

3. Determine and program the Display Start Address for the LCD.

Start Address =
$$(1024 \times bpp \div 8 \times (rotated display width + xStart) - (yStart \times bpp \div 8) - 1) \div 2$$

Program REG[44h:42h] = Start Address

9.5 Limitations

- SwivelView 90° and 270° do not support 4 bpp.
- SwivelView 180° and 270° do not support CRT/TV.
- The Hardware Cursor and Ink Layer images are not rotated.
 To write the hardware cursor or ink layer image in SwivelView 90°, 180°, or 270°, do the following:
 - 1. Set the SwivelView bits to 0° (landscape).
 - 2. Perform a software rotate of the image.
 - 3. Write the rotated image into display memory.
 - 4. Set the SwivelView bits back to their original setting.
- The smallest panning step for SwivelView 0° and 180° is $16 \div bpp$.
- The smallest scrolling step for SwivelView 90° and 270° is $16 \div bpp$.

Writing a 600x800x16 bpp Image in SwivelView 90° and 270°

To display a 600x800 image at 16 bits-per-pixel in SwivelView 90° or 270° , software will be required to access memory in the range 0h to 18FCAEh (1024*800*2 - (1024-600)*2)) = 18FCB0h bytes.

```
For SwivelView 90° and 270°, the last address in the image is ((rotated height - 1) × 1024 + (rotated width - 1)) × bpp \div 8 = ((800 - 1) × 1024 + (600 - 1)) × 16 \div 8 = 18FCAEh
```

Note

This approach will work, even though the last address of display memory is 13FFFFh, because of the way SwivelView handles display memory accesses.

There is one important limitation when accessing display memory in this configuration. SwivelView 90° and 270° require a line width (stride) of 1024 pixels. Only the first 600 pixels of each line will be visible and accessible (pixel 0 to pixel 599). Software should not attempt to access pixel 600 to pixel 1023. Attempting to read or write beyond pixel 599 will result in the memory address controller wrapping and accessing undefined portion of display memory.

9.6 Simultaneous Display Considerations

Although only the LCD panel image can be rotated, it is possible to simultaneously display **an independent** image on the CRT or TV display. In this case, the programmer should be aware of the following:

- As the LCD display buffer must start at offset 0 when a rotated display is required, the CRT display buffer must be located after the LCD display buffer.
- When modifying the CRT display buffer, SwivelView Enable Bit 0 must be cleared and then restored when finished. The following demonstrates this principle.
- 1. Save SwivelView Bit 0
- 2. Clear SwivelView Bit 0
- 3. Draw the CRT/TV image
- 4. Restore the saved SwivelView Bit 0.

9.7 Examples

Source code demonstrating various SwivelView rotations is provided on the internet at www.erd.epson.com.

Example 1: In SwivelView 0° (landscape) mode, program the LCD registers for a 320x240 panel at a color depth of 4 bpp.

- 1. Ensure that the LCD panel is not physically rotated.
- 2. Enable SwivelView 0°. Program REG[1FCh] bit 6 to 0, and REG[40h] bit 4 to 0.
- 3. Program the LCD Memory Address Offset registers.

Memory Address Offset= non-rotated display width
$$\times$$
 bpp \div 16
= $320 \times 4 \div 16$
= 80
= $50h$

Program the LCD Memory Address Offset registers to 50h. REG[46h] is set to 50h and REG[47h] is set to 00h.

4. Determine the LCD Stride.

stride = Memory Address Offset
$$\times$$
 2
= 80×2
= 160 bytes

5. Determine the offset address to the top left corner of the image.

Since there is no need to pan or scroll, set xStart and yStart to 0. This will always set the offset address to 0, as shown below:

offset = (stride × yStart) + (xStart × bpp ÷ 8)
=
$$(160 \times 0) + (0 \times 4 \div 8)$$

= 0

6. Determine the LCD Display Start Address.

The LCD image is typically placed at the start of display memory which is at display address 0.

Display Start Address= offset
$$\div 2$$

= 0

Program the LCD Display Start Address registers to 0h. REG[42h] is set to 00h, REG[43h] is set to 00h, and REG[44h] is set to 00h.

7. Repaint the image in display memory, starting at the offset address (which is 0 for this example).

Example 2: In SwivelView 90° mode, program the CRT registers for a 640x480 display at a color depth of 8 bpp.

- 1. Physically rotate the CRT counterclockwise 90°.
- 2. Enable SwivelView 90°. Program REG[1FCh] bit 6 to 1, and REG[40h] bit 4 to 0.
- 3. Program the CRT/TV Memory Address Offset registers.

Memory Address Offset=
$$1024 \times bpp \div 16$$

= $1024 \times 8 \div 16$
= 512
= $200h$

Program the CRT/TV Memory Address Offset registers to 200h. REG[66h] is set to 00h and REG[67h] is set to 02h.

4. Determine the offset address to the top left corner of the rotated image.

Since there is no need to pan or scroll, set xStart and yStart to 0. This will always set the offset address to 0, as shown below:

offset =
$$(1024 \times yStart + xStart) \times bpp \div 8)$$

= $(1024 \times 0 + 0) \times 8 \div 8)$
= 0

5. Determine the CRT/TV Display Start Address.

Display Start Address=
$$(1024 - \text{rotated display height} - \text{yStart} + (1024 \times \text{xStart})) \times \text{bpp} \div 16$$

= $(1024 - 640 - 0 + (1024 \times 0)) \times 8 \div 16$
= 192
= $C0h$

Program the CRT/TV Display Start Address registers to C0h. REG[62h] is set to C0h, REG[63h] is set to 00h, and REG[64h] is set to 00h.

6. Repaint the image in display memory, starting at the offset address (which is 0 for this example).

Example 3: In SwivelView 180° mode, program the LCD registers for a 640x480 panel at a color depth of 16 bpp.

- 1. Physically rotate the LCD counterclockwise 180°.
- 2. Enable SwivelView 180°. Program REG[1FCh] bit 6 to 0, and REG[40h] bit 4 to 1.
- 3. Program the LCD Memory Address Offset registers.

```
Memory Address Offset = non-rotated display width \times bpp \div 16
= 640 \times 16 \div 16
= 640
= 280h
```

Program the LCD Memory Address Offset registers to 280h. REG[46h] is set to 80h and REG[47h] is set to 02h.

4. Determine the LCD Stride.

stride = Memory Address Offset
$$\times$$
 2
= 640×2
= 1280 bytes

5. Determine the offset address to the top left corner of the rotated image.

Since there is no need to pan or scroll, set xStart and yStart to 0. This will always set the offset address to 0, as shown below:

offset = (stride × yStart) + (xStart × bpp ÷ 8)
=
$$(1280 \times 0) + (0 \times 16 \div 8)$$

= 0

6. Determine the LCD Display Start Address.

Display Start Address= (stride × (rotated display height + yStart - 1) +
(rotated display width + xStart - 1) × bpp ÷ 8) ÷ 2
=
$$(1280 \times (480 + 0 - 1) + (640 + 0 - 1) \times 16 \div 8) \div 2$$

= 307199
= $4AFFFh$

Program the LCD Display Start Address registers to 4AFFFh. REG[42h] is set to FFh, REG[43h] is set to AFh, and REG[44h] is set to 04h.

7. If the original image in display memory was written in SwivelView 0° (landscape) mode, then it is not necessary to repaint the image when rotating to 180°.

Example 4: In SwivelView 270° mode, program the LCD registers for a 640x480 panel at a color depth of 8 bpp.

- 1. Physically rotate the LCD counterclockwise 270°.
- 2. Enable SwivelView 270°. Program REG[1FCh] bit 6 to 1, and REG[40h] bit 4 to 1.
- 3. Program the LCD Memory Address Offset registers.

Memory Address Offset =
$$1024 \times \text{bpp} \div 16$$

= $1024 \times 8 \div 16$
= 512
= 200h

Program the LCD Memory Address Offset registers to 200h. REG[46h] is set to 00h and REG[47h] is set to 02h.

4. Determine the offset address to the top left corner of the rotated image.

Since there is no need to pan or scroll, set xStart and yStart to 0. This will always set the offset address to 0, as shown below:

offset =
$$(1024 \times yStart + xStart) \times bpp \div 8$$

= $(1024 \times 0 + 0) \times 8 \div 8$
= 0

5. Determine the LCD Display Start Address.

```
Display Start Address = (1024 \times bpp \div 8 \times (rotated display width + xStart) - (yStart \times bpp \div 8) - 1) \div 2
= (1024 \times 8 \div 8 \times (480 + 0) - (0 \times 8 \div 8) - 1) \div 2
= 245759.5 (truncate fractional part)
= 3BFFFh
```

Program the LCD Display Start Address registers to 3BFFFh. REG[42h] is set to FFh, REG[43h] is set to BFh, and REG[44h] is set to 03h.

6. Repaint the image in display memory, starting at the offset address (which is 0 for this example).

10 2D BitBLT Engine

The term BitBLT is an acronym for Bit Block Transfer. During a BitBLT operation data is transferred from one memory location (source) to another memory location (destination). With current graphical user interfaces (GUIs) this term generally refers to the transfer of bitmap images to or from video memory (display buffer).

The resulting bitmap image may be derived from up to three items or operands:

- · the source data.
- an optional pattern.
- the current destination data.

The operands are combined using logical AND, OR, XOR and NOT operations. The combining process is called a Raster Operation (ROP). The S1D13806 2D Accelerator supports all possible 16 ROPs between source data and destination data. The destination is always the display buffer and the source is either data in the display buffer, a pattern in the display buffer, or data provided by the host CPU.

The 2D BitBLT Engine in the S1D13806 is designed to increase the speed of the most common GUI operations by off-loading work from the CPU, thus reducing traffic on the system bus and improving the efficiency of the display buffer interface. The 2D BitBLT Engine is designed to work at color depths of 8 bpp and 16 bpp.

10.1 Registers

The BitBLT control registers on the S1D13806 are located at registers 100h through 119h. The following is a description of all BitBLT registers.

REG[100h] BitBLT Control Register 0								
BitBLT Active Status	BitBLT FIFO Not Empty Status (RO)	BitBLT FIFO Half Full Status (RO)	BitBLT FIFO Full Status (RO)	n/a	n/a	BitBLT Destination Linear Select	BitBLT Source Linear Select	

The BitBLT Active Status bit has two data paths, one for write and one for read.

Write Data Path

When this bit is set to 1, the BitBLT as selected in the BitBLT Operation Register (REG[103h]) is started.

Read Data Path

When this bit is read, it returns the status of the BitBLT engine. When a read from this bit returns 0, the BitBLT engine is idle and is ready for the next operation. When a read from this bit returns a 1, the BitBLT engine is busy.

REG[100h] E	REG[100h] BitBLT Control Register 0									
BitBLT Active Status	BitBLT FIFO Not Empty Status (RO)	BitBLT FIFO Half Full Status (RO)	BitBLT FIFO Full Status (RO)	n/a	n/a	BitBLT Destination Linear Select	BitBLT Source Linear Select			

The BitBLT FIFO Not Empty Status bit is a read-only status bit. When this bit returns a 0, the BitBLT FIFO is empty. When this bit returns a 1, the BitBLT FIFO contains at least one data (or one word).

REG[100h] BitBLT Control Register 0								
BitBLT Active Status	BitBLT FIFO Not Empty Status (RO)	BitBLT FIFO Half Full Status (RO)	BitBLT FIFO Full Status (RO)	n/a	n/a	BitBLT Destination Linear Select	BitBLT Source Linear Select	

The BitBLT FIFO Half Full Status bit is a read-only status bit. When this bit returns a 0, the BitBLT FIFO is less than half full (contains 7 or less data). When this bit returns a 1, the BitBLT FIFO is half full or greater than half full (contains 8 or more data).

REG[100h] E	REG[100h] BitBLT Control Register 0									
BitBLT Active Status	BitBLT FIFO Not Empty Status (RO)	BitBLT FIFO Half Full Status (RO)	BitBLT FIFO Full Status (RO)	n/a	n/a	BitBLT Destination Linear Select	BitBLT Source Linear Select			

The BitBLT FIFO Full Status bit is a read-only status bit. When this bit returns a 0, the BitBLT FIFO is not full (contains less than 16 data). When this bit returns a 1, the BitBLT FIFO is full (contains 16 data).

REG[100h] B	REG[100h] BitBLT Control Register 0								
BitBLT Active Status	BitBLT FIFO Not Empty Status (RO)	BitBLT FIFO Half Full Status (RO)	BitBLT FIFO Full Status (RO)	n/a	n/a	BitBLT Destination Linear Select	BitBLT Source Linear Select		

The BitBLT Destination Linear Select bit specifies the storage method of the destination BitBLT. If this bit = 0, the destination BitBLT is stored as a rectangular region of memory. If this bit = 1, the destination BitBLT is stored as a contiguous linear block of memory.

REG[100h] E	REG[100h] BitBLT Control Register 0								
BitBLT Active Status	BitBLT FIFO Not Empty Status (RO)	BitBLT FIFO Half Full Status (RO)	BitBLT FIFO Full Status (RO)	n/a	n/a	BitBLT Destination Linear Select	BitBLT Source Linear Select		

The BitBLT Source Linear Select bit specifies the storage method of the source BitBLT. If this bit = 0, the source BitBLT is stored as a rectangular region of memory. If this bit = 1, the source BitBLT is stored as a contiguous linear block of memory.

REG[101h] E	REG[101h] BitBLT Control Register 1									
n/a	n/a	n/a	Reserved	n/a	n/a	n/a	BitBLT Color Format Select			

This bit is reserved and must be set to 0.

REG[101h] BitBLT Control Register 1									
n/a	n/a	n/a	Reserved	n/a	n/a	n/a	BitBLT Color Format Select		

The BitBLT Color Format Select bit selects the color format that the BitBLT operation is applied to. When this bit = 0, 8 bpp (256 color) format is selected. When this bit = 1, 16 bpp (64K color) format is selected.

REG[102h] BitBLT ROP Code/Color Expansion Register								
n/a	n/a	n/a	n/a	BitBLT ROP Code Bit 3	BitBLT ROP Code Bit 2	BitBLT ROP Code Bit 1	BitBLT ROP Code Bit 0	

The BitBLT ROP Code/Color Expansion Register selects the Raster Operation (ROP) used for the Write BitBLT, Move BitBLT, and Pattern fill. It is also used to specify the start bit position for BitBLTs with color expansion. The following table summarizes the functionality of this register.

Table 10-1: BitBLT ROP Code/Color Expansion Function Selection

BitBLT ROP Code	Boolean Function for Write	Boolean Function for	Start Bit Position for Color
Bits [3:0]	BitBLT and Move BitBLT	Pattern Fill	Expansion
0000	0 (Blackness)	0 (Blackness)	bit 0
0001	~S . ~D or ~(S + D)	~P . ~D or ~(P + D)	bit 1
0010	~S . D	~P . D	bit 2
0011	~S	~P	bit 3
0100	S.~D	P . ~D	bit 4
0101	~D	~D	bit 5
0110	S^D	P^D	bit 6
0111	~S + ~D or ~(S . D)	~P + ~D or ~(P . D)	bit 7
1000	S.D	P . D	bit 0
1001	~(S ^ D)	~(P ^ D)	bit 1
1010	D	D	bit 2
1011	~S + D	~P + D	bit 3
1100	S	Р	bit 4
1101	S + ~D	P + ~D	bit 5
1110	S + D	P + D	bit 6
1111	1 (Whiteness)	1 (Whiteness)	bit 7

S = Source, D = Destination, P = Pattern

Operators: ~ = NOT, . = Logical AND, + = Logical OR, ^ = Logical XOR

REG[103h] E	REG[103h] BitBLT Operation Register									
n/a	n/a	n/a	n/a	BitBLT Operation Bit 3	BitBLT Operation Bit 2	BitBLT Operation Bit 1	BitBLT Operation Bit 0			

The BitBLT Operation Register selects the BitBLT operation to be carried out based on the following table:

Table 10-2: BitBLT Operation Selection

BitBLT Operation Bits [3:0]	BitBLT Operation
0000	Write BitBLT with ROP
0001	Read BitBLT
0010	Move BitBLT in positive direction with ROP
0011	Move BitBLT in negative direction with ROP
0100	Transparent Write BitBLT
0101	Transparent Move BitBLT in positive direction
0110	Pattern Fill with ROP
0111	Pattern Fill with transparency
1000	Color Expansion
1001	Color Expansion with transparency
1010	Move BitBLT with Color Expansion
1011	Move BitBLT with Color Expansion and transparency
1100	Solid Fill
Other combinations	Reserved

REG[104h] BitBLT Source Start Address Register 0								
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	
Source Start	Source Start	Source Start	Source Start	Source Start	Source Start	Source Start	Source Start	
Address	Address	Address	Address	Address	Address	Address	Address	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	

REG[105h] B	REG[105h] BitBLT Source Start Address Register 1									
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT			
Source Start	Source Start	Source Start	Source Start	Source Start	Source Start	Source Start	Source Start			
Address	Address	Address	Address	Address	Address	Address	Address			
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8			

REG[106h] BitBLT Source Start Address Register 2									
n/a	n/a	n/a	BitBLT Source Start Address Bit 20	BitBLT Source Start Address Bit 19	BitBLT Source Start Bit 18	BitBLT Source Start Address Bit 17	BitBLT Source Start Address Bit 16		

The BitBLT Source Start Address Registers form a 21-bit register that specifies the source start address for the BitBLT operation selected by the BitBLT Operation Register (REG[103h]).

If data is sourced from the CPU, then bit 0 is used for byte alignment within a 16-bit word and the other address bits are ignored. In pattern fill operation, the BitBLT Source Start Address is defined by the following equation:

Source Start Address Register = Pattern Base Address + Pattern Line Offset + Pixel Offset.

The following table shows how Source Start Address Register is defined for 8 and 16 bpp color depths:

Table 10-3: BitBLT Source Start Address Selection

Color Format	Pattern Base Address[20:0]	Pattern Line Offset[2:0]	Pixel Offset[3:0]
8 bpp	BitBLT Source Start Address[20:6], 6'b0	BitBLT Source Start Address[5:3]	1'b0, BitBLT Source Start Address[2:0]
16 bpp	BitBLT Source Start Address[20:7], 7'b0	BitBLT Source Start Address[6:4]	BitBLT Source Start Address[3:0]

REG[108h] B	REG[108h] BitBLT Destination Start Address Register 0								
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT		
Destination	Destination	Destination	Destination	Destination	Destination	Destination	Destination		
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

REG[109h] BitBLT Destination Start Address Register 1									
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT		
Destination	Destination	Destination	Destination	Destination	Destination	Destination	Destination		
Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address	Start Address		
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		

REG[10Ah] BitBLT Destination Start Address Register 2									
n/a	n/a	n/a	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT		
			Destination	Destination	Destination	Destination	Destination		
			Start Address						
			Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		

The BitBLT Destination Start Address Registers form a 21-bit register that specifies the destination start address for the BitBLT operation selected by the BitBLT Operation Register (REG[103h]). The destination address represents the upper left corner of the BitBLT rectangle (lower right corner of the BitBLT rectangle for Move BitBLT in Negative Direction).

REG[10Ch] BitBLT Memory Address Offset Register 0									
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT		
Memory	Memory	Memory	Memory	Memory	Memory	Memory	Memory		
Address	Address	Address	Address	Address	Address	Address	Address		
Offset Bit 7	Offset Bit 6	Offset Bit 5	Offset Bit 4	Offset Bit 3	Offset Bit 2	Offset Bit 1	Offset Bit 0		
REG[10Dh] E	BitBLT Memor	y Address Of	fset Register	1					
					BitBLT	BitBLT	BitBLT		
n/a	n/a	n/a	n/a	n/a	Memory	Memory	Memory		
					Address	Address	Address		
					Offset Bit 10	Offset Bit 9	Offset Bit 8		

The BitBLT Memory Address Offset Registers form the BitBLTs 11-bit address offset from the starting word of line "n" to the starting word of line "n + 1". They are used for address calculation only when the BitBLT is configured as a rectangular region of memory using the BitBLT Destination/Source Linear Select bits (REG[100h] bits 1-0).

REG[110h] BitBLT Width Register 0									
BitBLT Width Bit 7	BitBLT Width Bit 6	BitBLT Width Bit 5	BitBLT Width Bit 4	BitBLT Width Bit 3	BitBLT Width Bit 2	BitBLT Width Bit 1	BitBLT Width Bit 0		
REG[111h] BitBLT Width Register 1									
n/a	n/a	n/a	n/a	n/a	n/a	BitBLT Width Bit 9	BitBLT Width Bit 8		

The BitBLT Width Registers form a 10-bit register that specifies the BitBLT width in pixels less 1.

Note

The BitBLT operations Pattern Fill with ROP and Pattern Fill with transparency require a BitBLT Width > 1 for 16 bpp color depths and > 2 for 8 bpp.

REG[112h] BitBLT Height Register 0									
BitBLT Height Bit 7	BitBLT Height Bit 6	BitBLT Height Bit 5	BitBLT Height Bit 4	BitBLT Height Bit 3	BitBLT Height Bit 2	BitBLT Height Bit 1	BitBLT Height Bit 0		
REG[113h] BitBLT Height Register 1									
n/a	n/a	n/a	n/a	n/a	n/a	BitBLT Height Bit 9	BitBLT Height Bit 8		

The BitBLT Height Registers form a 10-bit register that specifies the BitBLT height in pixels less 1.

REG[114h] BitBLT Background Color Register 0							
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT
Background	Background	Background	Background	Background	Background	Background	Background
Color	Color	Color	Color	Color	Color	Color	Color
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

REG[115h] BitBLT Background Color Register 1							
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT
Background	Background	Background	Background	Background	Background	Background	Background
Color	Color	Color	Color	Color	Color	Color	Color
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8

The BitBLT Background Color Registers form a 16-bit register that specifies the BitBLT background color for Color Expansion or the key color for transparent BitBLTs. For 16 bpp color depth (REG[101h] bit 0 = 1), all 16 bits are used. For 8 bpp color depth (REG[101h] bit 0 = 0), only bits 7-0 are used.

REG[118h] BitBLT Foreground Color Register 0							
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT
Foreground	Foreground	Foreground	Foreground	Foreground	Foreground	Foreground	Foreground
Color	Color	Color	Color	Color	Color	Color	Color
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

REG[119h] BitBLT Foreground Color Register 1							
BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT	BitBLT
Foreground	Foreground	Foreground	Foreground	Foreground	Foreground	Foreground	Foreground
Color	Color	Color	Color	Color	Color	Color	Color
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8

The BitBLT Foreground Color Registers form a 16-bit register that specifies the BitBLT foreground color for Color Expansion or the Solid Fill BitBLT. For 16 bpp color depth (REG[101h] bit 0=1), all 16 bits are used. For 8 bpp color depth (REG[101h] bit 0=0), only bits 7-0 are used.

10.2 BitBLT Descriptions

The S1D13806 supports 13 fundamental BitBLT operations:

- Write BitBLT with ROP.
- · Read BitBLT.
- Move BitBLT in positive direction with ROP.
- Move BitBLT in negative direction with ROP.
- Transparent Write BitBLT.
- Transparent Move BitBLT in positive direction.
- Pattern Fill with ROP.
- Pattern Fill with Transparency.
- Color Expansion.
- Color Expansion with Transparency.
- Move BitBLT with Color Expansion.
- Move BitBLT with Color Expansion and Transparency.
- · Solid Fill.

Most of the 13 operations are self completing. This means once they begin they complete on their own, not requiring data transfers with the CPU. The remaining five BitBLT operations (Write BitBLT with ROP, Transparent Write BitBLT, Color Expansion, Color Expansion with Transparency, Read BitBLT) require data to be written/read to/from the display buffer. This data must be transferred one word (16-bits) at a time. This does not imply only 16-bit CPU instructions are acceptable. If a system is able to separate one DWORD write into two WORD writes and the CPU writes the low word before the high word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instructions are required.

The data is not directly written/read to/from the display buffer. It is written/read to/from the BitBLT FIFO through the 1M BitBLT aperture specified at the address of REG[100000h]. The 16 word FIFO can be written to only when not full and can be read from only when not empty. Failing to monitor the FIFO status can result in a BitBLT FIFO overflow or underflow.

While the FIFO is being written to by the CPU, it is also being emptied by the S1D13806. If the S1D13806 empties the FIFO faster than the CPU can fill it, it may not be possible to cause an overflow/underflow. In these cases, performance can be improved by not monitoring the FIFO status. However, this is very much platform dependent and must be determined for each system.

Note

When TV with flicker filter is enabled or simultaneous display is active, always test the FIFO status before reading from/writing to the FIFO.

10.2.1 Write BitBLT with ROP

The Write BitBLT increases the speed of transferring data from system memory to the display buffer.

The Write BitBLT with ROP fills a specified area of the display buffer with data supplied by the CPU. This BitBLT is typically used to copy a bitmap image from system memory to the display buffer. The Write BitBLT supports all 16 ROPs, although the most frequent ROP is ROP 0Ch (Copy Source into Destination). It also supports both Destination Linear and Destination Rectangular modes.

The Write BitBLT requires the CPU to provide data. The BitBLT engine expects to receive a certain number of WORDS. For 16 bpp color depths, the number of WORDS is the same as the number of pixels due to the fact that each pixel is one WORD wide. The number of WORD writes the BitBLT engine expects is calculated using the following formula.

nWORDS = nPixels

= BitBLTWidth × BitBLTHeight

For 8 bpp color depths, the formula must take into consideration that the BitBLT engine accepts only WORD accesses and each pixel is one BYTE. The BitBLT engine needs to know whether the first pixel of a line is stored in the low byte or high byte. This is determined by bit 0 of the Source Start Address Register 0 (REG[104h]). If the Source Phase is 1 (bit 0 of the Source Start Address Register 0 is set), the first pixel of each line is in the high byte of the WORD and the contents of the low byte are ignored. If the Source Phase is 0, the first pixel is in the low byte and the second pixel is in the high byte. Depending on the Source Phase and the BitBLT Width, the last WORD may contain only one pixel. In this case it is always in the low byte. The number of WORD writes the BitBLT engine expects for 8 bpp color depths is shown in the following formula.

nWORDS = $((BitBLTWidth + 1 + SourcePhase) \div 2) \times BitBLTHeight$

Note

The BitBLT engine counts WORD writes in the BitBLT address space. This does not imply only 16-bit CPU instructions are acceptable. If a system is able to separate one DWORD write into two WORD writes and the CPU writes the low word before the high word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instructions are required.

Example 5: Write a 100 x 20 rectangle at the screen coordinates x = 25, y = 38 using a 640x480 display at a color depth of 8 bpp.

1. Calculate the destination address (upper left corner of the screen BitBLT rectangle) using the following formula.

DestinationAddress =
$$(y \times ScreenStride) + (x \times BytesPerPixel)$$

= $(38 \times 640) + (25 \times 1)$
= 24345
= $5F19h$

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 640 for 8 bpp

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 00h, REG[109h] is set to 5Fh, and REG[108h] is set to 19h.

- 2. Program the BitBLT Width Registers to 100 1. REG[111h] is set to 00h and REG[110h] is set to 63h (99 decimal).
- 3. Program the BitBLT Height Registers to 20 1. REG[113h] is set to 00h and REG[112h] is set to 13h (19 decimal).
- 4. Program the Source Phase in the BitBLT Source Start Address Register. In this example the data is WORD aligned, so the source phase is 0. REG[104h] is set to 00h.
- 5. Program the BitBLT Operation Register to select the Write BitBLT with ROP. REG[103h] is set to 00h.
- 6. Program the BitBLT ROP Code Register to select Destination = Source. REG[102h] is set to 0Ch.
- 7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set to 00h.
- 8. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS:

REG[10Dh] is set to 01h and REG[10Ch] is set to 40h.

9. Calculate the number of WORDS the BitBLT engine expects to receive.

nWORDS =
$$((BLTWidth + 1 + SourcePhase) \div 2) \times BLTHeight$$

= $(100 + 1) \div 2 \times 20$
= 1000
= $3E8h$

10. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation **and wait for the BitBLT engine to start**. REG[100h] is set to 80h, then wait until REG[100h] bit 7 returns a 1.

11. Prior to writing all nWORDS to the BitBLT FIFO, confirm the BitBLT FIFO is not full (REG[100h] bit 4 returns a 0). If the BitBLT FIFO Not Empty Status returns a 0 (the FIFO is empty), write up to 16 WORDS. If the BitBLT FIFO Not Empty Status returns a 1 and the BitBLT FIFO Half Full Status returns a 0 then you can write up to 8 WORDS. If the BitBLT FIFO Full Status returns a 1, do not write to the BitBLT FIFO until it returns a 0.

The following table summarizes how many words can be written to the BitBLT FIFO.

BitBLT Control Register 0 (REG[100h]) **Word Writes** FIFO Half Full Status FIFO Not Empty Status FIFO Full Status **Available** 16 0 0 0 0 8 1 1 1 0 up to 8 1 0 (do not write) 1 1

Table 10-4: Possible BitBLT FIFO Writes

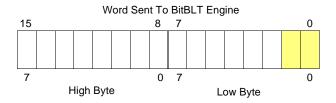
12. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is started.

10.2.2 Color Expand BitBLT

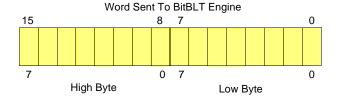
This Color Expand BitBLT is similar to the Write BitBLT. It differs in that a bit set to 1 in the source data becomes a pixel of foreground color. A source bit set to 0 is converted to a pixel of background color. This function increases the speed of writing text while in graphical modes.


This BitBLT operation includes several options which enhance its text handling capabilities. As with the Write BitBLT, all data sent to the BitBLT engine must be word (16-bit) writes. **The BitBLT engine expands the low byte, then the high byte starting at bit 7 of each byte.** The start byte of the first WORD to be expanded and the start bit position within this byte must be specified. The start byte position is selected by setting source address bit 0 to 0 to start expanding the low byte or 1 to start expanding the high byte.

Partially "masked" color expand BitBLT can be used when drawing a portion of a pattern (i.e. a portion of a character) on the screen. The following examples illustrate how one WORD is expanded using the Color Expand BitBLT.

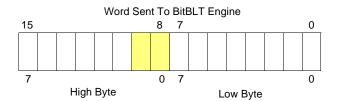
1. To expand bits 0-1 of the word:

Source Address = 0 Start Bit Position = 1 BitBLT Width = 2


The following bits are expanded.

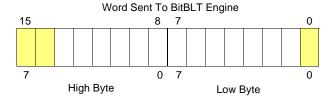
2. To expand bits 0-15 of the word (entire word)

Source Address = 0 Start Bit Position = 7 (bit seven of the low byte) BitBLT Width = 16


The following bits are expanded.

3. To expand bits 8-9 of the word

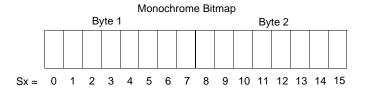
Source Address = 1 Start Bit Position = 1 BitBLT Width = 2


The following bits are expanded.

4. To expand bits 0,15-14 of the word

Source Address = 0 Start Bit Position = 0 BitBLT Width = 3

The following bits are expanded.



All subsequent WORDS in one BitBLT line are then serially expanded starting at bit 7 of the low byte until the end of the BitBLT line. All unused bits in the last WORD are discarded. It is extremely important that the exact number of WORDS is provided to the BitBLT engine. The number of WORDS is calculated from the following formula. This formula is valid for all color depths (8/16 bpp).

$$nWords = ((Sx\ MOD\ 16 + BitBLTWidth + 15) \div 16) \times BitBLTHeight$$

where:

Sx is the X coordinate of the starting pixel in a word aligned monochrome bitmap.

Example 6: Color expand a rectangle of 12 x 18 starting at the coordinates Sx = 125, Sy = 17 using a 640x480 display at a color depth of 8 bpp.

This example assumes a monochrome, WORD aligned bitmap of dimensions 300×600 with the origin at an address A. The color expanded rectangle will be displayed at the screen coordinates X = 20, Y = 30. The foreground color corresponds to the LUT entry at index 134, the background color to index 124.

1. First we need to calculate the address of the WORD within the monochrome bitmap containing the pixel x = 125, y = 17.

```
SourceAddress = BitmapOrigin + (y \times SourceStride) + (x \div 8)
= A + (Sy \times SourceStride) + (Sx \div 8)
= A + (17 \times 38) + (125 \div 8)
= A + 646 + 15
= A + 661
where:
= (BitmapWidth + 15) \div 16
= (300 + 15) \div 16
= 19 WORDS per line
```

2. Calculate the destination address (upper left corner of the screen BitBLT rectangle) using the following formula.

= 38 BYTES per line

```
DestinationAddress = (Y \times ScreenStride) + (X \times BytesPerPixel)
= (30 \times 640) + (20 \times 1)
= 19220
= 4B14h
```

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp ScreenStride = DisplayWidthInPixels × BytesPerPixel = 640 for 8 bpp

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 00h, REG[109h] is set to 4Bh, and REG[108h] is set to 14h.

- 3. Program the BitBLT Width Registers to 12 1. REG[111h] is set to 00h, REG[110h] is set to 0Bh (11 decimal).
- 4. Program the BitBLT Height Registers to 18 1. REG[113h] is set to 00h, REG[112h] is set to 11h (17 decimal).
- 5. Program the Source Phase in the BitBLT Source Start Address Register. In this example the source address equals A + 661 (odd), so REG[104h] is set to 1.

Since only bit 0 flags the source phase, more efficient code would simply write the low byte of the SourceAddress into REG[104h] directly -- not needing to test for an odd/even address. Note that in 16 bpp color depths the Source address is guaranteed to be even.

- 6. Program the BitBLT Operation Register to select the Color Expand BitBLT. REG[103h] is set to 08h.
- 7. Program the Color Expansion Register. The formula for this example is as follows.

REG[102h] is set to 02h.

8. Program the Background Color Registers to the background color. REG[115h] is set to 00h and REG[114h] is set to 7Ch (124 decimal).

Note that for 16 bpp color depths, REG[115h] and REG[114h] are both required and programmed directly with the value of the background color.

9. Program the Foreground Color Registers to the foreground color. REG[119h] is set to 00h and REG[118h] is set to 86h (134 decimal).

Note that for 16 bpp color depths REG[119h] and Reg[118h] are both required and programmed directly with the value of the foreground color.

- 10. Program the BitBLT Color Format Register for 8 bpp operation. REG[101h] is set to 00h.
- 11. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride
$$\div$$
 2
= 640 \div 2
= 140h

REG[10Dh] is set to 01h and REG[10Ch] is set to 40h.

12. Calculate the number of WORDS the BitBLT engine expects to receive.

First, the number of WORDS in one BitBLT line must be calculated as follows.

nWordsOneLine =
$$((125 \text{ MOD } 16) + 12 + 15) \div 16$$

= $(13 + 12 + 15) \div 16$
= $40 \div 16$
= 2

Therefore, the total WORDS the BitBLT engine expects to receive is calculated as follows.

nWords = nWordsOneLine
$$\times$$
 18
= 2 \times 18
= 36

13. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation and wait for the BitBLT Engine to start. REG[100h] is set to 80h, then wait until REG[100h] bit 7 returns a 1.

14. Prior to writing all nWORDS to the BitBLT FIFO, confirm the BitBLT FIFO is not full (REG[100h] bit 4 returns a 0). One WORD expands into 16 pixels which fills all 16 FIFO words in 16 bpp or 8 FIFO words in 8 bpp.

The following table summarizes how many words can be written to the BitBLT FIFO.

BitBL	T Control Register 0 (REG	8 bpp Word	16 bpp Word	
FIFO Not Empty Status	FIFO Half Full Status	FIFO Full Status	Writes Available	Writes Available
0	0	0	2	1
1	0	0	1	
1	1	0	0 (do not write)	0 (do not write)
1	1	1	o (do not write)	

Table 10-5: Possible BitBLT FIFO Writes

15. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.2.3 Color Expand BitBLT With Transparency

This BitBLT operation is virtually identical to the Color Expand BitBLT, except the background color is completely ignored. All bits set to 1 in the source monochrome bitmap are color expanded to the foreground color. All bits set to 0 that would be expanded to the background color in the Color Expand BitBLT are not expanded at all.

Program REG[103h] to 09h instead of 08h. Programming the background color is not required.

10.2.4 Solid Fill BitBLT

The Solid Fill BitBLT fills a rectangular area of the display buffer with a solid color. This operation is used to paint large screen areas or to set areas of the display buffer to a given value.

Example 7: Fill a red 9 x 321 rectangle at the screen coordinates x = 100, y = 10 using a 640x480 display at a color depth of 16 bpp.

1. Calculate the destination address (upper left corner of the destination rectangle) using the following formula.

DestinationAddress =
$$(y \times ScreenStride) + (x \times BytesPerPixel)$$

= $(10 \times (640 \times 2)) + (100 \times 2)$
= 13000
= $32C8h$

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 1280 for 16 bpp.

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 00h, REG[109h] is set to 32h, and REG[108h] is set to C8h.

- 2. Program the BitBLT Width Registers to 9 1. REG[111h] is set to 00h and REG[110h] is set to 08h.
- 3. Program the BitBLT Height Registers to 321 1. REG[113h] is set to 01h and REG[112h] is set to 40h (320 decimal).
- 4. Program the BitBLT Foreground Color Registers. REG[119h] is set to F8h and REG[118h] is set to 00h (Full intensity red in 16 bpp is F800h).
- 5. Program the BitBLT Operation Register to select Solid Fill. REG[103h] is set to 0Ch.
- 6. Program the BitBLT Color Format Register for 16 bpp operations. REG[101h] is set to 01h.
- 7. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

REG[10Dh] is set to 02h and REG[10Ch] is set to 80h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[100h] is set to 80h.

9. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.2.5 Move BitBLT in a Positive Direction with ROP

The Move BitBLT moves an area of the display buffer to a different area of the display buffer. This operation has two intended purposes:

- Copying unattended display buffer to display buffer.
- Saving a visible bitmap to off-screen display buffer.

The Move BitBLT may move data from one rectangular area to another, or it may be specified as linear. This allows the temporary saving of a portion of the visible display buffer to an area off-screen. The linear configuration may be applied to the source or destination. Defining the Move BitBLT as linear allows each line of the Move BitBLT area to be placed directly after the previous line, rather than requiring a complete row of address space for each line.

Note

When the destination area overlaps the original source area and the destination address is greater then the source address, use the Move BitBLT in Negative Direction with ROP.

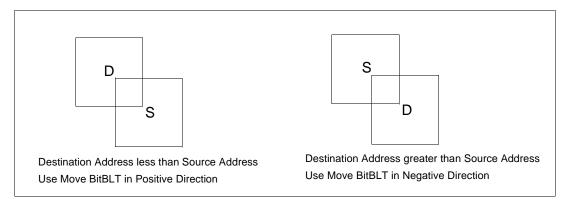


Figure 10-1: Move BitBLT Usage

Example 8: Copy a 9 x 321 rectangle at the screen coordinates x = 100, y = 10 to screen coordinates x = 200, y = 20 using a 640x480 display at a color depth of 16 bpp.

1. Calculate the source and destination addresses (upper left corners of the source and destination rectangles), using the following formula.

SourceAddress =
$$(y \times ScreenStride) + (x \times BytesPerPixel)$$

= $(10 \times (640 \times 2)) + (100 \times 2)$
= 13000
= $32C8h$
DestinationAddress = $(y \times ScreenStride) + (x \times BytesPerPixel)$
= $(20 \times (640 \times 2)) + (200 \times 2)$
= 26000

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 1280 for 16 bpp

Program the BitBLT Source Start Address Registers. REG[106h] is set to 00h, REG[105h] is set to 32h, and REG[104h] is set to C8h.

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 00h, REG[109h] is set to 65h, and REG[108h] is set to 90h.

2. Program the BitBLT Width Registers to 9 - 1. REG[111h] is set to 00h and REG[110h] is set to 08h.

= 6590h

- 3. Program the BitBLT Height Registers to 321 1. REG[113h] is set to 01h and REG[112h] is set to 40h (320 decimal).
- 4. Program the BitBLT Operation Register to select the Move BitBLT in Positive Direction with ROP. REG[103h] is set to 02h.
- 5. Program the BitBLT ROP Code Register to select Destination = Source. REG[102h] is set to 0Ch.
- 6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[101h] is set to 01h.
- 7. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

REG[10Dh] is set to 02h and REG[10Ch] is set to 80h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[100h] is set to 80h.

9. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.2.6 Move BitBLT in Negative Direction with ROP

The Move BitBLT in Negative Direction with ROP is very similar to the Move BitBLT in Positive direction and must be used when the source and destination BitBLT areas overlap and the destination address is greater then the source address.

Note

For the Move BitBLT in Negative Direction it is necessary to calculate the addresses of the last pixel as opposed to the first pixel. This means calculating the addresses of the lower right corners as opposed to the upper left corners.

Example 9: Copy a 9 x 321 rectangle at the screen coordinates x = 100, y = 10 to screen coordinates X = 105, Y = 20 using a 640x480 display at a color depth of 16 bpp.

In the following example, the coordinates of the source and destination rectangles intentionally overlap.

1. Calculate the source and destination addresses (**lower right** corners of the source and destination rectangles) using the following formula.

```
SourceAddress
```

```
= ((y + \text{Height - 1}) \times \text{ScreenStride}) + ((x + \text{Width - 1}) \times \text{BytesPerPixel})
= ((10 + 321 - 1) \times (640 \times 2)) + ((100 + 9 - 1) \times 2)
= 422616
= 672D8h
```

DestinationAddress

```
= ((Y + \text{Height - 1}) \times \text{ScreenStride}) + ((X + \text{Width - 1}) \times \text{BytesPerPixel})
= ((20 + 321 - 1) \times (640 \times 2)) + ((105 + 9 - 1) \times 2)
= 435426
= 6\text{A4E2h}
```

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp ScreenStride = DisplayWidthInPixels × BytesPerPixel = 1280 for 16 bpp

Program the BitBLT Source Start Address Registers. REG[106h] is set to 06h, REG[105h] is set to 72h, and REG[104h] is set to D8h.

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 06h, REG[109h] is set to A4h, and REG[108h] is set to E2h.

- 2. Program the BitBLT Width Registers to 9 1. REG[111h] is set to 00h and REG[110h] is set to 08h.
- 3. Program the BitBLT Height Registers to 321 1. REG[113h] is set to 01h and REG[112h] is set to 40h (320 decimal).
- 4. Program the BitBLT Operation Register to select the Move BitBLT in Negative Direction with ROP. REG[103] is set to 03h.
- 5. Program the BitBLT ROP Code Register to select Destination = Source. REG[102h] is set to 0Ch.
- 6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[101h] is set to 01h.
- 7. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

REG[10Dh] is set to 02h and REG[10Ch] is set to 80h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[100h] is set to 80h.

9. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.2.7 Transparent Write BitBLT

The Transparent Write BitBLT increases the speed of transferring data from system memory to the display buffer. Once the Transparent Write BitBLT begins, the BitBLT engine remains active until all pixels have been written.

The Transparent Write BitBLT updates a specified area of the display buffer with data supplied by the CPU. This BitBLT is typically used to copy a bitmap image from system memory to the display buffer with one color marked as transparent. Any pixel of the transparent color is not transferred. This allows fast display of non-rectangular images. For example, consider a source bitmap having a red circle on a blue background. By selecting the blue color as the transparent color and using the Transparent Write BitBLT on the whole rectangle, the effect is a BitBLT of the red circle only. The Transparent Write BitBLT supports both Destination Linear and Destination Rectangular modes.

The Transparent Write BitBLT requires the CPU to provide data. The BitBLT engine expects to receive a certain number of WORDS. For 16 bpp color depths, the number of WORDS is the same as the number of pixels due to the fact that each pixel is one WORD wide. The number of WORD writes the BitBLT engine expects is calculated using the following formula.

nWORDS = nPixels

= BitBLT Width \times BitBLT Height

For 8 bpp color depths, the formula must take into consideration that the BitBLT engine accepts only WORD accesses and each pixel is one BYTE. The BitBLT engine needs to know whether the first pixel of a line is stored in the low byte or high byte. This is determined by bit 0 of the Source Start Address Register 0 (REG[104h]). If the Source Phase is 1 (bit 0 of the Source Start Address Register 0 is set), the first pixel of each line is in the high byte of the WORD and the contents of the low byte are ignored. If the Source Phase is 0, the first pixel is in the low byte and the second pixel is in the high byte. Depending on the Source Phase and the BitBLT Width, the last WORD in each line may contain only one pixel. It is always in the low byte if more than one WORD per line is required. The number of WORD reads the BitBLT engine expects for 8 bpp color depths is shown in the following formula.

nWORDS = $((BitBLTWidth + 1 + SourcePhase) \div 2) \times BitBLTHeight$

Note

The BitBLT engine counts WORD writes in the BitBLT address space. This does not imply only 16-bit CPU instructions are acceptable. If a system is able to separate one DWORD write into two WORD writes, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instructions are required.

Example 10: Write 100 x 20 pixels at the screen coordinates x = 25, y = 38 using a 640x480 display at a color depth of 8 bpp. Transparent color is high intensity blue (assumes LUT Index 124).

1. Calculate the destination address (upper left corner of the screen BitBLT rectangle), using the formula:

```
DestinationAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (38 \times 640) + (25 \times 1)
= 24345
= 5F19h
```

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp ScreenStride = DisplayWidthInPixels × BytesPerPixel = 640 for 8 bpp

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 00h, REG[109h] is set to 5Fh, and REG[108h] is set to 19h.

- 2. Program the BitBLT Width Registers to 100 1. REG[111h] is set to 00h and REG[110h] is set to 63h (99 decimal).
- 3. Program the BitBLT Height Registers to 20 1. REG[113h] is set to 00h and REG[112h] is set to 13h (19 decimal).
- 4. Program the Source Phase in the BitBLT Source Start Address Register. In this example, the data is WORD aligned, so the source phase is 0. REG[104h] is set to 00h.
- 5. Program the BitBLT Operation Register to select Transparent Write BitBLT. REG[103h] is set to 04h.
- 6. Program the BitBLT Background Color Registers to select transparent color. REG[114h] is set to 7Ch (124 decimal).

Note that for 16 bpp color depths, REG[115h] and REG[114h] are both required and programmed directly with the value of the transparent background color.

- 7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set to 00h.
- 8. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride
$$\div$$
 2
= 640 \div 2
= 320
= 140h

REG[10Dh] is set to 01h and REG[10Ch] is set to 40h.

9. Calculate the number of WORDS the BitBLT engine expects to receive.

nWORDS =
$$((BLTWidth + 1 + SourcePhase) \div 2) \times BLTHeight$$

= $(100 + 1 + 0) \div 2 \times 20$
= 1000
= $3E8h$

10. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation **and wait for the BitBLT engine to start**. REG[100h] is set to 80h, then wait until REG[100h] bit 7 returns a 1.

11. Prior to writing all nWORDS to the BitBLT FIFO, confirm the BitBLT FIFO is not full (REG[100h] bit 4 returns a 0). If the BitBLT FIFO Not Empty Status returns a 0 (the FIFO is empty), write up to 16 WORDS. If the BitBLT FIFO Not Empty Status returns a 0 and the BitBLT FIFO Half Full Status returns a 0 then you can write up to 8 WORDS. If the BitBLT FIFO Full Status returns a 1, do not write to the BitBLT FIFO until it returns a 0.

The following table summarizes how many words can be written to the BitBLT FIFO.

BitBL	Word Writes		
FIFO Not Empty Status	Available		
0	0	0	16
1	0	0	8
1	1	0	less than 8
1	1	1	0 (do not write)

Table 10-6: Possible BitBLT FIFO Writes

12. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.2.8 Transparent Move BitBLT in Positive Direction

The Transparent Move BitBLT in Positive Direction moves an area of the display buffer to a different area of the display buffer. It allows for selection of a transparent color which is not copied during the BitBLT. This allows fast display of non-rectangular images. For example, consider a source bitmap having a red circle on a blue background. By selecting the blue color as the transparent color and using the Transparent Move BitBLT on the whole rectangle, the effect is a BitBLT of the red circle only.

The Transparent Move BitBLT may move data from one rectangular area to another, or it may be specified as linear. The linear configuration may be applied to the source or destination. Defining the Move BitBLT as linear allows each line of the Move BitBLT area to be placed directly after the previous line, rather than requiring a complete row of address space for each line.

Note

The Transparent Move BitBLT is supported **only** in a positive direction.

Example 11: Copy a 9 x 321 rectangle at the screen coordinates x = 100, y = 10 to screen coordinates X = 200, Y = 20 using a 640x480 display at a color depth of 16 bpp. Transparent color is blue.

1. Calculate the source and destination addresses (upper left corners of the source and destination rectangles), using the formula:

```
SourceAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (10 \times (640 \times 2)) + (100 \times 2)
= 13000
= 32C8h
DestinationAddress = (Y \times ScreenStride) + (X \times BytesPerPixel)
= (20 \times (640 \times 2)) + (200 \times 2)
= 26000
= 6590h
```

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 1280 for 16 bpp

Program the BitBLT Source Start Address Registers. REG[106h] is set to 00h, REG[105h] is set to 32h, and REG[104h] is set to C8h.

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 00h, REG[109h] is set to 65h, and REG[108h] is set to 90h.

- 2. Program the BitBLT Width Registers to 9 1. REG[111h] is set to 00h and REG[110h] is set to 08h.
- 3. Program the BitBLT Height Registers to 321 1. REG[113h] is set to 01h and REG[112h] is set to 40h (320 decimal).

- 4. Program the BitBLT Operation Register to select the Transparent Move BitBLT in Positive Direction. REG[103h] is set to 05h.
- 5. Program the BitBLT Background Color Registers to select blue as the transparent color. REG[115h] is set to 00h and REG[114h] is set to 1Fh (Full intensity blue in 16 bpp is 001Fh).
- 6. Program the BitBLT Color Format Register to select 16 bpp operations. REG[101h] is set to 01h.
- 7. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

```
BltMemoryOffset = ScreenStride ÷ 2
= 640
= 280h
```

REG[10Dh] is set to 02h and REG[10Ch] is set to 80h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[100h] is set to 80h.

9. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.2.9 Pattern Fill BitBLT with ROP

The Pattern Fill BitBLT with ROP fills a specified rectangular area of the display buffer with a pattern. The fill pattern is an array of pixels stored in off-screen display buffer. The fill pattern is limited to an eight by eight pixel array and must be loaded to off-screen memory prior to the BitBLT starting. The pattern can be logically combined with the destination using all 16 ROP codes, but typically the copy pattern ROP is used (ROP code 0Ch).

The pattern itself must be stored in a consecutive array of pixels. As a pattern is defined to be 8x8 pixels, this results in 64 consecutive bytes for 8 bpp color depths and 128 bytes for 16 bpp color depths. For 8 bpp color depths the pattern must begin on a 64 byte boundary, for 16 bpp color depths the pattern must begin on a 128 byte boundary.

To fill an area using the pattern BitBLT, the BitBLT engine requires the location of the pattern, the destination rectangle position and size, and the ROP code. The BitBLT engine also needs to know which pixel from the pattern is the first pixel in the destination rectangle (the pattern start phase). This allows seamless redrawing of any part of the screen using the pattern fill.

Example 12: Fill a 100 x 250 rectangle at the screen coordinates x = 10, y = 20 with the pattern in off-screen memory at offset 10 0000h using a 640x480 display at a color depth of 8 bpp. The first pixel (upper left corner) of the rectangle is the pattern pixel at x = 3, y = 4.

1. Calculate the destination address (upper left corner of the destination rectangle), using the formula:

DestinationAddress =
$$(y \times ScreenStride) + (x \times BytesPerPixel)$$

= $(20 \times 640) + (10 \times 1)$
= 12810
= $320Ah$

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp ScreenStride = DisplayWidthInPixels × BytesPerPixels = 640 for 8 bpp

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 00h, REG[109h] is set to 32h, and REG[108h] is set to 0Ah.

2. Calculate the source address. This is the address of the pixel in the pattern that is the origin of the destination fill area. The pattern begins at offset 1M, but the first pattern pixel is at x = 3, y = 4. Therefore, an offset within the pattern itself must be calculated.

SourceAddress

- = PatternOffset + StartPatternY × 8 × BytesPerPixel + StartPatternX × BytesPerPixel
- $= 1M + (4 \times 8 \times 1) + (3 \times 1)$
- = 1M + 35
- = 1048611
- = 100023h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

Program the BitBLT Source Start Address Registers. REG[106h] is set to 10h, REG[105h] is set to 00h, and REG[104h] is set 23h.

- 3. Program the BitBLT Width Registers to 100 1. REG[111h] is set to 00h, REG[110h] is set to 63h (99 decimal).
- 4. Program the BitBLT Height Registers to 250-1. REG[113h] is set to 00h, and REG[112h] is set to F9h (249 decimal).
- 5. Program the BitBLT Operation Register to select the Pattern Fill with ROP. REG[103h] is set to 06h.
- 6. Program the BitBLT ROP Code Register to select Destination = Source. REG[102h] is set to 0Ch.
- 7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set to 00h.

8. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride \div 2 = 640 \div 2 = 320 = 140h

REG[10Dh] is set to 01h and REG[10Ch] is set to 40h.

9. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[100h] is set to 80h.

10. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.2.10 Pattern Fill BitBLT with Transparency

The Pattern Fill BitBLT with Transparency fills a specified rectangular area of the display buffer with a pattern. When a transparent color is selected, pattern pixels of the transparent color will not get copied, allowing creation of hatched patterns. The fill pattern is an eight by eight array of pixels stored in off-screen display buffer. The fill pattern must be loaded to off-screen display buffer prior to the BitBLT starting.

The pattern itself must be stored in a consecutive array of pixels. As a pattern is defined to be eight pixels square, this results in 64 consecutive bytes for 8 bpp color depths and 128 bytes for 16 bpp color depths. For 8 bpp color depths the pattern must begin on a 64 byte boundary, for 16 bpp color depths the pattern must begin on a 128 byte boundary.

To fill an area using the Pattern Fill BitBLT with Transparency, the BitBLT engine requires the location of the pattern, the destination rectangle position and size, and the transparency color. The BitBLT engine also needs to know which pixel from the pattern is the first pixel in the destination rectangle (the pattern start phase). This allows seamless redrawing of any part of the screen using the pattern fill.

Example 13: Fill a 100 x 250 rectangle at the screen coordinates x = 10, y = 20 with the pattern in off-screen memory at offset 10000h using a 640x480 display at a color depth of 8 bpp. The first pixel (upper left corner) of the rectangle is the pattern pixel at x = 3, y = 4. Transparent color is blue (assumes LUT index 1).

1. Calculate the destination address (upper left corner of destination rectangle), using the formula:

```
DestinationAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (20 \times 640) + (10 \times 1)
= 12810
= 320Ah
```

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp

 $ScreenStride = DisplayWidthInPixels \times BytesPerPixels = 640 for 8 bpp$

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 00h, REG[109h] is set to 32h, and REG[108h] is set to 0Ah.

2. Calculate the source address. This is the address of the pixel in the pattern that is the origin of the destination fill area. The pattern begins at offset 1M, but the first pattern pixel is at x = 3, y = 4. Therefore, an offset within the pattern itself must be calculated.

SourceAddress

- $= PatternOffset + StartPatternY \times 8 \times BytesPerPixel + StartPatternX \times BytesPerPixel \\$
- $= 1M + (4 \times 8 \times 1) + (3 \times 1)$
- = 1M + 35
- = 1048611
- = 100023h

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp

Program the BitBLT Source Start Address Registers. REG[106h] is set to 10h, REG[105h] is set to 00h, and REG[104h] is set 23h.

- 3. Program the BitBLT Width Registers to 100 1. REG[111h] is set to 00h and REG[110h] is set to 63h (99 decimal).
- 4. Program the BitBLT Height Registers to 250-1. REG[113h] is set to 00h, and REG[112h] is set to F9h (249 decimal).
- 5. Program the BitBLT Operation Register to select the Pattern Fill BitBLT with Transparency. REG[103h] is set to 07h.

6. Program the BitBLT Background Color Registers to select transparent color. This example uses blue (LUT index 1) as the transparent color. REG[114h] is set to 01h.

Note that for 16 bpp color depths, REG[115h] and REG[114h] are both required and programmed directly with the value of the transparent background color. For example, for full intensity green to be the transparent color in 16 bpp, REG[115h] is set to 07h and REG[114h] is set to E0h.

- 7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set to 00h.
- 8. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

```
BltMemoryOffset = ScreenStride \div 2
= 640 \div 2
= 320
= 140h
```

REG[10Dh] is set to 01h and REG[10Ch] is set to 40h.

9. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[100h] is set to 80h.

10. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.2.11 Move BitBLT with Color Expansion

The Move BitBLT with Color Expansion takes a monochrome bitmap as the source and color expands it into the destination. Color expansion moves all bits in the monochrome source to pixels in the destination. All bits in the source set to one are expanded into destination pixels of the selected foreground color. All bits in the source set to zero are expanded into pixels of the selected background color.

The Move BitBLT with Color Expansion is used to accelerate text drawing on the screen. A monochrome bitmap of a font in off-screen memory occupies very little space and takes advantage of the hardware acceleration. Since the foreground and background colors are programmable, text of any color can be created.

The Move BitBLT with Color Expansion may move data from one rectangular area to another, or it may be specified as linear. The linear configuration may be applied to the source or destination. Defining the Move BitBLT as linear allows each line of the Move BitBLT area to be placed directly after the previous line, rather than requiring a complete row of address space for each line.

Note

The BitBLT ROP Code/Color Expansion Register must be programmed to value 07h. Therefore, the first word in a line color expansion starts with the most significant bit of the low or high byte.

Example 14: Color expand a 9 x 16 rectangle using the pattern in off-screen memory at 10 0000h and move it to the screen coordinates x = 200, y = 20. Assume a 640x480 display at a color depth of 16 bpp, Foreground color of black, and background color of white.

1. Calculate the destination and source addresses (upper left corner of the destination and source rectangles), using the formula.

```
DestinationAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (20 \times (640 \times 2)) + (200 \times 2)
= 26000
= 6590h
```

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixels = 1280 for 16 bpp

SourceAddress = 1M = 100000h

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 00h, REG[109h] is set to 65h, and REG[108h] is set to 90h.

Program the BitBLT Source Start Address Registers. REG[106h] is set to 10h, REG[105h] is set to 00h, and REG[104h] is set to 00h.

- 2. Program the BitBLT Width Registers to 9 1. REG[111h] is set to 00h and REG[110h] is set to 08h.
- 3. Program the BitBLT Height Registers to 16 1. REG[113h] is set to 00h and REG[112h] is set to 0Fh.
- 4. Program the BitBLT ROP Code/Color Expansion Register. REG[102h] is set to 07h.
- 5. Program the BitBLT Operation Register to select the Move BitBLT with Color Expansion. REG[103h] is set to 0Bh.
- 6. Program the BitBLT Foreground Color Register to select black (in 16 bpp black = 0000h). REG[119h] is set to 00h and REG[118h] is set to 00h.
- 7. Program the BitBLT Background Color Register to select white (in 16 bpp white = FFFFh). REG[115h] is set to FFh and REG[114h] is set to FFh.
- 8. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[101h] is set to 01h.
- 9. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

REG[10Dh] is set to 02h and REG[10Ch] is set to 80h.

10. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[100h] is set to 80h.

11. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.2.12 Transparent Move BitBLT with Color Expansion

The Transparent Move BitBLT with Color Expansion is virtually identical to the Move BitBLT with Color Expansion. The background color is ignored and bits in the monochrome source bitmap set to 0 are not color expanded.

S1D13806

10.2.13 Read BitBLT

This Read BitBLT increases the speed of transferring data from the display buffer to system memory. This BitBLT complements the Write BitBLT and is typically used to save a part of the display buffer to the system memory. Once the Read BitBLT begins, the BitBLT engine remains active until all the pixels have been read.

The BitBLT engine requires the address to copy from and the size of the area to copy (width x height). The BitBLT engine expects to read a certain number of words. For 16 bpp color depths, the number of words is the same as the number of pixels due to the fact that each pixel is one WORD wide. The number of WORD reads the BitBLT engine expects is calculated using the following formula.

```
nWORDS = nPixels = BitBLT Width \times BitBLT Height
```

For 8 bpp color depths, the formula must take into consideration that the BitBLT engine accepts only WORD accesses and each pixel is one BYTE. The BitBLT engine needs to know whether the first pixel of each line is stored in the low byte or high byte. This is determined by bit 0 of the Destination Start Address Register 0 (REG[108h]). If the Destination Phase is 1 (bit 0 of the Destination Start Address Register 0 is set), the first pixel of each line is placed in the high byte of the WORD and the contents of the low byte is undefined. If the Destination Phase is 0, the first pixel is placed in the low byte and the second pixel is placed in the high byte. Depending on the Destination Phase and the BitBLT Width, the last WORD in each line may contain only one pixel. It is always in the low byte if more than one WORD per line is required. The number of WORD reads the BitBLT engine expects for 8 bpp color depths is shown in the following formula.

nWORDS =
$$((BLTWidth + 1 + DestinationPhase) \div 2) \times BLTHeight$$

Example 15: Read 100 x 20 pixels at the screen coordinates x = 25, y = 38 and save to system memory. Assume a display of 640x480 at a color depth of 8 bpp.

1. Calculate the source address (upper left corner of the screen BitBLT rectangle), using the formula.

```
SourceAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (38 \times 640) + (25 \times 1)
= 24345
= 5F19h
```

where:

BytesPerPixel = 1 for 8 bpp BytesPerPixel = 2 for 16 bpp ScreenStride = DisplayWidthInPixels × BytesPerPixels = 640 for 8 bpp

Program the BitBLT Source Start Address Registers. REG[106h] is set to 00h, REG[105h] is set to 5Fh, and REG[104h] is set to 19h.

amples

•

- 2. Program the BitBLT Width Registers to 100 1. REG[111h] is set to 00h and REG[110h] is set to 63h (99 decimal).
- 3. Program the BitBLT Height Registers to 20 1. REG[113h] is set to 00h and REG[112h] is set to 13h (19 decimal).
- 4. Program the Destination Phase in the BitBLT Destination Start Address Register. In this example, the data is WORD aligned, so the destination phase is 0. REG[108h] is set to 0.
- 5. Program the BitBLT Operation to select the Read BitBLT. REG[103h] is set to 01h.
- 6. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set to 00h.
- 7. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride
$$\div$$
 2
= 640 \div 2
= 320
= 140h

REG[10Dh] is set to 01h and REG[10Ch] is set to 40h.

8. Calculate the number of WORDS the BitBLT engine expects to receive.

nWORDS =
$$((BLTWidth + 1 + DestinationPhase) \div 2) \times BLTHeight$$

= $(100 + 1 + 0) \div 2 \times 20$
= 1000
= $3E8h$

9. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation **and wait for the BitBLT engine to start**. REG[100h] is set to 80h, then wait until REG[100h] bit 7 returns a 1.

10. Prior to reading all nWORDS from the BitBLT FIFO, confirm the BitBLT FIFO is not empty (REG[100h] bit 4 returns a 1). If the BitBLT FIFO Not Empty Status returns a 1 and the BitBLT FIFO Half Full Status returns a 0 then you can read up to 8 WORDS. If the BitBLT FIFO Full Status returns a 1, read up to 16 WORDS. If the BitBLT FIFO Not Empty Status returns a 0 (the FIFO is empty), do not read from the BitBLT FIFO until it returns a 1.

The following table summarizes how many words can be read from the BitBLT FIFO.

BitBL	Word Reads		
FIFO Not Empty Status	Available		
0	0	0	0 (do not read)
1	0	0	up to 8
1	1	0	8
1	1	1	16

Table 10-7: Possible BitBLT FIFO Reads

11. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.

Note

The order of register initialization is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

10.3 S1D13806 BitBLT Synchronization

A BitBLT operation can only be started if the BitBLT engine is not busy servicing another BitBLT. Before a new BitBLT operation is started, software must confirm the BitBLT Active Status bit (REG[100h] bit 7) returns a 0. Software can either test this bit **after** each BitBLT operation, or **before** each BitBLT operation.

Testing the BitBLT Status After

Testing the BitBLT Active Status after starting a new BitBLT is simpler and less prone to errors.

To test after each BitBLT operation, perform the following.

- 1. Program and start the BitBLT engine.
- 2. Wait for the current BitBLT operation to finish -- Poll the BitBLT Active Status bit (REG[100h] bit) until it returns a 0.
- 3. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.
- 4. Continue the program.

Testing the BitBLT Status Before

Testing the BitBLT Active Status before starting a new BitBLT results in better performance, as both CPU and BitBLT engine can be running at the same time. This is most useful for BitBLTs that are self completing (once started they don't require any CPU assistance). While the BitBLT engine is busy, the CPU can do other tasks. To test before each BitBLT operation, perform the following.

- 1. Wait for the current BitBLT operation to finish -- Poll the BitBLT Active Status bit (REG[100h] bit 7) until it returns a 0.
- 2. Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT memory area to shutdown the BitBLT engine.
- 3. Program and start the new BitBLT operation.
- 4. Continue the program (CPU and BitBLT engine work independently).

However, this approach can pose problems when mixing CPU and BitBLT access to the display buffer. For example, if the CPU writes a pixel while the BitBLT engine is running and the CPU writes a pixel before the BitBLT finishes, the pixel may be overwritten by the BitBLT. To avoid this scenario, always assure no BitBLT is in progress before accessing the display buffer with the CPU, or don't use the CPU to access display buffer at all.

10.4 S1D13806 BitBLT Known Limitations

The S1D13806 BitBLT engine has the following limitations.

- BitBLT Width must be greater than 0.
- BitBLT Height must be greater than 0.
- The BitBLT engine is not SwivelView aware. If BitBLTs are used when SwivelView is enabled, the horizontal and vertical coordinates are swapped. It may be possible to recalculate these coordinates allowing use of some of the BitBLT functions. However the coordinate transformations required may nullify the benefits of the BitBLT.
- The Pattern Fill with ROP (0Ch or 03h) and Transparent Pattern Fill are designed such that the BitBLT Width must be > 1 for 16 bpp color depths and > 2 for 8 bpp.
- One word must be read from the BitBLT area between each BitBLT operation.

10.5 Sample Code

Sample code demonstrating how to program the S1D13806 BitBLT engine is provided in the file **86sample.zip**. This file is available on the internet at www.erd.epson.com.

11 CRT/TV Considerations

The S1D13806 is capable of driving an LCD panel, CRT display, or a TV monitor. However, only an LCD panel and CRT or an LCD panel and TV can be driven simultaneously. It is not possible to drive both a CRT and TV at the same time.

The horizontal and vertical timing requirements of LCD panels allows for a wide timing variance. In comparison, a CRT display has very strict timing requirements with even a very small timing variance degrading the displayed image. TV monitors require timings based on the NTSC or PAL specifications.

The utility **1386cfg.exe** can be used to generate a header file containing the register values required for CRT/TV or LCD panel timings. For further information on **1386cfg.exe**, see the *1386CFG Users Manual*, document number X28B-B-001-xx.

11.1 CRT Considerations

CRT timings are based on the VESA Monitor Timing Specifications. The VESA specification details all the parameters of the display and non-display times, as well as the input clock required to meet the times. Failing to use correct timings can result in an unsynchronized image on a particular monitor, which can permanently damage the monitor. Virtually all VGA monitors sync if VESA timings are used.

For more information on VESA timings, contact the Video Electronics Standards Association on the internet at www.vesa.org.

11.1.1 Generating CRT timings with 1386CFG

1386cfg.exe will generate correct VESA timings for 640x480 and 800x600 if provided the correct VESA input clock. The following timings can be generated:

- 640x480 @ 60Hz (Input Clock = 25.175 MHz)
- 640x480 @ 72Hz (Input Clock = 31.500 MHz)
- 640x480 @ 75Hz (Input Clock = 31.500 MHz)
- 640x480 @ 85 Hz (Input Clock = 36.000 MHz)
- 800x600 @ 56 Hz (Input Clock = 36.000 MHz)
- 800x600 @ 60 Hz (Input Clock = 40.000 MHz)

11.1.2 DAC Output Level Selection

When the CRT is active, the DAC Output Level Select bit (REG[05Bh] bit 3) can be used to double values output to the DAC. This would normally result in very bright colors on the display, but if IREF is reduced at the same time the display will remain at its intended brightness and power consumption is reduced.

11.1.3 Examples

Example 16: Enable the CRT display. Assume the CRT timing registers are already programmed.

- 1. Confirm the TV PAL/NTSC Output Select bit is clear. REG[05Bh] bit 0 is set to 0.
- 2. Confirm the CRT and TV displays are disabled. REG[1FCh] bits 2-1 are set to 0.
- 3. Enable the CRT. REG[1FCh] is set to 1.

Sample code demonstrating how to enable the CRT display is provided in the file **86_crt.c** (part of the file **86sample.zip**). This file is available on the internet at www.erd.epson.com.

11.2 TV Considerations

TV timings are based on either the NTSC or PAL specifications. The TV display can be output in either composite video or S-video format.

11.2.1 NTSC Timings

NTSC timings require a 14.318 MHz input clock. With the correct input clock the following resolutions are supported.

- 640x480
- 696x436
- 752x484

11.2.2 PAL Timings

PAL timings require a 17.734 MHz input clock. With the correct input clock the following resolutions are supported.

- 640x480
- 800x572
- 856x518
- 920x572

11.2.3 TV Filters

The S1D13806 is designed with three filters which improve TV picture quality.

- Flicker Filter.
- Chrominance Filter.
- Luminance Filter.

Each filter is independent and can be enabled/disabled separately. The TV picture quality varies depending on the actual picture displayed (static image, moving image, number of colors etc.) and may be improved using the filters.

Flicker Filter

The Flicker Filter is controlled by the Display Mode Select bits (REG[1FCh] bits 2-0). It reduces the "flickering" effect seen on interlaced displays caused by sharp vertical image transitions that occur over one line (e.g. one pixel high lines, edges of window boxes, etc.). The Flicker Filter may be used to for both composite video and S-video formats.

Note

The CRT/TV PCLK 2X Enable bit (REG[018h] bit 7) must be set to 1 when the Flicker Filter is enabled.

Chrominance Filter

The Chrominance Filter is controlled by the TV Chrominance Filter Enable bit (REG[05Bh] bit 5). It adjusts the color of the TV, reducing the "ragged edges" seen a the boundaries between sharp color transitions. The Chrominance Filter may improve the TV picture quality when in composite video format.

Luminance Filter

The Luminance Filter is controlled by the TV Luminance Filter Enable bit (REG[05Bh] bit 4). It adjusts the brightness of the TV, reducing the "rainbow-like" colors at the boundaries between sharp brightness transitions. The Luminance Filter may improve the TV picture quality when in composite video format.

For further information on the TV filters, see the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx.

11.2.4 Examples

Example 17: Enable the TV display and set the Flicker Filter. Assume the TV timing registers are already programmed.

- 1. Enable the TV with Flicker Filter enabled. REG[1FCh] is set to 06h.
- 2. Enable the CRT/TV PCLK 2X bit (REG[018h] bit 7). REG[018h] bit 7 is set to 1b.

Sample code demonstrating how to enable the TV display is provided in the file **86_tv.c** (part of the file **86sample.zip**). This file is available on the internet at www.erd.epson.com.

11.3 Simultaneous Display

The S1D13806 supports simultaneous display of an LCD panel and CRT or an LCD panel and TV. Both display images are completely independent. Each display can show separate areas of the display buffer and display different color depths. There are separate Look-Up Tables and Hardware Cursors/Ink Layers for both the LCD and CRT/TV. If desired, the LUTs for the LCD and CRT/TV may be written to simultaneously (REG[1E0h] bit 0 = 0).

Note

Not all combinations of panel and CRT/TV display resolutions are possible. For further information, see the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx.

12 MediaPlug

The S1D13806 is designed with support for MediaPlug. MediaPlug is a digital interface supporting the Winnov Videum camera. The Videum camera supports simultaneous video and audio capture of streaming (real-time) and still images. It also supports streaming live video at speeds near 30 frames per second on fast host systems (i.e. Pentium-2 300MHz or faster).

12.1 Programming

MediaPlug and the Winnov Videum camera are a proprietary design of Winnov. Due to the complexity of the digital interface, all software and drivers for the camera are provided by Winnov.

The MediaPlug interface on the S1D13806 must be enabled to function correctly. To enable the MediaPlug interface, CONF7 must be high (1) on the rising edge of RESET#. When the MediaPlug interface is enabled, **GPIO12 is controlled by the MediaPlug LCMD register, and the GPIO12 bits in both REG[005h] and REG[009h] have no effect**. Also when the MediaPlug interface is enabled, the camera power (VMPEPWR) is controlled by GPIO12 pin.

The MediaPlug LCMD 16-bit register REG[1000h] contains status bits which can be read by software. For further information on these status bits, see the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx.

The MediaPlug IC Revision bits (REG[1000h] bits 11-8) contain the revision of the interface. The 16-bit value read from REG[1000h] should be masked with 0F00h and compared with 0300h (the current revision of the interface).

The MediaPlug Cable Detected Status bit (REG[1000h] bit 7) determines if a camera is connected to the MediaPlug interface. When this bit returns a 0, a camera is connected. When this bit returns a 1, a camera is not connected.

The MediaPlug Power Enable to Remote bit (REG[1000h], bit 1) controls the power to the remote camera. GPIO12 is controlled by this bit when the MediaPlug interface is enabled. Writing this bit is necessary only when software needs to control the GPIO12 pin.

12.2 Considerations

Software can determine if the MediaPlug interface is enabled or disabled by reading the Config Status Register (REG[00Ch]) and masking the data with 80h. If the masked result equals 80h, the MediaPlug Interface is enabled.

The MediaPlug interface requires a source clock between 8MHz and 19MHz to operate (optimal is 14.318MHz). By default, the MediaPlug software assumes a 14.318MHz frequency is available on CLKI2. If the frequency of CLKI2 is changed, software should reprogram the MediaPlug Clock Register (REG[01Ch]) to select a clock source that is suitable, or program the clock divide bits to obtain a frequency within the correct range.

If the S5U13806B00x evaluation board is used, the clock chip should be programmed to support a valid clock for the MediaPlug interface. A HAL function is available which programs the clock chip for the MediaPlug interface.

13 Identifying the S1D13806

The S1D13806 can only be identified once the Memory/Register Select bit is set to 0. The steps to identify the S1D13806 are:

- 1. Set the Memory/Register Select bit to 0 by writing 00h to REG[001h].
- 2. Read REG[000h].
- 3. The production version of the S1D13806 will return a value of 1Dh (00011101b).
- 4. The product code is 7 (000111b based on bits 7-2).
- 5. The revision code is 1 (01b based on bits 1-0).

14 Hardware Abstraction Layer (HAL)

The HAL is a processor independent programming library designed to help port applications and utilities from one S1D13x0x product to another. Epson has provided this library as a result of developing test utilities for the S1D13x0x LCD controller products.

The HAL contains functions which are designed to be consistent between S1D13x0x products, but as the semiconductor products evolve, so must the HAL; consequently there are some differences between HAL functions for different S1D13x0x products.

Note

As the S1D13x0x line of products changes, the HAL may change significantly or cease to be a useful tool. Seiko Epson reserves the right to change the functionality of the HAL or discontinue its use if no longer required.

14.1 API for 1386HAL

This section is a description of the HAL library Application Programmers Interface (API). Updates and revisions to the HAL may include new functions not included in the following documentation.

Table 14-1: HAL Functions

Function	Function Description				
Initialization					
seRegisterDevice	Registers the S1D13806 parameters with the HAL. seRegisterDevice MUST be the first HAL function called by an application.				
selnitReg	Initializes the registers, LUT, and allocates memory for default surfaces.				
seHalTerminate	Frees up memory allocated by the HAL before the application exits.				
seGetHalVersion	Returns HAL library version information.				
seGetId	Identifies the controller by interpreting the revision code register.				
General HAL Support:					
seGetInstalledMemorySize	Returns the total size of the display buffer memory.				
seGetAvailableMemorySize	Determines the last byte of display memory, before the Dual Panel buffer, available to ar application.				
seGetResolution seGetLcdResolution seGetCrtResolution seGetTvResolution	Retrieve the width and height of the physical display device.				
seGetBytesPerScanline seGetLcdBytesPerScanline seGetCrtBytesPerScanline seGetTvBytesPerScanline	Returns the number of bytes in each line of the displayed image. Note that the displayed image may be larger than the physical size of the LCD/CR/TV.				
seSetPowerSaveMode	Sets/resets power save mode.				
seGetPowerSaveMode	Returns the current power save mode.				
seCheckEndian	Retrieves the "endian-ness" of the host CPU platform.				
seGetLcdOrientation	Returns the SwivelView orientation of the LCD panel.				
seDelay	Delays the given number of seconds before returning.				

Table 14-1: HAL Functions (Continued)

Function	Description				
seDisplayBlank seDisplayLcdBlank seDisplayCrtBlank seDisplayTvBlank	Blank/unblank the display by disabling/enabling the FIFO.				
seDisplayEnable seLcdDisplayEnable seCrtDisplayEnable seTvDisplayEnable	Enable/disable the display.				
	Advanced HAL Functions:				
seBeginHighPriority	Increase thread priority for time critical routines.				
seEndHighPriority	Return thread priority to normal.				
seSetClock	Set the programmable clock.				
	Surface Support				
seGetSurfaceDisplayMode	Returns the display surface associated with the active surface.				
seGetSurfaceSize	Returns the number of bytes allocated to the active surface.				
seGetSurfaceLinearAddress	Returns the linear address of the start of display memory for the active surface.				
seGetSurfaceOffsetAddress	Returns the offset from the start of display memory to the start of surface memory.				
seAllocLcdSurface seAllocCrtSurface seAllocTvSurface	Use to manually allocate display buffer memory for a surface.				
seFreeSurface	Free any allocated surface memory.				
seSetLcdAsActiveSurface seSetCrtAsActiveSurface seSetTvAsActiveSurface	Call one of these functions to change the active surface.				
	Register Access:				
seReadRegByte	Reads one register using a byte access.				
seReadRegWord	Reads two registers using a word access.				
seReadRegDword	Reads four registers using a dword access.				
seWriteRegByte	Writes one register using a byte access.				
seWriteRegWord	Writes two registers using a word access.				
seWriteRegDword	Writes four registers using a dword access.				
	Memory Access				
seReadDisplayByte	Reads one byte from display memory.				
seReadDisplayWord	Reads one word from display memory.				
seReadDisplayDword	Reads one dword from display memory.				
seWriteDisplayBytes	Writes one or more bytes to display memory.				
seWriteDisplayWords	Writes one or more words to display memory.				
seWriteDisplayDwords	Writes one or more dwords to display memory.				
Color Manipulation:					
seWriteLutEntry seWriteLcdLutEntry seWriteCrtLutEntry seWriteTvLutEntry	Writes one RGB element to the lookup table.				

Table 14-1: HAL Functions (Continued)

Function	Description				
seReadLutEntry seReadLcdLutEntry seReadCrtLutEntry seReadTvLutEntry	Reads one RGB element from the lookup table.				
seWriteLut seWriteLcdLut seWriteCrtLut seWriteTvLut	Write the entire lookup table.				
seReadLut seReadLcdLut seReadCrtLut seReadTvLut	Read the entire lookup table.				
seGetBitsPerPixel seGetLcdBitsPerPixel seGetCrtBitsPerPixel seGetTvBitsPerPixel	Gets the color depth.				
seSetBitsPerPixel seSetLcdBitsPerPixel seSetCrtBitsPerPixel seSetTvBitsPerPixel seSetLcdCrtBitsPerPixel seSetLcdCrtBitsPerPixel	Sets the color depth. In addition to setting the control bits to set the color depth, this action sets a default lookup table for the selected color depth and allocates display buffer for the surfaces.				
	Virtual Display				
seVirtInit seLcdVirtInit seCrtVirtInit seTvVirtInit seLcdCrtVirtInit seLcdCrtVirtInit	Initialize a surface to hold an image larger than the physical display size. Also required for SwivelView 90° and 270°.				
seVirtPanScroll seLcdVirtPanScroll seCrtVirtPanScroll seTvVirtPanScroll seLcdCrtVirtPanScroll seLcdTvVirtPanScroll	Pan (right/left) and Scroll (up/down) the display device over the indicated virtual surface.				
Drawing					
seSetPixel seSetLcdPixel seSetCrtPixel seSetTvPixel	Set one pixel at the specified (x,y) co-ordinate and color.				
seGetPixel seGetLcdPixel seGetCrtPixel seGetTvPixel	Returns the color of the pixel at the specified (x,y) co-ordinate.				
seDrawLine seDrawCrtLine seDrawTvLine	Draws a line between two endpoints in the specified color				

Table 14-1: HAL Functions (Continued)

Function	Description			
seDrawRect	Docomption			
seDrawLcdRect seDrawCrtRect seDrawTvRect	Draws a rectangle. The rectangle can be outlined or filled.			
seDrawCircle seDrawLcdCircle seDrawCrtCircle seDrawTvCircle	Draws a circle of given radius and color at the specified center point.			
seDrawEllipse seDrawLcdEllipse seDrawCrtEllipse seDrawTvEllipse	Draws an ellipse centered on a given point with the specified horizontal and vertical radius.			
	Hardware Cursor			
selnitCursor selnitLcdCursor selnitCrtCursor selnitTvCursor	Prepares the hardware cursor for use.			
seFreeCursor seFreeLcdCursor seFreeCrtCursor seFreeTvCursor	Releases the memory allocated to the hardware cursor by the cursor init function.			
seEnableCursor seEnableLcdCursor seEnableCrtCursor seEnableTvCursor	Enable (show) or disable (hide) the hardware cursor.			
seGetCursorLinearAddress seGetLcdCursorLinearAddress seGetCrtCursorLinearAddress seGetTvCursorLinearAddress	Returns the linear address of the start of the cursor.			
seGetCursorOffsetAddress seGetLcdCursorOffsetAddress seGetCrtCursorOffsetAddress seGetTvCursorOffsetAddress	Returns the offset from the start of display memory to the start of the cursor memory.			
seMoveCursor seMoveLcdCursor seMoveCrtCursor seMoveTvCursor	Moves the top-left corner of the hardware cursor to the specified (x,y) co-ordinates.			
seSetCursorColor seSetLcdCursorColor seSetCrtCursorColor seSetTvCursorColor	Allows the application to set the color values for either of the two changeable elements of the hardware cursor.			
seSetCursorPixel seSetLcdCursorPixel seSetCrtCursorPixel seSetTvCursorPixel	Set one pixel at the specified (x,y) co-ordinate within the hardware cursor.			
seDrawCursorLine seDrawLcdCursorLine seDrawCrtCursorLine seDrawTvCursorLine	Draws a line between two endpoints within the hardware cursor, in the specified color.			

Table 14-1: HAL Functions (Continued)

Function	Description			
seDrawCursorRect seDrawLcdCursorRect seDrawCrtCursorRect seDrawTvCursorRect	Draws a hollow or filled rectangle within the hardware cursor.			
	Ink Layer			
selnitInk selnitLcdInk selnitCrtInk selnitTvInk	Prepares the hardware ink layer for use.			
seFreeInk seFreeCctInk seFreeTvInk	Frees memory allocated to the hardware ink layer.			
seEnableInk seEnableLcdInk seEnableCrtInk seEnableTvInk	Enable (show) or disable (hide) the hardware ink layer.			
seGetInkLinearAddress seGetLcdInkLinearAddress seGetCrtInkLinearAddress seGetTvInkLinearAddress	Returns the linear address of the start of the hardware ink layer.			
seGetInkOffsetAddress seGetLcdInkOffsetAddress seGetCrtInkOffsetAddress seGetTvInkOffsetAddress	Returns the offset from the start of display memory to the start of ink layer memory.			
seSetInkColor seSetLcdInkColor seSetCrtInkColor seSetTvInkColor	Allows the application to set the color values for either of the two changeable elements of the ink layer.			
seSetInkPixel seSetLcdInkPixel seSetCrtInkPixel seSetTvInkPixel	Set one pixel at the (x,y) co-ordinate within the ink layer.			
seDrawInkLine seDrawLcdInkLine seDrawCrtInkLine seDrawTvInkLine	Draws a line between two endpoints within the hardware ink layer.			
seDrawInkRect seDrawLcdInkRect seDrawCrtInkRect seDrawTvInkRect	Draws an outlined or solid rectangle within the hardware ink layer.			
Register/Display Memory				
seGetLinearDisplayAddress	Returns the linear address of the start of physical display memory.			
seGetLinearRegAddress	Returns the linear address of the start of S1D13806 control registers.			

14.2 Initialization

Initialization functions are normally the first functions in the HAL library that an application calls. These routine allow the application to learn a little about the controller and to prepare the HAL library for use.

int seRegisterDevice(const LPHAL_STRUC lpHalInfo)

Description: This function registers the S1D13806 device parameters with the HAL library. The device

parameters include such item as address range, register values, desired frame rate, and more which are stored in the HAL_STRUCT structure pointed to by lpHalInfo. Additionally this routine allocates system memory as address space for accessing registers and the

display buffer.

Parameters: lpHalInfo A pointer to a HAL_STRUCT structure. This structure

must be filled with appropriate values prior to calling

seRegisterDevice.

Return Value: ERR_OK operation completed with no problems

ERR_UNKNOWN_DEVICE The HAL was unable to locate the S1D13806.

ERR_FAILED The HAL was unable to map S1D13806 display memory

to the host platform.

In addition, on Win32 platforms, the following two error values may be returned:

ERR_PCI_DRIVER_- The HAL was unable to locate file **sed13xx.vxd**

NOT_FOUND

ERR_PCI_BRIDGE_- The driver file **sed13xx.vxd** was unable to locate the ADAPTER_NOT_FOUND PCI bridge adapter board attached to the evaluation board.

Note

seRegisterDevice() MUST be called before any other HAL functions.

int selnitReg(unsigned DisplayMode, unsigned Flags)

Description: This function initializes the S1D13806 registers, the LUT, assigns default surfaces and

allocates memory accordingly.

Parameters: DisplayMode Set this parameter according to the type of initialization desired.

Valid values for DisplayMode are:

0 Use the values configured by **1386cfg.exe**LCD Initialize for use with an LCD panel.
CRT Initialize for use with a monitor.
TV Initialize for use with a TV

LCD | CRT Initialize for both LCD panel and monitor.

LCD | TV Initialize for both LCD panel and TV.

Flags Provides additional information about how to perform the initialization.

Valid values for Flags are:

CLEAR_MEM Zero display memory as part of the initialization DISP_BLANK Blank the display, for aesthetics, during initialization.

Return Value: ERR_OK The initialization completed with no problems.

ERR_FAILED seInitReg failed to initialize the system correctly.

ERR_NOT_ENOUGH_MEMORYInsufficient display buffer.

ERR_CLKI_NOT_IN_TABLE Could not program CLKI in clock synthesizer because

selected frequency not in table.

ERR_CLKI2_NOT_IN_TABLE Could not program CLKI2 in clock synthesizer

because selected frequency not in table.

void seGetHalVersion(const char ** pVersion, const char ** pStatus, const char **pRevision)

Description: Retrieves the HAL library version information. By retrieving and displaying the HAL ver-

sion information along with application version information, it is possible to determine at

a glance whether the latest version of the software is being run.

Parameters: pVersion A pointer to the array to receive the HAL version code.

pStatus A pointer to the array to receive the HAL status code

A "B" designates a beta version of the HAL, a NULL indicates the

release version

pRevision A pointer to the array to receive the HAL revision status.

Return Value: The version information is returned as the contents of the pointer arguments. A typical

return might be:

*pVersion == "1.01" (HAL version 1.01)

*pStatus == "B" (BETA release)

*pRevision == "5" (fifth update of the beta)

int seHalTerminate(void)

Description: Frees up memory allocated by HAL before application exits.

Parameters: none.

Return Value: ERR_OK HAL is now ready for application to exit.

ERR_PCI_DRIVER_NOT_FOUND Could not find PCI driver (Intel Windows platform

only).

ERR_PCI_BRIDGE_ADAPTER_NOT_FOUND Could not find PCI Bridge Adapter

board (Intel Windows platform only).

ERR_FAILED Could not free memory.

int seGetId(int * pId)

Description: Reads the S1D13806 revision code register to determine the controller product and revi-

sion.

Parameters: pId A pointer to an integer to receive the controller ID. The value returned

is an interpreted version of the controller identification.

For the S1D13806 the return values are:

ID_S1D13806_REV0 S1D13806 Test Sample version. ID_S1D13806_REV1 S1D13806 Production version

ID_UNKNOWN The HAL was unable to identify the controller.

Return Value: ERR_OK The operation completed with no problems

ERR_UNKNOWN_DEVICE Return value when pID is ID_UNKNOWN.

14.2.1 General HAL Support

This category of HAL functions provide several essential services which do not readily group with other functions.

DWORD seGetInstalledMemorySize(void)

Description: This function returns the size of the display buffer in bytes.

Parameters: None

Return Value: The return value is the size of the display buffer in bytes (14 0000h for the S1D13806).

DWORD seGetAvailableMemorySize(void)

Description: This function returns an offset to the last byte memory, before the Dual Panel buffer,

accessible to an application.

An application can directly access memory from offset zero to the offset returned by this function. On most systems the return value will be the last byte of physical display memory. On systems configured for a dual STN panel the return value will account for the pres-

ence of the Dual Panel buffer.

Parameters: None.

Return Value: The return value is an offset to the last byte memory directly accessible to an application.

int seGetResolution(unsigned *Width, unsigned *Height) void seGetLcdResolution(unsigned *Width, unsigned *Height) void seGetCrtResolution(unsigned *Width, unsigned *Height) void seGetTvResolution(unsigned *Width, unsigned *Height)

Description: These functions return the width and height of the physical display device. Virtual dimen-

sions are not accounted for in the return value.

seGetResolution() returns the width and height of the active surface. If there is more than

one display associated with the surface then precedence is given to the LCD.

seGetLcdResolution() returns the width and height of the LCD panel. The width and

height are adjusted for SwivelView orientation.

seGetCrtResolution() and seGetTvResolution() return the width and height of the display indicated by the function name. The width and height are always in landscape orientation

for CRT and TV displays.

Parameters: Width A pointer to an unsigned integer which will receive the width, in pixels,

for the indicated surface.

Height A pointer to an unsigned integer which will receive the height, in pixels,

for the indicated surface.

Return Value: seGetResolution() returns one of the following:

ERR_OK Function completed successfully

ERR FAILED Returned when there is not an active display surface.

seGetLcdResolution(), seGetCrtResolution(), and seGetTvResolution() do not return any

value.

unsigned seGetBytesPerScanline(void) unsigned seGetLcdBytesPerScanline(void) unsigned seGetTvBytesPerScanline(void) unsigned seGetCrtBytesPerScanline(void)

Description: These functions return the number of bytes in each line of the displayed image. Note that

the displayed image may be larger than the physical size of the LCD/CRT/TV.

seGetBytesPerScanline() returns the number of bytes per scanline for the current active

surface.

seGetLcdBytesPerScanline(), seGetTvBytesPerScanline(), and seGetCrtBytesPerScanline() return the number of bytes per scanline for the surface indicated in the function

name.

To work correctly the S1D13806 registers must be initialized prior to calling any of these

routines.

Parameters: None.

Return Value: The return value is the "stride" or number of bytes from the first byte of one scanline to the

first byte of the next scanline. This value includes both the displayed and the non-dis-

played bytes on each logical scanline.

For SwivelView 90° and SwivelView 270° modes, the return value is either 1024 (8 bpp) or 2048 (16 bpp) to reflect the 1024 x 1024 virtual area of the rotated memory.

void seSetPowerSaveMode(BOOL Enable)

Description: This function enables or disables the power save mode.

When power save mode is enabled the S1D13806 reduces power consumption by making the displays inactive and ignoring memory accesses. Disabling power save mode re-

enables the video system to full functionality.

Parameters: Enable Call with Enable set to TRUE to set power save mode.

Call with Enable set to FALSE to disable power save mode.

Return Value: None.

BOOL seGetPowerSaveMode(void)

Description: seGetPowerSaveMode() returns the current state of power save mode.

Parameters: None.

Return Value: The return value is TRUE if power save mode is enabled. The return value is FALSE if

power save mode is not enabled.

int seCheckEndian(BOOL *ReverseBytes)

Description: This function returns the "endian-ness" of the CPU the application is running on.

Parameters: ReverseBytes A pointer to boolean value to receive the endian-ness of the system. On

return from this function ReverseBytes is FALSE if the CPU is little

endian (i.e. Intel). ReverseBytes will be TRUE if the CPU is

big-endian (i.e. Motorola)

Return Value: The return value is always ERR_OK.

unsigned seGetLcdOrientation(void)

Description: This function retrieves the SwivelView orientation of the LCD display.

The SwivelView status is read directly from the S1D13806 registers. Calling this function

when the LCD display is not initialized will result in an erroneous return value.

Note

Only the LCD interface supports SwivelView. A CRT/TV is always assumed to be in

LANDSCAPE mode.

Parameters: None.

Return Value: LANDSCAPE Not rotated.

ROTATE90 Display is rotated 90 degrees clockwise.

ROTATE180 Display is rotated 180 degrees clockwise.

ROTATE270 Display is rotated 270 degrees clockwise.

int seDelay(DWORD Seconds)

Description:

This function, intended for non-Intel platforms, delays for the specified number of seconds then returns to the calling routine. On several evaluation platforms it was not readily apparent where to obtain an accurate source of time delays. seDelay() was the result of the need to delay a specified amount of time on these platforms.

For non-Intel platforms, seDelay works by calculating and counting the number of vertical non-display periods in the requested delay time. This implies two conditions for proper operation:

a) The S1D13806 control registers must be configured to correct values.

b) Either the CRT or LCD display interface must be enabled.

For Intel platforms, seDelay() calls the C library time functions to delay the desired amount of time using the system clock.

Parameters: Seconds The number of seconds to delay for.

Return Value: ERR_OK Returned by all platforms at the completion of a successful delay.

ERR FAILED Returned by non-Intel platforms in which either the power save mode is

enabled or none of the displays is enabled.

void seDisplayBlank(BOOL Blank) void seDisplayLcdBlank(BOOL Blank) void seDisplayCrtBlank(BOOL Blank) void seDisplayTvBlank(BOOL Blank)

Description:

These functions blank the display by disabling the FIFO for the specified surface. Blanking the display is a fast convenient means of temporarily shutting down a display device.

For instance, updating the entire display in one write may produce a flashing or tearing effect. If the display is blanked prior to performing the update, the operation is perceived to be smoother and cleaner.

seDisplayBlank() will blank the display associated with the current active surface.

seDisplayLcdBlank(), seDisplayCrtBlank(), and seDisplayTvBlank() blank the display for the surface indicated in the function name.

Parameters: Blank Call with Blank set to TRUE to blank the display. Call with Blank set to

FALSE to un-blank the display.

void seDisplayEnable(BOOL Enable) void seLcdDisplayEnable(BOOL Enable) void seCrtDisplayEnable(BOOL Enable) void seTvDisplayEnable(BOOL Enable)

Description: These functions enable or disable the selected display device.

seDisplayEnable() enables or disables the display for the active surface.

seLcdDisplayEnable() enables or disables the LCD display.

seCrtDisplayEnable() enables or disables the CRT display. seCrtDisplayEnable() will disable CRT/TV PCLK 2X clock and as a side effect will disable TV, if the TV was enabled. In addition, seCrtDisplayEnable(), when enabling the CRT, sets the TV PAL/NTSC bit to 0 (required for CPT mode)

0 (required for CRT mode).

seTvDisplayEnable() enables or disables the TV display. If the CRT is enabled then seTvDisplayEnable() disables it. When seTvDisplayEnable is called, the TV flicker filter

is enabled or disabled based on the values saved by the configuration program.

Parameters: Enable Call with Enable set to TRUE to enable the display device. Call with

Enable set to FALSE to disable the device.

14.2.2 Advanced HAL Functions

The advanced HAL functions include a level of access that most applications will never need to access.

int seBeginHighPriority(void)

Description: Writing and debugging software under the Windows operating system greatly simplifies

the developing process for the S1D13806 evaluation system. One issue which impedes application programming is that of latency. Time critical operations (i.e. performance measurement) are not guaranteed any set amount of processor time.

This function raises the priority of the thread and virtually eliminates the question of latency for programs running on a Windows platform.

Note

The application should not leave it's thread running in a high priority state for long periods of time. As soon as a time critical operation is complete the application should call seEndHighPriorty().

Parameters: None.

Return Value: The priority nest count which is the number of times seBeginHighPriority() has been

called without a corresponding call to seEndHighPriority().

int seEndHighPriority(void)

Description: This function decreases the priority nest count. When this count reaches zero, the thread

priority of the calling application is set to normal.

After performing some time critical operation the application should call seEndHighPrior-

ity() to return the thread priority to a normal level.

Parameters: None.

Return Value: The priority nest count which is the number of times seBeginHighPriority() has been

called without a corresponding call to seEndHighPriority().

int seSetClock(CLOCKSELECT ClockSelect, FREQINDEX FreqIndex)

Description: Call seSetClock() to set the clock rate of the programmable clock.

Parameters: ClockSelect The ICD2061A programmable clock chip supports two output clock

signals. ClockSelect chooses which of the two output clocks to adjust.

Valid ClockSelect values for CLKI or CLKI2 (defined in hal.h).

FreqIndex FreqIndex is an enumerated constant and determines what the output

frequency should be.

Valid values for FreqIndex are:

FREQ_6000	6.000 MHz
FREQ_10000	10.000 MHz
FREQ_14318	14.318 MHz
FREQ_17734	17.734 MHz
FREQ_20000	20.000 MHz
FREQ_24000	24.000 MHz
FREQ_25000	25.000 MHz
FREQ_25175	25.175 MHz
FREQ_28318	28.318 MHz
FREQ_30000	30.000 MHz
FREQ_31500	31.500 MHz
FREQ_32000	32.000 MHz
FREQ_33000	33.000 MHz
FREQ_33333	33.333 MHz
FREQ_34000	34.000 MHz
FREQ_35000	35.000 MHz
FREQ_36000	36.000 MHz
FREQ_40000	40.000 MHz
FREQ_49500	49.500 MHz
FREQ_50000	50.000 MHz
FREQ_56250	56.250 MHz
FREQ_65000	65.000 MHz
FREQ_80000	80.000 MHz

Return Value:

ERR_OK The function completed with no problems.

ERR_FAILED seSetClock failed because of an invalid ClockSelect or an invalid

frequency index.

Note

The clock synthesizer is not exact in the frequency programming. Consequently, there is some error in the selected frequency. This error is not noticeable for LCD and CRT displays, but for TV an oscillator is recommended over the clock synthesizer. To deal with this situation, seSetClock, when called with a ClockSelect of CLKI2 and FreqIndex of FREQ_17734, causes the HAL will bypass the programmable clock and select the Feature Clock as the input clock source. This is done with the assumption that the application is setting up for TV output and the Feature Clock oscillator will provide a more stable clock for use with TV. (The feature oscillator must be 17.734 MHz)

14.2.3 Surface Support

The S1D13806 HAL library depends heavily on the concept of surfaces. Through surfaces the HAL tracks memory requirements of the attached display devices, hardware cursor and ink layers, and the Dual Panel buffer.

Surfaces allow the HAL to permit or fail function calls which change the geometry of the S1D13806 display memory. Most HAL functions either allocate surface memory or manipulate a surface that has been allocated.

The functions in this sections allow the application programmer a little greater control over surfaces.

int seGetSurfaceDisplayMode(void)

Description: This function determines the type of display associated with the current active surface.

Parameters: None.

Return Value: The return value indicates the active surface display type. Return values will be one of:

LCD The LCD panel is the active surface.
CRT The CRT display is the active surface.

TV The TV is the active display.

DWORD seGetSurfaceSize(void)

Description: This function returns the number of display memory bytes allocated to the current active

surface. The return value does not account for the size for the hardware cursor or ink layer

which may be associated with the surface.

Parameters: None.

Return Value: The return value is the number of bytes allocated to the current active surface.

The return value can be 0 if this function is called before initializing and making active a

surface.

DWORD seGetSurfaceLinearAddress(void)

Description: This function returns the linear address of the start of memory for the active surface.

Parameters: None.

Return Value: The return value is the linear address to the start of memory for the active surface. A linear

address is a 32-bit offset, in CPU address space.

The return value will be NULL if this function is called before a surface has been initial-

ized and made active.

DWORD seGetSurfaceOffsetAddress(void)

Description: This function returns the offset, from the first byte of display memory to the first byte of

memory associated with the active display surface.

Parameters:

None.

Return Value:

The return value is the offset, in bytes, from the start of display memory to the start of the active surface. An address of 0 indicates the surface starts in the first byte of display buffer memory.

Note

This function also returns 0 if there is no memory allocated to an active surface. You must ensure that memory is allocated before calling seGetSurfaceOffsetAddress().

DWORD seAllocLcdSurface(DWORD Size) DWORD seAllocCrtSurface(DWORD Size) DWORD seAllocTvSurface(DWORD Size)

Description: These functions allocate display buffer memory for a surface. If the surface previously had

memory allocated then that memory is first released. Newly allocated memory is not

cleared.

Call seAllocLcdSurface(), seAllocCrtSurface(), or seAllocTvSurface() to allocate the

requested amount of display memory for the indicated surface.

These functions allow an application to bypass the automatic surface allocation which

occurs when functions such as seInitReg() or seSetBitsPerPixel() are called.

Parameters: Size The size in bytes of the requested memory block.

Return Value: If the memory allocation succeeds then the return value is the linear address of the allo-

cated memory. If the allocation fails then the return value is 0. A linear address is a 32-bit

offset, in CPU address space.

int seFreeSurface(DWORD LinearAddress)

Description: This function can be called to free any previously allocated display buffer memory.

This function is intended to complement seAllocLcdSurface(), seAllocCrtSurface(), and seAllocTvSurface(). seFreeSurface can be used to free memory allocated for the hardware cursor and ink layer; however, it is recommended that seFreeCursor() or seFreeInk() be called for these surfaces.

After calling one of these functions, the application must switch the active surface to one

which has memory allocated before calling any drawing functions.

Parameters: LinearAddress A valid linear address. The linear address is a dword returned to the

application by any surface allocation call.

Return Value: ERR OK Function completed successfully.

ERR_FAILED Function failed.

void seSetLcdAsActiveSurface(void) void seSetCrtAsActiveSurface(void) void seSetTvAsActiveSurface(void)

Description: These functions set the active surface to the display indicated in the function name.

Before calling one of these surface selection routines, that surface must have been allo-

cated using any of the surface allocation methods.

Parameters: None.

Return Value: None.

14.2.4 Register Access

The Register Access functions provide convenient method of accessing the control registers of the S1D13806 controller using byte, word or dword widths.

To reduce the overhead of the function call as much as possible, two steps were taken:

- To gain maximum efficiency on all compilers and platforms, byte and word size arguments are passed between the application and the HAL as unsigned integers. This typically allows a compiler to produce more efficient code for the platform.
- Index alignment for word and dword accesses is not tested. On non-Intel platforms attempting to access a word or dword on a non-aligned boundary may result in a processor trap. It is the responsibility of the caller to ensure that the requested index offset is correctly aligned for the target platform.

unsigned seReadRegByte(DWORD Index)

Description: This routine reads the register specified by Index and returns the value.

Parameters: Index Offset, in bytes, to the register to read.

Return Value: The return value is the byte read from the register.

unsigned seReadRegWord(DWORD Index)

Description: This routine read two consecutive registers as a word and returns the value.

Parameters: Index Offset to the first register to read.

Return Value: The return value is the word read from the S1D13806 registers.

DWORD seReadRegDword(DWORD Index)

Description: This routine reads four consecutive registers as a dword and returns the value.

Parameters: Index Offset to the first of the four registers to read. **Return Value:** The return value is the dword read from the S1D13806 registers.

void seWriteRegByte(DWORD Index, unsigned Value)

Description: This routine writes Value to the register specified by Index.

Parameters: Index Offset to the register to be written

Value The value, in the least significant byte, to write to the register

void seWriteRegWord(DWORD Index, unsigned Value)

Description: This routine writes the word contained in Value to the specified index.

Parameters: Index Offset to the register pair to be written.

Value The value, in the least significant word, to write to the registers.

Return Value: None.

void seWriteRegDword(DWORD Index, DWORD Value)

Description: This routine writes the value specified to four registers starting at Index.

Parameters: Index Offset to the first of four registers to be written to.

Value The dword value to be written to the registers.

14.2.5 Memory Access

The Memory Access functions provide convenient method of accessing the display memory on an S1D13806 controller using byte, word or dword widths.

To reduce the overhead of these function calls as much as possible, two steps were taken:

- To gain maximum efficiency on all compilers and platforms, byte and word size arguments are passed between the application and the HAL as unsigned integers. This typically allows a compiler to produce more efficient code for the platform.
- Offset alignment for word and dword accesses is not tested. On non-Intel platforms attempting to access a word or dword on a non-aligned boundary may result in a processor trap. It is the responsibility of the caller to ensure that the requested offset is correctly aligned for the target platform.
- These functions will not swap bytes if the endian of the host cpu differs from the S1D13806 (the S1D13806 is little-endian).

unsigned seReadDisplayByte(DWORD Offset)

Description: Reads a byte from the display buffer memory at the specified offset and returns the value.

Parameters: Offset Offset, in bytes, from start of the display buffer to the byte to read.

Return Value: The return value, in the least significant byte, is the byte read from display memory.

unsigned seReadDisplayWord(DWORD Offset)

Description: Reads one word from display buffer memory at the specified offset and returns the value.

Parameters: Offset Offset, in bytes, from start of the display buffer to the word to read.

Return Value: The return value, in the least significant word, is the word read from display memory.

DWORD seReadDisplayDword(DWORD Offset)

Description: Reads one dword from display buffer memory at the specified offset and returns the value.

Parameters: Offset Offset, in bytes, from start of the display buffer to the dword to read.

Return Value: The DWORD read from display memory.

void seWriteDisplayBytes(DWORD Offset, unsigned Value, DWORD Count)

Description: This routine writes one or more bytes to the display buffer at the offset specified by Offset.

Parameters: Offset Offset, in bytes, from start of display memory to the first byte to be

written.

Value An unsigned integer containing the byte to be written in the least

significant byte.

Count Number of bytes to write. All bytes will have the same value.

void seWriteDisplayWords(DWORD Offset, unsigned Value, DWORD Count)

Description: This routine writes one or more words to display memory starting at the specified offset.

Parameters: Offset Offset, in bytes, from the start of display memory to the first word to

write.

Value An unsigned integer containing the word to written in the least

significant word.

Count Number of words to write. All words will have the same value.

Return Value: None.

void seWriteDisplayDwords(DWORD Offset, DWORD Value, DWORD Count)

Description: This routine writes one or more dwords to display memory starting at the specified offset.

Parameters: Offset Offset, in bytes, from the start of display memory to the first dword to

write.

Value The value to be written to display memory.

Count Number of dwords to write. All dwords will have the same value.

14.2.6 Color Manipulation

The functions in the Color Manipulation section deal with altering the color values in the Look-Up Table directly through the accessor functions and indirectly through the color depth setting functions.

Keep in mind that all lookup table data is contained in the upper nibble of each byte.

void seWriteLutEntry(int Index, BYTE *pRGB) void seWriteLcdLutEntry(int Index, BYTE *pRGB) void seWriteCrtLutEntry(int Index, BYTE *pRGB) void seWriteTvLutEntry(int Index, BYTE *pRGB)

Description: These routines write one lookup table entry to the specified index of the lookup table.

seWriteLutEntry() writes to the specified index of the current active surface. See seSetL-cdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about changing the active surface.

seWriteLcdLutEntry(), seWriteCrtLutEntry() and seWriteTvLutEntry() modify one entry of the lookup table of the surface indicated in by the function name.

Parameter: Index Offset to the lookup table entry to be modified (i.e. a 0 will write the

first entry and a 255 will write the last lookup table entry).

pRGB A pointer to a byte array of data to write to the lookup table. The array

must consist of three bytes; the first byte contains the red value, the second byte contains the green value and the third byte contains the

blue value.

void seReadLutEntry(int Index, BYTE *pRGB) void seReadLcdLutEntry(int Index, BYTE *pRGB) void seReadCrtLutEntry(int Index, BYTE *pRGB) void seReadTvLutEntry(int Index, BYTE *pRGB)

Description: These routines read one lookup table entry and return the results in the byte array pointed

to by pRGB.

 $seReadLutEntry()\ reads\ the\ specified\ index\ from\ the\ lookup\ table\ of\ the\ current\ active\ surface.$

Surface() for information about changing the active surface.

 $seReadLcdLutEntry(),\,seReadCrtLutEntry(),\,and\,seReadTvLutEntry()\,read\,one\,entry$

from the lookup table for the surface indicated by the function name.

Parameter: Index Offset to the lookup table entry to be read. (i.e. setting index to 2 returns

the value of the third RGB element of the lookup table).

pRGB A pointer to an array to receive the lookup table data. The array must be

at least three bytes long. On return from this function the first byte of the array will contain the red data, the second byte will contain the

green data and the third byte will contain the blue data.

Return Value: None.

void seWriteLut(BYTE *pRGB, int Count) void seWriteLcdLut(BYTE *pRGB, int Count) void seWriteCrtLut(BYTE *pRGB, int Count) void seWriteTvLut(BYTE *pRGB, int Count)

Description: These routines write one or more lookup table entries starting at offset zero.

seWriteLut() modifies *Count* entries in the current active surface. See seSetLcdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about changing the active surface.

seWriteLcdLut(), seWriteCrtLut(), and seWriteTvLut() modifies the lookup table for the surface indicated in the function name.

These routines are intended to allow setting as many lookup table entries as the current color depth allows.

Parameter: pRGB A pointer to an array of lookup table entry values to write to the LUT.

Each lookup table entry must consist of three bytes. The first byte must contain the red value, the second byte must contain the green value and

the third byte must contain the blue value.

Count The number of lookup table entries to modify.

void seReadLut(BYTE *pRGB, int Count) void seReadLcdLut(BYTE *pRGB, int Count) void seReadCrtLut(BYTE *pRGB, int Count) void seReadTvLut(BYTE *pRGB, int Count)

Description: This routine reads one or more lookup table entries and returns the result in the array

pointed to by pRGB. The read always begins at the first lookup table entry.

seReadLut() reads the first *Count* lookup table entries from the current active surface. See seSetLcdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about changing the active surface.

seReadLcdLut(), seReadCrtLut(), and seReadTvLut() read the first *Count* entries from the surface indicated by the function name.

This routine allows reading all the lookup table elements used by the current color depth in one library call.

Parameters: pRGB A pointer to an array of bytes large enough to hold the requested

number of lookup table entries. Each lookup table entry consists of three bytes; the first byte will contain the red data, the second the green

data and the third the blue data.

Count The number of lookup table entries to read.

Return Value: None.

DWORD seSetBitsPerPixel(unsigned BitsPerPixel)
DWORD seSetLcdBitsPerPixel(unsigned BitsPerPixel)

DWORD seSetCrtBitsPerPixel(unsigned BitsPerPixel)

DWORD seSetTvBitsPerPixel(unsigned BitsPerPixel)

DWORD seSetLcdCrtBitsPerPixel(unsigned BitsPerPixel)

DWORD seSetLcdTvBitsPerPixel(unsigned BitsPerPixel)

Description: These functions change the color depth of the display and update the appropriate LUT.

Display memory is automatically released and then reallocated as necessary for the dis-

play size.

seSetBitsPerPixel() changes the bpp mode for the active surface. Memory is reassigned

according to the descriptions for each of the following mode sets.

seSetLcdBitsPerPixel() changes the bpp mode for the panel display. This function uses the current register settings for SwivelView to determine the amount of memory to allocate,

and what starting register addresses are required.

Note

seSetLcdBitsPerPixel() frees CRT/TV memory in order to guarantee the LCD image starts at the beginning of display buffer memory.

seSetCrtBitsPerPixel() and seSetTvBitsPerPixel() change the bpp mode for the indicated display device. These functions ignore the rotate90 and rotate180 register bits. Memory is allocated only for the landscape mode.

seSetLcdCrtBitsPerPixel() and seSetLcdTvBitsPerPixel() change the color depth for a surface which combines LCD and CRT/TV. SwivelView 90° or 270° are disabled. If the display resolution is not the same for the two displays then memory is allocated based on the larger of the two.

IMPORTANT

When the LCD color depth is changed, memory allocated for the display buffer and ink layer/hardware cursors is freed and the display buffer memory is reassigned. The application must redraw the display and re-initialize the cursor/ink and redraw after calling seSet-BitsPerPixel().

seSetLcdCrtBitsPerPixel(), and seSetLcdTvBitsPerPixel() will free all allocated memory for all displays and all ink layers/hardware cursors, then allocate memory only for the display(s) mentioned in the function name. The cursor/ink must be re-initialized and restored after making one of these calls.

If the active surface is the panel then seSetBitsPerPixel() will free all allocated memory for all displays and all ink layers/hardware cursors, then allocate memory ONLY for the active surface (LCD). If the active surface is the CRT or TV, seSetBitsPerPixel() will free memory only for the active surface (CRT or TV), and then reallocate memory for this surface as required.

Parameters: BitsPerPixel

The new color depth. BitsPerPixel can be one of the following:

4, 8, 16.

Return Value:

The return value is the 32-bit offset to the start of the surface display memory. If there is an error, the return value is 0. A linear address is the 32-bit offset, in CPU address space, where the application can directly read or write display memory.

The thirty-two bit address must be converted to a segment:offset for use with a 16-bit Intel platform.

unsigned seGetBitsPerPixel(void) unsigned seGetLcdBitsPerPixel(void) unsigned seGetCrtBitsPerPixel(void) unsigned seGetTvBitsPerPixel(void);

Description: These functions return the current color depth for the associated display surface.

seGetBitsPerPixel() returns the color depth for the currently active surface.

seGetLcdBitsPerPixel(), seGetCrtBitsPerPixel(), and seGetTvBitsPerPixel() return the

color depth for the surface indicated in the function name.

Parameters: None.

Return Value: The color depth of the surface. This value will be 4, 8, or 16.

14.2.7 Virtual Display

int seVirtInit(DWORD Width, DWORD Height)
int seLcdVirtInit(DWORD Width, DWORD Height)
int seCrtVirtInit(DWORD Width, DWORD Height)
int seTvVirtInit(DWORD Width, DWORD Height)
int seLcdCrtVirtInit(DWORD Width, DWORD Height)
int seLcdTvVirtInit(DWORD Width, DWORD Height)

Description:

These functions prepare the S1D13806 to display a virtual image.

"Virtual Image" describes the condition where the image contained in display memory is larger than the physical display. In this situation the physical display is used as a window into the larger display memory area (display surface). Panning (right/left) and scrolling (up/down) are used to move the display in order to view the entire image a portion at a time.

seVirtInit() prepares the current active surface for a virtual image display. Memory is allocated based on width, height and the current color depth.

seLcdVirtInit() initializes and allocates memory for the LCD based on width and height and color depth. If the panel surface is rotated 90 or 270 degrees then the height is set to 1024 lines.

seCrtVirtInit() and seTvVirtInit() initialize and allocate memory for the given display based on current width and height and color depth.

seLcdCrtVirtInit and seLcdTvVirtInit initialize and allocate memory for a surface which combines both LCD and CRT/TV. Memory is allocated based on the requirements of the larger of the two surfaces (if different). If the panel surface is rotated 90 or 270 degrees then the height is set to 1024 lines.

Memory previously allocated for this surface is released then reallocated to the larger size.

Note

seLcdVirtInit() frees CRT/TV memory in order to guarantee the LCD image starts at the beginning of the display buffer.

Parameters:

Width The desired virtual width of the display in pixels (in landscape

orientation).

Width must be a multiple of the number of pixels contained in one word

of display memory. At 16 bpp Width may be any value. At 8

bpp Width must be a multiple of two and at 4 bpp

Width must be a multiple of four.

Height The desired virtual height of the display in pixels (in landscape

orientation).

The HAL performs internal memory management to ensure that all display surfaces and cursor/ink layer have sufficient memory for operation. The Height parameter is required so the HAL can determine the amount of memory the application requires for the virtual image.

Return Value: ERR_OK The function completed successfully.

ERR_HAL_BAD_ARG The requested virtual dimensions are smaller than

the physical display size.

ERR_NOT_ENOUGH_MEMORY There is insufficient free display memory to set the

requested virtual display size.

void seVirtPanScroll(DWORD x, DWORD y)
void seLcdVirtPanScroll(DWORD x, DWORD y)
void seCrtVirtPanScroll(DWORD x, DWORD y)
void seTvVirtPanScroll(DWORD x, DWORD y)
void seLcdCrtVirtPanScroll(DWORD x, DWORD y)
void seLcdTvVirtPanScroll(DWORD x, DWORD y)

Description: When displaying a virtual image the physical display is smaller than the virtual image

contained in display memory. In order to view the entire image, the display is treated as a

window into the virtual image.

These functions allow an application to pan (right and left) and scroll (up and down) the

display over the virtual image.

seVirtPanScroll() will pan and scroll the current active surface.

seLcdVirtPanScroll(), seCrtVirtPanScroll(), seTvVirtPanScroll(), seLcdCrtVirtPanScroll(), and seLcdTvVirtPanScroll() will pan and scroll the surface indicated in the func-

tion name.

Parameters: x The new x offset, in pixels, of the upper left corner of the display.

y The new y offset, in pixels, of the upper left corner of the display.

14.2.8 Drawing

Functions in this category perform primitive drawing on the specified display surface. Supported drawing primitive include pixels, lines, rectangles, ellipses and circles.

void seSetPixel(long x, long y, DWORD Color) void seSetLcdPixel(long x, long y, DWORD Color) void seSetCrtPixel(long x, long y, DWORD Color) void seSetTvPixel(long x, long y, DWORD Color)

Description: These routines set a pixel at the location x,y with the specified color.

Use seSetPixel() to set one pixel on the current active surface. See seSetLcdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about changing the active surface.

Use seSetLcdPixel(), seSetCrtPixel(), and seSetTvPixel() to set one pixel on the surface indicated in the function name.

Parameters: x The X co-ordinate, in pixels, of the pixel to set.

y The Y co-ordinate, in pixels, of the pixel to set.

Color Specifies the color to draw the pixel with. Color is interpreted

differently at different color depths.

At 4 and 8 bpp, display colors are derived from the lookup table values. The least significant byte of Color forms an index into the

lookup table.

At 16 bpp the lookup table is bypassed and each word of

display memory forms the color to display. In this mode the least significant word describes the color to draw the pixel with in 5-6-5

RGB format.

DWORD seGetPixel(long x, long y)
DWORD seGetLcdPixel(long x, long y)
DWORD seGetCrtPixel(long x, long y)
DWORD seGetTvPixel(long x, long y)

Description: Returns the pixel color at the specified display location.

Use seGetPixel() to read the pixel color at the specified x,y co-ordinates on the current active surface. See seSetLcdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about changing the active surface.

Use seGetLcdPixel(), seGetCrtPixel(), and seGetTvPixel() to read the pixel color at the specified x,y co-ordinate on the display surface referenced in the function name.

Parameters: x The X co-ordinate, in pixels, of the pixel to read

y The Y co-ordinate, in pixels, of the pixel to read

Return Value: The return value is a dword describing the color read at the x,y co-ordinate. Color is inter-

preted differently at different color depths.

At 4 and 8 bpp, display colors are derived from the lookup table values. The return value is an index into the lookup table. The red, green and blue components of the color can be determined by reading the lookup table values at the returned index.

At 16 bpp the lookup table is bypassed and each word of display memory form the color to display. In this mode the least significant word of the return value describes the color as a

5-6-5 RGB value.

void seDrawLine(long x1, long y1, long x2, long y2, DWORD Color) void seDrawLcdLine(long x1, long y1, long x2, long y2, DWORD Color) void seDrawCrtLine(long x1, long y1, long x2, long y2, DWORD Color) void seDrawTvLine(long x1, long y1, long x2, long y2, DWORD Color)

Description: These functions draw a line between two points in the specified color.

Use seDrawLine() to draw a line on the current active surface. See seSetLcdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about changing the active surface.

Use seDrawLcdLine(), seDrawCrtLine(), and seDrawTvLine() to draw a line on the surface referenced by the function name

Parameters:	x1	The X co-ordinate, in	n pixels	, of the first end	point of the line to be
--------------------	----	-----------------------	----------	--------------------	-------------------------

drawn.

y1 The Y co-ordinate, in pixels, of the first endpoint of the line to be

drawn.

x2 The X co-ordinate, in pixels, of the second endpoint of the line to be

drawn.

y2 The Y co-ordinate, in pixels, of the second endpoint of the line to be

drawn.

Color Specifies the color to draw the line with. Color is interpreted differently

at different color depths.

At 4 and 8 bpp, display colors are derived from the lookup table values. The least significant byte of Color is an index into the lookup

table.

At 16 bpp the lookup table is bypassed and each word of

display memory forms the color to display. In this mode the least significant word describes the color to draw the line with in 5-6-5 RGB

format.

void seDrawRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill) void seDrawLcdRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill) void seDrawCrtRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill) void seDrawTvRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill)

Description:

These routines draw a rectangle on the screen in the specified color. The rectangle is bounded on the upper left by the co-ordinate (x1,y1) and on the lower right by the co-ordinate (x2,y2). The SolidFill parameter allows the programmer to select whether to fill the interior of the rectangle or to only draw the border.

Use seDrawRect() to draw a rectangle on the current active display surface. See seSetLcdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about changing the active surface.

Use seDrawLcdRect(), seDrawCrtRect(), and seDrawTvRect() to draw a rectangle on the display surface indicated by the function name.

Parameters:

x1The X co-ordinate, in pixels, of the upper left corner of the rectangle. y1 The Y co-ordinate, in pixels, of the upper left corner of the rectangle. x2The X co-ordinate, in pixels, of the lower right corner of the rectangle. The Y co-ordinate, in pixels, of the lower right corner of the rectangle. y2

Color Specifies the color to draw the line with. Color is interpreted differently

at different color depths.

At 4 and 8 bpp, display colors are derived from the lookup table values. The least significant byte of Color is an index into the lookup

table.

At 16 bpp the lookup table is bypassed and each word of display memory forms the color to display. In this mode the least significant word describes the color to draw the line with in 5-6-5 RGB

format.

SolidFill A boolean value specifying whether to fill the interior of the rectangle.

> Set to FALSE to draw only the rectangle border. Set to TRUE to instruct this routine to fill the interior of the rectangle.

void seDrawCircle(long xCenter, long yCenter, long Radius, DWORD Color) void seDrawLcdCircle(long xCenter, long yCenter, long Radius, DWORD Color) void seDrawCrtCircle(long xCenter, long yCenter, long Radius, DWORD Color) void seDrawTvCircle(long xCenter, long yCenter, long Radius, DWORD Color)

Description:

These routines draw a circle on the screen in the specified color. The circle is centered at the co-ordinate (x,y) and is drawn with the specified radius and Color. Circles cannot be solid filled.

Use seDrawCircle() to draw the circle on the current active display surface. See seSetL-cdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about changing the active surface.

Use seDrawLcdCircle(), seDrawCrtCircle(), seDrawTvCircle() draw the circle on the display surface indicated by the function name

Parameters:

The X co-ordinate, in pixels, of the center of the circle.

y The Y co-ordinate, in pixels, of the center of the circle.

Radius Specifies the radius of the circle in pixels.

Color Specifying the color to draw the circle. Color is interpreted

differently at different color depths.

At 4 and 8 bpp display colors are derived from the lookup table values. The least significant byte of Color is an index into the lookup

table.

At 16 bpp the lookup table is bypassed and each word of

display memory forms the color to display. In this mode the least significant word describes the color to draw the circle with in 5-6-5

RGB format.

Return Value:

None.

void seDrawEllipse(long xc, long yc, long xr, long yr, DWORD Color) void seDrawLcdEllipse(long xc, long yc, long xr, long yr, DWORD Color) void seDrawCrtEllipse(long xc, long yc, long xr, long yr, DWORD Color) void seDrawTvEllipse(long xc, long yc, long xr, long yr, DWORD Color)

Description:

These routines draw an ellipse on the screen in the specified color. The circle is centered at the co-ordinate (x,y) and is drawn in the specified color with the indicated radius for the x and y axis. Ellipses cannot be solid filled.

Use seDrawEllipse() to draw the ellipse on the current active display surface. See seSetL-cdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about changing the active surface.

Use seDrawLcdEllipse(), seDrawCrtEllipse(), seDrawTvEllipse() draw the ellipse on the display surface indicated by the function name.

Parameters:

xc The X co-ordinate, in pixels, of the center of the ellipse.

yc The Y co-ordinate, in pixels, of the center of the ellipse.

xr A long integer specifying the X radius of the ellipse, in pixels.
yr A long integer specifying the Y radius of the ellipse, in pixels.

Color A dword specifying the color to draw the ellipse. Color is interpreted

differently at different color depths.

At 4 and 8 bpp display colors are derived from the lookup table values. The least significant byte of Color is an index into the lookup

table.

At 16 bpp the lookup table is bypassed and each word of display memory forms the color to display. In this mode the least significant word describes the color to draw the circle with in 5-6-5

RGB format.

Return Value:

None.

14.2.9 Hardware Cursor

The routines in this section support the hardware cursor. Most of the calls look similar to normal drawing calls (i.e. seDrawCursorLine()); however, these calls remove the programmer from having to know the particulars of the cursor memory location, layout and whether SwivelView is enabled.

The S1D13806 uses the same hardware for both hardware cursor and ink layer which means that only the cursor or the ink layer can be active at any given time. The difference between the hardware cursor and the ink layer is that in cursor mode the image is a maximum of 64x64 pixels and can be moved around the display while in ink layer mode the image is as large as the physical size of the display and is fixed in position. Both the ink layer and hardware cursor have the same number of colors and handle these colors identically.

Note

The hardware cursor and ink layer do not support SwivelView modes. When drawing images, the SwivelView mode is ignored and the hardware cursor and ink layer drawing functions always use landscape mode. All other functions, such as the cursor movement functions, perform the necessary translation to take SwivelView modes into account.

DWORD selnitCursor(void)
DWORD selnitLcdCursor(void)
DWORD selnitCrtCursor(void)
DWORD selnitTvCursor(void)

Description:

These functions allocate cursor memory, fill the cursor image with a transparent block, and enable the cursor. If memory was previously allocated for the cursor, this memory is first released.

The S1D13806 supports two independent hardware cursors, one on a panel surface and one on the CRT/TV surface.

Use seInitCursor() to initialize the cursor for the active surface.

Use seInitLcdCursor(), seInitCrtCursor(), and seInitTvCursor() initialize the cursor on the display surface indicated in the function name.

Parameters: None.

Return Value: The return value is the thirty-two bit offset to the start of the hardware cursor memory. If

there is an error the return value is 0.

void seFreeCursor(void) void seFreeLcdCursor(void) void seFreeCrtCursor(void) void seFreeTvCursor(void)

Description: These functions release memory allocated to the hardware cursor by seInitCursor() func-

tions.

Use seFreeCursor() to free the hardware cursor memory for the current active surface.

Use seFreeLcdCursor(), seFreeCrtCursor(), and seFreeTvCursor() to free the resources

associated with the surface indicated by the function name.

Parameters: None.

Return Value: None.

void seEnableCursor(int Enable)
void seEnableLcdCursor(int Enable)
void seEnableCrtCursor(int Enable)
void seEnableTvCursor(int Enable)

Description: These functions enable or disable the hardware cursor. When enabled the cursor will be

visible on the display surface. When disabled the cursor will not be displayed.

Call seEnableCursor() to enable/disable the hardware cursor of the active surface.

Call seEnableLcdCursor(), seEnableCrtCursor(), and seEnableTvCursor() to enable/dis-

able the hardware cursor for the surface indicated by the function name.

Recall that the CRT and TV share the same cursor. Enabling/disabling the cursor for one

device will affect the other display as well.

Parameters: Enable A flag indicating whether to enable or disable the hardware cursor.

Call with Enable set to FALSE to disable the hardware cursor for

the surface. Call with Enable set to TRUE to enable the

hardware cursor for the device.

Return Value: None.

DWORD seGetCursorLinearAddress(void)
DWORD seGetLcdCursorLinearAddress(void)
DWORD seGetCrtCursorLinearAddress(void)

DWORD seGetTvCursorLinearAddress(void)

Description: These routines return the linear address for the hardware cursor through which the applica-

tion can directly access the cursor memory.

Call seGetCursorLinearAddress() to retrieve the address of the hardware cursor associated

with the current active surface.

Call seGetLcdCursorLinearAddress(), seGetCrtCursorLinearAddress(), or seGetTvCursorLinearAddress() to retrieve the address of the hardware cursor associated with the dis-

play surface indicated by the function name.

Parameters: None.

Return Value: The return value is the linear address of the hardware cursor. A linear address is the 32 bit

offset in CPU address space where the application can directly read or write the hardware

cursor.

DWORD seGetCursorOffsetAddress(void)
DWORD seGetCursorOffsetAddress(void)
DWORD seGetCrtCursorOffsetAddress(void)

DWORD seGetCrtCursorOffsetAddress(void)

DWORD seGetTvCursorOffsetAddress(void)

Description: These routines return the offset from the start of display memory to the start of the hard-

ware cursor. Using this offset, the application can use HAL API calls such as seSetWrite-

DisplayBytes() to access the hardware cursor image.

Call seGetCursorOffsetAddress() to get the offset to the hardware cursor associated with

the current active surface.

Call seGetLcdCursorOffsetAddress(), seGetCrtCursorOffsetAddress(), and seGetTvCursorOffsetAddress() to retrieve the offset to the hardware cursor for the surface indicated in

the function name.

Parameters: None.

Return Value: The return value is the offset, in bytes, from the start of display memory to the start of the

hardware cursor.

void seMoveCursor(long x, long y)
void seMoveLcdCursor(long x, long y)
void seMoveCrtCursor(long x, long y)
void seMoveTvCursor(long x, long y)

Description: These routines move where the hardware cursor is shown on the display surface.

Call seMoveCursor() to move the hardware cursor on the current active surface.

Call seMoveLcdCursor(), seMoveCrtCursor(), and seMoveTvCursor() to move the hardware cursor associated with the surface indicated in the function name.

These functions support all SwivelView modes.

Parameter: x The desired display surface X co-ordinate, in pixels, of the upper left

corner of the cursor. X can range from -63 to the width of the display.

y The desired display surface Y co-ordinate, in pixels, of the upper left

corner of the cursor. Y can range from -63 to the height of the display.

Return Value: None.

void seSetCursorColor(int Index, DWORD Color) void seSetLcdCursorColor(int Index, DWORD Color) void seSetCrtCursorColor(int Index, DWORD Color) void seSetTvCursorColor(int Index, DWORD Color)

Description: These routines allow the user to set either of the two user definable colors.

The hardware cursor can be thought of as a four color image. Two of the colors cannot be changed. Displaying these two colors in a cursor image will always result in transparent and inverse video being displayed.

The remaining two colors can be changed.

Call seSetCursorColor() to change the cursor colors for the current active surface.

Call seSetLcdCursorColor(), seSetCrtCursorColor(), or seSetTvCursorColor() to change the color for the surface associated with the function name.

Note

The hardware cursor and ink layer use the same color registers. Consequently, the cursor color functions have exactly the same effect on the ink layer color functions.

Parameters: Index Specifies which of the two application changeable colors this operation

is to affect.

Legal values for Index are 0 and 1.

Color The new color to set as the hardware cursor color.

The color values in the dword are arranged as follows: xxxx xxxx xxxR RRRR xxGG GGGG xxxB BBB

Where x is don't care (set to 0), R is five bits of red intensity, G is six

bits of green intensity and B is five bits of blue intensity.

Return Value: None.

void seSetCursorPixel(long x, long y, DWORD Color) void seSetLcdCursorPixel(long x, long y, DWORD Color) void seSetCrtCursorPixel(long x, long y, DWORD Color) void seSetTvCursorPixel(long x, long y, DWORD Color)

Description:

These functions are intended for drawing in the hardware cursor area a pixel at a time.

Call seSetCursorPixel() to set a pixel in the cursor associated with the current active surface.

Call seSetLcdCursorPixel(), seSetCrtCursorPixel(), and seSetTvCursorPixel() to set pixels in the cursor associated with the display surface indicated in the function name.

Note

X

SwivelView modes are ignored in these functions. Landscape orientation is used for (x,y) co-ordinates.

Parameters:

The X co-ordinate of the cursor, in pixels, at which to set the pixel

color.

Valid values for x range from 0 to 63.

y The Y co-ordinate of the cursor, in pixels, at which to set the pixel

color.

Valid values for y range from 0 to 63.

Color Specifies which of the four cursor colors to set the pixel to. Valid values

for Color are:

0 - to set the pixel to the solid color 0
1 - to set the pixel to the solid color 1
2 - to set the pixel to the transparent color
3 - to set the pixel to the inverted color

Return Value:

None.

void seDrawCursorLine(long x1, long y1, long x2, long y2, DWORD Color) void seDrawLcdCursorLine(long x1, long y1, long x2, long y2, DWORD Color) void seDrawCrtCursorLine(long x1, long y1, long x2, long y2, DWORD Color) void seDrawTvCursorLine(long x1, long y1, long x2, long y2, DWORD Color)

Description:

These routines assist in defining the cursor shape by drawing a line in the hardware cursor between the specified points.

Call seDrawCursorLine() to draw a line in the hardware cursor image associated with the current active surface.

Call seDrawLcdCursorLine(), seDrawCrtCursorLine(), or seDrawTvCursorLine() to draw a line in the hardware cursor image associated with the display surface indicated in the function name.

Note

SwivelView modes are ignored in these functions. Landscape orientation is used for all co-ordinates.

Pa	ra	m	ρŧ	٥r	•
1 4	14		·ι	u	•

x1	Specifies the X co-ordinate of the first endpoint of the line measured in
----	---

pixels from the left edge of the cursor image.

y1 Specifies the Y co-ordinate of the first endpoint of the line measured in

pixels from the top edge of the cursor image.

x2 Specifies the X co-ordinate of the second endpoint of the line measured

in pixels from the left edge of the cursor image.

y2 Specifies the Y co-ordinate of the second endpoint of the line measured

in pixels from the top edge of the cursor image.

Color Specifies which of the four cursor colors to draw the line with. Valid

values for Color are:

0 - to draw the line in solid color 0 1 - to draw the line in solid color 1

2 - to draw the line in the transparent color

3 - to draw the line in the inverted color

Return Value:

None.

void seDrawCursorRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill) void seDrawLcdCursorRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill) void seDrawCrtCursorRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill) void seDrawTvCursorRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill)

Description:

These routines draw rectangles on the hardware cursor surface. The rectangle may be drawn as just a border or as a solid filled area.

Call seDrawCursorRect() to draw a rectangle in the hardware cursor image associated with the current active surface.

Call seDrawLcdCursorRect(), seDrawCrtCursorRect(), or seDrawTvCursorRect() to draw a rectangle in the hardware cursor image associated with the display surface indicated by the function name.

Parameter:

y1

The X co-ordinate for the top left corner of the rectangle measured in pixels from the left edge of the cursor image.

The Y co-ordinate for the top left corner of the rectangle measured in

pixels from the top of the cursor image.

x2 The X co-ordinate for the bottom right corner of the rectangle measured

in pixels from the left edge of the cursor image.

y2 The Y co-ordinate for the bottom right corner of the rectangle measured

in pixels from the top edge of the cursor image.

Color Specifies which of the four cursor colors to draw the line with. Valid

values for Color are:

0 - to draw the rectangle in solid color 01 - to draw the rectangle in solid color 1

2 - to draw the rectangle to the transparent color

3 - to draw the rectangle in the inverted color

SolidFill Flags whether to fill the rectangle or to only draw the border.

Set SolidFill to FALSE to draw only the outline of the rectangle.

Set SolidFill to TRUE to fill the interior of the rectangle.

Return Value: None.

14.2.10 Ink Layer

The functions in this section support the hardware ink layer. These functions are nearly identical to the routines to control the hardware cursor.

The S1D13806 uses the same hardware for both hardware cursor and ink layer, which means that only the cursor or the ink layer can be active at any given time. The difference between the hardware cursor and the ink layer is that in cursor mode, the image is a maximum of 64x64 pixels and can be moved around the display while in ink layer mode the image is as large as the physical size of the display and is fixed in position. Both the ink layer and hardware cursor have the same number of colors and handle these colors identically.

Note

The hardware cursor and ink layer do not support SwivelView modes. When drawing images, the SwivelView mode is ignored and the hardware cursor and ink layer drawing functions always use landscape mode. All other functions, such as the cursor movement functions, perform the necessary translation to take SwivelView modes into account.

DWORD selnitlnk(void)
DWORD selnitLcdlnk(void)
DWORD selnitCrtlnk(void)
DWORD selnitTvlnk(void)

Description:

These functions initialize the ink layer for use. The initialization includes: allocating ink layer memory, filling the ink layer image with a transparent color, and enabling the ink layer.

If memory was previously allocated for the ink layer or a hardware cursor on the surface then this memory is first released.

Call seInitInk() to initialize the ink layer for the current active surface.

Call seInitLcdInk(), seInitCrtInk(), and seInitTvInk() to initialize the ink layer for the surface indicated in the display name.

Parameters: None.

Return Value: The return value is the thirty-two bit offset in CPU address space to the start of the ink

layer memory. If there is an error the return value is 0.

void seFreeInk(void)
void seFreeLcdInk(void)
void seFreeCrtInk(void)
void seFreeTvInk(void)

Description: These functions release the memory allocations made by the call to seInitInk().

Prior to calling the seFreeInk() functions, the application must make a call to

seEnableInk() to hide the ink layer.

Call seFreeInk() to free the ink layer memory associated with the current active surface.

Call seFreeLcdInk(), seFreeCrtInk(), or seFreeTvInk() to free the ink layer memory asso-

ciated with the surface indicated in the function name.

Parameters: None.

Return Value: None.

void seEnableInk(int Enable)
void seEnableLcdInk(int Enable)
void seEnableCrtInk(int Enable)
void seEnableTvInk(int Enable)

Description: These functions enable or disable the hardware ink layer. When enabled, the ink layer will

be visible and when disabled the ink layer will be hidden.

Call seEnableInk() to enable/disable the ink layer associated with the current active sur-

face.

Call seEnableLcdInk(), seEnableCrtInk(), and seEnableTvInk() to enable/disable the hard-

ware ink layer for the surface indicated by the function name.

Recall that the CRT and TV share the same ink layer. Enabling/disabling the ink layer for

one device will affect the other display as well.

Parameters: Enable A flag indicating whether to enable or disable the ink layer.

Set Enable to FALSE to disable the ink layer or set Enable to TRUE to

enable the ink layer.

Return Value: None.

DWORD seGetInkLinearAddress(void)
DWORD seGetLcdInkLinearAddress(void)
DWORD seGetCrtInkLinearAddress(void)
DWORD seGetTvInkLinearAddress(void)

Description: These routines return the linear address for the hardware ink layer through which the

application can directly access the ink layer memory.

Call seGetInkLinearAddress() to retrieve the address of the ink layer associated with the

current active surface.

Call seGetLcdInkLinearAddress(), seGetCrtInkLinearAddress(), or seGetTvInkLinearAddress() to retrieve the address of the ink layer associated with the display surface indicated

in the function name.

Parameters: None.

Return Value: The return value is the linear address of the hardware cursor. A linear address is the 32 bit

offset in CPU address space where the application can directly read or write the hardware

ink layer memory.

DWORD seGetInkOffsetAddress(void)
DWORD seGetLcdInkOffsetAddress(void)
DWORD seGetCrtInkOffsetAddress(void)
DWORD seGetTvInkOffsetAddress(void)

Description: These routines return the offset from the start of display memory to the start of the hard-

ware ink layer. Using this offset, an application can use HAL API calls such as seSetWrit-

eDisplayBytes() to access the ink layer memory.

Call seGetInkOffsetAddress() to get the offset to the ink layer associated with the current

active surface.

Call seGetLcdInkOffsetAddress(), seGetCrtInkOffsetAddress(), and seGetTvInkOffsetAddress() to retrieve the offset to the ink layer for the surface indicated in the function

name.

Parameters: None.

Return Value: The return value is the offset, in bytes, from the start of display memory to the start of ink

layer memory.

void seSetInkColor(int index, DWORD color)
void seSetLcdInkColor(int index, DWORD color)
void seSetCrtInkColor(int index, DWORD color)
void seSetTvInkColor(int index, DWORD color)

Description:

These routines allow the user to set either of the two user definable hardware ink layer colors.

The hardware ink layer can be thought of as a four color image of which only two colors can be changed. The non-changeable colors will displays as transparent and inverted colors

Call seSetInkColor() to change the colors for the current active surface.

Call seSetLcdInkColor(), seSetCrtInkColor(), or seSetTvInkColor() to change the color for the surface indicated by the function name.

Note

None.

The hardware cursor and ink layer use the same color registers. Consequently, the cursor color functions have exactly the same effect as the ink layer color functions.

Parameters:

Index Specifies which of the two changeable colors to access. Valid

values for Index are 0 and 1.

Color The new color to set as the ink layer color.

The color values in the dword are arranged as follows: xxxx xxxx xxxx RRRR xxGG GGGG xxxB BBBB

Where x is don't care (set to 0), R is five bits of red intensity, G is six

bits of green intensity and B is five bits of blue intensity.

Return Value:

void seSetInkPixel(long x, long y, DWORD color) void seSetLcdInkPixel(long x, long y, DWORD color) void seSetCrtInkPixel(long x, long y, DWORD color) void seSetTvInkPixel(long x, long y, DWORD color)

Description:

These functions are intended for drawing on the hardware ink layer a pixel at a time.

Call seSetInkPixel() to set a pixel in the ink layer associated with the current active surface.

Call seSetLcdInkPixel(), seSetCrtInkPixel(), and seSetTvInkPixel() to set pixels in the ink layer associated with the display surface indicated in the function name.

Note

SwivelView modes are ignored in these functions. Landscape orientation is used for (x,y) co-ordinates.

Parameters:

The X co-ordinate of the ink layer, in pixels, at which to set the pixel

color. Valid values for x range from 0 to display width - 1.

y The Y co-ordinate of the ink layer, in pixels, at which to set the pixel

color. Valid values for y range from 0 to display height - 1.

Color Specifies which of the four cursor colors to set the pixel to. Valid values

for Color are:

0 - to set the pixel to the solid color 0
1 - to set the pixel to the solid color 1
2 - to set the pixel to the transparent color

3 - to set the pixel to the inverted color

Return Value: None.

void seDrawInkLine(long x1, long y1, long x2, long y2, DWORD color) void seDrawLcdInkLine(long x1, long y1, long x2, long y2, DWORD color) void seDrawCrtInkLine(long x1, long y1, long x2, long y2, DWORD color) void seDrawTvInkLine(long x1, long y1, long x2, long y2, DWORD color)

Description:

These routines draw lines on the hardware ink layer between two points in the specified color.

Call seDrawInkLine() to draw a line in the hardware ink layer associated with the current active surface.

Call seDrawLcdInkLine(), seDrawCrtInkLine(), or seDrawTvInkLine() to draw a line in the hardware ink layer image associated with the display surface indicated in the function name.

Note

SwivelView modes are ignored in these functions. Landscape orientation is used for all co-ordinates.

Pa	ro	m	ΔÍ	Δ1	٠.
1 4	114	ш	v	J.	

x1 Specifies the X co-ordinate of the first endpoint of the line measured in

pixels from the left edge of the display.

y1 Specifies the Y co-ordinate of the first endpoint of the line measured in

pixels from the top edge of the display.

x2 Specifies the X co-ordinate of the second endpoint of the line measured

in pixels from the left edge of the display.

y2 Specifies the Y co-ordinate of the second endpoint of the line measured

in pixels from the top edge of the display.

Color Specifies which of the four ink layer colors to draw the line with. Valid

values for Color are:

0 - to draw the line in solid color 0 1 - to draw the line in solid color 1

2 - to draw the line in the transparent color

3 - to draw the line in the inverted color

Return Value:

None.

void seDrawInkRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill) void seDrawLcdInkRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill) void seDrawCrtInkRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill) void seDrawTvInkRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill)

Description:

These routines draw rectangles on the hardware ink layer surface. The rectangle may be drawn as just a border or as a solid filled area.

Call seDrawInkRect() to draw a rectangle in the hardware ink layer cursor image associated with the current active surface.

Call seDrawLcdInkRect(), seDrawCrtInkRect(), or seDrawTvInkRect() to draw a rectangle in the hardware ink layer associated with the display surface indicated by the function name.

Parameter:

The X co-ordinate for the top left corner of the rectangle measured in pixels from the left edge of the display surface.

y1 The Y co-ordinate for the top left corner of the rectangle measured in

pixels from the top edge of the display surface.

x2 The X co-ordinate for the bottom right corner of the rectangle measured

in pixels from the left edge of the display surface.

y2 The Y co-ordinate for the bottom right corner of the rectangle measured

in pixels from the top edge of the display surface.

Color Specifies which of the four ink layer colors to draw the line with. Valid

values for Color are:

0 - to draw the rectangle in solid color 0 1 - to draw the rectangle in solid color 1

2 - to draw the rectangle to the transparent color

3 - to draw the rectangle in the inverted color

SolidFill Flags whether to fill the rectangle or to only draw the border.

Set SolidFill to FALSE to draw only the outline of the rectangle.

Set SolidFill to TRUE to fill the interior of the rectangle.

Return Value: None.

14.2.11 Register/Display Memory

The S1D13806 utilizes up to 2M bytes of display memory address space. The S1D13806 contains 1.25M bytes of embedded SDRAM.

In order for an application to directly access the S1D13806 display memory and registers, the following two functions are provided.

DWORD seGetLinearDisplayAddress(void)

Description: This function returns the linear address for the start of physical display memory.

Parameters: None.

Return Value: The return value is the linear address of the start of display memory. A linear address is a

32-bit offset, in CPU address space.

DWORD seGetLinearRegAddress(void)

Description: This function returns the linear address of the start of S1D13806 control registers.

Parameters: None.

Return Value: The return value is the linear address of the start of S1D13806 control registers. A linear

address is a 32-bit offset, in CPU address space.

14.3 Porting LIBSE to a new target platform

Building Epson applications like a simple HelloApp for a new target platform requires the following:

- HelloApp code.
- 1386HAL library.
- LIBSE library which contains target specific code for embedded platforms.

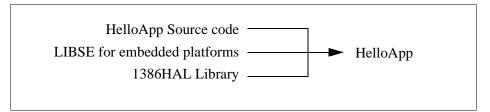


Figure 14-1: Components needed to build 1386 HAL application

For example, when building HELLOAPP.EXE for the x86 windows 32-bit platform, you need the HELLOAPP source files, the 1386HAL library and its include files, and some Standard C library functions (which in this case would be supplied by the compiler as part of its run-time library). As this is a 32-bit windows .EXE application, you do not need to supply start-up code that sets up the chip selects or interrupts, etc... What if you wanted to build the application for an SH-3 target, one not running windows?

Before you can build that application to load onto the target, you need to build a C library for the target that contains enough of the target specific code (like putch() and getch()) to let you build the application. Epson supplies the LIBSE for this purpose, but your compiler may come with one included. You also need to build the 1386HAL library for the target. This library is the graphics chip dependent portion of the code. Finally, you need to build the final application, linked together with the libraries described earlier. The following examples assume that you have a copy of the complete source code for the S1D13806 utilities, including the makefiles, as well as a copy of the GNU Compiler v2.8.1 for Hitachi SH3. These are available on the EPSON Electronics America website at www.eea.epson.com, or the EPSON Research and Development website at www.erd.epson.com.

14.3.1 Building the LIBSE library for SH3 target example

In the LIBSE files, there are two main types of files:

- C and assembler files that contain the target specific code.
- makefiles that describe the build process to construct the library.

The C and assembler files contain some platform setup code (evaluation board communications, chip selects) and jumps into the main entry point of the C code that is contained in the applications main() function. For our example, the startup file, which is **sh3entry.c**, performs some board configuration (board communications and assigning memory blocks with chip selects) and a jump into the applications main() function.

In the embedded targets, putch (**xxxputch.c**) and getch (**xxxgetch.c**) resolve to serial character input/output. For SH3, much of the detail of handling serial IO is hidden in the monitor of the evaluation board, but in general the primitives are fairly straight forward, providing the ability to get characters to/from the serial port.

For our target example, the nmake makefile is **makesh3.mk**. This makefile calls the Gnu compiler at a specific location (TOOLDIR), enumerates the list of files that go into the target and builds a **.a** library file as the output of the build process.

To build the software for our target example, type the following at the root directory of the software (i.e. c:\1386).

make "TARGETS=SH3" "BUILDS=release"

14.3.2 Building a complete application for the target example

Source code for this example is available in the file **86_sh3_example.c** (part of the file **86sample.zip**). This file is available on the internet at www.erd.epson.com.

15 Sample Code

Example source code demonstrating programming the S1D13806 using the HAL library is available on the internet at www.erd.epson.com.

THIS PAGE LEFT BLANK

REG[047h] LCD Meinory Address Orfset Register 1	V REGI048h I LOD Pixel Panning Registrer 18 RV	n/a n/a n/a n/a n/a Bit 1 Bit 1 Bit	V REGIO4Ah LCD DISPLAY FIFO HIGH THRESHOLD CONTROL REGISTER RW	10/a 10/a Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	REGIO4Bh] LCD DISPLAY FIFO LOW THRESHOLD CONTROL REGISTER RW	10/a 10/a Bit 5 Bit 4 Bit 3 Bit 2 Bit 0 Bit 0	V REG(050h) CRT/TV HORZONTAL DISPLAY WIDTH REGISTER RW	1/3 BH6 BH5 BR4 BR3 BR2 BR1 BR0	REG[052h] CRT/TV HORIZONTAL NON-DISPLAY	1/a 1/a Bit 5 Bit 4 Bit 3 Bit 1 Bit 0 Bit 0	REG[053h] CRT/TV HRTC START POSITION REGISTE	CRT/TV HRTC Start Position	MICH CONTROL LINE OF MICH. or Michael Branches	CRT HRTC n/a n/a	REGIOSENI CRITITY VERNICAL DISPLAY HEIGHT REGISTER 0	CRYTV Vertical Display Height Bit Bit Bit Bit Bit Bit Bit Bit			REGIOSBI CRTTV VERTICAL NON-DISPLAY PERIOD PEGISTER	CRT/TV VNDP Status (RO) Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 1 Bit 3	V REG[059h] CRT/TV VRTC START POSITION REGISTER RW	1/a Bit	REG[05Ah] CRT VRTC PULSE WIDTH REGISTER RW	CRT VRTC N/a N/a Bit 2 Bit 1 Bit 0	V REG[05Bh] TV OUTPUT CONTROL REGISTER ¹⁹ RW	TV DAC Output renable Level Select (Output Slot Output	REG[05Eh] CRT/TV LINE COUNT REGISTER 0 RW	\tag{T/TV Line Count}	Dit	CRT/TV CRT/TV Bit-per-pixel Select Display n/a n/a n/a Bit Bit Bit 0	REG[062h] CRT/TV DISPLAY START ADDRESS REGISTER 0 CRT/TV Display Start Address	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 0
REG[031h] MOD RATE REGISTER MOD Rate RW RW RW RW RW RW RW R	REGI032h] LCD HORIZONTAL DISPLAY WIDTH REGISTER	LCD Horizontal Display Width LBH BH B	REG[034h] LCD HORIZONTAL NOW-DISPLAY PERIOD REGISTER	n/a LCD Horizontal Non-Display Period Bit 4 Bit 3 Bit 2 Bit 1 Bit 0		ν'a η'a Βίτ4 Βίτ3 Βίτ2 Βίτ1 Βίτο	REG[036h] TFT FPLINE PULSE WIDTH REGISTER ¹⁵ RW	LCD	REGIOSBI I CD VERTCAI DISPLAY HENTI REGISTER 0 RW	LCD Vertical Display Height Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit	REGINSON I CD VERTON DISD AY HENT REGISTER 1	n/a n/a n/a Height		SPLAY PERIOD REGISTER LCD Vertical Non-Display Period		3Bh] TFT	n/a n/a Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	REGIOSCh] TFT FPFRAME PULSE WIDTH REGISTER 16 TFT FPFRAME Pulse Width PEPRAME N'A TFT FPFRAME Pulse Width Pulse Wi	DIC DIC	REGIOSEN] LCD LINE COUNT REGISTER 0	LCD DISPLAY MODE REGISTER ¹⁷	LCD Display n/a SwiveNview n/a Enable Bit 1 Bit 2 Bit 1 Bit 0 Bit 0	REG[041h] LCD MISCELLANEOUS REGISTER RW	rva rva rva rva na na Disable Dusable Disable Disable	REG[042h] LCD DISPLAY START ADDRESS REGISTER 0 RW	LCD Display Start Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 2 Bit 1 Bit 0	REG[043h] LCD DISPLAY START ADDRESS REGISTER 1	LCD Display Start Address Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8	HI CD DISPLAY START ADDRESS REGISTER 2	n/a n/a Bit 19 Bit 18 Bit 17 Bit	REG[046h] LCD MEMORY ADDRESS OFFSET REGISTER 0 ICO Memory Address Offset ICO Memory Address Offset	
vision Code Registra 2 (For \$1013806: Product Code=000111b, Revision Code=00b)RO Bit 4 Bit 3 Bit 1 Bit 0 Bit 1 Bit 0 Bit 1 Bit 0	-	IN TOTAL AND OUR REGISTER 1/0 RW N/a n/a n/a Reserved Reserved Reserved		NERALI IO PINS COMPGINATION REGISTER 0 1/0 RW 100 EPIN 10	NERALID PINS COMPGINEATION REGISTER 13 1/0	O Config IO Config IO Config IO Config	8h1 GENERAL IO PINS CONTROL REGISTER 0	GPIO3 Pin GPIO2 Pin GPIO1 Pin GPIO1 O Status IO Status IO Status IO Status		10 Status O Status	FEGISTER CONICA CONICA CONICA	Confro Co	Ohl MEMORY CLOCK CONFIGURATION REGISTER 4 RW	η/a Divide Sict n/a n/a Bit 1 Bit	STER ^{5, 6}	n/a LCD PCLK Divide Select n/a ICD PCLK Source Select Bit 1 Bit 0 Bit 0 Bit 1 Bit 0	SHI CRITIV PIXEL CLOCK CONFIGURATION REGISTER 7.8	a CRT/TV PCLK Sour	GISTER 9, 10	MedaPlug Clock Dwide	Eh] CPU To Memory Wait State Select Register 11	1/2	Ohl Mean Dy Chaleries Africa Benefice	n/a n/a n/a n/	1h] DRAM REFRESH RATE REGISTER 12 RW	n/a Bit 2 Bit 1 Bit	CONTROL REGISTER 0 13 DRAM DRAM DRAM DRAM DRAM	Timina	.Bh] DRAM TIMING CONTROL REGISTER 1 ¹³ RW	n/a n/a n/a n/a DRAM DRAM Triming Triming Control Bit 9 Control Bit 8	REGISTER 14	Bit 1 Bit 0 Select Panel Select

REG[101h] BIBLT Cowroot Registers 1	BIRBLT Operation Bit Bit 1 Firess Bit 1 Bit 2 Bit 1 Bit 2 Bit 1	REG[105h] BIRBLT SOURCE START ADDRESS REGISTER 1 30	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	BITBLT MEMORY ADDRESS OFFSET REGISTER 0 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT BITBLT MEMORY ADDRESS OFFSET REGISTER 1 BITBLT Memory Address Offset Interpretation of the control of	Name
ursor Gre	TEN LCD INVCURSOR N/a N/a n/a n/a	CRT/T/V INVCLRSOR START ADDRESS REGISTER \$2 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 CRT/T/V INKCLUSOr Start Address CRT/T/V CLUSOR X POSITION REGISTER 0 CRT/T/V CLUSOR X POSITION Bit 5 Bit 4 Bit 3 Bit 2 CRT/T/V CLUSOR X POSITION REGISTER 1	N/a	CRT/TV INV/CURSOR BLUE COLOR 0 REGISTER	No.
dress Bit 10 Bit 10 CRT/TV Display Si	MEMORY ADDRESS OFF: Bit 5 1 MEMORY ADDRESS OFF:	No. No.	CURSOR CONTROL Red STER Bit 3 Bit 2 Bit 1 Bit 3 Bit 2 Bit 1 Bit 3 Bit 3 Bit 4 Bit 3 Bit 4 Bit 4	Bit 6	1

3806 Register Summary

 BLT Forecaround Color Registrer 1

 Bit 14
 Bit 13
 Bit 12
 Bit 14
 Bit 9
 Bit 8

 Kr-Up Table Mode Register 31
 RW

 n/a
 n/a
 Bit 1
 Bit 0

 OK-UP TABLE ADDRESS Reastre
 RW

 LUT Address
 Bit 6
 Bit 7
 Bit 0
 Bit 0

Power Save Mode Enbl RW ΝŠ n/a n/a n/a n/a n/a n/a n/a Reserved Bit 0 Bit 1 n/a LUT Data Bit 2 n/a

 IPU-TO-MEMORY ACCESS WATCHDOO TIMER Register
 RW

 N/a
 Bit 5
 Bit 4
 Bit 3
 Bit 2
 Bit 1
 Bit 0

 SISPLAY MODE REGISTER 32
 RW

 DISPLAY MODE REGISTER 32
 RW

 Swivel/likew
 n/a
 n/a
 Display Mode Select

 Enable Bit 0
 Bit 2
 Bit 1
 Bit 0

 MenaPlue LCMD Register
 RW

 MedaPlug LCMD
 Bit 6
 Bit 5
 Bit 4
 Bit 1
 Bit 0
 Bit 0
 Bit 0

 Bit 14
 Bit 13
 Bit 11
 Bit 10
 Bit 9
 Bit 8

RW Bit 16 Bit 24 Bit 17 Bit 25 Bit 18 Bit 26 Bit 27 MediaPlug Reserved LCMD Bit 19 Bit 29 Bit 28 Bit 20 2h] MEDIAPLUG RESERVED LCMD Bit 21 Bit 22 Bit 30

 Bit 6
 Bit 5
 Bit 4
 Bit 13
 Bit 10
 Bit 9
 Bit 8
 Bit 10
 Bit 8
 Bit 8
 Bit 10
 Bit 8
 Bit 8

 D6h] Mexia/Puo Reserveto CMD Redistrer
 RWM

 MediaPlug Reserved CMD
 Bit 12
 Bit 12
 Bit 15
 Bit 16
 Bit 26
 Bit 26

 Bit 6
 Bit 5
 Bit 4
 Bit 3
 Bit 2
 Bit 1
 Bit 0

 Bit 14
 Bit 13
 Bit 12
 Bit 11
 Bit 10
 Bit 9
 Bit 8

 D000h-1FFFER, even address BIRLT DATA Resister 0
 RW

2 REG[000h] These bits are used to identify the S1D13806. For the S1D13806 the product code should be 7. The host interface must be enabled before reading this register (set REG[001] b7=0).

3 REG[005h] MediaPlug/GPIO12 Pin Functionality

6PIO12 GPIO12 VMPEPWR	o io	CONF7 on RESET	n RESET
GPI012	Ī	0	1
	GPIO12	GPIO12	VMPEPWR

4 REG[010h] MCLK Source Selection

MCLK Source	CLKI	BUSCLK	CLK3	Reserved	
MCLK Source Select	00	10	10	11	

5 REG[014h] LCD PCLK Divide Selection

LCD PCLK Source to LPCLK Frequency Ratio	Li L	F:Z	L:E	4;i
LCD PCLK Divide Select Bits	00	01	10	11

6 REG[014h] LCD PCLK Source Selection

LCD PCLK Source Select Bits	LCD PCLK Source
00	CLKI
10	BUSCLK
10	CLK12
11	MCLK

7 REG[018h] CRT/TV PCLK Divide Selection

CRT/TV PCLK Source to DPCLK Frequency Ratio	111	2:1	3:1	4:1
CRT/TV PCLK Divide Select Bits	00	01	10	11

8 REG[018h] CRT/TV PCLK Source Selection

	CRT/TV PCLK Source	CLKI	BUSCLK	CLK12	71 JW
٠					
	CRT/TV PCLK Source Select Bits	00	10	10	**

9 REG[01Ch] MediaPlug Clock Divide Selection

MediaPlug Clock Source to MediaPlug Clock Frequency Ratio	1:1	2:1	3:1	1;4
MediaPlug Clock Divide Select Bits	00	10	10	11

10 REG[01Ch] MediaPlug Clock Source Selection

	k Source		~		
	MediaPlug Clock Source	CLKI	BUSCLK	CLKIZ	MCLK
•	MediaPlug Clock Source Select Bits	00	01	10	11

11 REG[01Eh] Minimum Memory Timing Selection

12 REG[021h] SDRAM Refresh Rate Selection

SDRAM Refresh Rate Bits [2:0]	MCLK Source Frequency (MHz)
000	4.096 ≤ MCLK < 8.192
100	8.192 ≤ MCLK < 16.384
010	16.384 ≤ MCLK < 32.768
011	32.768 ≤ MCLK ≤ 50.000

13 REG[02Bh] DRAM Timing Control Register Settingsi

MCLK Source Frequency (MHz)	REG[02Ah]	REG[02Bh]
44 ≤ MCLK ≤ 50	400	410
33 ≤ MCLK < 44	00h	4Z0
MCLK < 33	11h	4E0

14 REG[030h] Panel Data Width

Panel Data Width Bite	Passive LCD Panel	TFT/D-TFD Par	TFT/D-TFD Panel Data Width
alei Cata Midii Dis	Data Width	1x Data Format	2x Data Format
00	4-bit	p.p.	2x 9-bit
01	8-bit	12-bit	2x 12-bit
10	16-bit	18-bit	Reserved
11	Reserved	Reserved	Reserved

15 REG[036h] LCD FPLINE Polarity Selection

,			
TFT FPLINE Polarity	active low	active high	
Passive LCD FPLINE Polarity	active high	active low	
LCD FPLINE Polarity Select	0	1	

16 REG[03Ch] LCD FPFRAME Polarity Selection

LCD FPFRAME Polarity Select	Passive LCD FPFRAME Polarity	TFT FPFRAME Polarity
0	active high	active low
1	active low	active high

17 REG[040h] LCD Bit-per-pixel Selection

Bit-per-pixel Select Bits	Color Depth (bpp)
000	Reserved
001	Reserved
010	4 bpp
011	8 pbb
100	15 bpp
101	16 bpp
110-111	Reserved

18 REG[048h] LCD Pixel Panning

Screen 2 Pixel Panning Bits Used	Bits [1:0]	Bit 0	1
Color Depth (bpp)	4 bpp	ddq 8	15/16 bpp

01/02/27

s should be written 0. ed bits must be written 0. Display Mode Enabled
no display
LCD only
CRT only
Double CRT and LCD
TV with flicker filter off
Double Display TV with flicker filter on

Display Mode Select Bits
000
001
001
010
110
110
111

Double Display TV with flicker filter on and LCD

3806 Register Summary

AC Output Level Selection

 CD
 CRT
 TV
 REG(oSBh) bit 3
 IREF (mA)

 sported
 Not Supported
 x
 x

 x
 Supported
 1
 4.6

 x
 Supported
 3
 3

= don't care

RT/TV Bit-per-pixel Selection

Color Depth (bpp)	Reserved	Reserved	4 bpp	ddq 8	15 bpp	16 bpp	Reserved
-per-pixel Select Bits	000	100	010	011	100	101	110-111

68h] CRT/TV Pixel Panningt

Screen 2 Pixel Panning Bits Used	Bits [1:0]	Bit 0	!	
Color Depth (bpp)	4 bpp	ddq 8	15/16 bpp	

70h] LCD Ink/Cursor Selection

Mode	Inactive	Cursor	Ink	Reserved
LCD Ink/Cursor Bits	00	01	10	11

71h] LCD Ink/Cursor Start Address Encoding

LCD Ink/Cursor Start Address Bits [7:0]	Start Address
0	Memory Size - 1024
n = 1601	Memory Size - n × 8192
n = 255161	Invalid
80h] CRT/TV Ink/Cursor Selection	
CRT/TV Ink/Cursor Bits	Mode
00	Inactive
10	Cursor
10	Ink

81h] CRT/TV Ink/Cursor Start Address Encoding

		_	
Start Address	Memory Size - 1024	Memory Size - n × 8192	Invalid
CRT/TV Ink/Cursor Start Address Bits [7:0]	0	n = 1601	n = 255161

00h] BitBLT Active Status

443	0,000	əlpi	Reserved	Initiatiating operation	Operation in progress
ive Status	Read	0	1	0	1
BitBLT Active Status	Write	0	0	1	1

27 REG[100h] BitBLT FIFO Data Available

32 REG[1FCh] Display Mode Selection

Number of Data Available In BitBLT FIFO	0	1 to 6	7 to 14	15 to 16
BitBLT FIFO Not Empty Status (REG[100h] Bit 6)	0	1	1	1
BitBLT FIFO Half Full Status (REG[100h] Bit 5)	0	0	1	1
SitBLT FIFO Full Status REG[100h] Bit 4)	0	0	0	1

28 REG(102h] BitBLT ROP Code/Color Expansion Function Selection

BitBLT ROP Code Bits	Boolean Function for Write Blit and Move Blit	Boolean Function for Pattern Fill	Start Bit Positon for Color Expansion
0000	0 (Blackness)	0 (Blackness)	bit 0
0001	~S . ~D or ~(S + D)	~P . ~D or ~(P + D)	bit 1
0010	-S.D	-P.D	bit 2
0011	S~	ď∼	bit 3
0100	S. ~D	D~. P	bit 4
0101	۵~	Q~	bit 5
0110	QvS	۵vd	bit 6
0111	~S + ~D or ~(S . D)	~P + ~D or ~(P . D)	bit 7
1000	S.D	D. D	bit 0
1001	~(S ^ D)	~(P ^ D)	bit 1
1010	Q	Q	bit 2
1011	Q+S~	0 + d~	bit 3
1100	S	Ь	bit 4
1101	Q~ +S	0~ + d	bit 5
1110	Q+S	D+D	bit 6
1111	1 (Whiteness)	1 (Whiteness)	bit 7

29 REG[103h] BitBLT Operation Selection

BitBLT Operation Bits	Blit Operation
0000	Write Blit with ROP.
0001	Read Blit.
0010	Move Blit in positive direction with ROP.
0011	Move Blit in negative direction with ROP.
0100	Transparent Write Blit.
0101	Transparent Move Blit in positive direction.
0110	Pattern Fill with ROP.
0111	Pattern Fill with transparency.
1000	Color Expansion.
1001	Color Expansion with transparency.
1010	Move Blit with Color Expansion.
1011	Move Blit with Color Expansion and transparency.
1100	Solid Fill.
Other combinations	Reserved

30 REG[104h],[105h],[106h] BitBLT Source Start Address Selection

Color Format	Pattern Base Address[20:0]	Pattern Line Offset[2:0]	Pixel Offset[3:0]
8 bpp	BitBLT Source Start	BitBLT Source Start	1'b0, BitBLT Source Start
	Address[20:6], 6'b0	Address[5:3]	Address[2:0]
16 bpp	BitBLT Source Start	BitBLT Source Start	BitBLT Source Start
	Address[20:7], 7'b0	Address[6:4]	Address[3:0]

31 REG[1E0h] LUT Mode Selection

Write	LCD and CRT/TV LUT's	רכם רחב	CRT/TV LUT	Reserved
Read	רכם רתב	רכם רחב	CRT/TV LUT	Reserved
LUT Mode Bits	00	10	10	11

01/02/27

S1D13806 Embedded Memory Display Controller

13806CFG Configuration Program

Document Number: X28B-B-001-03

Copyright © 2000, 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

3806CFG	ļ
S1D13806 Supported Evaluation Platforms	5
Installation	6
Usage	6
13806CFG Configuration Tabs	7
General Tab	7
Preferences Tab	9
Clocks Tab	(
Panel Tab	4
Panel Power Tab	8
CRT/TV Tab	(
Registers Tab	2
13806CFG Menus	13
Open	13
Save	,4
Save As 2	,4
Configure Multiple	5
Export	(
Enable Tooltips	:7
ERD on the Web	:7
About 13806CFG	7
Comments	,-,

THIS PAGE LEFT BLANK

13806CFG

13806CFG is an interactive Windows® 9x/ME/NT/2000 program that calculates register values for a user defined S1D13806 configuration. The configuration information can be used to directly alter the operating characteristics of the S1D13806 utilities or any program built with the Hardware Abstraction Layer (HAL) library. Alternatively, the configuration information can be saved in a variety of text file formats for use in other applications.

S1D13806 Supported Evaluation Platforms

13806CFG runs on PC system running Windows 9x/ME/NT/2000 and can modify the executable files for the following S1D13806 evaluation platforms:

- PC system with an Intel 80x86 processor.
- M68EC000IDP (Integrated Development Platform) board, revision 3.0, with a Motorola M68EC000 processor.
- MC68030IDP (Integrated Development Platform) board, revision 3.0, with a Motorola MC68030 processor.
- SH3-LCEVB board, revision B, with an Hitachi SH-3 HD6417780 processor.
- MPC821ADS (Applications Development System) board, revision B, with a Motorola MPC821 processor.

Installation

Create a directory for **13806cfg.exe** and the S1D13806 utilities. Copy the files **13806cfg.exe** and **panels.def** to that directory. **Panels.def** contains configuration information for a number of panels and must reside in the same directory as **13806cfg.exe**.

Usage

13806CFG can be started from the Windows desktop or from a Windows command prompt.

To start 13806CFG from the Windows desktop, double click the program icon or the link icon if one was created during installation.

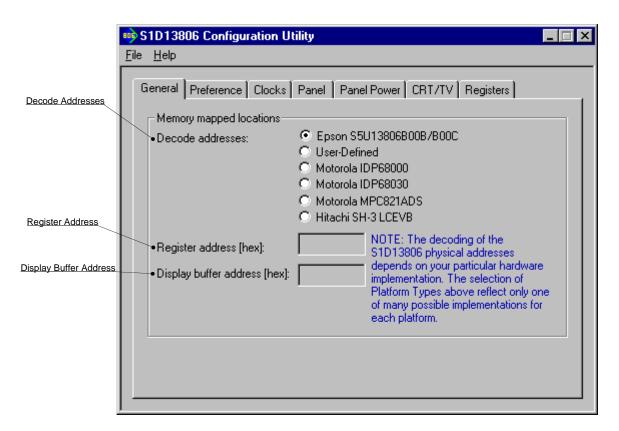
To start 13806CFG from a Windows command prompt, change to the directory **13806cfg.exe** was installed to and type the command **13806cfg**.

The basic procedure for using 13806CFG is:

- 1. Start 13806CFG as described above.
- 2. Open an existing file to serve as a starting reference point (this step is optional).
- 3. Modify the configuration. For specific information on editing the configuration, see "13806CFG Configuration Tabs" on page 7.
- 4. Save the new configuration. The configuration information can be saved in two ways; as an ASCII text file or by modifying the executable image on disk.

Several ASCII text file formats are supported. Most are formatted C header files used to build display drivers or standalone applications.

Utility files based on the Hardware Abstraction Layer (HAL) can be modified directly by 13806CFG.



13806CFG Configuration Tabs

13806CFG provides a series of tabs which can be selected at the top of the main window. Each tab allows the configuration of a specific aspect of S1D13806 operation.

The tabs are labeled "General", "Preference", "Clocks", "Panel", "Panel Power", "CRT/TV", and "Registers". The following sections describe the purpose and use of each of the tabs.

General Tab

The General tab contains S1D13806 evaluation board specific information. The values presented are used for configuring HAL based executable utilities. The settings on this tab specify where in CPU address space the registers and display buffer are located.

Decode Addresses

Selecting one of the listed evaluation platforms changes the values for the "Register address" and "Display buffer address" fields. The values used for each evaluation platform are examples of possible implementations as used by the Epson S1D13806 evaluation board. If your hardware implementation differs from the addresses used, select the User-Defined option and enter the correct addresses for "Register address" and "Display buffer address".

Register Address The physical address of the start of register decode

space (in hexadecimal).

This field is automatically set according to the Decode

Address unless the "User-Defined" decode address is

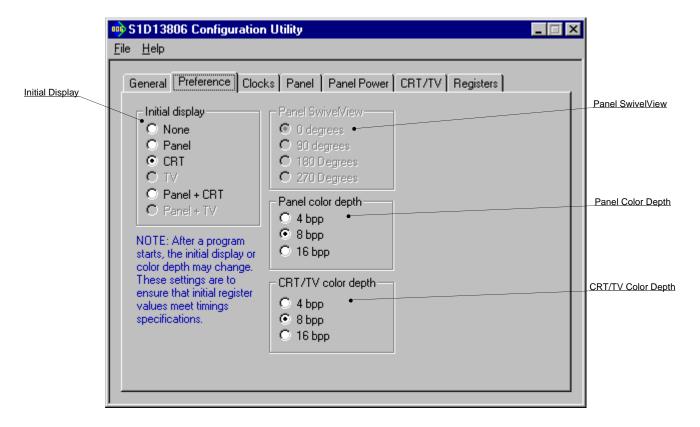
selected.

The physical address of the start of display buffer **Display Buffer Address**

decode space (in hexadecimal).

This field is automatically set according to the Decode Address unless the "User-Defined" decode address is

selected.


Note

When "Epson S5U13806B00B/B00C Evaluation Board" is selected, the register and display buffer addresses are blanked because the evaluation board uses the PCI interface and the decode addresses are determined by the system BIOS during boot-up.

If using the S1D13806 Evaluation Board on a PCI based platform, both Windows and the S1D13XXX device driver must be installed. For further information on the S1D13xxx device driver, see the S1D13XXX Windows 9x/NT/2000 Device Driver Installation Guide, document number X00A-E-003-xx.

Preferences Tab

The Preference tab contains settings pertaining to the initial display state. During runtime the display or color depth may be changed.

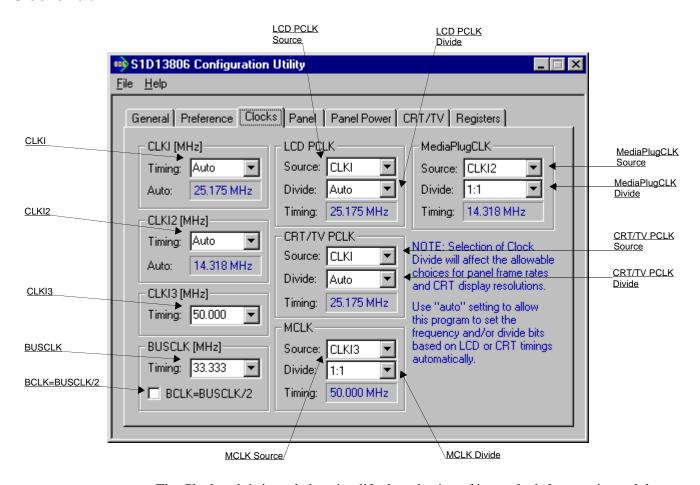
Initial Display	Sets which display device is used for the initial display.
	Selections made on the CRT/TV tab may cause selec-

tions on this tab to be grayed out. The selections "None" and "Panel" are always available.

Panel SwivelView The S1D13806 SwivelView feature is capable of

rotating the image displayed on an LCD panel 90° , 180° , or 270° in a clockwise direction. This sets the

initial orientation of the panel.


This setting is greyed out when any display device other

than "Panel" is selected as the Initial Display.

Panel Color Depth Sets the initial color depth on the LCD panel.

CRT/TV Color Depth Sets the initial color depth on the CRT or TV display.

Clocks Tab

The Clocks tab is intended to simplify the selection of input clock frequencies and the source of internal clocking signals. For further information regarding clocking and clock sources, refer to the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx.

In automatic mode the values for CLKI, CLKI2 and CLKI3 are calculated based on selections made for LCD and CRT/TV timings from the "Panel" and "CRT/TV" tabs. In this mode, the required frequencies for the input clocks are displayed in blue in the "Auto" section of each group. It is the responsibility of the system designer to ensure that the correct CLKI frequencies are supplied to the S1D13806.

Making a selection other than "Auto" indicates that the values for CLKI, CLKI2, or CLKI3 are known and are fixed by the system design. Options for LCD and CRT/TV frame rates are limited to ranges determined by the clock values.

Note

Changing clock values may modify or invalidate Panel or CRT/TV settings. Confirm all settings on these two tabs after changing any clock settings.

Note

If the same source clock is selected for use by both CRT/TV and LCD panels, the available LCD pixel clock selections are limited due to more stringent CRT/TV timings.

The S1D13806 may use as many as three input clocks or as few as one. The more clocks used the greater the flexibility of choice in display type and memory speed.

CLKI

This setting determines the frequency of CLKI. CLKI is typically used for the panel and CRT/TV pixel clocks.

Select "Auto" to have the CLKI frequency determined automatically based on settings made on other configuration tabs. After completing the other configurations, the required CLKI frequency will be displayed in blue in the Auto section.

If the CLKI frequency must be fixed to a particular rate, set this value by selecting a preset frequency from the drop down list or entering the desired frequency in MHz.

CLKI2

This setting determines the frequency of CLKI2. If the MediaPlug interface is required, CLKI2 is typically used as the clock source.

Select "Auto" to have the CLKI2 frequency determined automatically based on settings made on other configuration tabs. After completing the other configurations, the required CLKI2 frequency will be displayed in blue in the Auto section.

If the CLKI2 frequency must be fixed to a particular rate, set this value by selecting a preset frequency from the drop down list or entering the desired frequency in MHz.

CLKI3

This setting determines the frequency of CLKI3. CLKI3 is typically used for the memory refresh clock.

The CLKI3 frequency must be fixed to a particular rate. Set this value by selecting a preset frequency from the drop down list or entering the desired frequency in MHz.

BUSCLK

This setting determines the frequency of the bus interface clock (BUSCLK). This value is required for calculating internal divisors which will yield the best performance.

The BUSCLK frequency must be fixed to a particular rate. Set this value by selecting a preset frequency from the drop down list or entering the desired frequency in MHz.

BCLK=BUSCLK/2

Indicates the BCLK to BUSCLK ratio. This ratio is set at RESET# by the configuration pin CONF5.

Under normal circumstances BCLK = BUSCLK. This option is only for configuring Toshiba/Philips interfaces when DCLKOUT is connected to the S1D13806 BUSCLK signal.

LCD PCLK

These settings select the signal source and input clock divisor for the panel pixel clock (LCD PCLK).

Source Selects the LCD PCLK source. Possible sources include

CLKI, CLKI2, BUSCLK or MCLK. Typically the LCD

PCLK is derived from CLKI.

Divide Specifies the divide ratio for the clock source signal.

Selecting "Auto" for the divisor allows the configuration program to calculate the best clock divisor. Unless a very specific clocking is being specified, it is

best to leave this setting on "Auto".

Timing This field shows the actual LCD PCLK used by the

configuration process.

ma ??

CRT/TV PCLK These settings select the signal source and input clock

divisor for the CRT/TV pixel clock (CRT/TV PCLK).

Source Selects the CRT/TV PCLK source. Possible sources

include CLKI, CLKI2, BUSCLK or MCLK. Typically

the CRT/TV PCLK is derived from CLKI.

Divide Specifies the divide ratio for the clock source signal.

Selecting "Auto" for the divisor allows the configuration program to calculate the best clock divisor.
Unless a very specific clocking is required, it is best to

leave this setting on "Auto".

Timing This field shows the actual CRT/TV PCLK used by the

configuration process.

MCLK These settings select the signal source and input clock

divisor for the memory clock (MCLK). MCLK should be set as close to the maximum (50 MHz) as possible.

Source Selects the MCLK source. Possible sources include

CLKI, CLKI3, or BUSCLK. Typically MCLK is

derived from CLKI3.

Divide Specifies the divide ratio for the clock source signal.

Unless the MCLK source frequency is very high, resulting in more than a 50MHz MCLK, this ratio

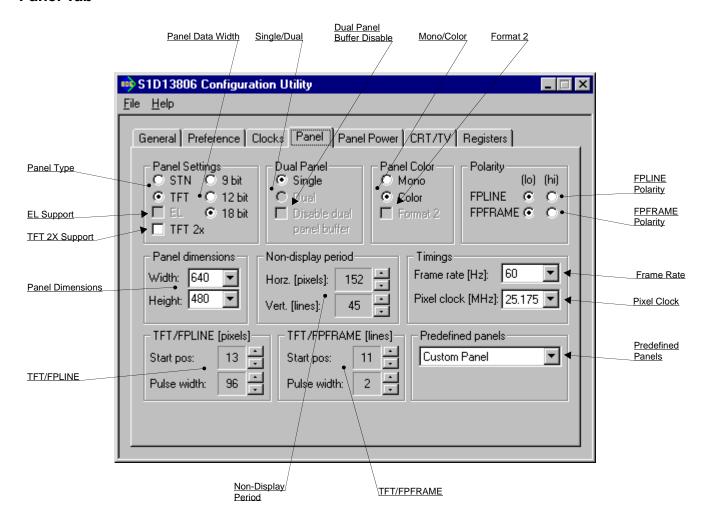
should be set at 1:1.

Timing This field shows the actual MCLK frequency used by

the configuration process.

MediaPlugCLK These settings select the signal source and input clock

divide for the MediaPlug clock (MediaPlugCLK).


Source Selects the MediaPlug clock source.

Divide Selects the divide ratio for the MediaPlug clock source.

Timing This field shows the actual MediaPlugCLK frequency

used by the configuration process.

Panel Tab

The S1D13806 supports many panel types. This tab allows configuration of most panel settings such as panel dimensions, type and timings.

Panel Type

Selects between passive (STN) and active (TFT) panel types. Select TFT for TFT compatible D-TFD panel types.

Several options may change or become unavailable when the STN/TFT setting is switched. Therefore, confirm all settings on this tab after the Panel Type is changed.

EL Support

Enable Electro-Luminescent panel support. This option is only available when the selected panel type is STN.

Refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx for more

information on the 2X TFT data format.

Panel Data Width Selects the panel data width. Panel data width is the

number of bits of data transferred to the LCD panel on each clock cycle and shouldn't be confused with color depth which determines the number of displayed colors.

When the panel type is STN, the available options are 4 bit, 8 bit, and 16 bit. When the panel type is TFT the available options are 9 bit, 12 bit, and 18 bit.

Single / Dual Selects between a single or dual panel.

When the panel type is TFT, "Single" is automatically selected and the "Dual" option is grayed out.

Disable Dual Panel Buffer The Dual Panel Buffer is used with dual STN panels to

improve image quality by buffering display data in a

format directly usable by the panel.

This option is primarily intended for testing purposes. It is not recommended that the Dual Panel Buffer be disabled as a reduction of display quality will result.

Mono / Color Selects between a monochrome or color panel.

Format 2 Selects color STN panel format 2. This option is specif-

ically for configuring 8-bit color STN panels.

See the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx, for description of format 1 / format 2 data formats. Most new panels use

the format 2 data format.

FPline Polarity Selects the polarity of the FPLINE pulse.

Refer to the panel specification for the correct polarity

of the FPLINE pulse.

FPframe Polarity Selects the polarity of the FPFRAME pulse.

Refer to the panel specification for the correct polarity

of the FPFRAME pulse.

Panel Dimensions

These fields specify the panel width and height. A number of common widths and heights are available in the selection boxes. If the width/height of your panel is not listed, enter the actual panel dimensions into the edit field.

Manually entered panel widths must be a multiple of eight pixels. If a manually entered panel width is not a multiple of eight pixels a notification box appears and 13806CFG rounds up the value to the next allowable width.

Non-display period

It is recommended that these automatically generated non-display values be used without adjustment. However, manual adjustment may be useful in fine tuning the non-display width and the non-display height.

As a general rule passive LCD panels and some CRTs are tolerant of a wide range of non-display times. Active panels, TVs and some CRTs are far less tolerant of changes to the non-display period.

Frame Rate

Select the desired frame rate (in Hz) from the dropdown list. The values in the list are the range of possible frame rates using the currently selected pixel clock. To change the range of frame rates, select a different Pixel Clock rate (in MHz).

Panel dimensions are fixed therefore frame rate can only be adjusted by changing either PCLK or nondisplay period values. Higher frame rates correspond to smaller horizontal and vertical non-display values, or higher frequencies.

Pixel Clock

Select the desired Pixel Clock (in MHz) from the dropdown list. The range of frequencies displayed is dependent on settings selected on the Clocks tab.

For example:

If CLKI is chosen to be Auto and LCD PCLK is sourced from CLKI on the Clocks tab, then the range for Pixel Clock will range from 1.5 MHz to 80 MHz.

Selecting a fixed LCD PCLK on the Clocks tab, say 25.175 MHz, will result in only four selections: 6.293, 8.392, 12.587, and 25.175 MHz. (these frequencies represent the four possible frequencies from a fixed 25.175 MHz input clock divided by the PCLK divider).

TFT/FPLINE (pixels)

These settings allow fine tuning of the TFT/D-TFT line

pulse parameters and are only available when the selected panel type is TFT. Refer to *S1D13806*

Hardware Functional Specification, document number X28B-A-001-xx for a complete description of the

FPLINE pulse settings.

Start pos Specifies the delay (in pixels) from the start of the

horizontal non-display period to the leading edge of the

FPLINE pulse.

Pulse Width Specifies the delay (in pixels) from the start of the

horizontal non-display period to the leading edge of the

FPLINE pulse.

TFT/FPFRAME (lines)

These settings allow fine tuning of the TFT/D-TFT

frame pulse parameters and are only available when the

selected panel type is TFT. Refer to S1D13806 Hardware Functional Specification, document number

X28B-A-001-xx, for a complete description of the

FPFRAME pulse settings.

Start pos Specify the delay (in lines) from the start of the vertical

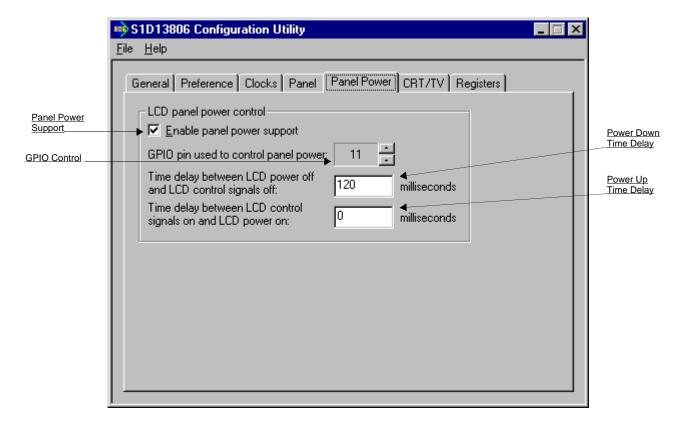
non-display period to the leading edge of the

FPFRAME pulse.

Pulse width Specifies the pulse width (in lines) of the FPFRAME

output signal.

Predefined Panels 13806CFG uses a file (**panels.def**) which lists various


panel manufacturers recommended settings. If the file

panels.def is present in the same directory as

13806cfg.exe, the settings for a number of predefined panels are available in the drop-down list. If a panel is selected from the list, 13806CFG loads the predefined

settings contained in the file.

Panel Power Tab

Panel Power tab configures settings used by the Hardware Abstraction Layer (HAL) to control panel power.

For more information on power sequencing for LCD panels, refer to the *S1D13806* Hardware Functional Specification, document number X28B-A-001-xx and the *S1D13806* Programmers Notes and Examples, document number X28B-G-003-xx.

Enable Panel Power Support This box must be checked to enable panel power

support. When unchecked the remaining controls on

this tab are grayed and are inaccessible.

GPIO Control LCD power can be disabled using any of the 12 GPIO

pins (GPIO[11:0]). This control selects which GPIO

will be used.

The S1D13806 evaluation boards use GPIO11 to

control the LCD bias power.

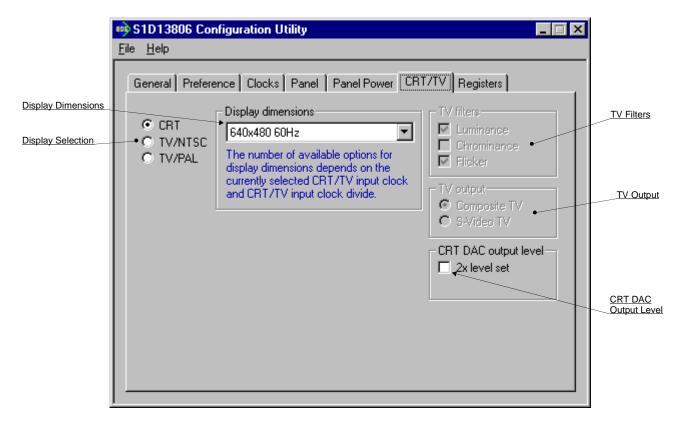
Power Down Time Delay This setting controls the time delay between when the

LCD panel is powered-off and when the S1D13806 control signals are turned off. This setting must be configured according to the specification for the panel

being used.

This value is only meaningful to the HAL or programs with panel power control based on the HAL example

code.


Power Up Time Delay This setting controls the time delay between when the

S1D13806 control signals are turned on and the LCD panel is powered-on. This setting must be configured according to the specification for the panel being used.

This value is only meaningful to the HAL or programs with panel power control based on the HAL example

code.

CRT/TV Tab

The CRT/TV tab configures settings specific to CRT/TV display devices.

Display Selection Select the type of alternate display from: CRT,

TV/NTSC, or TV/PAL.

Note that CRT and TV cannot be simultaneously

selected.

Display Dimensions Selects the resolution and frame rate from the drop-

down list. The available selections vary based on selections made in the Clocks tab and which Display Selection is chosen on this tab (CRT, TV/NTSC,

TV/PAL).

If no selections are available, the CRT/TV pixel clock

settings on the Clocks tab must be changed.

TV Filters When displaying computer images on a TV, several

image distortions may arise. The S1D13806 incorporates three filters which reduce these distortions. Each filter type is enabled by checking the associated box.

Luminance The luminance filter adjusts the brightness of the TV

and reduces the "rainbow-like" colors at the boundaries between sharp luminance transitions. This filter is most

useful for composite video output.

Chrominance The chrominance filter adjusts the color of the TV and

reduces the "ragged edges" seen at the boundaries between sharp color transitions. This filter is most

useful for composite video output.

Flicker The "flickering" effect seen on interlaced displays is

caused by sharp vertical image transitions such as window edges. Turning on the anti-flicker filter averages adjacent lines on the TV display to reduce

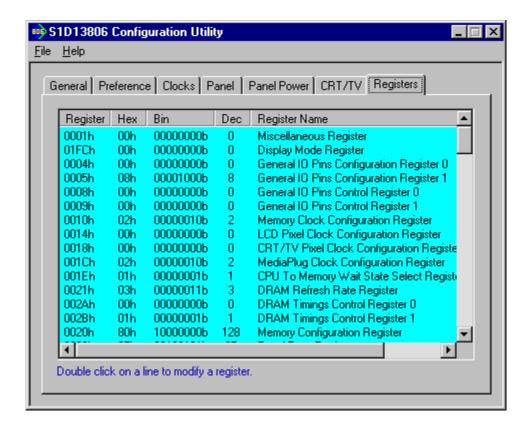
flickering.

TV Output Selects the TV output format: Composite or S-Video.

CRT DAC output level When the CRT is active, the CRT DAC Output Level

can be used to double values output to the DAC. This would normally result in very bright colors on the display, but if IREF is reduced at the same time the display will remain at its intended brightness and power

consumption is reduced.


For more information on setting the CRT DAC output level, see the S1D13806 Hardware Functional Specifi-

cation, document number X28B-A-001-xx.

Note

For CRT operations, 13806CFG supports VESA timings only. For TV operations, 13806CFG supports NTSC and PAL timings only. Overriding these register values on the Registers page may cause the CRT or TV to display incorrectly.

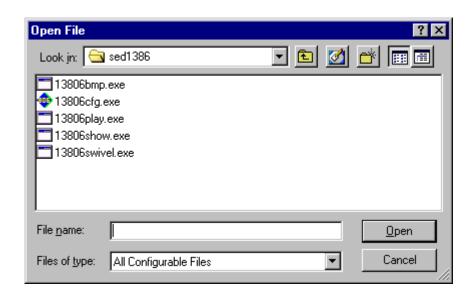
Registers Tab

The Registers tab allows viewing and direct editing the S1D13806 register values.

Scroll up and down the list of registers and view their configured value. Individual register settings may be changed by double-clicking on the register in the listing. **Manual changes to the registers are not checked for errors, so caution is warranted when directly editing these values.** It is strongly recommended that the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx be referred to before making an manual register settings.

Manually entered values may be changed by 13806CFG if further configuration changes are made on the other tabs. In this case, the user is notified.

Note


Manual changes to the registers may have unpredictable results if incorrect values are entered.

13806CFG Menus

The following sections describe each of the options in the \underline{F} ile and \underline{H} elp menus.

Open...

From the Menu Bar, select "File", then "Open..." to display the Open File Dialog Box.

The Open option allows 13806CFG to open files containing HAL configuration information. When 13806CFG opens a file it scans the file for an identification string, and if found, reads the configuration information. This may be used to quickly arrive at a starting point for register configuration. The only requirement is that the file being opened must contain a valid S1D13806 HAL library information block.

13806CFG supports a variety of executable file formats. Select the file type(s) 13806CFG should display in the Files of Type drop-down list and then select the filename from the list and click on the Open button.

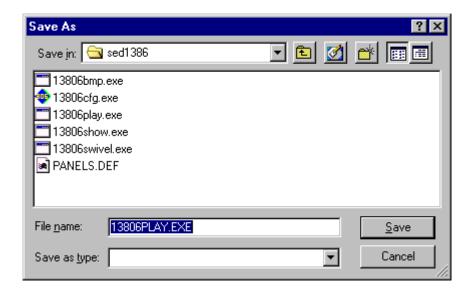
Note

13806CFG is designed to work with utilities programmed using a given version of the HAL. If the configuration structure contained in the executable file differs from the version 13806CFG expects the Open will fail and an error message is displayed. This may happen if the version of 13806CFG is substantially older, or newer, than the file being opened.

Save

From the Menu Bar, select "File", then "Save" to initiate the save action. The Save menu option allows a fast save of the configuration information to a file that was opened with the Open menu option.

Note


This option is only available once a file has been opened.

Note

13806cfg.exe can be configured by making a copy of the file 13806cfg.exe and configuring the copy. It is not possible to configure the original while it is running.

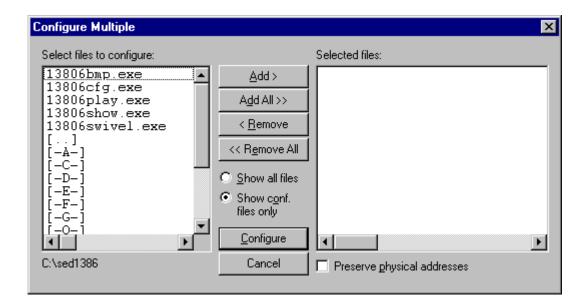
Save As...

From the Menu Bar, select "File", then "Save As..." to display the Save As Dialog Box.

"Save as" is very similar to Save except a dialog box is displayed allowing the user to name the file before saving.

Using this technique a tester can configure a number of files differing only in configuration information and name (e.g. BMP60Hz.EXE, BMP72Hz.EXE, BMP75Hz.EXE where only the frame rate changes in each of these files).

Note


When "Save As" is selected then an exact duplicate of the file as opened by the "Open" option is created containing the new configuration information.

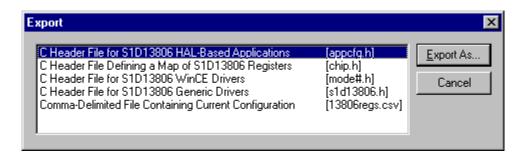
Configure Multiple

After determining the desired configuration, "Configure Multiple" allows the information to be saved into one or more executable files built with the HAL library.

From the Menu Bar, select "File", then "Configure Multiple" to display the Configure Multiple Dialog Box. This dialog box is also displayed when a file(s) is dragged onto the 13806CFG window.

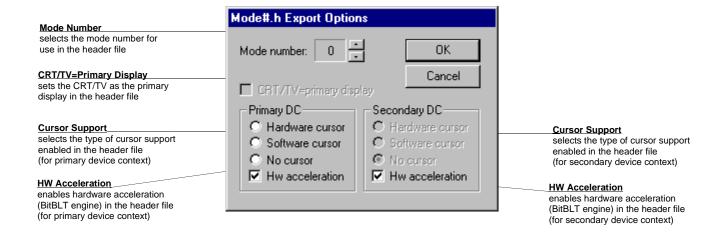
The left pane lists files available for configuration; the right pane lists files that have been selected for configuration. Files can be selected by clicking the "Add" or "Add All" buttons, double clicking any file in the left pane, or by dragging the file(s) from Windows Explorer.

Selecting "Show all files" displays all files in the selected directory, whereas selecting "Show conf. files only" will display only files that can be configured using 13806CFG (i.e. .exe, .s9, .elf).


The configuration values can be saved to a specific EXE file for Intel platforms, or to a specific S9 or ELF file for non-Intel platforms. The file must have been compiled using the 13806 HAL library.

Checking "Preserve Physical Addresses" instructs 13806CFG to use the register and display buffer address values the files were previously configured with. Addresses specified in the General Tab are discarded. This is useful when configuring several programs for various hardware platforms at the same time. For example, if configuring PCI, MPC and IDP based programs at the same time for a new panel type, the physical addresses for each are retained. This feature is primarily intended for the test lab where multiple hardware configurations exist and are being tested.

Export


After determining the desired configuration, "Export" permits the user to save the register information as a variety of ASCII text file formats. The following is a list and description of the currently supported output formats:

- a C header file for use in writing HAL library based applications.
- a C header file which lists each register and the value it should be set to.
- a C header file for use in developing Window CE display drivers.
- a C header file for use in developing display drivers for other operating systems such as Linux, QNX, and VxWorks UGL or WindML.
- a comma delimited text file containing an offset, a value, and a description for each S1D13806 register.

After selecting the file format, click the "Export As..." button to display the file dialog box which allows the user to enter a filename before saving. Before saving the configuration file, clicking the "Preview" button starts Notepad with a copy of the configuration file about to be saved.

When the **C Header File for S1D13806 WinCE Drivers** option is selected as the export type, additional options are available and can be selected by clicking on the Options button. The options dialog appears as:

Enable Tooltips

Tooltips provide useful information about many of the items on the configuration tabs. Placing the mouse pointer over nearly any item on any tab generates a popup window containing helpful advice and hints.

To enable/disable tooltips check/uncheck the "Tooltips" option form the "Help" menu.

Note

Tooltips are enabled by default.

ERD on the Web

This "Help" menu item is actually a hotlink to the Epson Research and Development website. Selecting "Help" then "ERD on the Web" starts the default web browser and points it to the ERD product web site.

The latest software, drivers, and documentation for the S1D13806 is available at this website.

About 13806CFG

Selecting the "About 13806CFG" option from the "Help" menu displays the about dialog box for 13806CFG. The about dialog box contains version information and the copyright notice for 13806CFG.

Comments

- On any tab particular options may be grayed out if selecting them would violate the
 operational specification of the S1D13806 (i.e. Selecting extremely low CLK frequencies on the Clocks tab may result in no possible CRT/TV options. Selecting TFT or STN
 on the Panel tab enables/disables options specific to the panel type).
- The file **panels.def** is a text file containing operational specifications for several supported, and tested, panels. This file can be edited with any text editor.
- 13806CFG allows manually altering register values. The manual changes may violate memory and LCD timings as specified in the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx. If this is done, unpredictable results may occur. Epson Research and Development, Inc. does not assume liability for any damage done to the display device as a result of configuration errors.

THIS PAGE LEFT BLANK

S1D13806 Embedded Memory Display Controller

13806SHOW Demonstration Program

Document Number: X28B-B-002-03

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

13806SHOW

13806SHOW is designed to demonstrate and test some of the S1D13806 display capabilities. The program can cycle through all color depths and display a pattern showing all available colors or shades of gray. Alternately, the user can specify a color depth and display configuration. 13806SHOW supports SwivelViewTM (0°, 90°, 180°, and 270° hardware rotation of the display image).

The 13806SHOW demonstration program must be configured and/or compiled to work with your hardware platform. The utility 13806CFG.EXE can be used to configure 13806SHOW. For further information on 13806CFG, refer to the *13806CFG Users Manual*, document number X28B-B-001-xx.

This software is designed to work in both embedded and personal computer (PC) environments. For the embedded environment, it is assumed that the system has a means of downloading software from the PC to the target platform. Typically this is done by serial communications, where the PC uses a terminal program to send control commands and information to the target processor. Alternatively, the PC can program an EPROM, which is then placed in the target platform. Some target platforms can also communicate with the PC via a parallel port connection, or an Ethernet connection.

S1D13806 Supported Evaluation Platforms

13806SHOW supports the following S1D13806 evaluation platforms:

- PC system with an Intel 80x86 processor running Windows® 9x/NT.
- M68EC000IDP (Integrated Development Platform) board, revision 3.0, with a Motorola M68EC000 processor.
- MC68030IDP (Integrated Development Platform) board, revision 3.0, with a Motorola MC68030 processor.
- SH3-LCEVB board, revision B, with an Hitachi SH-3 HD6417780 processor.
- MPC821ADS (Applications Development System) board, revision B, with a Motorola MPC821 processor.

Installation

PC platform:

Copy the file **13806show.exe** to a directory specified in the path (e.g. PATH=C:\13806).

Embedded platform:

Download the program **13806show** to the system.

n Program

Usage

PC Platform

At the prompt, type:

13806SHOW [/a] [bl=n] [bc=n] [ds=n | ds=?] [/g] [/noinit] [/r90 | /r180 | /r270] [/read] [/s] [/write] [/?]

Embedded platform

Execute **13806show** and type the command line argument at the prompt.

Where:

/a Cycles through all video modes automatically.

bl=n Shows the LCD display at a user specified color depth (bpp)

where n = (4, 8, 16).

bc=n Shows the CRT/TV display at a user specified color depth

(bpp) where n = (4, 8, 16).

ds=n Selects display surfaces (see Section, "Display Surfaces"

on page 5).

ds=? Shows the available display surfaces (see Section, "Display

Surfaces" on page 5).

/g Shows the image overlaid with a 20 pixel wide grid.

/noinit Skips full register initialization. Only registers used for

changing the color depth (bpp) and programming the clock synthesizer are updated. Additionally, some registers are read to determine information such as

display size and type (LCD, CRT, TV).

/r90 Enables SwivelView 90° mode, clockwise hardware

rotation of LCD image by 90 degrees.

/r180 Enables SwivelView 180° mode, clockwise hardware

rotation of LCD image by 180 degrees.

/r270 Enables SwivelView 270° mode, clockwise hardware

rotation of LCD image by 270 degrees.

/read	After drawing the image, continually reads from the screen (for testing purposes).
/s	Displays a vertical stripe pattern.
/write	Continually writes to one word of offscreen memory (for testing purposes only).
/?	Displays the help screen.

Note

Pressing the *Esc* key will exit the program.

Display Surfaces

A surface is a block of memory assigned to one or more physical display devices. 13806SHOW provides seven display surfaces (0-6) which cover the possible combinations of display types. Table 1:, "Display Surfaces" lists the predefined display surfaces that may be selected.

Display Surfaces (ds=)	Display Device(s) using Memory Block 0	Display Device(s) using Memory Block 1
0	LCD	
1	CRT	
2	TV	
3	LCD & CRT	
4	LCD & TV	
5	LCD	CRT
6	LCD	TV

Table 1: Display Surfaces

Display surfaces 0 through 2 display data from a single memory block to an individual display device (LCD, CRT, or TV).

Display surfaces 3 and 4 output to two separate display devices, but generate the output from the same memory block. This may be useful when the same image is to be displayed on both display devices. It also reduces the total amount of display buffer required.

Display surfaces 5 and 6 output to two separate devices from different memory blocks. This allows two independent images to be displayed at the same time. When using display surfaces 5 or 6, some combinations of display modes with a high resolution and/or high color depth may not be supported within a 1.25MB display buffer.

Note

Only Surfaces 5 and 6 support SwivelView as it requires a separate memory block for the LCD. Surfaces 3 and 4 use the same memory block for both displays.

13806SHOW Examples

13806SHOW is designed to demonstrate and test some of the features of the S1D13806. The following examples show how to use the program in both instances.

Using 13806SHOW For Demonstration

1. To show color patterns which must be manually stepped through, type the following:

13806SHOW

The program displays the default color depth and display surface as selected by 13806CFG. Press any key to go to the next screen. Once all screens are shown the program exits. To exit the program immediately press the *Esc* key.

2. To show color patterns which automatically step through, type the following:

13806SHOW /a

The program displays the default color depth and display surface as selected by 13806CFG. Each screen is shown for approximately 1 second before the next screen is automatically shown. The program exits after the last screen is shown. To exit the program immediately press *CTRL+BREAK*.

3. To show a color pattern for a specific color depth on the LCD, type the following:

13806SHOW bl=[mode]

```
where: mode = 4, 8, or 16
```

The program displays the requested color depth for the default display surface and then exits.

Note

If configured for a default display surface including CRT/TV, the color pattern for the default CRT/TV color depth is displayed also.

Note

If a monochrome LCD panel is used, the image is formed using only the green component of the Look-Up Table for 4 and 8 bpp color depths. For 16 bpp color depths the green component of the pixel value is used.

4. To show a color pattern for a specific color depth on the CRT, type the following:

13806SHOW bc=[mode]

```
where: mode = 4, 8, or 16
```

The program displays the requested color depth for the default display surface and then exits.

Note

If configured for a default display surface including LCD, the color pattern for the default LCD color depth is displayed also.

5. To show the color patterns in SwivelView 90° mode, type the following:

13806SHOW /r90

The program displays the default color depth and display surface as selected by 13806CFG. Press any key to go to the next screen. Since SwivelView 90° is limited to color depths of 8 and 16 bpp the program exits. To exit the program immediately press the *Esc* key.

The "/r90", "/r180", and "/r270" switches can be used in combination with other command line switches.

Note

If configured for a default display surface including CRT/TV, the color pattern for the default CRT/TV color depth is displayed also but non-rotated. Note that display surfaces 3 and 4 do not support SwivelView since the LCD requires a cerebrate memory block.

6. To show solid vertical stripes, type the following:

13806SHOW /s

The program displays the default color depth and display surface as selected by 13806CFG. Press any key to go to the next screen. Once all screens are shown the program exits. To exit the program immediately press the *Esc* key.

The "/s" switch can be used in combination with other command line switches.

n Program

Using 13806SHOW For Testing

1. To show a test grid over the 8 bpp color pattern on an LCD, type the following:

13806SHOW bl=8/g

The program displays the 8 bpp color pattern overlaid with a white grid 20 pixels wide and then exits. The grid makes it obvious if the image is shifted or if pixels are missing. **Note the grid is not aligned with the color pattern**, therefore the color boxes will not match the grid boxes.

The "/g" switch can be used in combination with other command line switches.

Note

If 13806SHOW is configured for a default display surface which includes CRT/TV, the color pattern for the default CRT/TV color depth is displayed as well as the specified LCD color depth.

2. To test background memory reads to the CRT, type the following:

13806SHOW bc=16 /read

The program tests screen reads. If a problem exists with memory access, the displayed color pattern appears different than when the "/read" switch is not used. When a problem is detected, check the configuration parameters of 13806SHOW using the utility 13806CFG. For further information on 13806CFG, *13806CFG Users Manual*, document number X28B-B-001-xx.

The "/read" switch should be used in combination with the "bl=" or "bc=" setting. Otherwise the test always starts with the default color depth and display surface as selected by 13806CFG. To exit the program after using "/read", press the *Esc* key and wait for a couple of seconds (the keystroke is checked after reading a full screen).

Note

If 13806SHOW is configured for a default display surface which includes LCD, the color pattern for the default LCD color depth is displayed as well as the specified CRT/TV color depth.

Comments

- If 13806SHOW is started without specifying the color depth (bl= or bc=), the program automatically cycles through the available color depths from highest to lowest. The first color depth shown is the default color depth value saved to 13806SHOW using 13806CFG. This approach avoids showing color depths not supported by a given hardware configuration.
- 13806SHOW checks if the display(s) selected using the DS= option have been previously configured by 13806CFG. If these display(s) have not been configured, 13806SHOW displays an error message. For example, if 13806SHOW is configured for the CRT, an error is displayed if the user selects the TV with the DS= option.
- If the DS= option is used to combine two displays of different resolutions into the same surface, the program will display an error message.
- 13806SHOW cannot show a greater color depth than the display device allows.
- SwivelView 90° and 270° modes (/r90, /r270) are available only for color depths of 8 and 16 bpp.
- SwivelView 180° mode (/r180) is available for color depths of 4, 8, and 16 bpp.

Program Messages

ERROR: Could not detect S1D13806.

The ID register did not indicate the presence of the 13806.

ERROR: Could not map memory from evaluation board to host platform.

This message should only be shown for DOS platforms. In this case the DOS extender could not be initialized, or was unable to get the linear address of the display buffer.

ERROR: In the given display surface configuration, the user must select the same BPP for both LCD and CRT/TV.

When two displays are using an image from the same display memory block, both displays must be configured for the same color depth (bpp).

ERROR: Invalid display surface number.

The "ds=" command line option included an invalid value. The parameter "ds=?" lists the valid numbers.

WARNING: LCD and CRT resolutions not same but use same display memory block.

LCD: (width, height) CRT: (width, height)

When the LCD and CRT are displaying an image from the same display memory block, the higher resolution device displays the entire image and the lower resolution device displays a portion of the image using a virtual display.

WARNING: LCD and TV resolutions not same but use same display memory block.

LCD: (width, height)
TV: (width, height)

When the LCD and TV are displaying an image from the same display memory block, the higher resolution device displays the entire image and the lower resolution device displays a portion of the image using a virtual display.

ERROR: LCD must be in landscape mode.

The LCD panel must be configured for SwivelView 0° mode (landscape) when using display surfaces 3 and 4 (both the LCD display and CRT/TV are active using the same memory block).

ERROR: Not enough display buffer memory.

There was insufficient display buffer for the given configuration. Memory requirements depend on:

- the display resolution(s).
- the bit-per-pixel depth(s).
- whether a Dual Panel Buffer is required.
- the number of displays active (LCD or LCD and CRT/TV).

WARNING: Cannot use 4 bpp LCD in SwivelView 90° or SwivelView 270° modes.

A color depth of 4 bpp is not supported in SwivelView 90° or SwivelView 270° modes.

ERROR: Do not select 4 bpp LCD in SwivelView 90° or SwivelView 270°.

The "bl=" option selected a color depth not supported with SwivelView enabled.

ERROR: Not enough memory for LCD/CRT/TV in 4/8/16 bits-per-pixel.

13806SHOW is unable to change the color depth due to insufficient display buffer. Memory requirements depend on:

- the display resolution(s).
- the bit-per-pixel depth(s).
- · whether a Dual Panel Buffer is required.
- the number of displays active (LCD or LCD and CRT/TV).

ERROR: PCI bridge adapter not found.

The Windows PCI driver did not find the PCI Bridge Adapter.

ERROR: PCI driver not found.

The Windows PCI driver is not loaded.

ERROR: Program not configured for LCD/CRT/TV. Run 13806CFG and configure for LCD/CRT/TV.

The program was configured by 13806CFG for a display device that is not available. This typically occurs if the wrong command line was entered for the current configuration.

WARNING: CLKI frequency not in HAL table. Program assumes that external oscillator is used.

WARNING: CLKI2 frequency not in HAL table. Program assumes that external oscillator is used.

The correct frequency was not found in the HAL table used to program the clock synthesizer. An external oscillator may be in use. This warning message will not stop the program.

WARNING: CRT/TV only available in LANDSCAPE mode.

SwivelView is only available on configurations where the LCD uses a separate memory block.

ERROR: bl= and bc= option cannot be used with /noinit.

The command line options "bl=" and "bc=" and /noinit are contradictory, since "bl=" and "bc=" instruct the program to change the color depth and /noinit indicates that no register changes are to be made.

ERROR: Continual screen read will not work with the /a switch.

ERROR: Continual screen write will not work with the /a switch.

The /a switch automatically cycles through the different color depths, whereas the continual screen read/write goes into an infinite loop to read/write memory.

ERROR: Do not select 4 BPP LCD in SwivelView 90 or SwivelView 270 degrees.

SwivelView 90 and SwivelView 270 are available only in 8 and 16 bits-per-pixel modes.

ERROR: Not enough memory for virtual display.

Insufficient memory for the lower resolution display to create a virtual display of the image shown on the higher resolution display.

ERROR: Could not initialize virtual display.

Could not set up virtual image.

THIS PAGE LEFT BLANK

S1D13806 Embedded Memory Display Controller

13806PLAY Diagnostic Utility

Document Number: X28B-B-003-03

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

13806PLAY

13806PLAY is a diagnostic utility allowing a user to read/write to all the S1D13806 Registers, Look-Up Tables and Display Buffer. 13806PLAY is similar to the DOS DEBUG program; commands are received from the standard input device, and output is sent to the standard output device (console for Intel, terminal for embedded platforms). This utility requires the target platform to support standard IO (stdio).

13806PLAY commands can be entered interactively by a user, or be executed from a script file. Scripting is a powerful feature which allows command sequences to be used repeatedly without re-entry.

The 13806PLAY diagnostic utility must be configured and/or compiled to work with your hardware platform. The program 13806CFG.EXE can be used to configure 13806PLAY. For further information on 13806CFG, refer to the *13806CFG Users Manual*, document number X28B-B-001-xx.

This software is designed to work in both embedded and personal computer (PC) environments. For the embedded environment, it is assumed that the system has a means of downloading software from the PC to the target platform. Typically this is done by serial communications, where the PC uses a terminal program to send control commands and information to the target processor. Alternatively, the PC can program an EPROM, which is then placed in the target platform. Some target platforms can also communicate with the PC via a parallel port connection, or an Ethernet connection.

S1D13806 Supported Evaluation Platforms

13806PLAY supports the following S1D13806 evaluation platforms:

- PC with an Intel 80x86 processor running Windows® 9x/NT.
- M68EC000IDP (Integrated Development Platform) board, revision 3.0, with a Motorola M68EC000 processor.
- MC68030IDP (Integrated Development Platform) board, revision 3.0, with a Motorola MC68030 processor.
- SH3-LCEVB board, revision B, with an Hitachi SH-3 HD6417780 processor.
- MPC821ADS (Applications Development System) board, revision B, with a Motorola MPC821 processor.

Installation

PC platform

Copy the file **13806play.exe** to a directory in the path (e.g. PATH=C:\S1D13806).

Embedded platform

Download the program 13806play to the system.

Usage

PC platform

At the prompt, type:

13806play [/?]

Where:

/? displays program version information.

Embedded platform

Execute **13806play** and at the prompt, type the command line argument /?.

Where:

/? displays program version information.

Commands

The following commands are designed to be used from within the 13806PLAY program. However, simple commands can also be executed from the command line. If a command with multiple arguments is executed from the command line, it must be enclosed in double quotes (e.g. 13806play "f 0 1FFFFF AB" q).

Note

If the endian mode of the host platform is big endian, reading/writing words and dwords to/from the registers and display buffer will be incorrect. It is necessary for the user to manually swap the bytes in order to perform the IO correctly.

CLKI [?] iFreq

Selects a preset clock frequency (MHz) for CLKI. If the "?" option is used, the list of available frequencies for CLKI is displayed.

Where:

? Displays a list of available frequencies for CLKI (MHz). iFreq Sets CLKI to a preset frequency (MHz) specified by iFreq. iFreq is based on the table provided with the command:

CLKI?.

CLKI2 [?] iFreq

Selects a preset clock frequency (MHz) for CLKI2. If the "?" option is used, the list of available frequencies for CLKI2 is displayed.

Where:

? Displays a list of available frequencies for CLKI2 (MHz). iFreq Sets CLKI2 to a preset frequency (MHz) specified by iFreq.

iFreq is based on the table provided with the command:

CLKI2?.

CW word

Sends a 24-bit hexadecimal value to the programmable clock. Note that the programmable clock documentation uses the term "word" to describe the 24-bit value. The use of "word" does not imply a 16-bit value in this case.

F addr addr data...

Fills a specified address range with 8-bit data (bytes).

Where:

addr Start and end addresses which define the range to be filled

(hex).

data Data to be written (hex). Data can be a list of bytes that will

be repeated for the duration of the fill. To use decimal values, attach a "t" suffix to the value. (e.g. 100t is 100

decimal)

FD addr addr data...

Fills a specified address range with 32-bit data (dwords).

Where:

addr Start and end addresses which define the range to be filled

(hex).

data Data to be written (hex). Data can be a list of dwords that

will be repeated for the duration of the fill. To use decimal values, attach a "t" suffix to the value. (e.g. 100t is 100

decimal)

FW addr addr data...

Fills a specified address range with 16-bit data (words).

Where:

addr Start and end addresses which define the range to be filled

(hex).

data Data to be written (hex). Data can be a list of words that will

be repeated for the duration of the fill. To use decimal values, attach a "t" suffix to the value. (e.g. 100t is 100

decimal).

H [lines]

Sets the number of lines of data that will be displayed at a time. The display will be halted after the specified number of lines. Setting the number of lines to 0 will disable the halt function and allow the data to continue displaying until all data has been shown. Where:

lines Number of lines that will be shown before halting the

displayed data (decimal value).

I [?] [LCD|CRT|TV] [d=iCrtTv] [COMP | SVIDEO] [FLICKER=ON | OFF]

Initializes the S1D13806 registers and enables a a given display type.

Where:

Pisplays a help message.
 LCD Initializes the LCD registers.
 CRT Initializes the CRT registers.
 TV Initializes the TV registers.

d = iCrtTv Initializes the CRT/TV for a display configuration based on

the following table.

Table 1: iCrtTv Selection

iCrtTv	Resolution	Display Type
0	640x480	CRT
1	800x600	CRT
2	752x484	TV (NTSC)
3	696x436	TV (NTSC)
4	640x480	TV (NTSC)
5	920x572	TV (PAL)
6	856x518	TV (PAL)
7	800x572	TV (PAL)
8	640x480	TV (PAL)

COMP Initializes for Composite video output (TV only).

SVIDEO Initializes for SVideo output (TV only).

FLICKER=ON Initializes for Flicker Filter enabled (TV only). FLICKER=OFF Initializes for Flicker Filter disabled (TV only).

IC {LCD|CRT|TV}

Initializes the Hardware Cursor for a given display type.

Where:

LCD Initializes for the LCD display.
CRT Initializes for the CRT display.
TV Initializes for the TV display.

II {LCD|CRT|TV}

Initializes the Ink Layer for a given display type.

Where:

LCD Initializes for the LCD display.
CRT Initializes for the CRT display.
TV Initializes for the TV display.

L {LCD|CRT|TV} index [red green blue]

Writes red, green, and blue Look-Up Table (LUT) components for a given display type. If the red, green, and blue components are not specified, reads the components at the given index.

Where:

LCD	LUT used by the LCD display.
CRT	LUT used by the CRT display.
TV	LUT used by the TV display.
index	Index into the LUT (hex).
red	Red component of the LUT (hex).
green	Green component of the LUT (hex).
blue	Blue component of the LUT (hex).

Note

Only bits 7-4 of each color are used in the LUT. For example, 10h is the first color intensity after 00h. Valid LUT colors follow the pattern 00h, 10h, 20h, 30h,...E0h, F0h.

LA {LCD|CRT|TV}

Reads all LUT values for a given display.

Where:

LCD	Reads LUT values for LCD display.
CRT	Reads LUT values for CRT display.
TV	Reads LUT values for TV display.

Note

Only bits 7-4 of each color are used in the LUT. For example, 10h is the first color intensity after 00h. Valid LUT colors follow the pattern 00h, 10h, 20h, 30h,...E0h, F0h.

M [?] [LCD|CRT|TV] [bpp]

Sets the color depth (bpp) for the specified display type. If no color depth is provided, information about the current setting on the specified display are listed.

Where:

?	Displays help information for the M and MC commands.
LCD	Sets the color depth of the LCD display.
CRT	Sets the color depth of the CRT display.
TV	Sets the color depth of the TV display.
bpp	Color depth to be set (4/8/16 bpp).

MC [?] [LCD|CRT|TV] [bpp]

Gets extended information and sets the color depth (bpp). If no color depth is specified, further information on the current mode is displayed.

Where:

Displays help information for the M and MC commands.
Sets the color depth of the LCD display.
Sets the color depth of the CRT display.
Sets the color depth of the TV display.
Color depth to be set (4/8/16 bpp).

Q

Quits the program.

R addr [count]

Reads a certain number of bytes from the specified address. If no value is provided for count, it defaults to 10h.

Where:

addr Address from which byte(s) will be read (hex).

count Number of bytes to be read (hex).

RD addr [count]

Reads a certain number of dwords from the specified address. If no value is provided for count, it defaults to 10h.

Where:

addr Address from which dword(s) will be read (hex).

count Number of dwords to be read (hex).

RW addr [count]

Reads a certain number of words from the specified address. If no value is provided for count, it defaults to 10h.

Where:

addr Address from which word(s) will be read (hex).

count Number of words to be read (hex).

S {CLKI | CLKI2 | BUSCLK} freq

Sets PCLK source frequency (in kHz).

Where:

CLKI Sets PCLK source to CLKI.
CLKI2 Sets PCLK source to CLKI2.
BUSCLK Sets PCLK source to BUSCLK.

freq Sets the frequency of the PCLK source (decimal value).

V

Calculates the current frame rate for all enabled display devices. The frame rate is calculated from the VNDP count.

W addr data ...

Writes byte(s) of data to specified memory address.

Where:

addr Address data is written to

data Data to be written (hex). Data can be a list of bytes that will

be repeated for the duration of the write. To use decimal values, attach a "t" suffix to the value (e.g. 100t is 100 decimal). To use binary values attach a "b" suffix to the

value (e.g. 0111'b).

ty

WD addr data ...

Writes dword(s) of data to specified memory address.

Where:

addr Address data is written to

data Data to be written (hex). Data can be a list of dwords that

will be repeated for the duration of the write. To use decimal values, attach a "t" suffix to the value (e.g. 100t is 100 decimal). To use binary values attach a "'b" suffix to the

value (e.g. 0111'b).

WW addr data ...

Writes word(s) of data to specified memory address.

Where:

addr Address data is written to

data Data to be written (hex). Data can be a list of words that will

be repeated for the duration of the write. To use decimal values, attach a "t" suffix to the value (e.g. 100t is 100 decimal). To use binary values attach a "b" suffix to the

value (e.g. 0111'b).

X index [data]

Writes byte data to the register at index. If no data is specified, reads the 8-bit (byte) data from the register at index.

Where:

index Index into the registers (hex).

data Data to be written to/read from register (hex). Data can be a

list of bytes that will be repeated for the duration of the

write. To use decimal

values, attach a "t" suffix to the value (e.g. 100t is 100 decimal). To use binary values attach a "b" suffix to the

value (e.g. 0111'b).

XA

Reads all the S1D13806 registers.

XD index [data]

Writes dword data to the register at index. If no data is specified, reads the 32-bit (dword) data from the register at index.

Where:

index Index into the registers (hex).

data Data to be written to/read from register (hex). Data can be a

list of dwords that will be repeated for the duration of the

write. To use decimal

values, attach a "t" suffix to the value (e.g. 100t is 100 decimal). To use binary values attach a "b" suffix to the

value (e.g. 0111'b).

XW index [data]

Writes word data to the register at index. If no data is specified, reads the 16-bit (word) data from the register at index.

Where:

index Index into the registers (hex).

data Data to be written to/read from register (hex). Data can be a

list of words that will be repeated for the duration of the

write. To use decimal

values, attach a "t" suffix to the value (e.g. 100t is 100 decimal). To use binary values attach a "b" suffix to the

value (e.g. 0111'b).

?

Displays the help screen.

13806PLAY Example

- 1. Type **13806PLAY** to start the program.
- 2. Type ? for help.
- 3. Type **i LCD** to initialize the registers.
- 4. Type **xa** to display the contents of the registers.
- 5. Type **x 34** to read register 34h.
- 6. Type **x 34 10** to write 10h to register 34h.
- 7. Type **f 0 ffff aa** to fill the first FFFFh bytes of the display buffer with AAh.
- 8. Type **f 0 1fffff aa** to fill 2M bytes of the display buffer with AAh.
- 9. Type **r** 0 100 to read the first 100h bytes of the display buffer.
- 10. Type \mathbf{q} to exit the program.

Scripting

13806PLAY can be driven by a script file. This is useful when:

- there is no display output and a current register status is required.
- various registers must be quickly changed to view results.

A script file is an ASCII text file with one 13806PLAY command per line. All scripts must end with a "q" (quit) command.

```
On a PC platform, a typical script command line might be: "13806PLAY < dumpregs.scr > results."
```

This causes the file "dumpregs.scr" to be interpreted as commands by 13806PLAY and the results to be sent to the file "results."

Example 1: Create an ASCII text file that contains the commands i, xa, and q.

```
; This file initializes the S1D13806 and reads the registers.
```

; Note: after a semicolon (;), all characters on a line are ignored.

```
; Note: all script files must end with the "q" command.
```

i

xa

q

Comments

- All displayed numeric values are considered to be hexadecimal unless identified otherwise. For example:
 - 10 = 10h = 16 decimal.
 - 10t = 10 decimal.
 - 010'b = 2 decimal.
- Redirecting commands from a script file (PC platform) allows those commands to be executed as if entered by a user.

Program Messages

ERROR: Could not map memory from evaluation board to host platform.

This message should only be shown for DOS platforms. In this case the DOS extender could not be initialized, or was unable to get the linear address of the display buffer.

ERROR: Not enough display buffer memory.

There was insufficient display buffer for the given configuration. Memory requirements depend on:

- the display resolution(s).
- the bit-per-pixel depth(s).
- whether a Dual Panel Buffer is required.
- the number of displays active (LCD or LCD and CRT/TV).

ERROR: Not enough memory for LCD/CRT/TV in 4/8/16 bits-per-pixel.

13806BMP is unable to change the color depth due to insufficient display buffer. Memory requirements depend on:

- the display resolution(s).
- the bit-per-pixel depth(s).
- whether a Dual Panel Buffer is required.
- the number of displays active (LCD or LCD and CRT/TV).

ERROR: PCI bridge adapter not found.

The Windows PCI driver did not find the PCI Bridge Adapter.

ERROR: PCI driver not found.

The Windows PCI driver is not loaded.

ERROR: Program not configured for LCD/CRT/TV. Run 13806CFG and configure for LCD/CRT/TV.

The program was configured by 13806CFG for a display device that is not available. This typically occurs if the wrong command line was entered for the current configuration.

WARNING: CLKI frequency not in HAL table. Program assumes that external oscillator is used.

WARNING: CLKI2 frequency not in HAL table. Program assumes that external oscillator is used.

The correct frequency was not found in the HAL table used to program the clock synthesizer. An external oscillator may be in use. This warning message will not stop the program.

ERROR: At least one of the displays must be enabled.

This message is shown when 13806PLAY received the V command, but no display is enabled. At least one display must be enabled for the V command to function (5 seconds of VNDP pulses are counted to calculate the frame rate).

ERROR: Invalid iFreq value.

The CLKI and/or CLKI2 commands were used with an invalid iFreq value. To display a list of iFreq values, type CLKI? or CLKI2?.

ERROR: Not enough display buffer memory for LCD/CRT/TV cursor/ink layer.

There was insufficient display buffer for the given Hardware Cursor/Ink Layer configuration. Memory requirements depend on:

- the display resolution(s).
- the bit-per-pixel depth(s).
- whether a Dual Panel Buffer is required.
- the number of displays active (LCD or LCD and CRT/TV).

WARNING: FEATCLK cannot be multiplexed to CLKI. Clock synthesizer programmed instead.

In 13806PLAY, the CLKI command was used to select the FEATCLK frequency. Since the FEATCLK can only be multiplexed to CLKI2, the clock synthesizer is programmed instead.

S1D13806 Embedded Memory Display Controller

13806BMP Demonstration Program

Document Number: X28B-B-004-03

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

13806BMP

13806BMP is a demonstration utility used to show the S1D13806 display capabilities by rendering bitmap images on the display device(s). The program will display any bitmap stored in Windows BMP file format and then exit. 13806BMP supports SviwelViewTM (0°, 90°, 180°, and 270° hardware rotation of the display image).

13806BMP is designed to operate on a personal computer (PC) within a 32-bit environment only (Windows® 9x/NT). Other embedded platforms are not supported due to the possible lack of system memory or structured file system.

The 13806BMP demonstration utility must be configured and/or compiled to work with your hardware configuration. The program 13806CFG.EXE can be used to configure 13806BMP. For further information on 13806CFG, refer to the *13806CFG Users Manual*, document number X28B-B-001-xx.

S1D13806 Supported Evaluation Platforms

13806BMP supports the following S1D13806 evaluation platforms:

• PC with an Intel 80x86 processor running Windows 9x/NT.

Note

The 13806BMP source code may be modified by the OEM to support other evaluation platforms.

Installation

Copy the file **13806bmp.exe** to a directory in the path (e.g. PATH=C:\S1D13806).

Usage

At the prompt, type:

13806bmp bmpfile1 [bmpfile2] [ds=n | ds=?] [/noinit] [/r90 | /r180 | /r270] [/v] [/?]

Where:

bmpfile1 Specifies filename of the windows format bmp image used

for the first display surface (display surface 0).

bmpfile2 Specifies filename of the windows format bmp image used

for the second display surface (display surface 1). If bmpfile2 is not specified, bmpfile1 is used for the

second display surface also.

ds=n Selects display surfaces (see Section, "Display Surfaces"

on page 5).

ds=? Shows available display surfaces (see Section, "Display

Surfaces" on page 5).

/noinit Skips full register initialization. Only registers used for

changing the color depth (bpp) and programming the clock synthesizer are updated. Additionally, some registers are read to determine information such as

display size and type (LCD, CRT, TV).

/r90 Enables SwivelView 90° mode, clockwise hardware

rotation of LCD image by 90 degrees.

/r180 Enables SwivelView 180° mode, clockwise hardware

rotation of LCD image by 180 degrees.

/r270 Enables SwivelView 270° mode, clockwise hardware

rotation of LCD image by 270 degrees.

/v Verbose mode (provides information about the displayed

image).

/? Displays the help message.

Note

13806BMP displays the bmpfile image(s) and returns to the prompt.

Display Surfaces

A surface is a block of memory assigned to one or more physical display devices. 13806BMP provides seven display surfaces (0-6) which cover the possible combinations of display types. Table 1:, "Display Surfaces" lists the predefined display surfaces that may be selected.

Display Display Display Surfaces Device(s) using Device(s) using (ds=)**Memory Block 0 Memory Block 1** 0 LCD 1 **CRT** 2 TV 3 LCD & CRT 4 LCD & TV 5 LCD **CRT** 6 LCD TV

Table 1: Display Surfaces

Display surfaces 0 through 2 each display data from a single memory block to an individual display device (LCD, CRT, or TV).

Display surfaces 3 and 4 output to two separate display devices, but generate the output from the same memory block. This may be useful when the same image is to be displayed on both display devices. It also reduces the total amount of display memory required.

Display surfaces 5 and 6 output to two separate devices from different memory blocks. This allows two independent images to be displayed at the same time. When using display surfaces 5 or 6, some combinations of display modes with a high resolution and/or high color depth may not be supported within a 1.25MB display buffer.

Note

Only Surfaces 5 and 6 support SwivelView as it requires a separate memory block for the LCD. Surfaces 3 and 4 use the same memory block for both displays.

13806BMP Examples

To display a bmp image on an LCD, type the following: 13806bmp bmpfile1.bmp ds=0

To display a bmp image on a CRT, type the following: 13806bmp bmpfile1.bmp ds=1

To display a bmp image on an LCD with 90° SwivelView™ enabled, type the following: **13806bmp bmpfile1.bmp ds=0 /r90**

To display the same bmp image on both the LCD and CRT, type the following: 13806bmp bmpfile1.bmp ds=3

To display the same bmp image independently on the LCD and TV, type the following: **13806bmp bmpfile1.bmp ds=6**

To display different bmp images independently on the LCD and CRT, type the following: 13806 bmpfile1.bmp bmpfile2.bmp ds=5

Comments

- 13806BMP displays only Windows BMP format images.
- A 24-bit true color bitmap is displayed at a color depth of 16 bit-per-pixel.
- Only the green component of the image is seen on a monochrome panel.
- When display devices of different resolutions are used, the image on the smaller display is displayed using a virtual display. Therefore, only a portion of the image is viewable. To show a complete image on the smaller display, specify two separate bmpfiles with resolutions matching the intended display device.

Program Messages

ERROR: Could not detect S1D13806.

The ID register did not indicate the presence of the S1D13806.

ERROR: Could not map memory from evaluation board to host platform.

This message should only be shown for DOS platforms. In this case the DOS extender could not be initialized, or was unable to get the linear address of the display buffer.

ERROR: Failed to open BMP file: 'filename'

Could not open the BMP file.

ERROR: 'filename' is not a valid bitmap file.

The filename given on the command line is not a valid BMP file.

ERROR: In the given display surface configuration, the user must select the same BPP for both LCD and CRT/TV.

When two displays are using an image from the same display memory block, both displays must be configured for the same color depth (bpp).

ERROR: Invalid display surface number.

The "ds=" command line option included an invalid value. The parameter "ds=?" lists the valid numbers.

ERROR: LCD and CRT resolutions must be identical.

LCD: (width, height) CRT: (width, height)

When the LCD and CRT are using an image from the same display memory block, both displays must be the same resolution.

ERROR: LCD and TV resolutions must be identical.

LCD: (width, height)
TV: (width, height)

When the LCD and TV are using an image from the same display memory block, both displays must be the same resolution.

ERROR: LCD must be in landscape mode.

The LCD panel must be configured for SwivelView 0° mode (landscape) if both the LCD display and CRT/TV are active.

ERROR: Not enough display buffer memory.

There was insufficient display buffer for the given configuration. Memory requirements depend on:

- the display resolution(s).
- the bit-per-pixel depth(s).
- whether a Dual Panel Buffer is required.
- the number of displays active (LCD or LCD and CRT/TV).

ERROR: Not enough memory for LCD/CRT/TV in 4/8/16 bit-per-pixel.

13806BMP is unable to change the color depth due to insufficient display buffer. Memory requirements depend on:

- the display resolution(s).
- the bit-per-pixel depth(s).
- whether a Dual Panel Buffer is required.
- the number of displays active (LCD or LCD and CRT/TV).

ERROR: Not enough memory for virtual display.

A virtual display is required for SwivelView. This error message indicates there is insufficient display buffer for the given configuration. Memory requirements depend on:

- the display resolution(s).
- the bit-per-pixel depth(s).
- whether a Dual Panel Buffer is required.
- the number of displays active (LCD or LCD and CRT/TV).

ERROR: PCI bridge adapter not found.

The Windows PCI driver did not find the PCI Bridge Adapter.

ERROR: PCI driver not found.

The Windows PCI driver is not loaded.

ERROR: Program not configured for LCD/CRT/TV. Run 13806CFG and configure for LCD/CRT/TV.

The program was configured by 13806CFG for a display device that is not available. This typically occurs if the wrong command line was entered for the current configuration.

WARNING: CLKI frequency not in HAL table. Program assumes that external oscillator is used.

WARNING: CLKI2 frequency not in HAL table. Program assumes that external oscillator is used.

The correct frequency was not found in the HAL table used to program the clock synthesizer. An external oscillator may be in use. This warning message will not stop the program.

WARNING: CRT/TV only available in LANDSCAPE mode.

SwivelView is only available on LCD only configurations.

S1D13086 Embedded Memory Display Controller

13806FILT Test Utility

Document Number: X28B-B-005-03

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

13806FILT

13806FILT is an interactive Windows® 9x/NT program that enables/disables the S1D13806 TV Filters. It demonstrates the effect each filter has on a pre-loaded TV image. 13806FILT is particularly useful in a test or demonstration environment where 13806FILT is run on one display and the effects of enabling/disabling each filter are seen on a TV. An OEM may find this useful in determining the appropriate filters for their application.

Note

The 13806FILT dialog box doesn't appear on any display device controlled by the S1D13806. The 13806FILT dialog box appears on the Windows 9x/NT desktop.

13806FILT is designed to operate on a personal computer (PC) within a 32-bit environment only (Windows 9x/NT). Other embedded platforms are not supported.

S1D13806 Supported Evaluation Platforms

13806FILT supports the following S1D13806 evaluation platforms:

• PC with an Intel 80x86 processor running Windows 9x/NT.

Installation

Copy the file **13806filt.exe** to a directory in the path. If desired, create a shortcut on the Windows 9x/NT desktop to the file **13806filt.exe**.

Usage

In Windows 9x/NT, double-click the following icon:

Or, at the Windows DOS Prompt, type 13806filt.

Filter Dialog Box

The filter dialog box controls which TV filters are enabled/disabled during NTSC or PAL output. The check box for each filter determines if the filter is enabled or disabled. When the box is checked the filter is enabled. When the box is unchecked the filter is disabled. In the example below:

- the flicker filter is enabled.
- the chrominance filter is enabled.
- the luminance filter is enabled.

Figure 1: Filter Dialog Box

Filter Descriptions

When displaying computer images on a TV, several image distortions are likely to arise.

- · flickering.
- cross-chrominance distortion.
- cross-luminance distortion.

These distortions are caused by the high-resolution nature of computer images which typically contain sharp chrominance (color) transitions, and sharp luminance (brightness) transitions. Three filters are available to reduce these distortions.

Anti-flicker Filter

The "flickering" effect seen on interlaced displays is caused by sharp vertical image transitions that occur over one line (1 vertical pixel). For example, flickering may occur where there are one pixel high lines, edges of window boxes, etc. Flickering occurs because these high resolution lines are effectively displayed at half the refresh frequency due to interlacing. To reduce flickering, the anti-flicker filter averages adjacent lines on the TV display.

Chrominance Filter

The chrominance filter adjusts the color of the TV by limiting the bandwidth of the chrominance signal (reducing cross-luminance distortion). This reduces the "ragged edges" seen at boundaries between sharp color transitions. This filter is intended for use with composite video output.

Luminance Filter

The luminance filter adjusts the brightness of the TV by limiting the bandwidth of the luminance signal (reducing cross-chrominance distortion). This reduces the "rainbow-like" colors at boundaries between sharp luminance transitions. This filter is intended for use with composite video output.

Comments

- The Flicker Filter can't be enabled unless a TV is present and active.
- 13806FILT is designed to show the effects of the filters on a pre-loaded TV image. 13806BMP may be used to display a static image on the TV (see the *13806BMP Users Manual*, document number X28B-B-004-xx).
- The chrominance and luminance filters are intended for use with composite output.
- For information on manually enabling/disabling the TV filters, refer to the *S1D13806 Hardware Functional Specification* (document number X28B-A-001-xx) and the *S1D13806 Programming Notes and Examples* (document number X28B-G-003-xx).

S1D13806 Embedded Memory Display Controller

13806SWIVEL Demonstration Utility

Document Number: X28B-B-006-03

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

13806SWIVEL

13806SWIVEL is a command line utility that demonstrates the SwivelViewTM feature of the S1D13806. 13806SWIVEL provides hardware rotation of a predefined image by 0°, 90°, 180°, and 270° in a clockwise direction. 13806SWIVEL cycles through each SwivelView mode, advancing to the next mode when a key is pressed.

13806SWIVEL is designed to operate on a personal computer (PC) within a 32-bit environment only (Windows® 9x/NT). Other embedded platforms are not supported.

The 13806SWIVEL utility must be configured and/or compiled to work with your hardware configuration. The utility 13806CFG.EXE can be used to configure 13806SWIVEL. For further information on 13806CFG, refer to the *13806CFG Users Manual*, document number X28B-B-001-xx.

S1D13806 Supported Evaluation Platforms

13806SWIVEL supports the following S1D13806 evaluation platforms.

• PC with an Intel 80x86 processor running Windows 9x/NT.

Installation

Copy the file **13806swivel.exe** to a directory in the path. If desired, create a shortcut on the Windows 9x/NT desktop to the file **13806swivel.exe**.

Usage

At the Windows DOS Prompt, type:

13806swivel

Note

Pressing the ESC key exits the program.

Example

1. Run the utility 13806SWIVEL. At the Windows DOS prompt type:

13806swivel

Note

13806SWIVEL displays colored lines of text and initially appears in SwivelView 0° mode (normal landscape).

- 2. Press any key to enable SwivelView 90° mode. The pattern is rotated by 90°.
- 3. Press any key to enable SwivelView 180° mode. The pattern is rotated by 180°.
- 4. Press any key to enable SwivelView 270° mode. The pattern is rotated by 270°.
- 5. Press any key to return to SwivelView 0° mode (landscape).
- 6. Press the ESC key to exit the program.

Note

13806SWIVEL will continue to cycle through the SwivelView modes in the above order until the *ESC* key is pressed.

Comments

- 13806SWIVEL supports LCD panels only (no CRT or TV).
- 13806SWIVEL must be configured for LCD only using the utility 13806CFG. For further information on 13806CFG, refer to the *13806CFG Users Manual*, document number X28B-B-001-xx.
- 13806SWIVEL supports 8 and 16 bpp color depths only.
- For further information on SwivelViewTM, refer to the *S1D13806 Hardware Functional Specification* (document number X28B-A-001-xx) and the *S1D13806 Programming Notes and Examples* (document number X28B-G-003-xx).

S1D13806 Embedded Memory Display Controller

Windows® CE 2.x Display Drivers

Document Number: X28B-E-001-05

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

WINDOWS® CE 2.x DISPLAY DRIVERS

The Windows CE display driver is designed to support the S1D13806 Embedded Memory LCD Controller running under the Microsoft Windows CE 2.x operating system. The driver is capable of: 4, 8 and 16 bit-per-pixel landscape modes (no rotation), and 4, 8 and 16 bit-per-pixel SwivelViewTM 90 degree, 180 degree and 270 degree modes.

This document and the source code for the Windows CE drivers are updated as appropriate. Before beginning any development, please check the Epson Electronics America Website at www.eea.epson.com or the Epson Research and Development Website at www.erd.epson.com for the latest revisions.

We appreciate your comments on our documentation. Please contact us via email at techpubs@erd.epson.com.

Example Driver Builds

The following sections describe how to build the Windows CE display driver for:

- 1. Windows CE 2.0 using a command-line interface.
- 2. Windows CE Platform Builder 2.1x using a command-line interface.

In all examples "x:" refers to the drive letter where Platform Builder is installed.

Build for CEPC (X86) on Windows CE 2.0 using a Command-Line Interface

To build a Windows CE v2.0 display driver for the CEPC (X86) platform using a S5U13806B00C evaluation board, follow the instructions below:

- 1. Install Microsoft Windows NT v4.0 or 2000.
- 2. Install Microsoft Visual C/C++ version 5.0 or 6.0.
- 3. Install the Microsoft Windows CE Embedded Toolkit (ETK) by running SETUP.EXE from the ETK compact disc #1.
- 4. Create a new project by following the procedure documented in "Creating a New Project Directory" from the Windows CE ETK v2.0. Alternately, use the current "DEMO7" project included with the ETK v2.0. Follow the steps below to create a "X86 DEMO7" shortcut on the Windows NT v4.0 desktop which uses the current "DEMO7" project:
 - a. Right click on the "Start" menu on the taskbar.
 - b. Click on the item "Open All Users" and the "Start Menu" window will come up.
 - c. Click on the icon "Programs".
 - d. Click on the icon "Windows CE Embedded Development Kit".
 - e. Drag the icon "X86 DEMO1" onto the desktop using the right mouse button.
 - f. Click on "Copy Here".
 - g. Rename the icon "X86 DEMO1" on the desktop to "X86 DEMO7" by right clicking on the icon and choosing "rename".
 - h. Right click on the icon "X86 DEMO7" and click on "Properties" to bring up the "X86 DEMO7 Properties" window.
 - i. Click on "Shortcut" and replace the string "DEMO1" under the entry "Target" with "DEMO7".
 - j. Click on "OK" to finish.
- 5. Create a sub-directory named S1D13806 under x:\wince\platform\cepc\drivers\display.
- 6. Copy the source code to the S1D13806 subdirectory.

- 7. Edit the file x:\wince\platform\cepc\drivers\display\dirs and add S1D13806 into the list of directories.
- 8. Edit the file PLATFORM.BIB (located in x:\wince\platform\cepc\files) to set the default display driver to the file EPSON.DLL (EPSON.DLL will be created during the build in step 13).

Replace or comment out the following lines in PLATFORM.BIB:

```
IF CEPC DDI VGA2BPP
        ddi.dll
                $(_FLATRELEASEDIR)\ddi_vga2.dll
                                                   NK SH
   ENDIF
   IF CEPC_DDI_VGA8BPP
        ddi.dll
                $(_FLATRELEASEDIR)\ddi_vga8.dll
                                                   NK SH
   ENDIF
   IF CEPC DDI VGA2BPP!
   IF CEPC_DDI_VGA8BPP!
                $( FLATRELEASEDIR)\ddi s364.dll
                                                   NK SH
        ddi.dll
   ENDIF
   ENDIF
with this line:
```

NK SH ddi.dll \$(FLATRELEASEDIR)\EPSON.dll

9. The file MODE0.H (located in x:\wince\platform\cepc\drivers\display\S1D13806) contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD/CRT/TV), display rotation, etc.

Before building the display driver, refer to the descriptions in the file MODE0.H for the default settings of the driver. If the default does not match the configuration you are building for then MODE0.H will have to be regenerated with the correct information.

Use the program 13506CFG to generate the header file. For information on how to use 13506CFG, refer to the 13806CFG Configuration Program User Manual, document number X28B-B-001-xx, available at www.erd.epson.com

After selecting the desired configuration, export the file as a "C Header File for S1D13806 WinCE Drivers". Save the new configuration as MODE0.H in x:\wince\platform\cepc\drivers\display\S1D13806, replacing the original configuration file.

10. Edit the file PLATFORM.REG to match the screen resolution, color depth (bpp), active display (LCD/CRT/TV) and rotation information in MODE.H. PLAT-FORM.REG is located in x:\wince\platform\cepc\files.

ma Plan Drivers For example, the display driver section of PLATFORM.REG should be as follows when using a 640x480 LCD panel with a color depth of 8 bpp in SwivelView 0° (landscape) mode:

- ; Default for EPSON Display Driver
- ; 640x480 at 8 bits/pixel, LCD display, no rotation
- ; Useful Hex Values
- ; 1024=0x400, 768=0x300 640=0x280 480=0x1E0 320=140 240=0xF0

[HKEY_LOCAL_MACHINE\Drivers\Display\S1D13806]

- "Width"=dword:280
- "Height"=dword:1E0
- "Bpp"=dword:8
- "ActiveDisp"=dword:1
- "Rotation"=dword:0
- 11. Delete all the files in the x:\wince\release directory, and delete x:\wince\platform\cepc*.bif
- 12. Generate the proper building environment by double-clicking on the sample project icon (i.e. X86 DEMO7).
- 13. Type BLDDEMO <ENTER> at the command prompt of the X86 DEMO7 window to generate a Windows CE image file (NK.BIN).

Build for CEPC (X86) on Windows CE Platform Builder 2.1x using a Command-Line Interface

Throughout this section 2.1x refers to either 2.11 or 2.12 as appropriate.

- 1. Install Microsoft Windows NT v4.0 or 2000.
- 2. Install Microsoft Visual C/C++ version 5.0 or 6.0.
- 3. Install Platform Builder 2.1x by running SETUP.EXE from compact disk #1.
- 4. Follow the steps below to create a "Build Epson for x86" shortcut which uses the current "Minshell" project icon/shortcut on the Windows desktop.
 - a. Right click on the "Start" menu on the taskbar.
 - b. Click on the item "Explore", and "Exploring -- Start Menu" window will come up.
 - c. Under "x:\winnt\profiles\all users\start menu\programs\microsoft windows ce platform builder\x86 tools", find the icon "Build Minshell for x86".
 - d. Drag the icon "Build Minshell for x86" onto the desktop using the right mouse button.

- e. Choose "Copy Here".
- f. Rename the icon "Build Minshell for x86" to "Build Epson for x86" by right clicking on the icon and choosing "rename".
- g. Right click on the icon "Build Epson for x86" and click on "Properties" to bring up the "Build Epson for x86 Properties" window.
- h. Click on "Shortcut" and replace the string "Minshell" under the entry "Target" with "Epson".
- i. Click on "OK" to finish.
- 5. Create an EPSON project.
 - a. Make an Epson directory under X:\WINCE21x\PUBLIC.
 - b. Copy MAXALL and its sub-directories (X:\WINCE21x\PUBLIC\MAXALL) to the Epson directory.

xcopy /s /e x:\wince21x\public\maxall*.* \wince21x\public\epson

- c. Rename x:\wince21x\public\epson\maxall.bat to epson.bat.
- d. Edit EPSON.BAT to add the following lines to the end of the file:

@echo on

set CEPC_DDI_S1D13806=1

@echo off

- 6. Make an S1D13806 directory under x:\wince21x\platform\cepc\drivers\display, and copy the S1D13806 driver source code into x:\wince21x\platform\cepc\drivers\display\S1D13806.
- 7. Edit the file x:\wince21x\platform\cepc\drivers\display\dirs and add S1D13806 into the list of directories.
- 8. Edit the file x:\wince21x\platform\cepc\files\platform.bib and make the following two changes:
 - a. Insert the following text after the line "IF ODO_NODISPLAY!":

IF CEPC_DDI_S1D13806

ddi.dll \$(_FLATRELEASEDIR)\epson.dll NK SH

ENDIF

b. Find the section shown below, and insert the lines as marked:

IF CEPC_DDI_S1D13806 !Insert this line

IF CEPC_DDI_S3VIRGE!

IF CEPC_DDI_CT655X!

IF CEPC_DDI_VGA8BPP!

ddi.dll \$(_FLATRELEASEDIR)\ddi_s364.dll NK SH

ENDIF

ENDIF

ENDIF

ENDIF Insert this line

9. The file MODE0.H (located in x:\wince21x\platform\cepc\drivers\display\S1D13806) contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD/CRT/TV), display rotation, etc.

Before building the display driver, refer to the descriptions in the file MODE0.H for the default settings of the driver. If the default does not match the configuration you are building for then MODE0.H will have to be regenerated with the correct information.

Use the program 13506CFG to generate the header file. For information on how to use 13506CFG, refer to the 13806CFG Configuration Program User Manual, document number X28B-B-001-xx, available at www.erd.epson.com

After selecting the desired configuration, export the file as a "C Header File for S1D13806 WinCE Drivers". Save the new configuration as MODE0.H in x:\wince21x\platform\cepc\drivers\display\S1D13806, replacing the original configuration file.

10. Edit the file PLATFORM.REG to match the screen resolution, color depth (bpp), active display (LCD/CRT/TV) and rotation information in MODE.H. PLAT-FORM.REG is located in x:\wince21x\platform\cepc\files.

For example, the display driver section of PLATFORM.REG should be as follows when using a 640x480 LCD panel with a color depth of 8 bpp in SwivelView 0° (landscape) mode:

- ; Default for EPSON Display Driver
- ; 640x480 at 8 bits/pixel, LCD display, no rotation
- ; Useful Hex Values
- : 1024=0x400, 768=0x300 640=0x280 480=0x1E0 320=140 240=0xF0

[HKEY_LOCAL_MACHINE\Drivers\Display\S1D13806]

"Width"=dword:280

"Height"=dword:1E0

"Bpp"=dword:8

"ActiveDisp"=dword:1

"Rotation"=dword:0

- 11. Delete all the files in \wince21x\release directory and delete x:\wince21x\platform\cepc*.bif
- 12. Generate the proper building environment by double-clicking on the Epson project icon --"Build Epson for x86".
- 13. Type BLDDEMO <ENTER> at the command prompt of the "Build Epson for x86" window to generate a Windows CE image file (NK.BIN).

Installation for CEPC Environment

Once the NK.BIN file is built, the CEPC environment can be started by booting either from a floppy or hard drive configured with a Windows 9x operating system. The two methods are described below.

- 1. To start CEPC after booting from a floppy drive:
 - a. Create a bootable floppy disk.
 - b. Edit CONFIG.SYS on the floppy disk to contain only the following line:

device=a:\himem.sys

c. Edit AUTOEXEC.BAT on the floppy disk to contain the following lines:

```
mode com1:9600,n,8,1 loadcepc /B:9600 /C:1 c:\nk.bin
```

- d. Copy LOADCEPC.EXE and HIMEM.SYS to the bootable floppy disk. Search for the loadCEPC utility in your Windows CE directories.
- e. Copy NK.BIN to c:\.
- f. Boot the system from the bootable floppy disk.
- 2. To start CEPC after booting from a hard drive:
 - a. Copy LOADCEPC.EXE to C:\. Search for the loadCEPC utility in your Windows CE directories.
 - b. Edit CONFIG.SYS on the hard drive to contain only the following line:

device=c:\himem.sys

c. Edit AUTOEXEC.BAT on the hard drive to contain the following lines:

mode com1:9600,n,8,1 loadcepc /B:9600 /C:1 c:\nk.bin

- d. Copy NK.BIN and HIMEM.SYS to c:\.
- e. Boot the system.

Configuration

There are several issues to consider when configuring the display driver. The issues cover debugging support, register initialization values and memory allocation. Each of these issues is discussed in the following sections.

Compile Switches

There are several switches, specific to the S1D13806 display driver, which affect the display driver.

The switches are added or removed from the compile switches in the file SOURCES.

S1D13806

This option must be set when compiling for the S1D13806.

WINCEVER

This option is automatically set to the numerical version of WinCE for version 2.12 or later. If the environment variable, _WINCEOSVER is not defined, then WINCEVER will default 2.11. The display driver may test against this option to support different WinCE version-specific features.

EnablePreferVmem

This option enables the use of off-screen video memory. When this option is enabled, WinCE can optimize some BLT operations by using off-screen video memory to store images.

Enable2DC

This option enables the S1D13806 display driver to support an alternate device context. This may be useful for applications such as Pocket PowerPoint, which can display a different image on a display device other than the primary display. The driver support for this is still under development and is untested.

Future releases of the S1D13806 display drivers will have full support for alternate displays.

EnableDC2Hwblt

This option enables hardware BLT acceleration on the alternate display (see Enable2DC). This option is currently unused and will be fully supported in future releases of the S1D13806 display drivers.

ENABLE_CLOCK_CHIP

This option is used to enable support for the ICD2061A clock generator. This clock chip is used on the S5U13806B00C evaluation board. The S1D13806 display drivers can program the clock chip to support the frequencies required in the MODE tables.

If you are not using the S5U13806B00C evaluation adapter, you should disable this option.

ENABLE_ANTIALIASED_FONTS

This option enables the display driver support of antialiased fonts in WinCE. Fonts created with the ANTIALIASED_QUALITY attribute will be drawn with font smoothing.

If you want all fonts to be antialiased by default, add the following line to PLATFORM.REG: [HKEY_LOCAL_MACHINE\SYSTEM\GDI\Fontsmoothing]. This registry option causes WinCE to draw all fonts with smoothing.

This option is only applicable to 16bpp mode.

EpsonMessages

This debugging option enables the display of EPSON-specific debug messages. These debug message are sent to the serial debugging port. This option should be disabled unless you are debugging the display driver, as they will significantly impact the performance of the display driver.

DEBUG MONITOR

This option enables the use of the debug monitor. The debug monitor can be invoked when the display driver is first loaded and can be used to view registers, and perform a few debugging tasks. The debug monitor is still under development and is untested.

This option should remain disabled unless you are performing specific debugging tasks that require the debug monitor.

MonoPanel

This option is intended for the support of monochrome panels only.

The option causes palette colors to be grayscaled for correct display on a mono panel. For use with color panels this option should not be enabled.

TEST_BITMAP

This option allows the debug monitor to display a test bitmap. This bitmap is big and will make the display driver considerably larger. The flag DEBUG_MONITOR must also be enabled for this option to work.

This option should be disabled unless the image is required for debugging.

DEBUG BLT

This option enables special BLT debugging messages on the debugging serial port. This option, when enabled, will drastically impact display driver performance, and should only be used to track down failures in the BLT operations.

This option should be disabled unless doing BLT debugging.

FILL_DELETED_OFFSCREEN_SURFACE

This option enables special debugging code that will fill (blank) off-screen rectangular surfaces when they are destructed. This option is only useful if EnablePreferVmem is also enabled. When enabled, off-screen surfaces are filled with a solid color when they are deleted. If any code then attempts to reuse the deleted off screen surface, the results should show up as errors on the primary display.

This option should be disabled unless doing debugging.

Mode File

A second variable which will affect the finished display driver is the register configurations contained in the mode file.

The MODE tables (contained in files MODE0.H, MODE1.H, MODE2.H...) contain register information to control the desired display mode. The MODE tables must be generated by the configuration program 13806CFG.EXE. The display driver comes with example MODE tables.

By default, only MODE0.H is used by the display driver. New mode tables can be created using the 13806CFG program. Edit the #include section of MODE.H to add the new mode table.

If you only support a single display mode, you do not need to add any information to the WinCE registry. If, however, you support more that one display mode, you should create registry values (see below) that will establish the initial display mode. If your display driver contains multiple mode tables, and if you do not add any registry values, the display driver will default to the **first** mode table in your list.

To select which display mode the display driver should use upon boot, add the following lines to your PLATFORM.REG file:

[HKEY_LOCAL_MACHINE\Drivers\Display\S1D13806]

"Width"=dword:280

"Height"=dword:1E0

"Bpp"=dword:8

"Rotation"=dword:0

"RefreshRate"=dword:3C

"Flags"=dword:2

Note that all dword values are in hexadecimal, therefore 280h = 640, 1E0h = 480, and 3Ch = 60. The value for "Flags" should be 1 (LCD), 2 (CRT), or 3 (both LCD and CRT). When the display driver starts, it will read these values in the registry and attempt to match a mode table against them. All values must be present and valid for a match to occur, otherwise the display driver will default to the FIRST mode table in your list.

A WinCE desktop application (or control panel applet) can change these registry values, and the display driver will select a different mode upon warmboot. This allows the display driver to support different display configurations and/or orientations. An example application that controls these registry values will be made available upon the next release of the display driver; preliminary alpha code is available by special request.

Comments

- The display driver is CPU independent, allowing use of the driver for several Windows CE Platform Builder supported platforms.
- By default, the 13806CFG program assumes PCI addressing for the S5U13806B00C evaluation board. This means that the display driver will automatically locate the S1D13806 by scanning the PCI bus (currently only supported for the CEPC platform). If you select the address option "Other" and fill in your own custom addresses for the registers and video memory, then the display driver will not scan the PCI bus and will use the specific addresses you have chosen.
- When using the display driver on hardware other than the S5U13806B00C evaluation board, you must ensure that your hardware provides the correct clock frequencies for CLKI, CLKI2, and CLKI3. The 13806CFG program defaults CLKI to 25.175MHz, CLKI2 to 14.318MHz, and CLKI3 to 50.000MHz. The 13806CFG program also defaults BUSCLK to the PCI clock of 33.333MHz.

On the evaluation board, the display driver will correctly program the clock chip to support the CLKI and CLKI2 frequencies, and BUSCLK is derived from the PCI clock. On customer hardware, you must ensure that the clocks you provide to all clock inputs match the settings you chose in the Clocks tab of the 13806CFG program.

If you run the S1D13806 with a single clock source, make sure your clock sources for LCD, CRT, MediaPlug, and MCLK are correctly set to use the correct clock input source (typically BUSCLK). Also ensure that you enable the clock dividers as required for different display hardware.

- When using 13806CFG.EXE to produce multiple MODE tables, make sure you change the Mode Number in the WinCE tab for each mode table you generate. The display driver supports multiple mode tables, but only if each mode table has a unique mode number.
- The 13806CFG program assumes you are using the S5U13806B00C evaluation board, and defaults the Panel Power control to GPIO11. 13806CFG allows you to change the GPIO pin used to control panel power, or to disable the use of GPIO pins altogether. If this is changed from the default, your driver will no longer be able to enable panel power on the S5U13806B00C evaluation board, and your panel may not be powered up correctly. Using GPIO pins 0, 1, 2, or 12 for panel power control is not recommended as these pins are used by other S5U adapter features (such as clock chip support and the media plug interface).
- At this time, the drivers have been tested on the x86 CPUs and have been run with version 2.0 of the ETK, Platform Builder v2.1x.

S1D13806 Embedded Memory Display Controller

Wind River WindML v2.0 Display Drivers

Document Number: X28B-E-002-03

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Wind River WindML v2.0 DISPLAY DRIVERS

The Wind River WindML v2.0 display drivers for the S1D13806 Embedded Memory Display Controller are intended as "reference" source code for OEMs developing for Wind River's WindML v2.0. The driver package provides support for both 8 and 16 bit-per-pixel color depths. The source code is written for portability and contains functionality for most features of the S1D13806. Source code modification is required to provide a smaller, more efficient driver for mass production (e.g. TV support may be removed for products not requiring TV).

The WindML display drivers are designed around a common configuration include file called **mode0.h** which is generated by the configuration utility 13806CFG. This design allows for easy customization of display type, clocks, decode addresses, rotation, etc. by OEMs. For further information on 13806CFG, see the *13806CFG Configuration Program User Manual*, document number X28B-B-001-xx.

Note

The WindML display drivers are provided as "reference" source code only. They are intended to provide a basis for OEMs to develop their own drivers for WindML v2.0. These drivers are not backwards compatible with UGL v1.2. For information on the UGL v1.2 display drivers, see *Wind River UGL v1.2 Display Drivers*, document number X28B-E-003-xx.

This document and the source code for the WindML display drivers is updated as appropriate. Please check the Epson Electronics America website at http://www.eea.epson.com or the Epson Research and Development website at http://www.erd.epson.com for the latest revisions before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

splay Drivers

Building a WindML v2.0 Display Driver

The following instructions produce a bootable disk that automatically starts the UGL demo program. These instructions assume that Wind River's Tornado platform is already installed.

Note

For the example steps where the drive letter is given as "x:". Substitute "x" with the drive letter that your development environment is on.

1. Create a working directory and unzip the WindML display driver into it.

From a command prompt or GUI interface create a new directory (e.g. x:\13806).

Unzip the file **13806windml.zip** to the newly created working directory. The files will be unzipped to the directories "x:\13806\8bpp" and "x:\13806\16bpp".

2. Configure for the target execution model.

This example build creates a VxWorks image that fits onto and boots from a single floppy diskette. In order for the VxWorks image to fit on the disk certain modifications are required.

Replace the file "x:\Tornado\target\config\pcPentium\config.h" with the file "x:\13806\8bpp\File\config.h" (or "x:\13806\16bpp\File\config.h"). The new **config.h** file removes networking components and configures the build image for booting from a floppy disk.

Note

Rather than simply replacing the original **config.h** file, rename it so the file can be kept for reference purposes.

3. Build a boot ROM image.

From the Tornado tool bar, select Build -> Build Boot ROM. Select "pcPentium" as the BSP and "bootrom_uncmp" as the image.

4. Create a bootable disk (in drive A:).

From a command prompt change to the directory "x:\Tornado\host\x86-win32\bin" and run the batch file **torvars.bat**. Next, change to the directory "x:\Tornado\target\config\pcPentium" and type:

mkboot a: bootrom_uncmp

5. If necessary, generate a new **mode0.h** configuration file.

The file **mode0.h** contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD/CRT/TV), rotation, etc. The **mode0.h** file included with the drivers, may not contain applicable values and must be regenerated. The configuration program 13806CFG can be used to build a new **mode0.h** file. If building for 8 bpp, place the new **mode0.h** file in the directory "x:\13806\8bpp\File". If building for 16 bpp, place the new **mode0.h** file in "x:\13806\16bpp\File".

Note

Mode0.h should be created using the configuration utility 13806CFG. For more information on 13806CFG, see the *13806CFG Configuration Program User Manual*, document number X28B-B-001-xx available at www.erd.epson.com.

6. Build the WindML v2.0 library.

From a command prompt change to the directory "x:\Tornado\host\x86-win32\bin" and run the batch file **torvars.bat**. Next, change to the directory "x:\Tornado\target\src\ugl" and type the command:

make CPU=PENTIUM ugl

7. Open the S1D13506 workspace.

From the Tornado tool bar, select File->Open Workspace...->Existing->Browse... and select the file "x:\13806\8bpp\13806.wsp" (or "x:\13806\16bpp\13806.wsp").

8. Add support for single line comments.

The WindML v2.0 display driver source code uses single line comment notation, "//", rather than the ANSI conventional comments, "/*...*/".

To add support for single line comments follow these steps:

- a. In the Tornado "Workspace Views" window, click on the "Builds" tab.
- b. Expand the "8bpp Builds" (or "16bpp Builds") view by clicking on the "+" next to it. The expanded view will contain the item "default". Right-click on "default" and select "Properties...". A "Properties:" window will appear.
- Select the "C/C++ compiler" tab to display the command switches used in the build. Remove the "-ansi" switch from the line that contains "-g -mpentium -ansi -nostdinc -DRW_MULTI_THREAD".
 (Refer to GNU ToolKit user's guide for details)
- 9. Compile the VxWorks image.

Select the "Builds" tab in the Tornado "Workspace Views" window.

Right-click on "8bpp files" (or "16bpp files") and select "Dependencies...". Click on "OK" to regenerate project file dependencies for "All Project files".

Right-click on "8bpp files" (or "16bpp files") and select "ReBuild All(vxWorks)" to build VxWorks.

10. Copy the VxWorks file to the diskette.

From a command prompt or through the Windows interface, copy the file "x:\13806\8bpp\default\vxWorks" (or "x:\13806\16bpp\default\vxWorks") to the bootable disk created in step 4.

11. Start the VxWorks demo.

Boot the target PC with the VxWorks bootable diskette to run the UGLDEMO automatically.

S1D13806 Embedded Memory Display Controller

Wind River UGL v1.2 Display Drivers

Document Number: X28B-E-003-02

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

Wind River UGL v1.2 Display Drivers

The Wind River UGL v1.2 display drivers for the S1D13806 Embedded Memory Display Controller are intended as "reference" source code for OEMs developing for Wind River's UGL v1.2. The drivers provide support for both 8 and 16 bit-per-pixel color depths. The source code is written for portability and contains functionality for all features of the S1D13806. Source code modification is required to provide a smaller, more efficient driver for mass production (e.g. TV support may be removed for products not requiring TV).

The UGL display drivers are designed around a common configuration include file called **mode0.h** which is generated by the configuration utility 13806CFG. This design allows for easy customization of display type, clocks, addresses, rotation, etc. by OEMs. For further information on 13806CFG, see the *13806CFG Configuration Program User Manual*, document number X28B-B-001-xx.

This document and the source code for the UGL display drivers are updated as appropriate. Please check the Epson Electronics America website at http://www.eea.epson.com or the Epson Research and Development website at http://www.erd.epson.com for the latest revisions before beginning any development.

We appreciate your comments on our documentation. Please contact us via e-mail at documentation@erd.epson.com.

ay Drivers

Building a UGL v1.2 Display Driver

The following instructions produce a bootable disk that automatically starts the UGL demo software. These instructions assume that the Wind River Tornado platform is correctly installed.

Note

For the example steps where the drive letter is given as "x:". Substitute "x" with the drive letter your development environment is on.

1. Create a working directory and unzip the UGL display driver into it.

Using a command prompt or GUI interface create a new directory (e.g. x:\13806).

Unzip the file **13806ugl.zip** to the newly created working directory. The files will be unzipped to the directories "x:\13806\8bpp" and "x:\13806\16bpp".

2. Configure for the target execution model.

This example build creates a VxWorks image that fits onto and boots from a single floppy diskette. In order for the VxWorks image to fit on the disk certain modifications are required.

Replace the file "x:\Tornado\target\config\pcPentium\config.h" with the file "x:\13806\8bpp\File\config.h" (or "x:\13806\16bpp\File\config.h"). The new **config.h** file removes networking components and configures the build image for booting from a floppy disk.

Note

Rather than simply replacing the original **config.h** file, rename it so the file can be kept for reference purposes.

3. Build a boot ROM image.

From the Tornado tool bar, select Build -> Build Boot ROM. Select "pcPentium" as the BSP and "bootrom_uncmp" as the image.

4. Create a bootable disk (in drive A:).

From a command prompt in the directory "x:\Tornado\target\config\pcPentium" type **mkboot a: bootrom_uncmp**

5. If necessary, generate a new **mode0.h** configuration file.

The file **mode0.h** contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD/CRT/TV), rotation, etc. The **mode0.h**, included with the drivers, sets the display for 640x480 59 Hz output to an 18-bit TFT LCD panel.

If this setting is inappropriate then **mode0.h** must be regenerated. The configuration program 13806CFG can be used to build a new **mode0.h** file. If building for 8 bpp, place the new **mode0.h** file in "x:\13806\8bpp\File". If building for 16 bpp, place the new **mode0.h** file in "x:\13806\16bpp\File"

Note

Mode0.h should be created using the configuration utility 13806CFG. For more information on 13806CFG, see the *13806CFG Configuration Program User Manual*, document number X28B-B-001-xx available at www.erd.epson.com.

6. Open the S1D13806 workspace.

From the Tornado tool bar, select File->Open Workspace...->Existing->Browse... and select the file "x:\13806\8bpp\13806.wsp" (or "x:\13806\16bpp\13806.wsp").

7. Add support for single line comments.

The UGL v1.2 display driver source code uses single line comment notation, "//", rather than the ANSI conventional comments, "/* . . . */".

To add support for single line comments follow these steps:

- a. In the Tornado "Workspace" window, click on the "Builds" tab.
- Expand the "8bpp Builds" (or "16bpp Builds") view by clicking on the "+" next to it. The expanded view will contain the item "default". Right-click on "default" and select "Properties...". A properties window will appear.
- c. Select the "C/C++ compiler" tab to display the command switches used in the build. Remove the "-ansi" switch from the line that contains "-g -mpentium -ansi -nostdinc -DRW_MULTI_THREAD". (Refer to GNU ToolKit user's guide for details)
- 8. Compile the VxWorks image.

Select the "Files" tab in the Tornado "Workspace" window.

Right-click on "8bpp files" (or "16bpp files") and select "Dependencies...". Click on "OK" to regenerate project file dependencies for "All Project files".

Right-click on "8bpp files" and select "ReBuild All(vxWorks)" to build VxWorks.

9. Copy the VxWorks file to the diskette.

From a command prompt or through the Windows interface, copy the file "x:\13806\8bpp\default\vxWorks" (or "x:\13806\16bpp\default\vxWorks") to the bootable disk created in step 4.

10. Start the VxWorks demo.

Boot the target PC with the VxWorks bootable diskette to run the UGLDEMO automatically.

S1D13806 Embedded Memory Display Controller

Linux Console Driver

Document Number: X28B-E-004-02

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation.

Linux Console Driver

The Linux console driver for the S1D13806 Color LCD/CRT/TV Controller is intended as "reference" source code for OEMs developing for Linux. The console driver is a non-accelerated driver supporting 4, 8, and 16 bit-per-pixel color depths.

A Graphical User Interface (GUI) such as Gnome can obtain the frame buffer address from this driver allowing the Linux GUI the ability to update the display.

The console driver is designed around a common configuration include file called **s1d13806.h**, which is generated by the configuration utility 13806CFG. This design allows for easy customization of display type, clocks, decode addresses, rotation, etc. by OEMs. For further information on 13806CFG, see the *13806CFG Configuration Program User Manual*, document number X28B-B-001-xx.

Note

The Linux console driver is provided as "reference" source code only. The driver is intended to provide a basis for OEMs to develop their own drivers for Linux.

This document and the source code for the Linux console drivers are updated as appropriate. Please check the Epson Research and Development website at http://www.erd.epson.com for the latest revisions or before beginning any development.

We appreciate your comments on our documentation. Please contact us via e-mail at documentation@erd.epson.com.

Building the Console Driver for Linux Kernel 2.2.x

Follow the steps below to construct a copy of the Linux operating system using the S1D13806 as the console display device. These instructions assume that the GNU development environment is installed and the user is familiar with GNU and the Linux operating system.

1. Acquire the Linux kernel source code.

You can obtain the Linux kernel source code from your Linux supplier or download the source from: ftp://ftp.kernel.org.

The S1D13806 reference driver requires Linux kernel 2.2.x. The example S1D13806 reference driver available on www.erd.epson.com was built using Red Hat Linux 6.1, kernel version 2.2.17.

For information on building the kernel refer to the readme file at: ftp://ftp.linuxberg.com/pub/linux/kernel/README

Note

Before continuing with modifications for the S1D13806, you should ensure that you can build and start the Linux operating system.

2. Unzip the console driver files.

Using a zip file utility, unzip the S1D13806 archive to a temporary directory. (e.g. /tmp)

When completed the files:

s1d13xxxfb.c

s1d13806.h

Config.in

fbmem.c

fbcon-cfb4.c, and

Makefile

should be located in the temporary directory.

3. Copy the console driver files to the build directory.

Copy the files

/tmp/s1d13xxxfb.c and

/tmp/s1d13806.h

to the directory /usr/src/linux/drivers/video.

Copy the remaining source files

/tmp/Config.in

/tmp/fbmem.c

/tmp/fbcon-cfb4.c, and

/tmp/Makefile

into the directory /usr/src/linux/drivers/video replacing the files of the same name.

If your kernel version is not 2.2.17 or you want to retain greater control of the build process then use a text editor and cut and paste the sections dealing with the Epson driver in the corresponding files of the same names.

4. Modify s1d13806.h

The file s1d13806.h contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD/CRT/TV), display rotation, etc.

Before building the console driver, refer to the descriptions in the file s1d13806.h for the default settings of the console driver. If the default does not match the configuration you are building for then s1d13806.h will have to be regenerated with the correct information.

Use the program 13806CFG to generate the required header file. For information on how to use 13806CFG, refer to the 13806CFG Configuration Program User Manual, document number X28B-B-001-xx, available at www.erd.epson.com

After selecting the desired configuration, choose "File->Export" and select the "C Header File for S1D13806 Generic Drivers" option. Save the new configuration as s1d13806.h in the /usr/src/linux/drivers/video, replacing the original configuration file.

5. Configure the video options.

From the command prompt in the directory /usr/src/linux run the command: make menuconfig

This command will start a text based interface which allows the selection of build time parameters. From the text interface under "Console drivers" options, select:

```
"Support for frame buffer devices"
"Epson LCD/CRT controllers support"
```

If you are using the Epson PCI evaluation board then you must also select:

"Epson PCI Bridge adapter support"

Once you have configured the kernel options, save and exit the configuration utility.

6. Compile and install the kernel

Build the kernel with the following sequence of commands:

make dep make clean make bzImage /sbin/lilo (if running lilo)

[&]quot;S1D13806 support"

[&]quot;Advanced low level driver options"

[&]quot;xBpp packed pixels support" *

^{*} where x is the color depth being compile for.

7. Boot to the Linux operating system

If you are using lilo (Linux Loader), modify the lilo configuration file as discussed in the kernel build README file. If there were no errors during the build, from the command prompt run:

lilo

and reboot your system.

Note

In order to use the S1D13806 console driver with X server, you need to configure the X server to use the FBDEV device. A good place to look for the necessary files and instructions on this process is on the Internet at www.xfree86.org

Building the Console Driver for Linux Kernel 2.4.x

Follow the steps below to construct a copy of the Linux operating system using the S1D13806 as the console display device. These instructions assume that the GNU development environment is installed and the user is familiar with GNU and the Linux operating system.

1. Acquire the Linux kernel source code.

You can obtain the Linux kernel source code from your Linux supplier or download the source from: ftp://ftp.kernel.org.

The S1D13806 reference driver requires Linux kernel 2.4.x or greater. The example S1D13806 reference driver available on www.erd.epson.com was built using Red Hat Linux 6.1, kernel version 2.4.5.

For information on building the kernel refer to the readme file at: ftp://ftp.linuxberg.com/pub/linux/kernel/README

Note

Before continuing with modifications for the S1D13806, you should ensure that you can build and start the Linux operating system.

2. Unzip the console driver files.

Using a zip file utility, unzip the S1D13806 archive to a temporary directory. (e.g. /tmp)

When completed the files:

Config.in

fbmem.c

fbcon-cfb4.c

Makefile

should be located in the temporary directory (/tmp), and the files:

Makefile

s1d13xxxfb.c

s1d13806.h

should be located in a sub-directory called epson within the temporary directory (/tmp/epson).

3. Copy the console driver files to the build directory. Make the directory /usr/src/linux/drivers/video/epson.

Copy the files

/tmp/epson/s1d13xxxfb.c

/tmp/epson/s1d13806.h

/tmp/epson/Makefile

to the directory /usr/src/linux/drivers/video/epson.

Copy the remaining source files

/tmp/Config.in /tmp/fbmem.c /tmp/fbcon-cfb4.c

/tmp/Makefile

into the directory /usr/src/linux/drivers/video replacing the files of the same name.

If your kernel version is not 2.4.5 or you want to retain greater control of the build process then use a text editor and cut and paste the sections dealing with the Epson driver in the corresponding files of the same names.

4. Modify s1d13806.h

The file s1d13806.h contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD/CRT/TV), display rotation, etc.

Before building the console driver, refer to the descriptions in the file s1d13806.h for the default settings of the console driver. If the default does not match the configuration you are building for then s1d13806.h will have to be regenerated with the correct information.

Use the program 13806CFG to generate the required header file. For information on how to use 13806CFG, refer to the 13806CFG Configuration Program User Manual, document number X28B-B-001-xx, available at www.erd.epson.com

After selecting the desired configuration, choose "File->Export" and select the "C Header File for S1D13806 Generic Drivers" option. Save the new configuration as s1d13806.h in the /usr/src/linux/drivers/video, replacing the original configuration file.

5. Configure the video options.

From the command prompt in the directory /usr/src/linux run the command: make menuconfig

This command will start a text based interface which allows the selection of build time parameters. From the options presented select:

"Code maturity level" options

"Prompt for development and/or incomplete drivers"

"Console drivers" options

"Frame-buffer support"

"Support for frame buffer devices (EXPERIMENTAL)"

"EPSON LCD/CRT/TV controller support"

"EPSON S1D13806 Support"

"Advanced low-level driver options"

"xbpp packed pixels support" *

* where x is the color depth being compile for.

If you are using the Epson PCI evaluation board then you must also select:

"Epson PCI Bridge adapter support"

Once you have configured the kernel options, save and exit the configuration utility.

6. Compile and install the kernel

Build the kernel with the following sequence of commands:
make dep
make clean
make bzImage

/sbin/lilo (if running lilo)

7. Boot to the Linux operating system

If you are using lilo (Linux Loader), modify the lilo configuration file as discussed in the kernel build README file. If there were no errors during the build, from the command prompt run:

lilo

and reboot your system.

Note

In order to use the S1D13806 console driver with X server, you need to configure the X server to use the FBDEV device. A good place to look for the necessary files and instructions on this process is on the Internet at www.xfree86.org

S1D13806 Embedded Memory Display Controller

QNX Photon v2.0 Display Driver

Document Number: X28B-E-005-02

Copyright @ 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

QNX Photon v2.0 Display Driver

The Photon v2.0 display drivers for the S1D13806 Embedded Memory Display Controller are intended as "reference" source code for OEMs developing for QNX platforms. The driver package provides support for 8 and 16 bit-per-pixel color depths. The source code is written for portability and contains functionality for most features of the S1D13806. Source code modification is required to provide a smaller driver for mass production.

The current revision of the driver is designed for use with either QNX RTP or QNX4 from the latest product CD (Dec. 99).

The Photon v2.0 display driver is designed around a common configuration include file called **S1D13806.h**, which is generated by the configuration utility 13806CFG. This design allows for easy customization of display type, clocks, decode addresses, etc. by OEMs. For further information on 13806CFG, see the *13806CFG Configuration Program User Manual*, document number X28B-B-001-xx.

Note

The QNX display drivers are provided as "reference" source code only. They are intended to provide a basis for OEMs to develop their own drivers for QNX Photon v2.0.

This document and the source code for the QNX display drivers are updated as appropriate. Please check the Epson Electronics America website at http://www.eea.epson.com or the Epson Research and Development website at http://www.erd.epson.com for the latest revisions before beginning any development.

We appreciate your comments on our documentation. Please contact us via e-mail at documentation@erd.epson.com.

Building the Photon v2.0 Display Driver

The following steps build the Photon v2.0 display driver and integrate it into the QNX operating system. These instructions assume the QNX developer environment is correctly installed and the developer is familiar with building for the QNX operating system.

Unpack the Graphics Driver Development Kit Archive

1. Install the QNX ddk package using the Package Manager utility.

For information about the Drivers Development Kit contact QNX directly.

- 2. Once the ddk package is installed, copy the directory tree /usr/scr/gddk_v1.0 into the Project directory.
- 3. Change directory to Project/gddk_1.0/devg.
- 4. Unpack the display driver files using the commands:

#gunzip S1D13806.tar.gz

#tar -xvf S1D13806.tar

This unpacks the files into the directory Project/gddk_1.0/devg/S1D13806.

Configure the Driver

The files s1d13806_16.h and s1d13806_8.h contain register values required to set the screen resolution, color depth (bpp), display type, etc. The s1d13806.h file included with the drivers may not contain applicable values and must be regenerated. The configuration program 13806CFG can be used to build new s1d13806_16.h and s1d13806_8.h files.

Note

S1d13806.h should be created using the configuration utility 13806CFG. For more information on 13806CFG, see the 13806CFG Configuration Program User Manual, document number X28B-B-001-xx available at www.erd.epson.com.

Build the Driver

The first time the driver is built, the following command ensures that all drivers and required libraries are built. At the root of the Project source tree, type **make**.

Note

To build drivers for X86 NTO type 'OSLIST=nto CPULIST=x86 make'.

Further builds do not require all libraries to be re-built. To build only the S1D13806 display driver, change to the directory gddk_1.0/devg/S1D13806 and type make.

Installing the Driver

The build step produces two library images:

- lib/disputil/nto/x86/libdisputil.so
- lib/disputil/nto/x86/libffb.so

For the loader to locate them, the files need to be renamed and copied to the lib directory.

- 1. Rename libdisputil.so to libdisputil.so.1 and libffb.so to libffb.so.1.
- 2. Copy the files new files libdisputil.so.1 and libffb.so.1 to the directory /usr/lib.
- 3. Copy the file devg-S1D13806.so to the /lib/dll directory.

Note

To locate the file devg-S1D13806.so, watch the output of the 'true' command during the makefile build.

4. Modify the trap file graphics-modes in the /etc/system/config directory by inserting the following lines at the top of the file.

io-graphics -dldevg-S1D13506.so -g640x480x8 -I0 -d0x0,0x0;#640,480,8 Epson

io-graphics -dldevg-S1D13506.so -g640x480x16 -I0 -d0x0,0x0;#640,480,16 Epson

Run the Driver

Note

For the remaining steps the S5U13806B00C evaluation board must be installed on the test platform.

It is recommended that the driver be verified **before starting QNX with the S1D13806** as **the primary display**. To verify the driver, type the following command at the root of the Project source tree (gddk_1.0 directory).

util/bench/nto/x86/o/devg-bench -dldevg/S1D13806/nto/x86/dll/devg-S1D13806.so - mW,H,C,F -d0x0,0x0

Where:

W is the configured width of the display H is the configured height of the display C is the color depth in bpp (either 8 or 16) F is the configured frame rate

This command starts the bench utility which will initialize the driver as the secondary display and exercise the drivers main functions. If the display appears satisfactory, restart QNX Photon and the restart will result in the S1D13806 display driver becoming the primary display device.

Comments

• To restore the display driver to the default, comment out changes made to the trap file crt.\$NODE.

S1D13806 Embedded Memory Display Controller

Windows® CE 3.x Display Drivers

Document Number: X28B-E-006-01

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

WINDOWS® CE 3.x DISPLAY DRIVERS

The Windows CE 3.x display driver is designed to support the S1D13806 Color LCD/CRT/TV Controller running the Microsoft Windows CE operating system, version 3.0. The driver is capable of: 4, 8 and 16 bit-per-pixel landscape modes (no rotation), and 8 and 16 bit-per-pixel SwivelViewTM 90 degree, 180 degree and 270 degree modes.

This document and the source code for the Windows CE drivers are updated as appropriate. Before beginning any development, please check the Epson Electronics America Website at www.eea.epson.com or the Epson Research and Development Website at www.erd.epson.com for the latest revisions.

We appreciate your comments on our documentation. Please contact us via email at techpubs@erd.epson.com.

Example Driver Builds

The following sections describe how to build the Windows CE display driver for:

- 1. Windows CE Platform Builder 3.00 using the GUI interface.
- 2. Windows CE Platform Builder 3.00 using the command-line interface.

In all examples "x:" refers to the drive letter where Platform Builder is installed.

Build for CEPC (X86) on Windows CE Platform Builder 3.00 using the GUI Interface

- 1. Install Microsoft Windows 2000 Professional, or Windows NT Workstation version 4.0 with Service Pack 5 or later.
- 2. Install Windows CE Platform Builder 3.00.
- 3. Start Platform Builder by double-clicking on the Microsoft Windows CE Platform Builder icon.
- 4. Create a new project.
 - a. Select File | New.
 - b. In the dialog box, select the Platforms tab.
 - c. In the platforms dialog box, select "WCE Platform", set a location for the project (such as x:\myproject), set the platform name (such as myplatform), and set the Processors to "Win32 (WCE x86)".
 - d. Click the OK button.
 - e. In the dialog box "WCE Platform Step 1 of 2", select CEPC.
 - f. Click the Next button.
 - g. In the dialog box "WCE Platform Step 2 of 2", select Maximum OS (Maxall).
 - h. Click the Finish button.
 - i. In the dialog box "New Platform Information", click the OK button.
- 5. Set the active configuration to "Win32 (WCE x86) Release".
 - a. From the Build menu, select "Set Active Configuration".
 - b. Select "MYPLATFORM Win32 (WCE x86) Release".
 - c. Click the OK button.
- 6. Add the environment variable CEPC_DDI_S1D13806.
 - a. From the Platform menu, select "Settings".
 - b. Select the "Environment" tab.
 - c. In the Variable box, type "CEPC_DDI_S1D13806".

- d. In the Value box, type "1".
- e. Click the Set button.
- f. Click the OK button.
- 7. Create a new directory S1D13806, under x:\wince300\platform\cepc\drivers\display, and copy the S1D13806 driver source code into this new directory.
- 8. Add the S1D13806 driver component.
 - a. From the Platform menu, select "Insert | User Component".
 - b. Set "Files of type:" to "All Files (*.*)".
 - c. Select the file x:\wince300\platform\cepc\drivers\display\S1D13806\sources.
 - d. In the "User Component Target File" dialog box, select browse and then select the path and the file name of "sources".
- 9. Delete the component "ddi_flat".
 - a. In the Platform window, select the ComponentView tab.
 - b. Show the tree for MYPLATFORM components by clicking on the '+' sign at the root of the tree.
 - c. Right-click on the ddi flat component.
 - d. Select "Delete".
 - e. From the File menu, select "Save Workspace".
- 10. From the Platform window, click on ParameterView Tab. Show the tree for MY-PLATFORM Parameters by clicking on the '+' sign at the root of the tree. Expand the the WINCE300 tree and then click on "Hardware Specific Files" and then double click on "PLATFORM.BIB". Edit the file the PLATFORM.BIB file and make the following two changes:
 - a. Insert the following text after the line "IF ODO_NODISPLAY!":

```
IF CEPC_DDI_S1D13806

ddi.dll $(_FLATRELEASEDIR)\S1D13806.dll NK SH
ENDIF
```

b. Find the section shown below, and insert the lines as marked:

```
IF CEPC_DDI_FLAT!

IF CEPC_DDI_S1D13806! ;Insert this line

IF CEPC_DDI_S3VIRGE!

IF CEPC_DDI_CT655X!

IF CEPC_DDI_VGA8BPP!

IF CEPC_DDI_S3TRIO64!

IF CEPC_DDI_ATI!
```

ddi.dll \$(_FLATRELEASEDIR)\ddi_flat.dll NK SH

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF :Insert this line

ENDIF

11. Modify MODE0.H.

The file MODE0.H (located in x:\wince300\platform\cepc\drivers\display\S1D13806) contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD/CRT/TV), display rotation, etc.

Before building the display driver, refer to the descriptions in the file MODE0.H for the default settings of the console driver. If the default does not match the configuration you are building for then MODE0.H will have to be regenerated with the correct information.

Use the program 13806CFG to generate the header file. For information on how to use 13806CFG, refer to the *13806CFG Configuration Program User Manual*, document number X28B-B-001-xx, available at www.erd.epson.com

After selecting the desired configuration, export the file as a "C Header File for S1D13806 WinCE Drivers". Save the new configuration as MODE0.H in the \wince300\platform\cepc\drivers\display, replacing the original configuration file.

12. From the Platform window, click on ParameterView Tab. Show the tree for MY-PLATFORM Parameters by clicking on the '+' sign at the root of the tree. Expand the the WINCE300 tree and click on "Hardware Specific Files", then double click on "PLATFORM.REG". Edit the file PLATFORM.REG to match the screen resolution, color depth, and rotation information in MODE.H.

For example, the display driver section of PLATFORM.REG should be as follows when using a 640x480 LCD panel with a color depth of 8 bpp and a SwivelView mode of 0° (landscape):

- ; Default for EPSON Display Driver
- ; 640x480 at 8 bits/pixel, LCD display, no rotation
- ; Useful Hex Values
- ; 1024=0x400, 768=0x300 640=0x280 480=0x1E0 320=140 240=0xF0

[HKEY_LOCAL_MACHINE\Drivers\Display\S1D13806]

"Width"=dword:280

"Height"=dword:1E0

"Bpp"=dword:8

"ActiveDisp"=dword:1

"Rotation"=dword:0

13. From the Build menu, select "Rebuild Platform" to generate a Windows CE image file (NK.BIN) in the project directory x:\myproject\myplatform\reldir\x86_release\nk.bin.

Build for CEPC (X86) on Windows CE Platform Builder 3.00 using the Command-Line Interface

- 1. Install Microsoft Windows 2000 Professional, or Windows NT Workstation version 4.0 with Service Pack 5 or later.
- 2. Install Windows CE Platform Builder 3.00.
- 3. Create a batch file called x:\wince300\cepath.bat. Put the following in cepath.bat:

cd \wince300\public\common\oak\misc
call wince x86 i486 CE MAXALL CEPC
set IMGNODEBUGGER=1
set WINCEREL=1
set CEPC_DDI_S1D13806=1

ENDIF

- 4. Generate the build environment by calling cepath.bat.
- Create a new folder called S1D13806 under x:\wince300\platform\cepc\drivers\display, and copy the S1D13806 driver source code into x:\wince300\platform\cepc\drivers\display\S1D13806.
- 6. Edit the file x:\wince300\platform\cepc\drivers\display\dirs and add S1D13806 into the list of directories.
- 7. Edit the file x:\wince300\platform\cepc\files\platform.bib and make the following two changes:
 - a. Insert the following text after the line "IF ODO NODISPLAY!":

b. Find the section shown below, and insert the lines as marked:

IF CEPC_DDI_FLAT!

IF CEPC_DDI_S1D13806! ;Insert this line

IF CEPC_DDI_S3VIRGE!

IF CEPC_DDI_CT655X!

IF CEPC_DDI_VGA8BPP!

IF CEPC_DDI_S3TRIO64!

IF CEPC_DDI_ATI!

ddi.dll \$(_FLATRELEASEDIR)\ddi_flat.dll NK SH

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF ;Insert this line

ENDIF

8. Modify MODE0.H.

The file MODE0.H (located in x:\wince300\platform\cepc\drivers\display\S1D13806) contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD/CRT/TV), display rotation, etc.

Before building the display driver, refer to the descriptions in the file MODE0.H for the default settings of the display driver. If the default does not match the configuration you are building for then MODE0.H will have to be regenerated with the correct information.

Use the program 13806CFG to generate the header file. For information on how to use 13806CFG, refer to the *13806CFG Configuration Program User Manual*, document number X28B-B-001-xx, available at www.erd.epson.com

After selecting the desired configuration, export the file as a "C Header File for S1D13806 WinCE Drivers" option. Save the new configuration as MODE0.H in the \wince300\platform\cepc\drivers\display, replacing the original configuration file.

Edit the file PLATFORM.REG to match the screen resolution, color depth, and rotation information in MODE.H. PLATFORM.REG is located in x:\wince300\platform\cepc\files.

For example, the display driver section of PLATFORM.REG should be as follows when using a 640x480 LCD panel with a color depth of 8 bpp and a SwivelView mode of 0° (landscape):

- ; Default for EPSON Display Driver
- ; 640x480 at 8 bits/pixel, LCD display, no rotation
- ; Useful Hex Values
- ; 1024=0x400, 768=0x300 640=0x280 480=0x1E0 320=140 240=0xF0

[HKEY_LOCAL_MACHINE\Drivers\Display\S1D13806]

- "Width"=dword:280
- "Height"=dword:1E0
- "Bpp"=dword:8
- "ActiveDisp"=dword:1
- "Rotation"=dword:0

- 10. Delete all the files in the x:\wince300\release directory and delete the file x:\wince300\platform\cepc*.bif
- 11. Type BLDDEMO <ENTER> at the command prompt to generate a Windows CE image file. The file generated will be x:\wince300\release\nk.bin.

Installation for CEPC Environment

Once the NK.BIN file is built, the CEPC environment can be started by booting either from a floppy or hard drive configured with a Windows 9x operating system. The two methods are described below.

- 1. To start CEPC after booting from a floppy drive:
 - a. Create a bootable floppy disk.
 - b. Edit CONFIG.SYS on the floppy disk to contain only the following line:

device=a:\himem.sys

c. Edit AUTOEXEC.BAT on the floppy disk to contain the following lines:

```
mode com1:9600,n,8,1 loadcepc /B:9600 /C:1 c:\nk.bin
```

- d. Copy LOADCEPC.EXE and HIMEM.SYS to the bootable floppy disk. Search for the loadCEPC utility in your Windows CE directories.
- e. Copy NK.BIN to c:\.
- f. Boot the system from the bootable floppy disk.
- 2. To start CEPC after booting from a hard drive:
 - Copy LOADCEPC.EXE to C:\. Search for the loadCEPC utility in your Windows CE directories.
 - b. Edit CONFIG.SYS on the hard drive to contain only the following line:

device=c:\himem.sys

c. Edit AUTOEXEC.BAT on the hard drive to contain the following lines:

mode com1:9600,n,8,1 loadcepc /B:9600 /C:1 c:\nk.bin

- d. Copy NK.BIN and HIMEM.SYS to c:\.
- e. Boot the system.

Configuration

There are several issues to consider when configuring the display driver. The issues cover debugging support, register initialization values and memory allocation. Each of these issues is discussed in the following sections.

Compile Switches

There are several switches, specific to the S1D13806 display driver, which affect the display driver.

The switches are added or removed from the compile switches in the file SOURCES.

S1D13806

This option must be set when compiling for the S1D13806.

WINCEVER

This option is automatically set to the numerical version of WinCE for version 2.12 or later. If the environment variable, _WINCEOSVER is not defined, then WINCEVER will default 2.11. The S1D display driver may test against this option to support different WinCE version-specific features.

EnablePreferVmem

This option enables the use of off-screen video memory. When this option is enabled, WinCE can optimize some BLT operations by using off-screen video memory to store images.

Enable2DC

This option enables the S1D13806 display driver to support an alternate device context. This may be useful for applications such as Pocket PowerPoint, which can display a different image on a display device other than the primary display. The driver support for this is still under development and is UNTESTED.

Future releases of the S1D13806 display drivers will have full support for alternate displays.

EnableDC2Hwblt

This option enables hardware BLT acceleration on the alternate display (see Enable2DC). This option is currently unused and will be fully supported in future releases of the S1D13806 display drivers.

ENABLE_CLOCK_CHIP

This option is used to enable support for the ICD2061A clock generator. This clock chip is used on the S5U13806B00C evaluation board. The S1D13806 display drivers can program the clock chip to support the frequencies required in the MODE tables.

If you are not using the S5U13806B00C evaluation adapter, you should disable this option.

ENABLE_ANTIALIASED_FONTS

This option enables the display driver support of antialiased fonts in WinCE. Fonts created with the ANTIALIASED_QUALITY attribute will be drawn with font smoothing.

If you want all fonts to be antialiased by default, add the following line to PLATFORM.REG: [HKEY_LOCAL_MACHINE\SYSTEM\GDI\Fontsmoothing]. This registry option causes WinCE to draw all fonts with smoothing. This option is only applicable to 16bpp mode.

EpsonMessages

This debugging option enables the display of EPSON-specific debug messages. These debug message are sent to the serial debugging port. This option should be disabled unless you are debugging the display driver, as they will significantly impact the performance of the display driver.

DEBUG_MONITOR

This option enables the use of the debug monitor. The debug monitor can be invoked when the display driver is first loaded and can be used to view registers, and perform a few debugging tasks. The debug monitor is still under development and is UNTESTED.

This option should remain disabled unless you are performing specific debugging tasks that require the debug monitor.

MonoPanel

This option is intended for the support of monochrome panels only.

The option causes palette colors to be grayscaled for correct display on a mono panel. For use with color panels this option should not be enabled.

TEST_BITMAP

This option allows the debug monitor to display a test bitmap. This bitmap is big and will make the display driver considerably larger. The flag DEBUG_MONITOR must also be enabled for this option to work.

This option should be disabled unless the image is required for debugging.

DEBUG_BLT

This option enables special BLT debugging messages on the debugging serial port. This option, when enabled, will drastically impact display driver performance, and should only be used to track down failures in the BLT operations.

This option should be disabled unless doing BLT debugging.

FILL DELETED OFFSCREEN SURFACE

This option enables special debugging code that will fill (blank) off-screen rectangular surfaces when they are destructed. This option is only useful if EnablePreferVmem is also enabled. When enabled, off-screen surfaces are filled with a solid color when they are deleted. If any code then attempts to reuse the deleted off screen surface, the results should show up as errors on the primary display.

This option should be disabled unless doing debugging.

Mode File

The MODE tables (contained in files MODE0.H, MODE1.H, MODE2.H...) contain register information to control the desired display mode. The MODE tables must be generated by the configuration program 13806CFG.EXE. The display driver comes with example MODE tables.

By default, only MODE0.H is used by the display driver. New mode tables can be created using the 13806CFG program. Edit the #include section of MODE.H to add the new mode table.

If you only support a single mode table, you do not need to add any information to the WinCE registry. If, however, you support more that one display mode, you should create registry values (see below) that will establish the initial display mode. If your display driver contains multiple mode tables, and if you do not add any registry values, the display driver will default to the first mode table in your list.

To select which display mode the display driver should use upon boot, add the following lines to your PLATFORM.REG file:

[HKEY_LOCAL_MACHINE\Drivers\Display\S1D13806]

- "Width"=dword:280
- "Height"=dword:1E0
- "Bpp"=dword:8
- "Rotation"=dword:0
- "RefreshRate"=dword:3C
- "Flags"=dword:2

Note that all dword values are in hexadecimal, therefore 280h = 640, 1E0h = 480, and 3Ch = 60. The value for "Flags" should be 1 (LCD), 2 (CRT), or 3 (both LCD and CRT). When the display driver starts, it will read these values in the registry and attempt to match a mode table against them. All values must be present and valid for a match to occur, otherwise the display driver will default to the first mode table in your list.

A WinCE desktop application (or control panel applet) can change these registry values, and the display driver will select a different mode upon warmboot. This allows the display driver to support different display configurations and/or orientations. An example application that controls these registry values will be made available upon the next release of the display driver; preliminary alpha code is available by special request.

Resource Management Issues

The Windows CE 3.0 OEM must deal with certain display driver issues relevant to Windows CE 3.0. These issues require the OEM balance factors such as: system vs. display memory utilization, video performance, and power off capabilities.

The section "Simple Display Driver Configuration" on page 16 provides a configuration which should work with most Windows CE platforms. This section is only intended as a means of getting started. Once the developer has a functional system, it is recommended to optimize the display driver configuration as described below in "Description of Windows CE Display Driver Issues".

Description of Windows CE Display Driver Issues

The following are some issues to consider when configuring the display driver to work with Windows CE:

1. When Windows CE enters the Suspend state (power-off), the LCD controller and display memory may lose power, depending on how the OEM sets up the system. If display memory loses power, all images stored in display memory are lost.

If power-off/power-on features are required, the OEM has several options:

- If display memory power is turned off, add code to the display driver to save any images in display memory to system memory before power-off, and add code to restore these images after power-on.
- If display memory power is turned off, instruct Windows CE to redraw all images upon power-on. Unfortunately it is not possible to instruct Windows CE to redraw any off-screen images, such as icons, slider bars, etc., so in this case the OEM must also configure the display driver to never use off-screen memory.
- Ensure that display memory never loses power.
- 2. Using off-screen display memory significantly improves display performance. For example, slider bars appear more smooth when using off-screen memory. To enable or disable the use of off-screen memory, edit the file: x:\wince300\platform\cepc\driv-

ers\display\S1D13806\sources. In SOURCES, there is a line which, when uncommented, will instruct Windows CE to use off-screen display memory (if sufficient display memory is available):

CDEFINES=\$(CDEFINES) -DEnablePreferVmem

3. In the file PROJECT.REG under CE 3.0, there is a key called PORepaint (search the Windows CE directories for PROJECT.REG). PORepaint is relevant when the Suspend state is entered or exited. PORepaint can be set to 0, 1, or 2 as described below:

a. PORepaint=0

- This mode tells Windows CE not to save or restore display memory on suspend or resume.
- Since display data is not saved and not repainted, this is the FASTEST mode.
- Main display data in display memory must NOT be corrupted or lost on suspend. The memory clock must remain running.
- Off-screen data in display memory must NOT be corrupted or lost on suspend. The memory clock must remain running.
- This mode cannot be used if power to the display memory is turned off.

b. PORepaint=1

- This is the default mode for Windows CE.
- This mode tells Windows CE to save the main display data to the system memory on suspend.
- This mode is used if display memory power is going to be turned off when the system is suspended, and there is enough system memory to save the image.
- Any off-screen data in display memory is LOST when suspended. Therefore
 off-screen memory usage must either be disabled in the display driver (i.e:
 EnablePreferVmem not defined in SOURCES file), or new OEM-specific
 code must be added to the display driver to save off-screen data to system
 memory when the system is suspended, and restored when resumed.
- If off-screen data is used (provided that the OEM has provided code to save off-screen data when the system suspends), additional code must be added to the display driver's surface allocation routine to prevent the display driver from allocating the "main memory save region" in display memory. When WinCE OS attempts to allocate a buffer to save the main display data, WinCE OS marks the allocation request as preferring display memory. We believe this is incorrect. Code must be added to prevent this specific allocation from being allocated in display memory it MUST be allocated from system memory.
- Since the main display data is copied to system memory on suspend, and then simply copied back on resume, this mode is FAST, but not as fast as mode 0.

c. PORepaint=2

- This mode tells WinCE to not save the main display data on suspend, and causes WinCE to REPAINT the main display on resume.
- This mode is used if display memory power is going to be turned off when the system is suspended, and there is not enough system memory to save the image.
- Any off-screen data in display memory is LOST, and since there is insufficient system memory to save display data, off-screen memory usage MUST be disabled.
- When the system is resumed, WinCE instructs all running applications to repaint themselves. This is the SLOWEST of the three modes.

Simple Display Driver Configuration

The following display driver configuration should work with most platforms running Windows CE. This configuration disables the use of off-screen display memory and forces the system to redraw the main display upon power-on.

1. This step disables the use of off-screen display memory. Edit the file x:\wince300\platform\cepc\drivers\display\S1D13806\sources and change the line

CDEFINES=\$(CDEFINES) -DEnablePreferVmem

to

#CDEFINES=\$(CDEFINES) -DEnablePreferVmem

2. This step causes the system to redraw the main display upon power-on. This step is only required if display memory loses power when Windows CE is shut down. If display memory is kept powered up (set the S1D13806 in powersave mode), then the display data will be maintained and this step can be skipped.

Search for the file PROJECT.REG in your Windows CE directories, and inside PROJECT.REG find the key PORepaint. Change PORepaint as follows:

"PORepaint"=dword:2

Comments

- The display driver is CPU independent, allowing use of the driver for several Windows CE Platform Builder supported platforms.
- The file EPSON.CPP will require editing for the correct values of PhysicalPortAddr, PhysicalVmemAddr, etc.
- By default, the 13806CFG program assumes PCI addressing for the S5U13806B00C evaluation board. This means that the display driver will automatically locate the S1D13806 by scanning the PCI bus (currently only supported for the CEPC platform). If you select the address option "Other" and fill in your own custom addresses for the registers and video memory, then the display driver will not scan the PCI bus and will use the specific addresses you have chosen.
- If you are running the display driver on hardware other than the S5U13806B00C evaluation board, you must ensure that your hardware provides the correct clock frequencies for CLKI, CLKI2, and CLKI3. The 13806CFG program defaults CLKI to 25.175MHz, CLKI2 to 14.318MHz, and CLKI3 to 50.000MHz. The 13806CFG program also defaults BUSCLK to the PCI clock of 33.333MHz.

On the evaluation board, the display driver will correctly program the clock chip to support the CLKI and CLKI2 frequencies, and BUSCLK is derived from the PCI clock. On customer hardware, you must ensure that the clocks you provide to all clock inputs match the settings you chose in the Clocks tab of the 13806CFG program.

If you run the S1D13806 with a single clock source, make sure your clock sources for LCD, CRT, MediaPlug, and MCLK are correctly set to use the correct clock input source (typically BUSCLK). Also ensure that you enable the clock dividers as required for different display hardware.

- If you are running 13806CFG.EXE to produce multiple MODE tables, make sure you change the Mode Number in the WinCE tab for each mode table you generate. The display driver supports multiple mode tables, but only if each mode table has a unique mode number.
- The 13806CFG program assumes you are using the S5U13806B00C evaluation board, and defaults the Panel Power control to GPIO11. 13806CFG allows you to change the GPIO pin used to control panel power, or to disable the use of GPIO pins altogether. If this is changed from the default, your driver will no longer be able to enable panel power on the S5U13806B00C evaluation board, and your panel may not be powered up correctly. Using GPIO pins 0, 1, 2, or 12 for panel power control is not recommended as these pins are used by other adapter features (such as clock chip support and the media plug interface).
- At this time, the drivers have been tested on the x86 CPUs and have been built with Platform Builder v3.00.

Drivers

THIS PAGE LEFT BLANK

S1D13XXX 32-Bit Windows Device Driver Installation Guide

Document No. X00A-E-003-04

Copyright © 1999, 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All Trademarks are the property of their respective owners

THIS PAGE LEFT BLANK

S1D13XXX 32-Bit Windows Device Driver Installation Guide

This manual describes the installation of the Windows 9x/ME/NT 4.0/2000 device drivers for the S5U13xxxB00x series of Epson Evaluation Boards.

The file S1D13XXX.VXD is required for using the Epson supplied Intel32 evaluation and test programs for the S1D13xxx family of LCD controllers with Windows 9x/ME.

The file S1D13XXX.SYS is required for using the Epson supplied Intel32 evaluation and test programs for the S1D13xxx family of LCD controllers with Windows NT 4.0/2000.

The file S1D13XXX.INF is the install script.

For updated drivers, ask your Sales Representative or visit Epson Electronics America on the World Wide Web at www.eea.epson.com.

Driver Requirements

 Video Controller
 : S1D13xxx

 Display Type
 : N/A

 BIOS
 : N/A

 DOS Program
 : No

 Dos Version
 : N/A

Windows Program : Yes, Windows 9x/ME/NT 4.0/2000 device driver

Windows DOS Box : N/A
Windows Full Screen : N/A
OS/2 : N/A

Installation

Windows NT Version 4.0

All evaluation boards require the driver to be installed as follows.

- 1. Install the evaluation board in the computer and boot the computer.
- 2. Copy the files S1D13XXX.INF and S1D13XXX.SYS to a directory on a local hard drive.
- 3. Right click your mouse on the file S1D13XXX.INF and select INSTALL from the menu.
- 4. Windows will install the device driver and ask you to restart.

Windows 2000

All PCI Bus Evaluation Cards

- 1. Install the evaluation board in the computer and boot the computer.
- 2. Windows will detect the new hardware as a new PCI Device and bring up the FOUND NEW HARDWARE dialog box.
- 3. Click NEXT.
- 4. The New Hardware Wizard will bring up the dialog box to search for a suitable driver.
- 5. Click NEXT.
- 6. When Windows does not find the driver it will allow you to specify the location of it. Type the driver location or select BROWSE to find it.
- 7. Click NEXT.
- 8. Windows 2000 will open the installation file and show the option EPSON PCI Bridge Card. Select this file and click OPEN.
- 9. Windows then shows the path to the file. Click OK.
- 10. Click NEXT.
- 11. Click FINISH.

All ISA Bus Evaluation Cards

- 1. Install the evaluation board in the computer and boot the computer.
- Go to the CONTROL PANEL and select ADD/REMOVE HARDWARE, click NEXT.
- 3. Select ADD/TROUBLESHOOT A DEVICE, and click NEXT. Windows 2000 will attempt to detect any new plug and play device and fail.
- 4. The CHOOSE HARDWARE DEVICE dialog box appears. Select ADD NEW HARDWARE and click NEXT.
- 5. Select NO I WANT TO SELECT FROM A LIST and click NEXT.
- 6. Select OTHER DEVICE from the list and click NEXT.
- 7. Click HAVE DISK.
- 8. Specify the location of the driver files, select the S1D13XXX INF file and click OPEN.
- 9. Click OK.

Windows 98/ME

All PCI Bus Evaluation Cards

- 1. Install the evaluation board in the computer and boot the computer.
- 2. Windows will detect the new hardware as a new PCI Device and bring up the ADD NEW HARDWARE dialog box.
- 3. Click NEXT.
- 4. Windows will look for the driver. When Windows does not find the driver it will allow you to specify the location of it. Type the driver location or select BROWSE to find it.
- 5. Click NEXT.
- 6. Windows will open the installation file and show the option EPSON PCI Bridge Card.
- 7. Click FINISH.

All ISA Bus Evaluation Cards

- 1. Install the evaluation board in the computer and boot the computer.
- 2. Go to the CONTROL PANEL and double-click on ADD NEW HARDWARE to launch the ADD NEW HARDWARE WIZARD. Click NEXT.
- 3. Windows will attempt to detect any new plug and play device and fail. Click NEXT.
- 4. Windows will ask you to let it detect the hardware, or allow you to select from a list. Select NO, I WANT TO SELECT THE HARDWARE FROM A LIST and click NEXT.
- 5. From the list select OTHER DEVICES and click NEXT.
- 6. Click HAVE DISK and type the path to the driver files, or select browse to find the driver.
- 7. Click OK.
- 8. The driver will be identified as EPSON PCI Bridge Card. Click NEXT.
- 9. Click FINISH.

Windows 95 OSR2

All PCI Bus Evaluation Cards

- 1. Install the evaluation board in the computer and boot the computer.
- 2. Windows will detect the card as a new PCI Device and launch the UPDATE DEVICE DRIVER wizard.

If The Driver is on Floppy Disk

- 3. Place the disk into drive A: and click NEXT.
- 4. Windows will find the EPSON PCI Bridge Card.
- 5. Click FINISH to install the driver.
- 6. Windows will ask you to restart the system.

If The Driver is not on Floppy Disk

- 3. Click NEXT, Windows will search the floppy drive and fail.
- 4. Windows will attempt to load the new hardware as a Standard VGA Card.
- 5. Click CANCEL. The Driver must be loaded from the CONTROL PANEL under ADD/NEW HARDWARE.
- 6. Select NO for Windows to DETECT NEW HARDWARE.
- 7. Click NEXT.
- 8. Select OTHER DEVICES from HARDWARE TYPE and Click NEXT.
- 9. Click HAVE DISK.
- 10. Specify the location of the driver and click OK.
- 11. Click OK.
- 12. EPSON PCI Bridge Card will appear in the list.
- 13. Click NEXT.
- 14. Windows will install the driver.
- 15. Click FINISH.
- 16. Windows will ask you to restart the system.
- 17. Windows will re-detect the card and ask you to restart the system.

All ISA Bus Evaluation Cards

- 1. Install the evaluation board in the computer and boot the computer.
- 2. Go to the CONTROL PANEL and select ADD NEW HARDWARE.
- 3. Click NEXT.
- 4. Select NO and click NEXT.
- 5. Select OTHER DEVICES and click NEXT.
- 6. Click Have Disk.
- 7. Specify the location of the driver files and click OK.
- 8. Click Next.
- 9. Click Finish.

Previous Versions of Windows 95

All PCI Bus Evaluation Cards

- 1. Install the evaluation board in the computer and boot the computer.
- 2. Windows will detect the card.
- 3. Select DRIVER FROM DISK PROVIDED BY MANUFACTURER.
- 4. Click OK.
- 5. Specify a path to the location of the driver files.
- 6. Click OK.
- 7. Windows will find the S1D13XXX.INF file.
- 8. Click OK.
- 9. Click OK and Windows will install the driver.

All ISA Bus Evaluation Cards

- 1. Install the evaluation board in the computer and boot the computer.
- 2. Go to the CONTROL PANEL and select ADD NEW HARDWARE.
- 3. Click NEXT.
- 4. Select NO and click NEXT.
- 5. Select OTHER DEVICES from the HARDWARE TYPES list.
- 6. Click HAVE DISK.
- 7. Specify the location of the driver files and click OK.
- 8. Select the file S1D13XXX.INF and click OK.
- 9. Click OK.
- 10. The EPSON PCI Bridge Card should be selected in the list window.
- 11. Click NEXT.
- 12. Click NEXT.
- 13. Click Finish.

S1D13806 Embedded Memory Display Controller

S5U13806B00C Evaluation Board User Manual

Document Number: X28B-G-004-08

Copyright @ 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1	Introduction
2	Features
3	Installation and Configuration
	3.1 Configuration DIP Switches
	3.2 Configuration Jumpers
4	CPU Host Interface
	4.1 PCI Bus Support
	4.1.1 On-Board PCI Configuration Registers
	4.1.2 Utility Software
	4.2 Non-PCI Host Interface Support
	4.2.1 CPU Interface Pin Mapping
	4.3 External CPU Host Connector Pin Mapping
5	LCD Interface
	5.1 LCD Connector Pin Mapping
	5.2 Voltage Translation Buffers
	5.3 Adjustable LCD Panel Positive Supply (VDDH)
	5.4 Adjustable LCD Panel Negative Power Supply (VLCD)
	5.5 LCD Power Sequencing
6	CRT/TV Interface
	6.1 CRT/TV Connectors Pin Mapping
	6.2 DAC Output Level Select for CRT
7	MediaPlug Interface (for WINNOV Videum®Cam)
	7.1 MediaPlug Interface Pin Mapping
8	Clock Synthesizer and Clock Options
	8.1 Clock Programming
9	References
	9.1 Documents
	9.2 Document Sources
10	Parts List
	Schematic Diagrams
	PCB Layout
	Technical Support
13	13.1 EDSON I CD/CDT Controllers (\$1D13806)

THIS PAGE LEFT BLANK

List of Tables

Table 3-1:	Configuration DIP Switch Settings	.0
Table 3-2:	Jumper Summary	. 1
Table 4-1:	S1D13806 Memory Mapping onto 4M byte PCI Address Block	.3
Table 4-2:	PCI Configuration Register Read Values	4
Table 4-3:	PCI Configuration Register Write Values	.4
Table 4-4:	CPU Interface Pin Mapping	.5
Table 4-5:	External CPU Host Connector (H1) Pinout	.6
Table 4-6:	External CPU Host Connector (H2) Pinout	.7
Table 5-1:	LCD Signal Connector (H3)	9
Table 6-1:	CRT/TV Connectors Pin Mapping	23
Table 7-1:	MediaPlug Connector (J1) Pin Mapping	.4
Table 10-1:	Parts List	27

List Of Figures

Figure 3-1:	Configuration DIP Switch (S1) Location	. 9
Figure 3-2:	Configuration Jumper (JP1) Location	. 11
Figure 3-3:	Configuration Jumper (JP2) Location	. 12
Figure 3-4:	Configuration Jumper (JP3) Location	. 12
Figure 8-1:	Symbolic Clock Synthesizer Connections	. 25
Figure 11-1:	S5U13806B00C Schematics (1 of 8)	.30
Figure 11-2:	S5U13806B00C Schematics (2 of 8)	.31
Figure 11-3:	S5U13806B00C Schematics (3 of 8)	.32
Figure 11-4:	S5U13806B00C Schematics (4 of 8)	.33
Figure 11-5:	S5U13806B00C Schematics (5 of 8)	.34
Figure 11-6:	S5U13806B00C Schematics (6 of 8)	.35
Figure 11-7:	S5U13806B00C Schematics (7 of 8)	.36
Figure 11-8:	S5U13806B00C Schematics (8 of 8)	.37
Figure 12-1:	PCB Layout	.38

THIS PAGE LEFT BLANK

1 Introduction

This manual describes the setup and operation of the S5U13806B00C Evaluation Board. The S5U13806B00C is designed as an evaluation platform for the S1D13806 Embedded Memory Display Controller chip.

This user manual will be updated as appropriate. Please check the Epson Electronics America Website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Features

The S5U13806B00C features the following:

- S1D13806 Embedded Memory Display Controller chip.
- Headers for connecting to host bus interface.
- 1280K bytes embedded SDRAM.
- Configuration options.
- Adjustable positive LCD bias power supply from +24V to +40V.
- Adjustable negative LCD bias power supply from -24V to -14V.
- 4/8-bit 3.3V or 5V monochrome passive LCD panel support.
- 4/8/16-bit 3.3V or 5V color passive LCD panel support.
- 9/12/18/2x9/2x12-bit 3.3V or 5V TFT/D-TFD LCD panel support.
- Embedded DAC for CRT and TV support.
- WINNOV VideumCamTM digital camera support at 320x240x256 color at up to 30fps with on-chip MediaPlug interface.
- Programmable Clock synthesizer for maximum clock flexibility (CLKI and CLKI2).
- Software initiated Power Save Mode.

3 Installation and Configuration

The S5U13806B00C is designed to support as many platforms as possible. The S5U13806B00C incorporates a DIP switch and three jumpers which allow both evaluation board and S1D13806 LCD controller to be configured for a specified evaluation platform.

3.1 Configuration DIP Switches

The S1D13806 has configuration inputs (CONF[7:0]) which are read on the rising edge of RESET#. In order to configure the S1D13806 for multiple host bus interfaces an eight-position DIP switch (S1) is required. The following figure shows the location of DIP switch S1 on the S5U13806B00C.

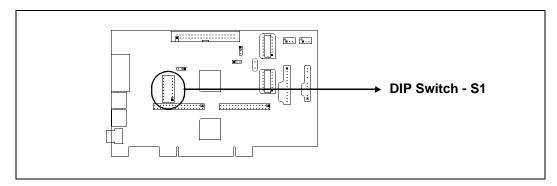


Figure 3-1: Configuration DIP Switch (S1) Location

The following DIP switch settings configure the S1D13806.

Table 3-1: Configuration DIP Switch Settings

Switch	S1D13806 Signal	PCI Bridge Adapter FPGA Signal	Closed/On = 1	Open/Off = 0				
			0000 = Generic; Little Endian; Active Low WAIT#					
			0001 = Generic; Little Endian; Active	High WAIT#				
			0010 = Generic; Big Endian; Active Low WAIT#					
			0011 = Generic; Big Endian; Active H	ligh WAIT#				
			0100 = MIPS/ISA; Little Endian; Activ	e Low WAIT#				
			0101 = MIPS/ISA; Little Endian; Active High WAIT#					
			0110 = MC68000; Big Endian; Active	High WAIT#				
S1-[4:1]	CONF[3:0]		0111 = MC68030; Big Endian; Active High WAIT#					
01-[4.1]	CONF[3.0]	_	1000 = PR31500/Tx39xx; Little Endian; Active Low WAIT#					
			1001 = PCMCIA; Little Endian; Active Low WAIT#					
			1010 = Reserved					
			1011 = MPC821; Big Endian; Active High WAIT#					
			1100 = SH3; Little Endian; Active Low WAIT#					
			1101 = SH4; Little Endian; Active High WAIT#					
			1110 = SH3; Big Endian; Active Low WAIT#					
			1111 = SH4; Big Endian; Active High	WAIT#				
S1-5	CONF5		BUSCLK input divided by 2	BUSCLK input not divided				
S1-6	CONF6		WAIT# always driven	WAIT tristated when the chip is not accessed by the host				
S1-7	CONF7	_	Configures GPIO12 for use as MediaPlug output pin VMPEPWR and enables MediaPlug Register access	Configured GPIO12 for normal use and disables MediaPlug register access				
S1-8		nCONFIG	Disable FPGA for non-PCI host Enable FPGA for PCI host					

= Required configuration when used in a PCI environment

3.2 Configuration Jumpers

The S5U13806B00C has three jumper blocks which configure various board settings. The jumper positions for each function are shown below.

Table 3-2: Jumper Summary

Jumper	Function	Function Position 1-2	
JP1	I _{REF} for DAC	4.6mA	9.2mA
JP2	LCD Panel Voltage	5.0V	3.3V
JP3	GPIO11 Polarity on H3	Normal (Active High)	Inverted (Active Low)

= Default setting

JP1 - I_{REF} for DAC

JP1 sets the internal reference current (I_{REF}) used by the embedded DAC on the S1D13806. Position 2-3 is used for CRT and TV displays. (default setting)

Position 1-2 is used for CRT mode only and must be set in conjunction with the DAC Output Level Select bit (REG[05Bh] bit 3). Choosing position 1-2 and setting REG[05Bh] bit 3 to 1, lowers IREF which reduces DAC power consumption. Refer to the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx for details.

Note

For LCD only, JP1 should be left at the default setting (position 2-3). IREF is not required for LCD displays.

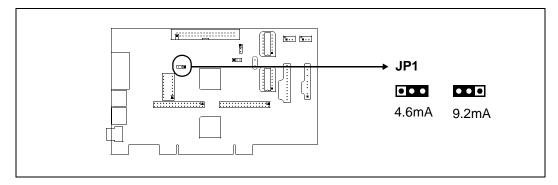


Figure 3-2: Configuration Jumper (JP1) Location

JP2 - LCD Panel Voltage

JP2 sets the voltage level to the LCD panel. Position 1-2 sets the voltage level to 5.0 volts. Position 2-3 sets the voltage level to 3.3 volts.

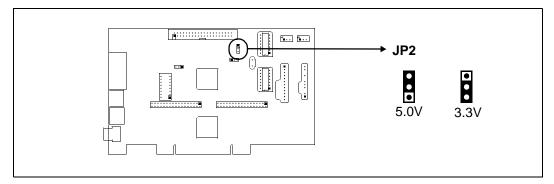


Figure 3-3: Configuration Jumper (JP2) Location

JP3 - GPIO11 Polarity on H3

By default, the S5U13806B00C uses GPIO11 to control the on-board LCD bias power supplies. If the LCD panel requires GPIO11 for other purposes, it is supplied on the LCD connector H3. JP3 controls the polarity of GPIO11 going to LCD connector H3. This jumper has no effect on the polarity of GPIO11 controlling the on-board LCD bias power supplies.

Position 1-2 sets the polarity of GPIO11 to active high. Position 2-3 sets the polarity of GPIO11 to active low. (default setting)

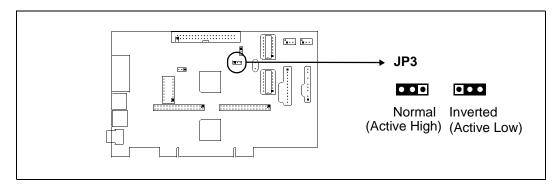


Figure 3-4: Configuration Jumper (JP3) Location

For further information on the LCD bias power supplies, refer to Section 5.5, "LCD Power Sequencing" on page 22 for details.

4 CPU Host Interface

The S5U13806B00C operates with both PCI and non-PCI evaluation platforms. It supports display types such as, passive LCD panels (4/8/16-bit), TFT/D-TFD panels (9/12/18/2x9/2x12), CRT and TV (NTSC and PAL). Additionally, it supports a variety of clock options.

4.1 PCI Bus Support

The S1D13806 LCD controller does not support the PCI bus directly. However, for ease of evaluation, the S5U13806B00C is designed using the PCI Bridge Adapter FPGA. This allows the S5U13806B00C to run on any PC with a PCI slot. The FPGA translates PCI accesses into PC Card accesses which are decoded by the S1D13806.

As a PCI device, the S5U13806B00C has the following characteristics:

- 33MHz bus clock.
- Target with no interrupts.
- Non-cacheable memory read and write.
- 3.3V or 5V PCI signalling.

A 4M byte PCI address range is allocated to the S5U13806B00C by the system BIOS. The S1D13806 uses this address range to map the internal registers and the 1.25M byte display buffer. The following table shows the memory mapping of the PCI address block.

Table 4-1: S1D13806 Memory Mapping onto 4M byte PCI Address Block

PCI Memory Offset	Description	S1D13806 M/R#	S1D13806 AB[20:0]
00 0000h to 00 01FFh	General registers (512 byte)	0	00 0000h to 00 01FFh
00 1000h to 00 1FFFh	MediaPlug registers (4K byte)	0	00 1000h to 00 1FFFh
10 0000h to 1F FFFFh	BitBlt data registers (1M byte)	0	10 0000h to 1F FFFFh
20 0000h to 33 FFFFh	Display Buffer (1.25M byte)	1	00 0000h to 13 FFFFh

4.1.1 On-Board PCI Configuration Registers

n/a

Read-Only Registers

The PCI Bridge Adapter FPGA provides configuration registers which contain identification information required by the PCI interface. The following values are hard-wired into these registers.

Name Register size **Address** Value Vendor ID 0h 16 bits 10F4h Device ID 16 bits 1300h 2h Status 6h 16 bits 400h Revision ID 8h 8 bits Class Code 9h 24 bits FF 0000h Subsystem Vendor ID 2Ch 10F4h 16 bits Subsystem ID 2Dh 16 bits 8000h Header Type Eh 8 bits 0

Fh-FFh

Table 4-2: PCI Configuration Register Read Values

Read/Write Registers

The PCI Bridge Adapter FPGA provides two read/write registers which are used for access enabling and memory mapping as follows.

32 bits

0

Table 4-3: PCI Configuration Register Write Values

Name	Address	Register size	Valid bits	Meaning
Command	4h	16 bits	Bit 1 only; other bits are zero.	Access enabled if high
Base Address 10h 32 bits		32 bits	Bits 31 to 22; other bits are zero.	Position of 4M byte reserved window

4.1.2 Utility Software

All utility software for the S5U13806B00C evaluation board is fully PCI compliant and handles the PCI configuration registers automatically.

4.2 Non-PCI Host Interface Support

The S5U13806B00C is specifically designed to support a standard PCI bus environment (using the PCI Bridge Adapter FPGA). However, the S5U13806B00C directly supports many other Host Bus Interfaces. When the FPGA is disabled (using DIP switch S1-8), headers H1 and H2 provide the necessary IO pins to interface the Host Bus Interfaces listed in Table 4-4:, "CPU Interface Pin Mapping".

4.2.1 CPU Interface Pin Mapping

When connecting the S5U13806B00C to other evaluation platforms, the following host interface pin mapping applies. Note the PCI Bridge Adapter FPGA must be disabled (using DIP switch S1-8) before setting the S5U13806B00C for use with a non-PCI host interface.

S1D1380 6 Pin Names	Generic	Hitachi SH-4/SH-3	MIPS/ISA	Motorola MC68K Bus 1	Motorola MC68K Bus 2	Motorola PowerPC	PC Card	Philips PR31500 /PR31700	Toshiba TX3912
AB20	A20	A20	LatchA20	A20	A20	A11	A20	ALE	ALE
AB19	A19	A19	SA19	A19	A19	A12	A19	/CARDREG	CARDREG*
AB18	A18	A18	SA18	A18	A18	A13	A18	/CARDIORD	CARDIORD*
AB17	A17	A17	SA17	A17	A17	A14	A17	/CARDIOWR	CARDIOWR*
AB[16:13]	A[16:13]	A[16:13]	SA[16:13]	A[16:13]	A[16:13]	A[15:18]	A[16:13]	Connecte	ed to V _{DD} ¹
AB[12:1]	A[12:1]	A[12:1]	SA[12:1]	A[12:1]	A[12:1]	A[19:30]	A[12:1]	A[12:1]	A[12:1]
AB0	A0 ¹	A0 ¹	SA0	LDS#	A0	A31	A0 ¹	A0	A0
DB[15:8]	D[15:0]	D[15:8]	SD[15:0]	D[15:8]	D[31:24]	D[0:7]	D[15:0]	D[23:16]	D[23:16]
DB[7:0]	D[7:0]	D[7:0]	SD[7:0]	D[7:0]	D[23:16]	D[8:15]	D[7:0]	D[31:24]	D[31:24]
WE1#	WE1#	WE1#	SBHE#	UDS#	DS#	BI	-CE2	/CARDxCSH	CARDxCSH*
M/R#	External Decode Connected t						ed to V _{DD} 1		
CS#			Ext	ernal Deco	de			Connecte	ed to V _{DD} 1
BUSCLK	BCLK	CKIO	CLK	CLK	CLK	CLKOUT	CLK	DCLKOUT	DCLKOUT
BS#	Connected to V _{DD} ¹	BS#	Connected to V _{DD} ¹	AS#	AS#	TS	Connected to V _{DD} ¹	Connecte	ed to V _{DD} ¹
RD/WR#	RD1#	RD/WR#	Connected to V _{DD} ¹	R/W#	R/W#	RD/WR	-CE1	/CARDxCSL	CARDxCSL*
RD#	RD0#	RD#	MEMR#	Connected to V _{DD} ¹	SIZ1	TSIZ0	-OE	/RD	RD*
WE0#	WE0#	WE0#	MEMW#	Connected to V _{DD} ¹	SIZ0	TSIZ1	-WE	/WE	WE*
WAIT#	WAIT#	RDY# /WAIT#	IOCHRDY	DTACK#	DSACK1#	TA	-WAIT	/CARDxWAIT	CARDxWAIT*
RESET#	RESET#	RESET#	inverted RESET	RESET#	RESET#	RESET#	inverted RESET	RESET#	PON*

Table 4-4: CPU Interface Pin Mapping

Note

 $^{^{1}}$ Pull-up resistors are not provided on the S5U13806B00C. However, these pins are not used in their corresponding CPU interface mode and systems are responsible for connecting them to $V_{\rm DD}$ using external pull-up resistors.

Board User Manual

4.3 External CPU Host Connector Pin Mapping

The pinouts for Connector H1 are listed in the following table.

Table 4-5: External CPU Host Connector (H1) Pinout

Connector	
Pin No.	Comments
1	Connected to DB0 of the S1D13806
2	Connected to DB1 of the S1D13806
3	Connected to DB2 of the S1D13806
4	Connected to DB3 of the S1D13806
5	Ground
6	Ground
7	Connected to DB4 of the S1D13806
8	Connected to DB5 of the S1D13806
9	Connected to DB6 of the S1D13806
10	Connected to DB7 of the S1D13806
11	Ground
12	Ground
13	Connected to DB8 of the S1D13806
14	Connected to DB9 of the S1D13806
15	Connected to DB10 of the S1D13806
16	Connected to DB11 of the S1D13806
17	Ground
18	Ground
19	Connected to DB12 of the S1D13806
20	Connected to DB13 of the S1D13806
21	Connected to DB14 of the S1D13806
22	Connected to DB15 of the S1D13806
23	Connected to RESET# of the S1D13806
24	Ground
25	Ground
26	Ground
27	+12 volt supply
28	+12 volt supply
29	Connected to WE0# of the S1D13806
30	Connected to WAIT# of the S1D13806
31	Connected to CS# of the S1D13806
32	Connected to MR# of the S1D13806
33	Connected to WE1# of the S1D13806
34	Not connected

The pinouts for Connector H2 are listed in the following table.

Table 4-6: External CPU Host Connector (H2) Pinout

Connector Pin No.	Comments		
1	Connected to A0 of the S1D13806		
2	Connected to A1 of the S1D13806		
3	Connected to A2 of the S1D13806		
4	Connected to A3 of the S1D13806		
5	Connected to A4 of the S1D13806		
6	Connected to A5 of the S1D13806		
7	Connected to A6 of the S1D13806		
8	Connected to A7 of the S1D13806		
9	Ground		
10	Ground		
11	Connected to A8 of the S1D13806		
12	Connected to A9 of the S1D13806		
13	Connected to A10 of the S1D13806		
14	Connected to A11 of the S1D13806		
15	Connected to A12 of the S1D13806		
16	Connected to A13 of the S1D13806		
17	Ground		
18	Ground		
19	Connected to A14 of the S1D13806		
20	Connected to A15 of the S1D13806		
Connected to A16 of the S1D13806			
Connected to A17 of the S1D13806			
23	Connected to A18 of the S1D13806		
24	Connected to A19 of the S1D13806		
25	Ground		
26	Ground		
27	+5 volt supply		
28	+5 volt supply		
29	Connected to RD/WR# of the S1D13806		
30	Connected to BS# of the S1D13806		
31	Connected to BUSCLK of the S1D13806		
32	Connected to RD# of the S1D13806		
33	Connected to A20 of the S1D13806		
34	Not connected		

5 LCD Interface

The S1D13806 supports 4/8-bit single and dual passive monochrome panels, 4/8/16-bit single and dual passive color, and 9/12/18/2x9/2x12-bit active matrix TFT/D-TFD panels. All necessary signals are provided on the 40-pin LCD connector (H3).

5.1 LCD Connector Pin Mapping

Table 5-1: LCD Signal Connector (H3)

	Table 5-1: LCD Signal Connector (H3)														
S1D13806		Monochrome Passive Color Passive				ssive Par									
Pin Names	Connect. Pin No.	Sin	ngle	Dual	Single	Single Format 1		Single	Di	ual			T) Pane	1	
		4-bit	8-bit	8-bit	4-bit	8-bit	8-bit	16-Bit	8-bit	16-bit	9-bit	12-bit	18-bit	2x9-bit	2x12-bit
FPDAT0	1	driven 0	D0	LD0	driven 0	D0 (B5) ¹	D0 (G3) ¹	D0 (R6) ¹	LD0 (241-R2) ¹	LD0 (241-G3) ¹	R2	R3	R5	R02	R03
FPDAT1	3	driven 0	D1	LD1	driven 0	D1 (R5) ¹	D1 (R3) ¹	D1 (G5) ¹	LD1 (241-B1) ¹	LD1 (241-R3) ¹	R1	R2	R4	R01	R02
FPDAT2	5	driven 0	D2	LD2	driven 0	D2 (G4) ¹	D2 (B2) ¹	D2 (B4) ¹	LD2 (241-G1) ¹	LD2 (241-B2) ¹	R0	R1	R3	R00	R01
FPDAT3	7	driven 0	D3	LD3	driven 0	D3 (B3) ¹	D3 (G2) ¹	D3 (R4) ¹	LD3 (241-R1) ¹	LD3 (241-G2) ¹	G2	G3	G5	G02	G03
FPDAT4	9	D0	D4	UD0	D0 (R2) ¹	D4 (R3) ¹	D4 (R2) ¹	D8 (B5) ¹	UD0 (1-R2) ¹	UD0 (1-G3) ¹	G1	G2	G4	G01	G02
FPDAT5	11	D1	D5	UD1	D1 (B1) ¹	D5 (G2) ¹	D5 (B1) ¹	D9 (R5) ¹	UD1 (1-B1) ¹	UD1 (1-R3) ¹	G0	G1	G3	G00	G01
FPDAT6	13	D2	D6	UD2	D2 (G1) ¹	D6 (B1) ¹	D6 (G1) ¹	D10 (G4) ¹	UD2 (1-G1) ¹	UD2 (1-B2) ¹	B2	В3	B5	B02	B03
FPDAT7	15	D3	D7	UD3	D3 (R1) ¹	D7 (R1) ¹	D7 (R1) ¹	D11 (B3) ¹	UD3 (1-R1) ¹	UD3 (1-G2) ¹	B1	B2	B4	B01	B02
FPDAT8	17	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D4 (G3) ¹	driven 0	LD4 (241-R2) ¹	В0	B1	В3	B00	B01
FPDAT9	19	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D5 (B2) ¹	driven 0	LD5 (241-B1) ¹	driven 0	R0	R2	driven 0	R00
FPDAT10	21	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D6 (R2) ¹	driven 0	LD6 (241-G1) ¹	driven 0	driven 0	R1	R12	R13
FPDAT11	23	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D7 (G1) ¹	driven 0	LD7 (241-R1) ¹	driven 0	G0	G2	driven 0	G00
FPDAT12	25	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D12 (R3) ¹	driven 0	UD4 (1-R2) ¹	driven 0	driven 0	G1	G12	G13
FPDAT13	27	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D13 (G2) ¹	driven 0	UD5 (1-B1) ¹	driven 0	driven 0	G0	G11	G12
FPDAT14	29	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D14 (B1) ¹	driven 0	UD6 (1-G1) ¹	driven 0	В0	B2	driven 0	B00
FPDAT15	31	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	D15 (R1) ¹	driven 0	UD7 (1-R1) ¹	driven 0	driven 0	B1	B12	B13
FPDAT16	4	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	B0	B11	B12
FPDAT17	6	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	R0	R11	R12
FPDAT18	10	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	R10	R11
FPDAT19	12	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	R10
FPDAT24	16	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	G10	G11
FPDAT21	18			driven 0			driven 0				driven 0			driven 0	G10
FPDAT22 FPDAT23	22			driven 0		driven 0	driven 0		driven 0	driven 0		driven 0		B10	B11
FPSHIFT	33	unventu	unventu	driven 0	unven 0	driven 0	driven 0	driven 0	driven 0 PSHIFT	driven 0	driven 0	driven 0	driven 0	driven 0	B10
DRDY	35 & 38		N A C	חר		EDQUIETO	1						DPDV		
FPLINE	37		MOD FPSHIFT2 MOD DRDY FPLINE												
FPFRAME	39														
GND	2,8,14,20,2	FPFRAME GND													
N/C	28	N/C													
VLCD	30	Adjustable -24 to -14 negative LCD bias													
LCDVCC	32	+5.0V or +3.3V according to JP1													
+12V	34		+12V												
VDDH	36		Adjustable +24 to +40 positive LCD bias												
GPIO11	40		GPIO11 ²												
5, 1511	70		5.611												

Note

- ¹These pin mappings use signal names commonly used for each panel type, however signal names may differ between panel manufacturers. The values shown in brackets represent the color components as mapped to the corresponding FPDATxx signals at the first valid edge of FPSHIFT. For further FPDATxx to LCD interface mapping, see the AC Timing section in the *S1D13806 Hardware Functional Specification*, document number X28B-A-001-xx.
- 2. The polarity of GPIO11 sent to pin 40 can be inverted using jumper JP3. However, JP3 does not affect the polarity of the signals controlling the LCD bias power supplies.

5.2 Voltage Translation Buffers

The S5U13806B00C is designed with voltage translation buffers. This allows both 3.3V and 5.0V panels to be supported. Jumper JP1 selects the panel voltage (see Section 3.2, "Configuration Jumpers" on page 11).

5.3 Adjustable LCD Panel Positive Supply (VDDH)

For LCD panels which require a positive bias voltage between +24V and +40V ($I_{out} = 45 \text{mA}$), a power supply has been provided as an integral part of the S5U13806B00C design. The voltage on VDDH can be adjusted using R22 (200K potentiometer) to provide an output voltage from +24V to +40V.

The voltage on VDDH is enabled/disabled using the S1D13806 pin GPIO11 (active high). A pull-down resistor holds GPIO11 low at reset and, unless initialized at power-up, the bias voltage to the panel is off. For further information on controlling the LCD bias voltage, refer to Section 5.5, "LCD Power Sequencing" on page 22.

Note

Before connecting the panel. set the potentiometer according to the panel's specific voltage requirements.

5.4 Adjustable LCD Panel Negative Power Supply (VLCD)

For LCD panels which require a negative bias voltage between -14V and -24V ($I_{out} = 25 \text{mA}$), a power supply has been provided as an integral part of the S5U13806B00C design. The voltage on VLCD can be adjusted using R29 (100K potentiometer) to provide an output voltage from -14V to -24V.

The voltage on VLCD is enabled/disabled using the S1D13806 pin GPIO11 (active high). A pull-down resistor holds GPIO11 low at reset and, unless initialized at power-up, the bias voltage to the panel is off. For further information on controlling the LCD bias voltage, refer to Section 5.5, "LCD Power Sequencing" on page 22.

Note

Before connecting the panel. set the potentiometer according to the panel's specific voltage requirements.

Board User Manual

5.5 LCD Power Sequencing

LCD power sequencing ensures that bias voltage is not supplied to the LCD panel while the control signals are inactive. This prevents long term damage to the panel and avoids unsightly "lines" at power-on/power-off. LCD power sequencing for power-off requires a delay between disabling of the LCD power and disabling the LCD signals. Power-on requires the LCD signals to be active prior to providing power to the LCD. The time intervals vary depending on the LCD bias power supply design. The LCD bias power supplies on the S5U13806B00C require approximately 1.2 seconds to fully discharge (depending on the load).

The S5U13806B00C design uses GPIO11 (active high) to enable/disable the bias power supplies. A pull-down resistor is added to GPIO11 ensuring that the bias power supplies are off before the S1D13806 is initialized. GPIO11 is configured using REG[005h] and controlled using REG[009h]. For further information on the S1D13806 registers, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

Note

The software test utilities accompanying the S5U13806B00C handle the LCD power sequencing automatically and comply with most LCD panel power-on/power-off requirements. When connecting the S5U13806B00C to other platforms, ensure that the software is designed to handle the LCD power sequencing for the panel under test.

(GND)

6 CRT/TV Interface

6.1 CRT/TV Connectors Pin Mapping

The S1D13806 is designed with an embedded DAC for CRT and TV support. CRT/TV signals are supplied through an analog CRT connector (J3), Composite Video connector (J2), and S-Video connector (J4) as follows.

S-Video (J4) CRT (J3) Composite Video (J2) S1D13806 **Pin Names** Connector Pin No. **Signal Name** Connector Pin No. Signal Name Connector Pin No. **Signal Name HRTC** 13 Horizontal retrace N/A **VRTC** 14 Vertical retrace N/A N/A RED 1 N/A 3 Red Luminance **GREEN** 2 Composite N/A Green 1 **BLUE** 3 Blue N/A 4 Chrominance

2

Table 6-1: CRT/TV Connectors Pin Mapping

Note

5,6,7,8,10

Either CRT or TV can be active at any given time.

GND

Note

For TV, either PAL or NTSC format **and** Composite or S-Video output can be enabled at any given time.

GND

1,2

GND

6.2 DAC Output Level Select for CRT

When CRT mode is enabled, the S1D13806 does not use the whole range of the DAC. Therefore, while in CRT mode the DAC inputs may be shifted up by 1 (controlled by REG[05Bh] bit 3). This allows I_{REF} (current reference for the DAC) to be reduced by half, thus reducing the DAC power consumption.

This option can be configured using the configuration utility 13806CFG only when CRT output is selected. For further information on 13806CFG, refer to the *13806CFG Configuration Utility Users Manual*, document number X28B-B-001-xx.

Note

When this option is selected, S5U13806B00C jumper JP1 (I_{REF} for DAC) must be set to position 1-2. For further information, see Section 3.2, "Configuration Jumpers" on page 11.

Board User Manual

7 MediaPlug Interface (for WINNOV Videum®Cam)

The S5U13806B00C is designed with a MediaPlug connector (J1) for connecting to the WINNOV Videum $^{@}$ Cam digital camera.

When using the WINNOV Videum[®]Cam digital camera, configuration dip switch S1-7 (CONF7) must be set before power-up or reset to enable the MediaPlug interface. For further information on configuring DIP switch S1, refer to Section 3.1, "Configuration DIP Switches" on page 9.

7.1 MediaPlug Interface Pin Mapping

Table 7-1: MediaPlug Connector (J1) Pin Mapping

S1D13806 Pin Names	Connector Pin No.	MediaPlug I/F
VMP0	7	VMPCLKN
VMP1	8	VMPCLK
VMP2	5	VMPD3
VMP3	6	VMPD2
VMP4	4	VMPD1
VMP5	3	VMPD0
VMP6	2	VMPRCTL
VMP7	1	VMPLCTL
GPIO12 ¹	9	VMPEPWR
(GND)	10-12	Ground

Note

¹ When the MediaPlug interface is enabled using S1-7 (CONF7), GPIO12 is configured as the MediaPlug output pin VMPEPWR and cannot be controlled by REG[005h] and REG[009h]. It must be controlled using the MediaPlug LCMD register (REG[1000h] bit 1).

8 Clock Synthesizer and Clock Options

For maximum flexibility, the S5U13806B00C implements a Cypress ICD2061A Clock Generator. MCLKOUT from the clock synthesizer is connected to CLKI of the S1D13806, and VCLKOUT from the clock synthesizer is connected to CLKI2 of the S1D13806. A 14.31818MHz crystal (Y1) is connected to XTALIN and XTALOUT of the clock synthesizer and a 17.734475MHz oscillator (U8) is connected to FEATCLK of the clock synthesizer. The diagram below shows a simplified representation of the clock synthesizer connections.

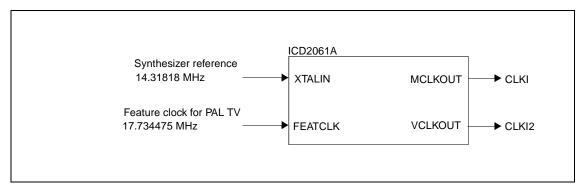


Figure 8-1: Symbolic Clock Synthesizer Connections

Upon power-up, CLKI (MCLKOUT) is configured to be 40MHz and CLKI2 (VCLKOUT) is configured to be 25.175MHz. CLKI3 of the S1D13806 is connected to a 50MHz oscillator (U10) as the MCLK clock source. CLKI and BUSCLK can also be selected as the clock source for MCLK using the Memory Clock Configuration Register (REG[010h]).

8.1 Clock Programming

The S1D13806 utilities automatically program the clock generator. If manual programming of the clock generator is required, refer to the source code for the S1D13806 utilities available on the internet at www.eea.epson.com.

For further information on programming the clock generator, refer to the *Cypress ICD2061A specification*.

Note

When CLKI and CLKI2 are programmed to multiples of each other (e.g. CLKI = 20MHz, CLKI2 = 40MHz), the clock output signals from the Cypress clock generator may jitter. Refer to the Cypress ICD2061A specification for details.

To avoid this problem, set CLKI and CLKI2 to different frequencies and configure both LCD PCLK and CRT/TV PCLK to use the same clock input (CLKI or CLKI2). Then use the S1D13806 internal clock divides (LCD PCLK Divide REG[014h], CRT/TV PCLK Divide REG[018h]) to obtain the lower frequencies.

Board User Manual S

9 References

9.1 Documents

- Epson Research and Development, Inc., *S1D13806 Hardware Functional Specification*, Document Number X28B-A-001-xx.
- Epson Research and Development, Inc., *S1D13806 Programming Notes and Examples*, Document Number X28B-G-003-xx.
- Cypress Semiconductor Corporation, ICD2061A Data Sheet.

9.2 Document Sources

- Epson Electronics America Website: http://www.eea.epson.com.
- Cypress Semiconductor Corporation Website: http://www.cypress.com.

10 Parts List

Table 10-1: Parts List

Item	Quantity	Reference	Part	Description	Manufacturer / Part No. / Assembly Instructions
1	1	C1	22u 10V	"Tantalum C-size, 10V +/- 10%"	
2	2	"C2,C34"	10u 10V	"Tantalum C-size, 10V +/- 10%"	
3	26	"C3-16,C31- 33,C35,C36,C39, C40,C42,C58-61"	0.1u	"50V X7R +/-5%, 1206 pckg"	
4	9	C17-25	0.22u	"50V X7R +/-5%, 1206 pckg"	
5	7	"C26,C28,C29,C3 7,C38,C41,C46"	68u 10V	"Tantalum D-size, 10V +/- 10%"	
6	2	"C27,C30"	33u 20V	"Tantalum D-size, 20V +/- 10%"	
7	3	C43-C45	10uF/63V	"Electrolytic, Radial Lead 63V +/-20%"	NIPPON/UNITED CHEMI-CON KMF63VB10RM5X11LL or equivalent
8	1	C47	56uF/35V	"Electrolytic, Radial Lead 35V +/-20%"	NIPPON/UNITED CHEMI-CON LXV35VB56RM6X11LL or equivalent
9	6	"C48- 50,C52,C54,C55"	33pF	"50V X7R +/-5%, 1206 pckg"	
10	1	C51	0.01uF	"50V X7R +/-5%, 1206 pckg"	
11	1	C53	10uF 16V	"Tantalum C-size, 16V +/- 10%"	
12	2	"C57,C56"	220pF	"50V X7R +/-5%, 1206 pckg"	
13	2	"C62,C63"	n/p	1206 pckg	Do not populate
14	1	D1	BAT54	Schottky Barrier Diode / SOT-23	"Liteon BAT54 or equivalent, NOT BAT54A !"
15	4	D2-5	BAV99	Dual Diode / SOT-23	
16	2	"H1,H2"	HEADER 17X2	"2x17 .1""x.1"" pitch unshrouded header"	
17	1	НЗ	HEADER 20X2	"2x20, .025"" sq. shrouded header, keyed"	Thomas&Betts P/N:636-4207 or equivalent
18	3	JP1-3	HEADER 3	"1x3 .1"" pitch unshrouded header"	
19	1	JP5	HEADER 3	"1x3 .1"" pitch unshrouded header"	Do not populatemask
20	1	JP4	HEADER 2	"1x2 .1"" pitch unshrouded header"	Do not populatemask
21	1	J1	MediaPlug Conn.	9-pin Right Angle PCB Mini DIN Socket	CUI Stack P/N:MD-90S or Digi-Key P/N:CP-2490-ND

Table 10-1: Parts List

Item	Quantity	Reference	Part	Description	Manufacturer / Part No. / Assembly Instructions	
22	1	J2	C-VIDEO	P.C. Phono Jack Keystone Electronics Cat. No or equivalent		
23	1	J3	CRT	"Receptacle, Right Angle Mini. Circular DIN"	AMP 749264 or equivalent	
24	1	J4	S-VIDEO	"DB15 Female, Right Angle, PCB Mount"	Assman A-HDF 15 A KG/T or equivalent	
25	6	"L1-3,L11-13"	Ferrite	Ferrite Bead / SMT	Philips BDS3/3/8.9-4S2	
26	1	L4	1uH	1812 SMT inductor	RCD MCI-1812 1uH MT or MSI- 1812 1uH MT	
27	6	L5-10	150nH	1008 SMT inductor	Panasonic ELJNCR15JF (Digi-Key PCD1210CT-ND) or Delevan 1008- 151K (Digi-Key DN08151CT-ND)	
28	3	"Q1,Q3,Q5"	MMBT2222A	NPN Transistor / SOT-23	Motorola or equivalent	
29	1	Q2	MMBT3906	PNP Transistor / SOT-23	Motorola or equivalent	
30	1	Q4	NDS9400A	P-Channel FET / SO-8	"Fairchild, National or equivalent"	
31	14	"R1-7,R15- 18,R23,R24,R46"	15K	"1206 resistor, 5%"		
32	2	"R8,R32"	1.5K 1%	"1206 resistor, 1%"		
33	1	R9	1K 1%	"1206 resistor, 1%"		
34	1	R10	133 1%	"1206 resistor, 1%"		
35	1	R11	63.4 1%	"1206 resistor, 1%"		
36	3	"R12,R27,R28"	100K	"1206 resistor, 5%"		
37	4	"R13,R14,R19,R2 0"	1K	"1206 resistor, 5%"		
38	1	R21	470K	"1206 resistor, 5%"		
39	1	R22	200K Pot	"Trim POT, Knob Adjust"	Spectrol 63S204T607 or equivalent	
40	2	"R25,R26"	22K	"1206 resistor, 5%"		
41	1	R29	100K Pot	"Trim POT, Knob Adjust"	Spectrol 63S104T607 or equivalent	
42	1	R30	6.04K 1%	"1206 resistor, 1%"		
43	6	"R31,R34,R37,R4 0,R44,R50"	68 Ohms	"1206 resistor, 5%"		
44	3	"R33,R39,R42"	316 1%	"1206 resistor, 1%"		
45	3	"R35,R41,R45"	357 1%	"1206 resistor, 1%"		
46	2	"R36,R38"	137 1%	"1206 resistor, 1%"		
47	2	"R43,R47"	10K	"1206 resistor, 5%"		
48	2	"R48,R51"	22 Ohms	"1206 resistor, 5%"		
49	2	"R49,R52"	33 Ohms	"1206 resistor, 5%"		
50	3	R53-55	150 1%	"1206 resistor, 1%"		
51	8	R56-63	330K	"1206 resistor, 5%"		
52	1	S1	SW DIP-8	"DIP switch, 8-position"		
53	1	S2	SW DIP-4	"DIP switch, 4-position"	Do not populatemask	
54	1	U1	S1D13806F00A	144-pin QFP	Supplied by Epson R & D	

Table 10-1: Parts List

Item	Quantity	Reference	Part	Description	Manufacturer / Part No. / Assembly Instructions
55	1	U2	LT1117CST-3.3	Regulator Fixed 3.3V / SOT-223	Linear Technology LT1117CST-3.3
56	1	U3	EPF6016TC144-2	144-pin QFP	Altera EPF6016TC144-2
57	1	U4	EPC1441PC8	8-pin DIP pckg	"Altera EPC1441PC8, programmed, socketed"
58	1	(U4)	8-pin DIP socket	8-pin DIP socket	"Machined socket, 8-pin"
59	1	U5	LT1117CST-5	Regulator Fixed 5V / SOT-223	Linear Technology LT1117CST-5
60	1	U6	74AHC04	SO-14 package	"NS 74VHC04 or TI 74AHC04, SO- 14 package"
61	1	U7	ICD2061A	Wide SO-16 package	Cypress ICD2061A
62	1	U8	17.734475MHz	"14-DIP, 4-pin metal can oscillator"	
63	1	U9	LT1117CM-3.3	DPAK SMT regulator	Linear Technology LT1117CM-3.3
64	1	U10	50MHz	"14-DIP, 4-pin metal can oscillator"	
65	1	U11	RD-0412	Xentek RD-0412	Xentek RD-0412
66	1	U12	EPN001	Xentek EPN001	Xentek EPN001
67	4	"U13,U14, U15,U16"	74HCT244	SO-20 package	
68	1	Y1	14.31818MHz	"Fundamental Mode, Parallel Resonant Crystal, HC49 Low Profile pckg."	FOXS/143-20 or equivalent
69	3	"(JP1,JP2,JP3)"	Shunt	".1" shunt for .025"" square-pin jumpers"	"Place at JP1: 1-2, JP2: 1-2 and JP3: 1-2"
70	1		Bracket	PCI bracket	Supplied by Epson Research and Development
71	2		Screw	"Pan head, #4-40 x 1/4"""	"Screw, pan head, #4-40 x 1/4"" please assemble bracket onto board"

11 Schematic Diagrams

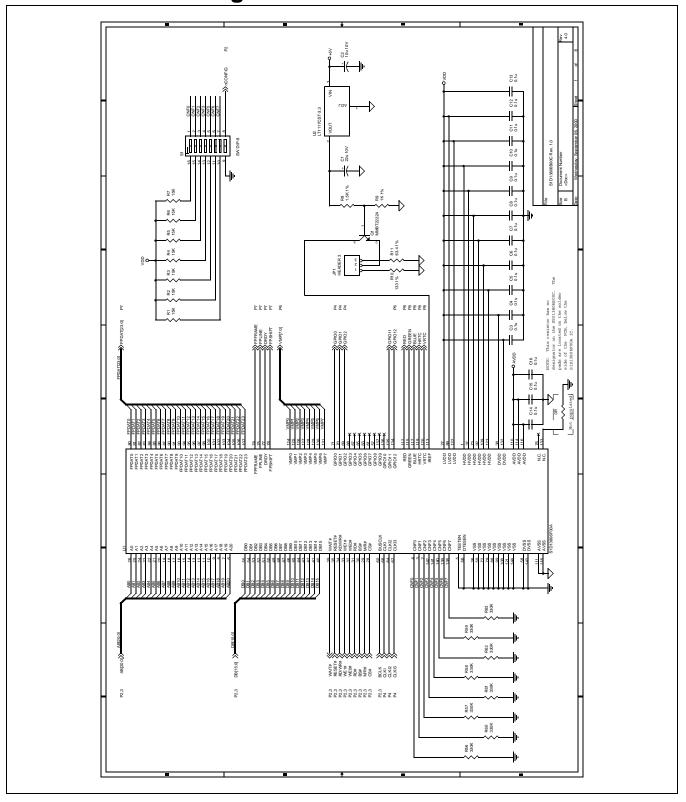


Figure 11-1: S5U13806B00C Schematics (1 of 8)

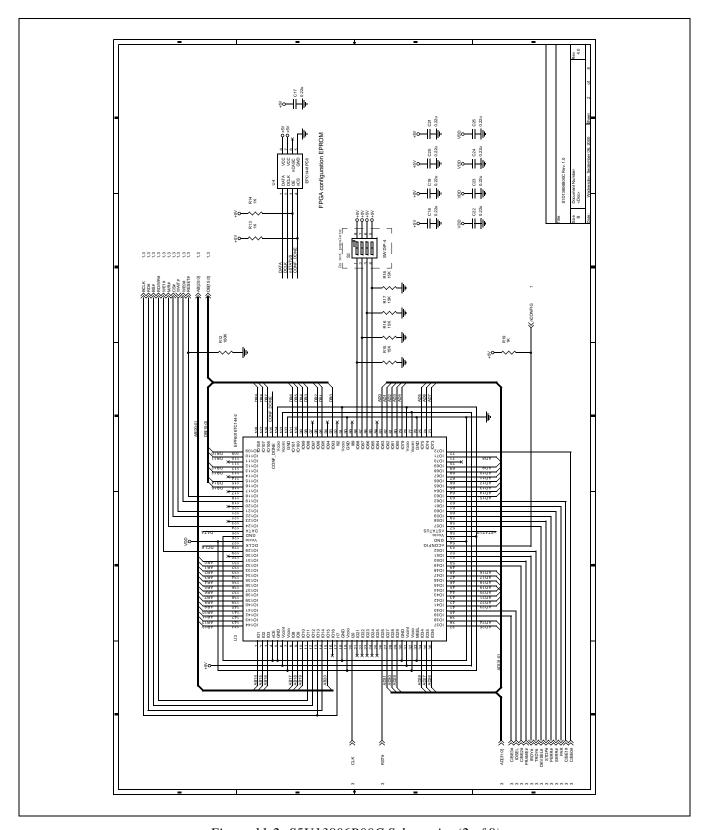


Figure 11-2: S5U13806B00C Schematics (2 of 8)

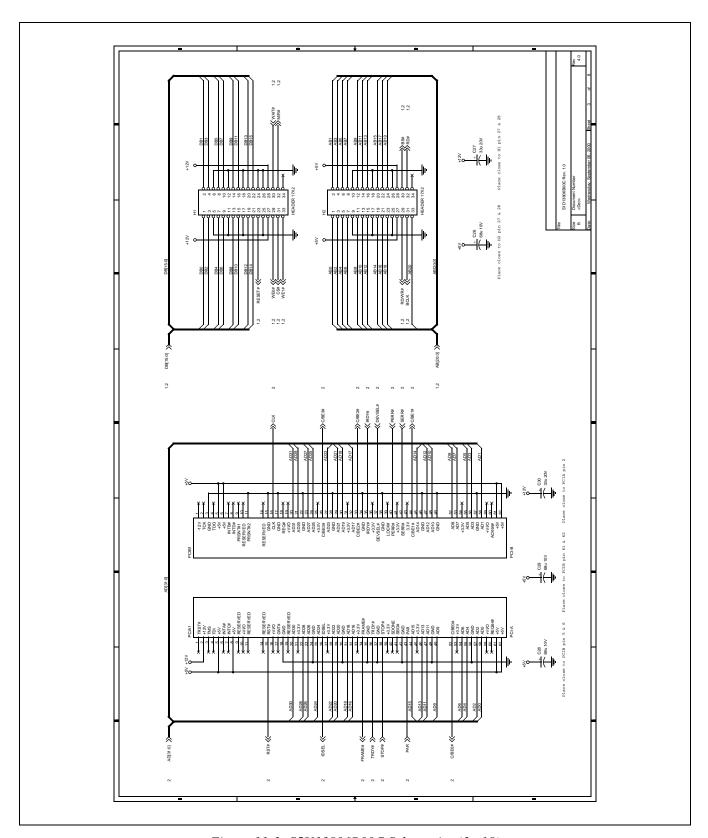


Figure 11-3: S5U13806B00C Schematics (3 of 8)

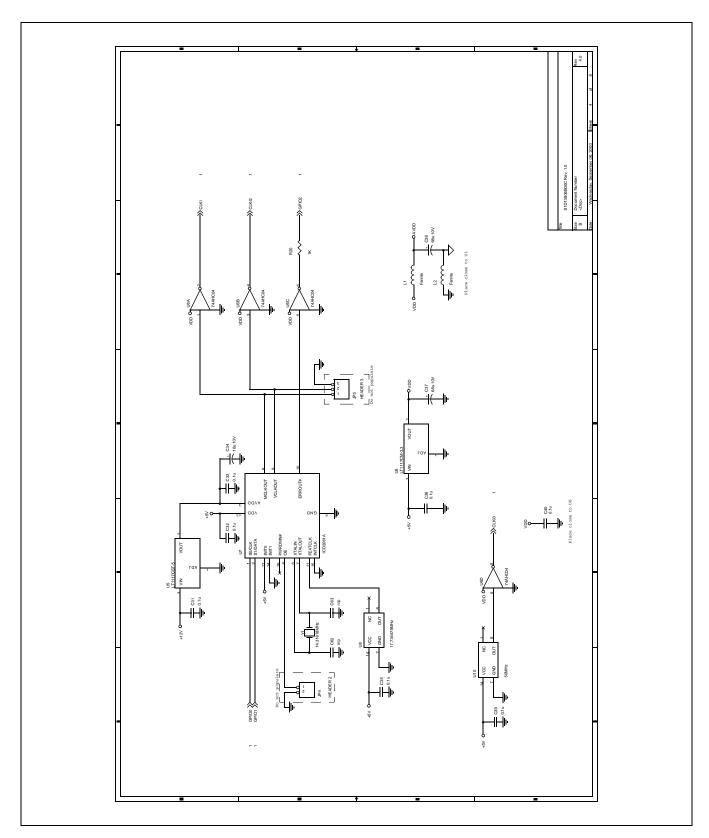


Figure 11-4: S5U13806B00C Schematics (4 of 8)

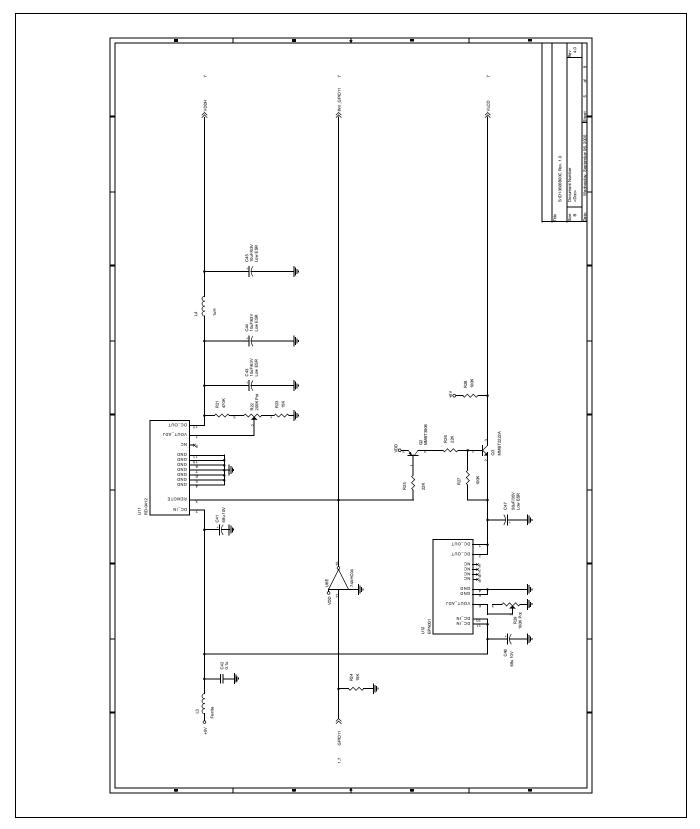


Figure 11-5: S5U13806B00C Schematics (5 of 8)

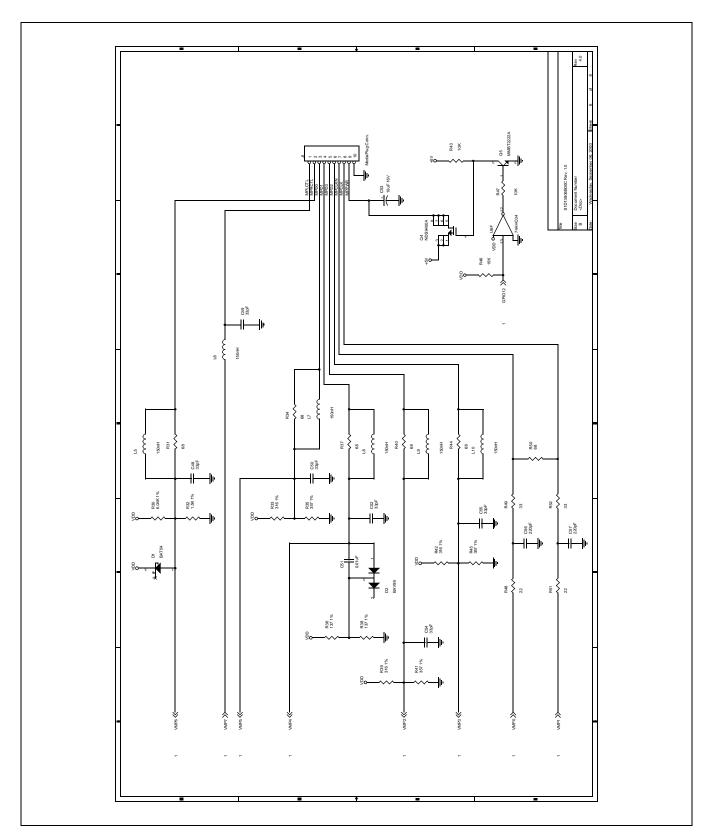


Figure 11-6: S5U13806B00C Schematics (6 of 8)

Board User Manual

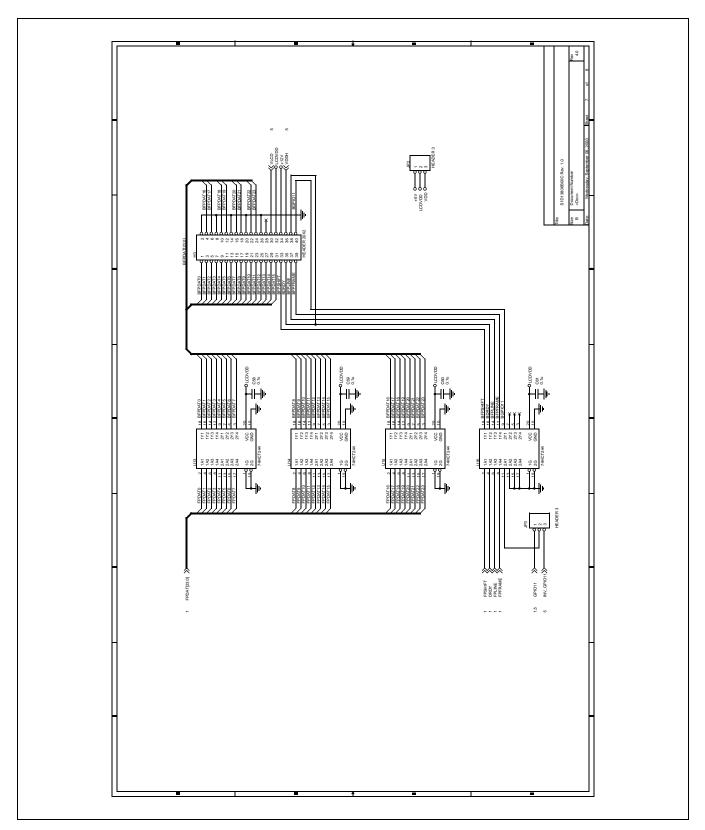


Figure 11-7: S5U13806B00C Schematics (7 of 8)

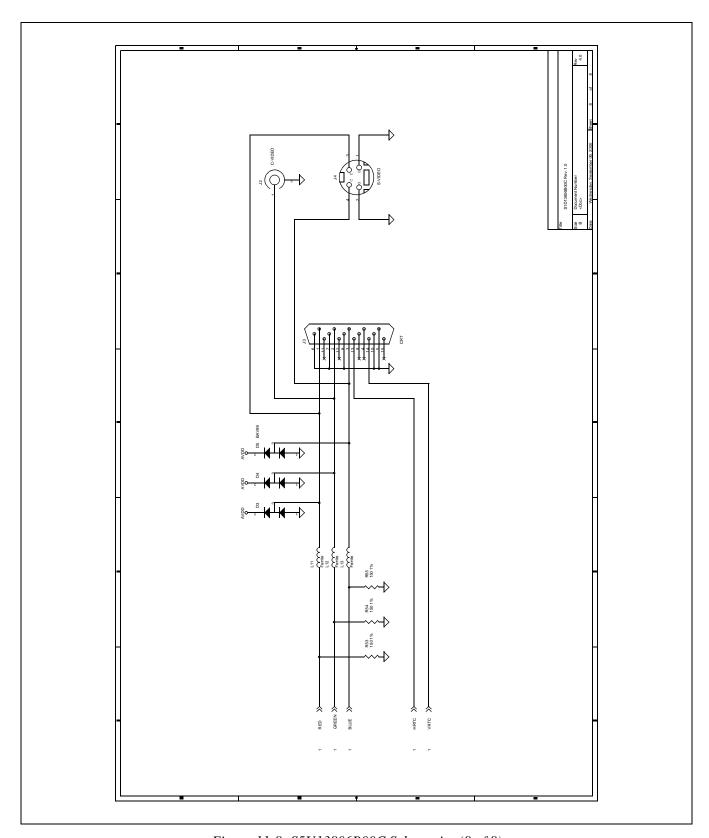


Figure 11-8: S5U13806B00C Schematics (8 of 8)

12 PCB Layout

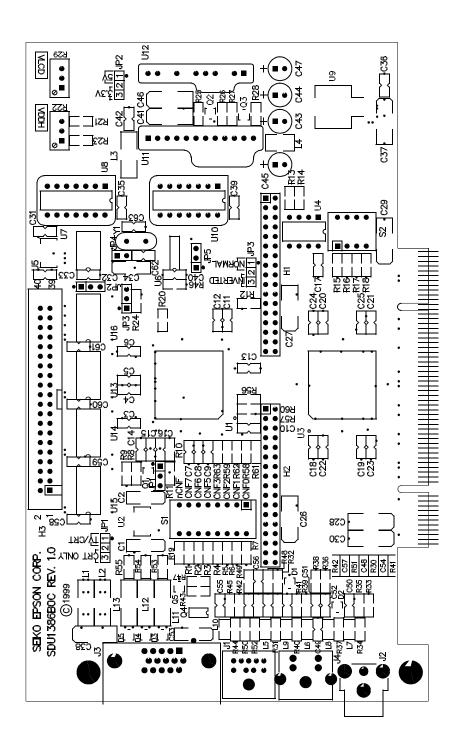


Figure 12-1: PCB Layout

13 Technical Support

13.1 EPSON LCD/CRT Controllers (S1D13806)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911

Fax: 334-2716

THIS PAGE LEFT BLANK

S1D13806 Embedded Memory Display Controller

Interfacing to the PC Card Bus

Document Number: X28B-G-005-05

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1	Intro	oduction
2	Inte	rfacing to the PC Card Bus
	2.1	The PC Card System Bus
	2	2.1.1 PC Card Overview
	2	2.1.2 Memory Access Cycles
3	S1D	13806 Host Bus Interface
	3.1	PC Card Host Bus Interface Pin Mapping
	3.2	PC Card Host Bus Interface Signals
4	PC (Card to S1D13806 Interface
	4.1	Hardware Description
	4.2	S1D13806 Hardware Configuration
	4.3	Performance
	4.4	Register/Memory Mapping
5	Soft	ware
6	Refe	erences
	6.1	Documents
	6.2	Document Sources
7	Tecl	nnical Support
	7.1	Epson LCD/CRT Controllers (S1D13806)
	7.2	-

THIS PAGE LEFT BLANK

List of Tables

Table 3-1:	PC Card Host Bus Interface Pin Mapping	11
Table 4-1:	Summary of Power-On/Reset Options	15
Table 4-2:	Register/Memory Mapping for Typical Implementation	16

List of Figures

Figure 2-1:	PC Card Read Cycle	9
Figure 2-2:	PC Card Write Cycle	C
Figure 4-1:	Typical Implementation of PC Card to S1D13806 Interface	4

THIS PAGE LEFT BLANK

1 Introduction

This application note describes the hardware and software environment required to provide an interface between the S1D13806 Embedded Memory Display Controller and the PC Card (PCMCIA) bus.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Electronics America website at www.eea.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the PC Card Bus

2.1 The PC Card System Bus

PC Card technology has gained wide acceptance in the mobile computing field as well as in other markets due to its portability and ruggedness. This section is an overview of the operation of the 16-bit PC Card interface conforming to the PCMCIA 2.0/JEIDA 4.1 Standard (or later).

2.1.1 PC Card Overview

The 16-bit PC Card provides a 26-bit address bus and additional control lines which allow access to three 64M byte address ranges. These ranges are used for common memory space, IO space, and attribute memory space. Common memory may be accessed by a host system for memory read and write operations. Attribute memory is used for defining card specific information such as configuration registers, card capabilities, and card use. IO space maintains software and hardware compatibility with hosts such as the Intel x86 architecture, which address peripherals independently from memory space.

Bit notation follows the convention used by most micro-processors, the high bit being the most significant. Therefore, signals A25 and D15 are the most significant bits for the address and data busses respectively.

Support is provided for on-chip DMA controllers. To find further information on these topics, refer to Section 6, "References" on page 18.

PC Card bus signals are asynchronous to the host CPU bus signals. Bus cycles are started with the assertion of the CE1# and/or the CE2# card enable signals. The cycle ends once these signals are de-asserted. Bus cycles can be lengthened using the WAIT# signal.

Note

The PCMCIA 2.0/JEIDA 4.1 PC Card Standard supports the two signals WAIT# and RESET which are not supported in earlier versions of the standard. The WAIT# signal allows for asynchronous data transfers for memory, attribute, and IO access cycles. The RESET signal allows resetting of the card configuration by the reset line of the host CPU.

2.1.2 Memory Access Cycles

A data transfer is initiated when a memory address is placed on the PC Card bus and one, or both, of the card enable signals (CE1# and CE2#) are driven low. REG# must be inactive. If only CE1# is driven low, 8-bit data transfers are enabled and A0 specifies whether the even or odd data byte appears on data bus lines D[7:0]. If both CE1# and CE2# are driven low, a 16-bit word transfer takes place. If only CE2# is driven low, an odd byte transfer occurs on data lines D[15:8].

During a read cycle, OE# (output enable) is driven low. A write cycle is specified by driving OE# high and driving the write enable signal (WE#) low. The cycle can be lengthened by driving WAIT# low for the time needed to complete the cycle.

Figure 2-1: illustrates a typical memory access read cycle on the PC Card bus.

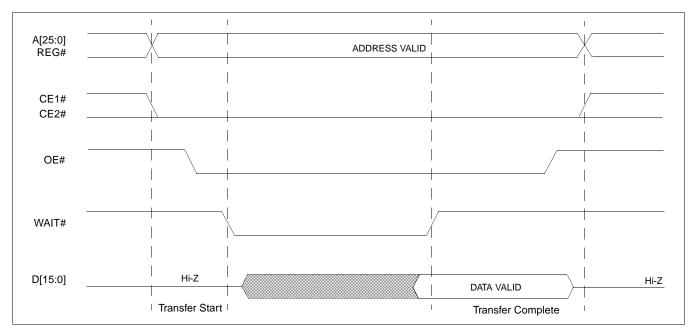


Figure 2-1: PC Card Read Cycle

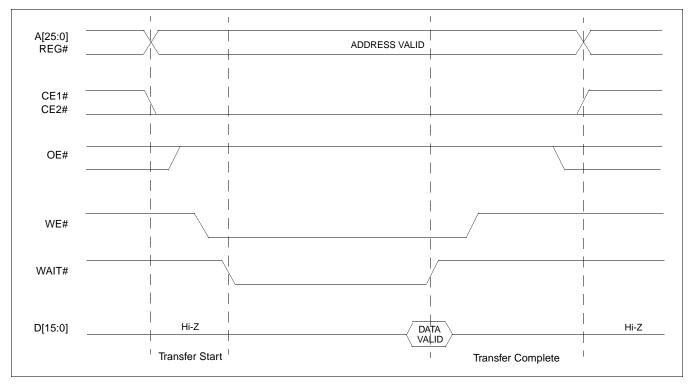


Figure 2-2: illustrates a typical memory access write cycle on the PC Card bus.

Figure 2-2: PC Card Write Cycle

3 S1D13806 Host Bus Interface

The S1D13806 implements a 16-bit PC Card (PCMCIA) Host Bus Interface which is used to interface to the PC Card bus.

The PC Card Host Bus Interface is selected by the S1D13806 on the rising edge of RESET#. After releasing reset the bus interface signals assume their selected configuration. For details on S1D13806 configuration, see Section 4.2, "S1D13806 Hardware Configuration" on page 15.

Note

At reset, the Register/Memory Select bit in the Miscellaneous Register (REG[001h] bit 7) is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible **until a write to REG[001h] sets bit 7 to 0 making all registers accessible.** When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.

3.1 PC Card Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13806 Pin Name	PC Card (PCMCIA)
AB[20:1]	A[20:1] ¹
DB[15:0]	D[15:0]
WE1#	CE2#
M/R#	External Decode
CS#	External Decode
BUSCLK	n/a ²
BS#	V_{DD}
RD/WR#	CE1#
RD#	OE#
WE0#	WE#
WAIT#	WAIT#
RESET#	Inverted RESET

Table 3-1: PC Card Host Bus Interface Pin Mapping

Note

¹ The bus signal A0 is not used by the S1D13806 internally.

²Although a clock is not directly supplied by the PC Card interface, one is required by the S1D13806 PC Card Host Bus Interface. For an example of how this can be accomplished see the discussion on BUSCLK in Section 3.2, "PC Card Host Bus Interface Signals" on page 12.

3.2 PC Card Host Bus Interface Signals

The S1D13806 PC Card Host Bus Interface is designed to support processors which interface the S1D13806 through the PC Card bus.

The S1D13806 PC Card Host Bus Interface requires the following signals from the PC Card bus.

- BUSCLK is a clock input which is required by the S1D13806 Host Bus Interface. It is separate from the input clock (CLKI) and is typically driven by the host CPU system clock. Since PC Card signalling is independent of any clock, BUSCLK can come from any oscillator already implemented. For example, the source for the CLKI input of the S1D13806 may be used.
- The address inputs AB[20:1], and the data bus DB[15:0], connect directly to the PC Card address (A[20:1]) and data bus (D[15:0]), respectively. CONF[3:0] must be set to select the PC Card Host Bus Interface with little endian mode.
- M/R# (memory/register) selects between memory or register access. It may be connected to an address line, allowing system address A21 to control M/R#.
- Chip Select (CS#) must be driven low whenever the S1D13806 is accessed by the PC Card bus.
- WE1# and RD/WR# connect to CE2# and CE1# (the byte enables for the high-order and low-order bytes). They are driven low when the PC Card bus is accessing the S1D13806.
- RD# connects to OE# (the read enable signal from the PC Card bus).
- WE0# connects to WE# (the write enable signal from the PC Card bus).
- WAIT# is a signal output from the S1D13806 that indicates the PC Card bus must wait
 until data is ready (read cycle) or accepted (write cycle) on the host bus. Since PC Card
 bus accesses to the S1D13806 may occur asynchronously to the display update, it is
 possible that contention may occur in accessing the S1D13806 internal registers and/or
 display buffer. The WAIT# line resolves these contentions by forcing the host to wait
 until the resource arbitration is complete.
- The Bus Start (BS#) signal is not used for the PC Card Host Bus Interface and should be tied high (connected to V_{DD}).
- The RESET# (active low) input of the S1D13806 may be connected to the PC Card RESET (active high) using an inverter.

4 PC Card to S1D13806 Interface

4.1 Hardware Description

The S1D13806 is designed to directly support a variety of CPUs, providing an interface to the "local bus" of each processor. However, in order to provide support for processors not having an appropriate local bus, the S1D13806 supports a specific PC Card interface.

The S1D13806 provides a "glueless" interface to the PC Card bus except for the following.

- The RESET# signal on the S1D13806 is active low and must be inverted to support the active high RESET provided by the PC Card interface.
- Although the S1D13806 supports an asynchronous bus interface, a clock source is required on the BUSCLK input pin.

In this implementation, the address bus (AB[20:1]) and data bus (DB[15:0]) connect directly to the CPU address (A[20:1]) and data bus (D[15:0]). M/R# is treated as an address line so that it can be controlled using system address A21.

The PC Card interface does not provide a bus clock, so one must be supplied for the S1D13806. Since the bus clock frequency is not critical, nor does it have to be synchronous to the bus signals, it may be the same as CLKI. BS# (bus start) is not used and should be tied high (connected to V_{DD}).

The following shows a typical implementation of the PC Card to S1D13806 interface.

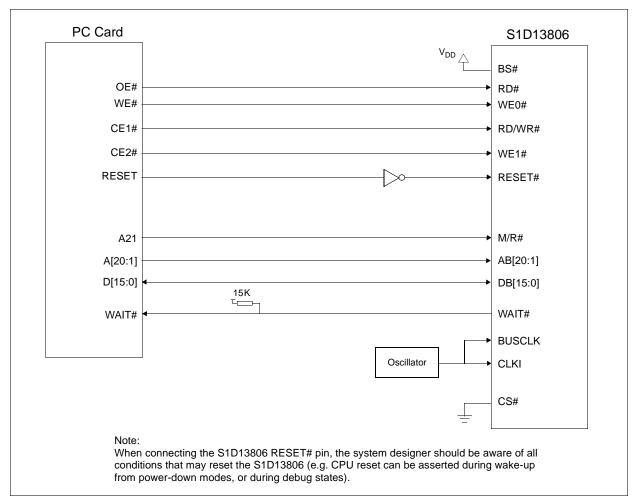


Figure 4-1: Typical Implementation of PC Card to S1D13806 Interface

4.2 S1D13806 Hardware Configuration

The S1D13806 latches CONF7 through CONF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

The table below shows only those configuration settings important to the PC Card Host Bus Interface.

Table 4-1: Summary of Power-On/Reset Options

S1D13806	value on this pin at rising edge of RESET# is used to configure:(1/0)			
Pin Name	1	0		
CONF[3:0]	1001 = PC Card Host Bus Interface; Little Endian; Active Low WAIT# selected			
CONF4	Reserved. Must be tied to ground.			
CONF5	BUSCLK input divided by 2	BUSCLK input not divided		
CONF6	WAIT# is always driven	WAIT# is tristated when the chip is not accessed by the host		
CONF7	Configure GPIO12 as MediaPlug output pin VMPEPWR and enables MediaPlug functionality	Configure GPIO12 for normal use and disables MediaPlug functionality		

= configuration for PC Card Host Bus Interface

4.3 Performance

The S1D13806 PC Card Interface specification supports a BCLK up to 50MHz, and therefore can provide a high performance display solution.

4.4 Register/Memory Mapping

The S1D13806 is a memory-mapped device. The internal registers are mapped in the lower PC Card memory address space starting at zero. The display buffer requires 1.25M bytes and is mapped in the third and fourth megabytes of the PC Card address space (ranging from 20 0000h to 33 FFFFh).

A typical implementation as shown in Figure 4-1: "Typical Implementation of PC Card to S1D13806 Interface," on page 14 has Chip Select (CS#) connected to ground (always enabled) and the Memory/Register select pin (M/R#) connected to address bit A21. This implementation decodes as shown in the following table.

A21 (M/R#) **A20** A12 **Address Range Function** 0 0 0 to 1FFh Control Registers Decoded 0 1000h to 1FFFh 0 1 MediaPlug Registers Decoded 1 0 10 0000h to 1F FFFFh BitBLT Registers Decoded Х 1 Х Х 20 0000h to 33 FFFFh Display Buffer Decoded

Table 4-2: Register/Memory Mapping for Typical Implementation

x = don't care

The PC Card socket provides 64M byte of address space. Since the PC Card address bits A[25:22] are ignored, the S1D13806 registers and display buffer are aliased within the allocated address space. If aliasing is undesirable, the address space must be fully decoded.

5 Software

Test utilities and Windows® CE display drivers are available for the S1D13806. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13806CFG, or by directly modifying the source. The Windows CE display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13806 test utilities and Windows CE display drivers are available from your sales support contact or on the internet at www.eea.epson.com.

6 References

6.1 Documents

- PC Card (PCMCIA) Standard, March 1997
- Epson Research and Development, Inc., *S1D13806 Hardware Functional Specification*, Document Number X28B-A-001-xx.
- Epson Research and Development, Inc., *S1D13806 Programming Notes and Examples*, Document Number X28B-G-003-xx.
- Epson Research and Development, Inc., S5U13806B00C Rev. 1.0 ISA Bus Evaluation Board User Manual, Document Number X28B-G-004-xx.

6.2 Document Sources

- PC Card Website: http://www.pc-card.com.
- Epson Electronics America Website: http://www.eea.epson.com.

7 Technical Support

7.1 Epson LCD/CRT Controllers (S1D13806)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600

Fax: 2827-4346

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

7.2 PC Card Standard

PCMCIA

(Personal Computer Memory Card International Association)

2635 North First Street, Suite 209 San Jose, CA 95134, USA Tel: (408) 433-2273 Fax: (408) 433-9558 http://www.pc-card.com

S1D13806 Embedded Memory Display Controller

Power Consumption

Document Number: X28B-G-006-03

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

1 S1D13806 Power Consumption

S1D13806 power consumption is affected by many system design variables.

- Input clock frequency (CLKI/CLKI2/CLKI3): the CLKI/CLKI2/CLKI3 frequency
 determines the LCD/CRT frame-rate, CPU performance to memory, and other functions

 the higher the input clock frequency, the higher the frame-rate, performance and
 power consumption.
- CPU interface: the S1D13806 current consumption depends on the BUSCLK frequency, data width, number of toggling pins, and other factors the higher the BUSCLK, the higher the CPU performance and power consumption.
- \bullet V_{DD} voltage level: the voltage level affects power consumption the higher the voltage, the higher the consumption.
- Display mode: the resolution and color depth affect power consumption the higher the resolution/color depth, the higher the consumption.
- Internal CLK divide: internal registers allow the input clock to be divided before going to the internal logic blocks the higher the divide, the lower the power consumption.

There is a power save mode in the S1D13806. The power consumption is affected by various system design variables.

• Clock states during the power save mode: disabling the clocks during power save mode has substantial power savings.

1.1 Conditions

The following table gives an example of a specific environment and its effects on power consumption.

Table 1-1: S1D13806ES Total Power Consumption in mW

Test Condition		S1D13806 Active (mW)	Power Save Mode	
$AII V_{DD} = 3.3V$ ISA Bus (8MHz)	Color Depth		Clocks Active (mW)	Clocks Removed (mW)
CLKI = 6MHz LCD Panel = 60Hz 320x240 4-bit Single Monochrome	4 bpp	22.77	4.49	.43
	4 bpp	24.26	4.49	.43
CLKI = 6 MHz LCD Panel = 60Hz 320x240 8-bit Single Color	8 bpp	26.66	4.49	.43
	16 bpp	30.29	4.49	.43
CLKI = 25MHz LCD Panel = 60Hz 640x480 8-bit Dual Monochrome	4 bpp	67.82	11.19	.43
	4 bpp	85.07	11.19	.43
CLKI = 25MHz LCD Panel = 60Hz 640x480 16-bit Dual Color	8 bpp	90.78	11.19	.43
	16 bpp	96.10	11.19	.43
	4 bpp	114.08	12.9	.43
CLKI = 33.333MHz, CLKI2 = 25.175MHz CRT = 60Hz 640x480 Color	8 bpp	376.46	12.9	.43
	16 bpp	402.11	12.9	.43
	4 bpp	373.30	11.02	.43
CLKI = 33.333MHz, CLKI2 = 14.31818MHz NTSC TV = 640x480 Color, S-Video output, no filter	8 bpp	379.10	11.02	.43
	16 bpp	389.70	11.02	.43
	4 bpp	375.94	11.62	.43
CLKI = 33.333MHz, CLKI2 = 17.734475MHz PAL TV = 640x480 Color, S-Video output, no filter	8 bpp	380.95	11.62	.43
	16 bpp	389.43	11.62	.43

Note

- 1. Conditions for power save mode with Clocks active:
 - CPU interface active
 - CLKI set to MCLK
 - CLKI2 grounded when CRT/TV disabled
 - CLKI3 grounded
 - BUSCLK active
 - Self-Refresh DRAM
- 2. Conditions for power save mode with Clocks inactive:
 - CPU interface inactive
 - CLKI, CLKI2, CLKI3, BUSCLK stopped
 - Self-Refresh DRAM

2 Summary

The system design variables in Section 1, "S1D13806 Power Consumption" and in Table 1-1: "S1D13806ES Total Power Consumption in mW" show that S1D13806 power consumption depends on the specific implementation. Active Mode power consumption depends on the desired CPU performance and LCD/CRT frame-rate, whereas power save mode consumption depends on the CPU Interface and Input Clock state.

In a typical design environment, the S1D13806 can be configured to be an extremely power-efficient LCD/CRT/TV Controller with high performance and flexibility.

S1D13806 Embedded Memory Display Controller

Interfacing to the NEC VR4102/VR4111™ Microprocessors

Document Number: X28B-G-007-04

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1	Intro	duction	. 7
2	Inte	facing to the VR4102/VR4111...........................	. 8
	2.1	The NEC VR4102/VR4111 System Bus	8
	2	.1.1 Overview	8
	2	.1.2 LCD Memory Access Cycles	. 9
3	S1D	13806 Host Bus Interface	10
	3.1	Host Bus Interface Pin Mapping	10
	3.2	Host Bus Interface Signal Descriptions	11
4	VR4	102/VR4111 to S1D13806 Interface	12
	4.1	Hardware Description	. 12
	4.2	S1D13806 Hardware Configuration	13
	4.3	NEC VR4102/VR4111 Configuration	13
	4.4	Register/Memory Mapping	14
5	Soft	ware	15
6	Refe	rences	16
	6.1	Documents	
	6.2	Document Sources	
7	Tecl	inical Support	17
-	7.1	EPSON LCD/CRT Controllers (S1D13806)	
	7.2	NEC Electronics Inc. (VR4102/VR4111)	

List of Tables

Table 4-1:	Host Bus Interface Pin Mapping	3
Figure 2-1:	List of Figures NEC VR4102/VR4111 Read/Write Cycles	9

1 Introduction

This application note describes the hardware and software environment necessary to provide an interface between the S1D13806 Embedded Memory Display Controller and the NEC V_R4102TM (μ PD30102) or V_R4111TM (μ PD30111) Microprocessors.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Electronics America Website at www.eea.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the VR4102/VR4111

2.1 The NEC VR4102/VR4111 System Bus

The VR-Series family of microprocessors features a high-speed synchronous system bus typical of modern microprocessors. Designed with external LCD controller support and Windows CE based embedded consumer applications in mind, the VR4102/VR4111 offers a highly integrated solution for portable systems. This section provides an overview of the operation of the CPU bus in order to establish interface requirements.

2.1.1 Overview

The NEC VR4102/VR4111 is designed around the RISC architecture developed by MIPS. This microprocessor is based on the 66MHz VR4100 CPU core which supports 64-bit processing. The CPU communicates with the Bus Control Unit (BCU) using its internal SysAD bus. The BCU in turn communicates with external devices using its ADD and DAT buses which can be dynamically sized for 16 or 32-bit operation.

The NEC VR4102/VR4111 has direct support for an external LCD controller. Specific control signals are assigned for an external LCD controller providing an easy interface to the CPU. A 16M byte block of memory is assigned for the LCD controller and its own chip select and ready signals are available. Word or byte accesses are controlled by the system high byte signal (SHB#).

2.1.2 LCD Memory Access Cycles

Once an address in the LCD block of memory is placed on the external address bus (ADD[25:0]), the LCD chip select (LCDCS#) is driven low. The read or write enable signals (RD# or WR#) are driven low for the appropriate cycle and LCDRDY is driven low to insert wait states into the cycle. The high byte enable (SHB#) in conjunction with address bit 0 allows for byte steering.

The following figure illustrates typical NEC VR4102/VR4111 memory read and write cycles to the LCD controller interface.

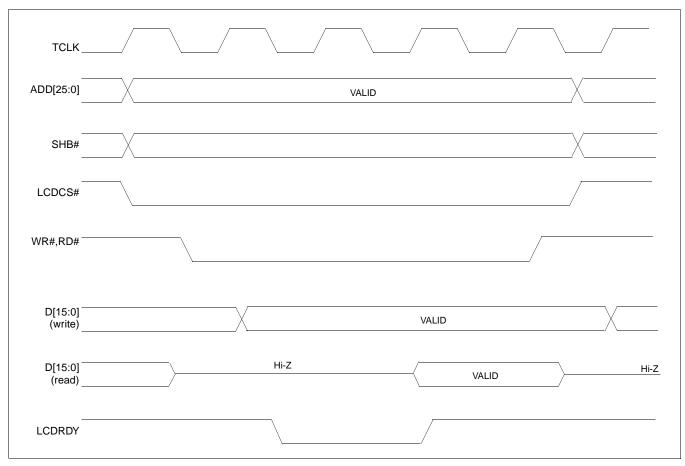


Figure 2-1: NEC VR4102/VR4111 Read/Write Cycles

3 S1D13806 Host Bus Interface

The S1D13806 directly supports multiple processors. The S1D13806 implements a 16-bit MIPS/ISA Host Bus Interface which is most suitable for direct connection to the VR4102/VR4111 microprocessor.

The MIPS/ISA Host Bus Interface is selected by the S1D13806 on the rising edge of RESET#. After releasing reset the bus interface signals assume their selected configuration. For details on S1D13806 configuration, see Section 4.2, "S1D13806 Hardware Configuration" on page 13.

Note

At reset, the Register/Memory Select bit in the Miscellaneous Register (REG[001h] bit 7) is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible **until a write to REG[001h] sets bit 7 to 0 making all registers accessible**. When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13806 Pin Name NEC VR4102/VR4111 Pin Name AB[20:0] ADD[20:0] DB[15:0] DAT[15:0] WE1# SHB# M/R# ADD21 LCDCS# CS# BUSCLK BUSCLK BS# V_{DD} RD/WR# V_{DD} RD# RD# WE0# WR# WAIT# LCDRDY RESET# connected to system reset

Table 3-1: Host Bus Interface Pin Mapping

3.2 Host Bus Interface Signal Descriptions

The S1D13806 MIPS/ISA Host Bus Interface requires the following signals.

- BUSCLK is a clock input which is required by the S1D13806 Host Bus Interface. It is separate from the input clock (CLKI) and is typically driven by the host CPU system clock.
- The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the VR4102/VR4111 address (ADD[20:0]) and data bus (DAT[15:0]), respectively. CONF[3:0] must be set to select the MIPS/ISA Host Bus Interface with little endian mode.
- M/R# (memory/register) selects between memory or register access. It may be connected to an address line, allowing system address ADD21 to be connected to the M/R# line.
- Chip Select (CS#) must be driven low by LCDCS# whenever the S1D13806 is accessed by the VR4102/VR4111.
- WE1# connects to SHB# (the high byte enable signal from the VR4102/VR4111) which in conjunction with address bit 0 allows byte steering of read and write operations.
- WE0# connects to WR# (the write enable signal from the VR4102/VR4111) and must be driven low when the VR4102/VR4111 is writing data to the S1D13806.
- RD# connects to RD# (the read enable signal from the VR4102/VR4111) and must be driven low when the VR4102/VR4111 is reading data from the S1D13806.
- WAIT# connects to LCDRDY and is a signal output from the S1D13806 that indicates
 the VR4102/VR4111 must wait until data is ready (read cycle) or accepted (write cycle)
 on the host bus. Since VR4102/VR4111 accesses to the S1D13806 may occur asynchronously to the display update, it is possible that contention may occur in accessing the
 S1D13806 internal registers and/or display buffer. The WAIT# line resolves these
 contentions by forcing the host to wait until the resource arbitration is complete.
- The BS# and RD/WR# signals are not used for the MIPS/ISA Host Bus Interface and should be tied high (connected to V_{DD}).

4 VR4102/VR4111 to S1D13806 Interface

4.1 Hardware Description

The NEC V_R4102/V_R4111 Microprocessors are specifically designed to support an external LCD controller. They provide the necessary internal address decoding and control signals.

The diagram below shows a typical implementation utilizing the S1D13806.

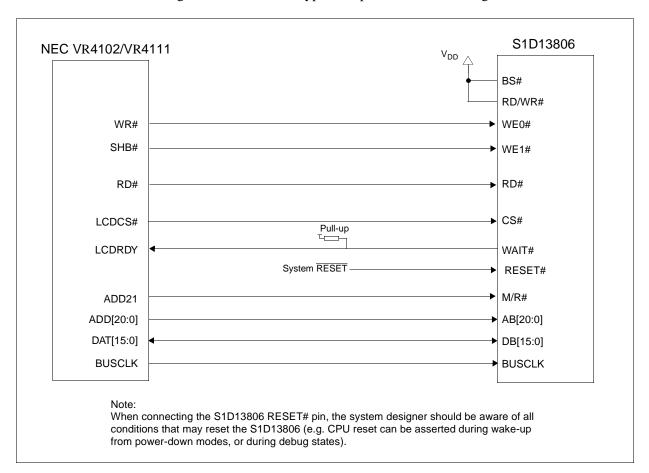


Figure 4-1: Typical Implementation of NEC VR4102/VR4111 to S1D13806 Interface

Note

For pin mapping, see Table 3-1:, "Host Bus Interface Pin Mapping," on page 10.

4.2 S1D13806 Hardware Configuration

The S1D13806 latches CONF7 through CONF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

The table below shows the configuration settings important to the MIPS/ISA Host Bus Interface used by the NEC V_R4102/V_R4111 microprocessor.

state of this pin at rising edge of RESET# is used to configure:(1/0) S1D13806 Pin Name CONF[3:0] 0100 = MIPS/ISA Host Bus Interface; Little Endian; Active Low WAIT# selected CONF4 Reserved. Must be tied to ground. CONF5 BUSCLK input divided by 2 **BUSCLK** input not divided WAIT# is tristated when the chip is not accessed by CONF6 WAIT# is always driven the host Configure GPIO12 for normal use and disables Configure GPIO12 as MediaPlug output pin CONF7 MediaPlug functionality VMPEPWR and enables MediaPlug functionality

Table 4-1: Summary of Power-On/Reset Options

= configuration for NEC VR4102/VR4111 microprocessor

4.3 NEC VR4102/VR4111 Configuration

In the NEC V_R4102/V_R4111 register BCUCNTREG1, the ISAM/LCD bit must be set to 0. A 0 indicates that the reserved address space is used by the external LCD controller rather than the high-speed ISA memory.

In the register BCUCNTREG2, the GMODE bit must be set to 1 indicating that LCD controller accesses use a non-inverting data bus.

In the V_R4111 register BCUCNTREG3, the LCD32/ISA32 bit must be set to 0. This sets the LCD interface to operate using a 16-bit data bus.

Note

Setting the LCD32/ISA32 bit to 0 in the BCUCNTREG3 register affects both the LCD controller and high-speed ISA memory access.

The frequency of BUSCLK output is programmed from the state of pins TxD/CLKSEL2, RTS#/CLKSEL1 and DTR#/CLKSEL0 during reset, and from the PMU (Power Management Unit) configuration registers of the NEC VR4102/VR4111. The S1D13806 works at any of the frequencies provided by the NEC VR4102/VR4111.

4.4 Register/Memory Mapping

The NEC V_R4102/V_R4111 provides the internal address decoding necessary to map an external LCD controller. Physical address 0A00 0000h to 0AFF FFFFh (16M bytes) is reserved for an external LCD controller such as the S1D13806.

The S1D13806 is a memory-mapped device. The internal registers are mapped in the lower address space starting at zero. The display buffer requires 1.25M bytes and is mapped in the third and fourth megabytes (0A20 0000h to 0A33 FFFFh).

A typical implementation as shown in Figure 4-1: "Typical Implementation of NEC VR4102/VR4111 to S1D13806 Interface," on page 12 has the Memory/Register select pin (M/R#) connected to NEC VR4102/VR4111 address line ADD21. ADD21 selects between the S1D13806 display buffer (ADD21=1) and internal registers (ADD21=0). This implementation decodes as shown in the following table.

ADD21 ADD20 ADD12 **Physical Address Range Function** (M/R#) 0 0 0A00 0000h to 0A00 01FFh Control Registers Decoded 0 0 1 0A00 1000h to 0A00 1FFFh MediaPlug Registers Decoded 0 1 0A10 0000h to 0A1F FFFFh BitBLT Registers Decoded Х 0A20 0000h to 0A33 FFFFh 1 Х Х Display Buffer Decoded

Table 4-2: Register/Memory Mapping for Typical Implementation

x = don't care

The NEC V_R4102/V_R4111 provides 16M byte of address space. Since the NEC V_R4102/V_R4111 address bits ADD[25:22] are ignored, the S1D13806 registers and display buffer are aliased within the allocated address space. If aliasing is undesirable, the address space must be fully decoded.

5 Software

Test utilities and Windows® CE v2.0/2.11 display drivers are available for the S1D13806. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 1386CFG, or by directly modifying the source. The Windows CE v2.0/2.11 display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13806 test utilities and Windows CE v2.0/2.11 display drivers are available from your sales support contact or on the internet at www.eea.epson.com.

6 References

6.1 Documents

- NEC Electronics Inc., VR4102 Preliminary Users Manual, Document Number U12739EJ2V0UM00.
- NEC Electronics Inc., *VR4111 Preliminary Users Manual*, Document Number U13137EJ2V0UM00.
- Epson Research and Development, Inc., S1D13806 Hardware Functional Specification, Document Number X28B-A-001-xx.
- Epson Research and Development, Inc., *S1D13806 Programming Notes and Examples*, Document Number X28B-G-003-xx.
- Epson Research and Development, Inc., SDU1386B00C Rev. 1.0 ISA Bus Evaluation Board User Manual, Document Number X28B-G-004-xx.

6.2 Document Sources

- NEC Electronics Website: http://www.necel.com.
- Epson Electronics America Website: http://www.eea.epson.com.

7 Technical Support

7.1 EPSON LCD/CRT Controllers (S1D13806)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911

Tel: 337-7911 Fax: 334-2716

7.2 NEC Electronics Inc. (V_R4102/V_R4111).

NEC Electronics Inc. (U.S.A.)

Corporate Headquarters 2880 Scott Blvd. Santa Clara, CA 95050-8062, USA Tel: (800) 366-9782

Fax: (800) 729-9288 http://www.nec.com

S1D13806 Embedded Memory Display Controller

Interfacing to the Motorola MPC821 Microprocessor

Document Number: X28B-G-008-04

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1	Introdu	ction
2	Interfac	cing to the MPC821
	2.1 Th	ne MPC8xx System Bus
	2.2 M	PC821 Bus Overview
	2.2.	Normal (Non-Burst) Bus Transactions
	2.3 M	emory Controller Module
	2.3.	General-Purpose Chip Select Module (GPCM)
	2.3.2	2 User-Programmable Machine (UPM)
3	S1D138	306 Host Bus Interface
	3.1 Pc	owerPC Host Bus Interface Pin Mapping
	3.2 Pc	owerPC Host Bus Interface Signals
4	MPC82	1 to S1D13806 Interface
	4.1 Ha	ardware Description
	4.2 Ha	ardware Connections
	4.3 S1	D13806 Hardware Configuration
	4.4 Re	egister/Memory Mapping
	4.5 M	PC821 Chip Select Configuration
	4.6 Te	est Software
5	Softwa	re
6	Referei	nces
		ocuments
		ocument Sources
7		cal Support
		PSON LCD/CRT Controllers (S1D13806)
		otorola MPC821 Processor

List of Tables

Table 3-1:	PowerPC Host Bus Interface Pin Mapping	13
Table 4-1:	List of Connections from MPC821ADS to S1D13806	16
Table 4-2:	Summary of Power-On/Reset Options	18
Table 4-3:	Register/Memory Mapping for Typical Implementation	18

List of Figures

Figure 2-1:	Power PC Memory Read Cycle	9
Figure 2-2:	Power PC Memory Write Cycle	(
Figure 4-1:	Typical Implementation of MPC821 to S1D13806 Interface	5

THIS PAGE LEFT BLANK

1 Introduction

This application note describes the hardware and software environment required to provide an interface between the S1D13806 Embedded Memory Display Controller and the Motorola MPC821 processor.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Electronics America Website at www.eea.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the MPC821

2.1 The MPC8xx System Bus

The MPC8xx family of processors feature a high-speed synchronous system bus typical of RISC microprocessors. This section provides an overview of the operation of the CPU bus in order to establish interface requirements.

2.2 MPC821 Bus Overview

The MPC8xx microprocessor family uses a synchronous address and data bus. All IO is synchronous to a square-wave reference clock called CLKOUT. This clock runs at the machine cycle speed of the CPU core (typically 25 to 50 MHz). Most outputs from the processor change state on the rising edge of this clock. Similarly, most inputs to the processor are sampled on the rising edge.

Note

The external bus can be run at one-half the CPU core speed using the clock control register. This is typically done when the CPU core is operated above 50 MHz.

The MPC821 can generate up to eight independent chip select outputs, each of which may be controlled by one of two types of timing generators: the General Purpose Chip Select Module (GPCM) or the User-Programmable Machine (UPM). Examples are given using the GPCM.

All Power PC microprocessors, including the MPC8xx family, use bit notation which is opposite from the convention used by most other microprocessor systems. Bit numbering for the MPC8xx always starts with zero as the most significant bit, and increments in value to the least-significant bit. For example, the most significant bits of the address bus and data bus are A0 and D0, while the least significant bits are A31 and D31.

The MPC8xx uses both a 32-bit address and data bus. A parity bit is supported for each of the four byte lanes on the data bus. Parity checking is done when data is read from external memory or peripherals, and generated by the MPC8xx bus controller on write cycles. There is no separate IO space in the Power PC architecture because all IO accesses are memory-mapped.

Support is provided for on-chip (DMA controllers) and off-chip (other processors and peripheral controllers) bus masters. For further information, refer to Section 6, "References" on page 22.

The bus can support both normal and burst cycles. Burst memory cycles are used to fill on-chip cache memory and for certain on-chip DMA operations. Normal cycles are used for all other data transfers.

2.2.1 Normal (Non-Burst) Bus Transactions

The bus master initiates a data transfer by placing the memory address on address lines A0 through A31 and driving $\overline{\text{TS}}$ (Transfer Start) low for one clock cycle. Several control signals are provided with the memory address:

- TSIZ[0:1] (Transfer Size) indicates bus cycle size (8, 16, or 32-bit).
- RD/WR set high for read cycles and low for write cycles.
- AT[0:3] (Address Type Signals) provides detail on the type of transfer being attempted.

When the peripheral device being accessed completes its bus transfer, it asserts \overline{TA} (Transfer Acknowledge) for one clock cycle to complete the bus transaction. Once \overline{TA} has been asserted, the MPC821 doesn't start another bus cycle until \overline{TA} is de-asserted. The minimum length of a bus transaction is two bus clocks.

Figure 2-1: "Power PC Memory Read Cycle" on page 9 illustrates a typical memory read cycle on the Power PC system bus.

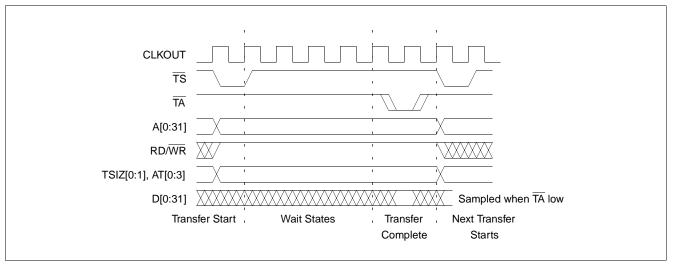
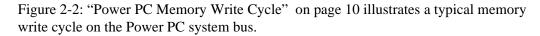



Figure 2-1: Power PC Memory Read Cycle

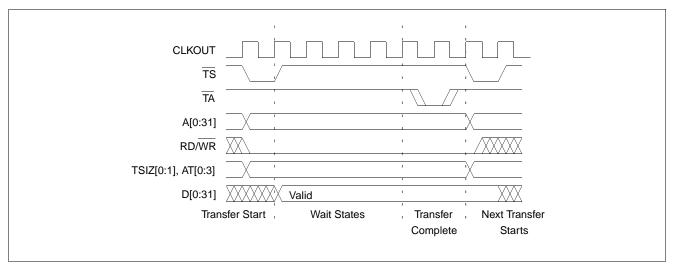


Figure 2-2: Power PC Memory Write Cycle

If an error occurs, $\overline{\text{TEA}}$ (Transfer Error Acknowledge) is asserted and the bus cycle is aborted. For example, a peripheral device may assert $\overline{\text{TEA}}$ if a parity error is detected, or the MPC821 bus controller may assert $\overline{\text{TEA}}$ if no peripheral device responds at the addressed memory location within a bus time-out period.

For 32-bit transfers, all data lines (D[0:31]) are used and the two low-order address lines A30 and A31 are ignored. For 16-bit transfers, data lines D[0:15] are used and address line A30 is ignored. For 8-bit transfers, data lines D[0:7] are used and all address lines (A[0:31]) are used.

Note

This assumes that the Power PC core is operating in big endian mode (typically the case for embedded systems).

2.1.3 Burst Cycles

Burst memory cycles are used to fill on-chip cache memory and to carry out certain on-chip DMA operations. They are very similar to normal bus cycles with the following exceptions:

- Always 32-bit.
- Always attempt to transfer four 32-bit words sequentially.
- Always address longword-aligned memory (i.e. A30 and A31 are always 0:0).
- Do not increment address bits A28 and A29 between successive transfers; the addressed device must increment these address bits internally.

If a peripheral is not capable of supporting burst cycles, it can assert Burst Inhibit (\overline{BI}) simultaneously with \overline{TA} and the processor reverts to normal bus cycles for the remaining data transfers.

Burst cycles are mainly intended to facilitate cache line fills from program or data memory. They are normally not used for transfers to/from IO peripheral devices such as the S1D13806, therefore the interfaces described in this document do not attempt to support burst cycles. However, the example interfaces include circuitry to detect the assertion of \overline{BDIP} and respond with \overline{BI} if caching is accidently enabled for the S1D13806 address space.

2.3 Memory Controller Module

2.3.1 General-Purpose Chip Select Module (GPCM)

The General-Purpose Chip Select Module (GPCM) is used to control memory and peripheral devices which do not require special timing or address multiplexing. In addition to the chip select output, it can generate active-low Output Enable (\overline{OE}) and Write Enable (\overline{WE}) signals compatible with most memory and x86-style peripherals. The MPC821 bus controller also provides a Read/Write (RD/\overline{WR}) signal which is compatible with most 68K peripherals.

The GPCM is controlled by the values programmed into the Base Register (BR) and Option Register (OR) of the respective chip select. The Option Register sets the base address, the block size of the chip select, and controls the following timing parameters:

- The ACS bit field allows the chip select assertion to be delayed by 0, ¼, or ½ clock cycle with respect to the address bus valid.
- The CSNT bit causes chip select and WE to be negated ½ clock cycle earlier than normal.
- The TRLX (relaxed timing) bit will insert an additional one clock delay between assertion of the address bus and chip select. This accommodates memory and peripherals with long setup times.
- The EHTR (Extended hold time) bit will insert an additional 1 clock delay on the first access to a chip select.
- Up to 15 wait states may be inserted, or the peripheral can terminate the bus cycle itself by asserting TA (Transfer Acknowledge).
- Any chip select may be programmed to assert \overline{BI} (Burst Inhibit) automatically when its memory space is addressed by the processor core.

2.3.2 User-Programmable Machine (UPM)

The UPM is typically used to control memory types, such as Dynamic RAMs, which have complex control or address multiplexing requirements. The UPM is a general purpose RAM-based pattern generator which can control address multiplexing, wait state generation, and five general-purpose output lines on the MPC821. Up to 64 pattern locations are available, each 32 bits wide. Separate patterns may be programmed for normal accesses, burst accesses, refresh (timer) events, and exception conditions. This flexibility allows almost any type of memory or peripheral device to be accommodated by the MPC821.

In this application note, the GPCM is used instead of the UPM, since the GPCM has enough flexibility to accommodate the S1D13806 and it is desirable to leave the UPM free to handle other interfacing duties, such as EDO DRAM.

3 S1D13806 Host Bus Interface

The S1D13806 implements a 16-bit native PowerPC host bus interface which is used to interface to the MPC821 microprocessor.

The PowerPC host bus interface is selected by the S1D13806 on the rising edge of RESET#. After releasing reset the bus interface signals assume their selected configuration. For details on S1D13806 configuration, see Section 4.3, "S1D13806 Hardware Configuration" on page 18.

Note

At reset, the Register/Memory Select bit in the Miscellaneous Register (REG[001h] bit 7) is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible until a write to REG[001h] sets bit 7 to 0 making all registers accessible. When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.

3.1 PowerPC Host Bus Interface Pin Mapping

The following table shows the functions of each host bus interface signal.

S1D13806 Pin Names PowerPC AB[20:0] A[11:31] DB[15:0] D[0:15] BI WE1# M/R# A10 CS# PowerPC Internal Chip Select **BUSCLK** CLKOUT TS BS# RD/WR RD/WR# RD# TSIZ0 WE0# TSIZ1 TA WAIT# RESET# RESET#

Table 3-1: PowerPC Host Bus Interface Pin Mapping

3.2 PowerPC Host Bus Interface Signals

The S1D13806 PowerPC host bus interface is designed to support processors which interface the S1D13806 through the PowerPC bus.

The S1D13806 PowerPC host bus interface requires the following signals:

- BUSCLK is a clock input which is required by the S1D13806 host bus interface. It is separate from the input clock (CLKI) and is typically driven by the host CPU system clock.
- The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the PowerPC bus address (A[11:31]) and data bus (D[0:15]), respectively. CONF[3:0] must be set to select the PowerPC Host Bus Interface with big endian mode.
- M/R# (memory/register) selects between memory or register access. It may be connected to an address line, allowing the PowerPC bus address A10 to be connected to the M/R# line.
- Chip Select (CS#) must be driven low whenever the S1D13806 is accessed by the PowerPC bus.
- RD/WR# connects to RD/WR which indicates whether a read or a write access is being performed on the S1D13806.
- WE1# connects to \overline{BI} (burst inhibit signal). WE# is output by the S1D13806 to indicate whether the S1D13806 is able to perform burst accesses.
- WE0# and RD# connect to TSIZ1 and TSIZ0 (high and low byte enable signals). These signals must be driven by the PowerPC bus to indicate the size of the transfer taking place on the bus.
- WAIT# connects to TA and is output from the S1D13806 to indicate the PowerPC bus must wait until data is ready (read cycle) or accepted (write cycle) on the host bus. Since PowerPC bus accesses to the S1D13806 may occur asynchronously to the display update, it is possible that contention may occur while accessing the S1D13806 internal registers and/or display buffer. The WAIT# line resolves these contentions by forcing the host to wait until resource arbitration is complete.
- The Bus Start (BS#) signal connects to \overline{TS} (the transfer start signal).

4 MPC821 to S1D13806 Interface

4.1 Hardware Description

The S1D13806 provides native PowerPC bus support, making it very simple to interface the two devices. This application note describes the environment necessary to connect the S1D13806 to the MPC821 native system bus and the connections between the S5U13806B00B Evaluation Board and the Motorola MPC821 Application Development System (ADS).

The S1D13806, by implementing a dedicated display buffer, reduces system power consumption, improves image quality, and increases system performance as compared to the on-chip LCD controller of the MPC821.

The S1D13806, through the use of the MPC821 chip selects, shares the system bus with all other MPC821 peripherals. The following figure demonstrates a typical implementation of the S1D13806 to MPC821 interface.

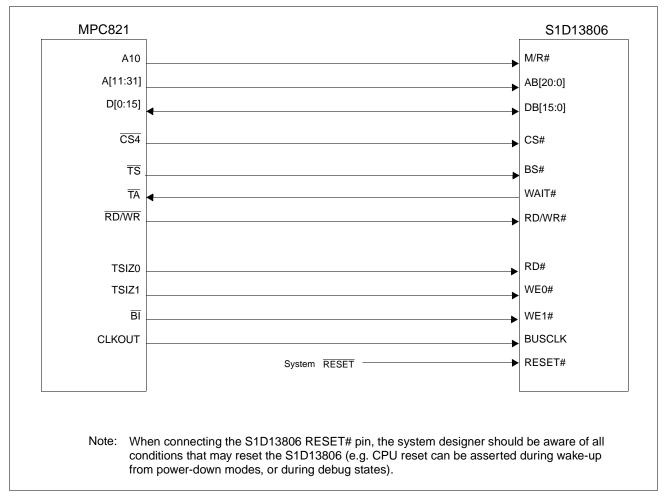


Figure 4-1: Typical Implementation of MPC821 to S1D13806 Interface

Table 4-1:, "List of Connections from MPC821ADS to S1D13806" on page 16 shows the connections between the pins and signals of the MPC821 and the S1D13806.

Note

The interface was designed using a Motorola MPC821 Application Development System (ADS). The ADS board has 5 volt logic connected to the data bus, so the interface included two 74F245 octal buffers on D[0:15] between the ADS and the S1D13806. In a true 3 volt system, no buffering is necessary.

4.2 Hardware Connections

The following table details the connections between the pins and signals of the MPC821 and the S1D13806.

Table 4-1: List of Connections from MPC821ADS to S1D13806

MPC821 Signal Name	MPC821ADS Connector and Pin Name	S1D13806 Signal Name
Vcc	P6-A1, P6-B1	Vcc
A10	P6-C23	M/R#
A11	P6-A22	AB20
A12	P6-B22	AB19
A13	P6-C21	AB18
A14	P6-C20	AB17
A15	P6-D20	AB16
A16	P6-B24	AB15
A17	P6-C24	AB14
A18	P6-D23	AB13
A19	P6-D22	AB12
A20	P6-D19	AB11
A21	P6-A19	AB10
A22	P6-D28	AB9
A23	P6-A28	AB8
A24	P6-C27	AB7
A25	P6-A26	AB6
A26	P6-C26	AB5
A27	P6-A25	AB4
A28	P6-D26	AB3
A29	P6-B25	AB2
A30	P6-B19	AB1
A31	P6-D17	AB0
D0	P12-A9	DB15
D1	P12-C9	DB14
D2	P12-D9	DB13
D3	P12-A8	DB12
D4	P12-B8	DB11
D5	P12-D8	DB10
D6	P12-B7	DB9
D7	P12-C7	DB8

Table 4-1: List of Connections from MPC821ADS to S1D13806 (Continued)

MPC821 Signal Name MPC821ADS Connector and Pin Name		S1D13806 Signal Name
D8	P12-A15	DB7
D9	P12-C15	DB6
D10	P12-D15	DB5
D11	P12-A14	DB4
D12	P12-B14	DB3
D13	P12-D14	DB2
D14	P12-B13	DB1
D15	P12-C13	DB0
SRESET	P9-D15	RESET#
SYSCLK	P9-C2	BUSCLK
CS4	P6-D13	CS#
TS	P6-B7	BS#
TA	P6-B6	WAIT#
R/W	P6-D8	RD/WR#
TSIZ0	P6-B18	RD#
TSIZ1	P6-C18	WE0#
Bl	P6-B9	WE1#
Gnd	P12-A1, P12-B1, P12-A2, P12-B2, P12-A3, P12-B3, P12-A4, P12-B4, P12-A5, P12-B5, P12-A6, P12-B6, P12-A7	Vss

Note

Note that the bit numbering of the Power PC bus signals is reversed. e.g. the most significant address bit is A0, the next is A1, A2, etc.

4.3 S1D13806 Hardware Configuration

The S1D13806 latches CONF7 through CONF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

The table below shows the configuration settings important to the PowerPC Host Bus Interface used by the MPC821 microprocessor.

state of this pin at rising edge of RESET# is used to configure:(1/0) S1D13806 Pin Name 1011 = MPC821 Host Bus Interface; Big Endian; Active High WAIT# selected CONF[3:0] CONF4 Reserved. Must be tied to ground. CONF5 BUSCLK input divided by 2 **BUSCLK** input not divided WAIT# is tristated when the chip is no accessed by the CONF₆ WAIT# is always driven Configure GPIO12 for normal use and disables Configure GPIO12 as MediaPlug output pin CONF7 MediaPlug functionality VMPEPWR and enables MediaPlug functionality

Table 4-2: Summary of Power-On/Reset Options

= configuration for MPC821 microprocessor

4.4 Register/Memory Mapping

The DRAM on the MPC821 ADS board extends from address 0 through 3F FFFFh, so the S1D13806 is addressed starting at 40 0000h. A total of 4M bytes of address space is used, The S1D13806 is a memory-mapped device. The internal registers are mapped in the lower address space starting at zero. The display buffer requires 1.25M bytes and is mapped in the third and fourth megabytes of allocated memory (60 0000h to 73 FFFFh).

A typical implementation as shown in Figure 4-1: "Typical Implementation of MPC821 to S1D13806 Interface," on page 15 has the Memory/Register select pin (M/R#) connected to MPC821 address line A10. A10 selects between the S1D13806 display buffer (A10 = 1) and internal registers (A10 = 0). This implementation decodes as shown in the following table.

A10 (M/R#)	A11	A19	Physical Address Range	Function
0	0	0	40 0000h to 40 01FFh	Control Registers Decoded
0	0	1	40 1000h to 40 1FFFh	MediaPlug Registers Decoded
0	1	х	50 0000h to 5F FFFFh	BitBLT Registers Decoded
1	х	х	60 0000h to 73 FFFFh	Display Buffer Decoded

Table 4-3: Register/Memory Mapping for Typical Implementation

x = don't care

4.5 MPC821 Chip Select Configuration

Chip select 4 is used to control the S1D13806. The following options are selected in the base address register (BR4):

- $BA[0:16] = 0000\ 0000\ 0100\ 0000\ 0$ set starting address of S1D13806 to 40 0000h.
- AT[0:2] = 0 ignore address type bits.
- PS[0:1] = 1:0 memory port size is 16-bit.
- PARE = 0 disable parity checking.
- WP = 0 disable write protect.
- MS[0:1] = 0:0 select General Purpose Chip Select module to control this chip select.
- V = 1 set valid bit to enable chip select.

The following options were selected in the option register (OR4):

- AM[0:16] = 1111 1111 1100 0000 0 mask all but upper 10 address bits; S1D13806 consumes 4M byte of address space.
- ATM[0:2] = 0 ignore address type bits.
- CSNT = $0 \text{normal } \overline{\text{CS}}/\overline{\text{WE}} \text{ negation.}$
- ACS[0:1] = 1:1 delay $\overline{\text{CS}}$ assertion by ½ clock cycle from address lines.
- BI = 0 do not assert Burst Inhibit.
- SCY[0:3] = 0 wait state selection; this field is ignored since external transfer acknowledge is used; see SETA below.
- SETA = 1 the S1D13806 generates an external transfer acknowledge using the WAIT# line.
- TRLX = 0 normal timing.
- EHTR = 0 normal timing.

4.6 Test Software

The test software is very simple. It configures chip select 4 (CS4) on the MPC821 to map the S1D13806 to an unused 4M byte block of address space. Next, it loads the appropriate values into the option register for CS4 and writes the value 0 to the S1D13806 register REG[001h] to enable full S1D13806 memory/register decoding. Lastly, the software runs a tight loop that reads the S1D13806 Revision Code Register REG[000h]. This allows monitoring of the bus timing on a logic analyzer.

The following source code was entered into the memory of the MPC821ADS using the line-by-line assembler in MPC8BUG (the debugger provided with the ADS board). Once the program was executed on the ADS, a logic analyzer was used to verify operation of the interface hardware.

It is important to note that when the MPC821 comes out of reset, the on-chip caches and MMU are disabled. If the data cache is enabled, then the MMU must be set so that the S1D13806 memory block is tagged as non-cacheable. This ensures the MPC821 does not attempt to cache any data read from, or written to, the S1D13806 or its display buffer.

```
BR4
                          $120
                                             ; CS4 base register
               equ
                                             ; CS4 option register
OR 4
               equ
                          $124
                          $40
                                             ; upper word of S1D13806 start address
MemStart
               equ
                                             ; address of S1D13806 Disable Register
                          $1
DisableReg
               equ
RevCodeReg
                          $0
                                             ; address of Revision Code Register
               equ
               mfspr
                                             ; get base address of internal registers
Start
                          r1,IMMR
               andis.
                          r1,r1,$ffff
                                             ; clear lower 16 bits to 0
               andis.
                          r2,r0,0
                                             ; clear r2
               oris
                          r2,r2,MemStart
                                             ; write base address
               ori
                          r2,r2,$0801
                                             ; port size 16 bits; select GPCM; enable
                          r2,BR4(r1)
                                             ; write value to base register
               stw
               andis.
                          r2,r0,0
                                             ; clear r2
                          r2,r2,$ffc0
                                             ; address mask - use upper 10 bits
               oris
                                             ; normal CS negation; delay CS ½ clock;
                          r2,r2,$0608
               ori
                                             ; no burst inhibit (1386 does this)
                          r2,OR4(r1)
                                             ; write to option register
               stw
                          r1,r0,0
                                             ; clear r1
               andis.
                          r1,r1,MemStart
                                             ; point r1 to start of S1D13806 mem space
               oris
                          rl, DisableReg(rl); write 0 to disable register
               stb
                          r0, RevCodeReg(r1); read revision code into r1
Loop
               lbz
               b
                          Loop
                                              ; branch forever
               end
```

Note

MPC8BUG does not support comments or symbolic equates; these have been added for clarity.

5 Software

Test utilities and Windows® CE v2.0/2.11 display drivers are available for the S1D13806. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 1386CFG, or by directly modifying the source. The Windows CE v2.0/2.11 display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13806 test utilities and Windows CE v2.0/2.11 display drivers are available from your sales support contact or on the internet at www.eea.epson.com.

6 References

6.1 Documents

- Motorola Inc., *Power PC MPC821 Portable Systems Microprocessor User's Manual*; Motorola Publication no. MPC821UM/AD.
- Epson Research and Development, Inc., S1D13806 Hardware Functional Specification, Document Number X28B-A-001-xx.
- Epson Research and Development, Inc., S5U13806B00B Rev. 1.0 ISA Bus Evaluation Board User Manual, Document Number X28B-G-001-xx.
- Epson Research and Development, Inc., *S1D13806 Programming Notes and Examples*, Document Number X28B-G-003-xx.

6.2 Document Sources

- Motorola Literature Distribution Center: (800) 441-2447.
- Epson Electronics America Website: www.eea.epson.com.

7 Technical Support

7.1 EPSON LCD/CRT Controllers (S1D13806)

Seiko Epson Corporation **Electronic Devices Marketing Division** 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600

Fax: 2827-4346

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

7.2 Motorola MPC821 Processor

- Motorola Design Line, (800) 521-6274.
- Local Motorola sales office or authorized distributor.

THIS PAGE LEFT BLANK

S1D13806 Embedded Memory Display Controller

Interfacing to the Philips MIPS PR31500/PR31700 Processor

Document Number: X28B-G-009-04

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1	Intro	oduction	7
2	Inter	facing to the PR31500/PR31700	8
3	S1D	13806 Host Bus Interface	9
	3.1	PR31500/PR31700 Host Bus Interface Pin Mapping	9
	3.2	PR31500/PR31700 Host Bus Interface Signals	0
4	Dire	ct Connection to the Philips PR31500/PR31700	1
	4.1	Hardware Description	1
	4.2	S1D13806 Configuration	3
	4.3	Memory Mapping and Aliasing	4
5	Syst	em Design Using the IT8368E PC Card Buffer	5
	5.1	Hardware Description	5
	5.2	IT8368E Configuration	6
	5.3	S1D13806 Configuration	6
6	Soft	ware	7
7	Refe	erences	8
	7.1	Documents	8
	7.2	Document Sources	8
8	Tech	nnical Support	9
	8.1	EPSON LCD/CRT Controllers (S1D13806)	9
	8.2	Philips MIPS PR31500/PR31700 Processor	9
	8.3	ITE IT8368E	9

THIS PAGE LEFT BLANK

List of Tables

Table 4-1:	PR31500/PR31700 Host Bus Interface Pin Mapping
	List of Figures
•	Typical Implementation of Direct Connection

THIS PAGE LEFT BLANK

1 Introduction

This application note describes the hardware and software environment necessary to provide an interface between the S1D13806 Embedded Memory Display Controller and the Philips MIPS PR31500/PR31700 Processor.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Electronics America website at www.eea.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the PR31500/PR31700

The Philips MIPS PR31500/PR31700 processor supports up to two PC Card (PCMCIA) slots. It is through this Host Bus Interface that the S1D13806 connects to the PR31500/PR31700 processor.

The S1D13806 can be successfully interfaced using one of the following configurations:

- Direct connection to the PR31500/PR31700 (see Section 4, "Direct Connection to the Philips PR31500/PR31700" on page 11).
- System design using the ITE IT8368E PC Card/GPIO buffer chip (see Section 5, "System Design Using the IT8368E PC Card Buffer" on page 15).

3 S1D13806 Host Bus Interface

The S1D13806 implements a 16-bit Host Bus Interface specifically for interfacing to the PR31500/PR31700 microprocessor.

The PR31500/PR31700 Host Bus Interface is selected by the S1D13806 on the rising edge of RESET#. After releasing reset, the bus interface signals assume their selected configuration. For details on S1D13806 configuration, see Section 4.2, "S1D13806 Configuration" on page 13.

Note

At reset, the Register/Memory Select bit in the Miscellaneous Register (REG[001h] bit 7) is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible **until a write to REG[001h] sets bit 7 to 0 making all registers accessible.** When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.

3.1 PR31500/PR31700 Host Bus Interface Pin Mapping

The following table shows the function of each Host Bus Interface signal.

Table 3-1: PR31500/PR31700 Host Bus Interface Pin Mapping

S1D13806 Pin Name | Philips PR31500/PR31700 |

S1D13806 Pin Name	Philips PR31500/PR31700
AB20	ALE
AB19	/CARDREG
AB18	/CARDIORD
AB17	/CARDIOWR
AB[16:13]	V_{DD}
AB[12:0]	A[12:0]
DB[15:8]	D[23:16]
DB[7:0]	D[31:24]
WE1#	/CARDxCSH
M/R#	V_{DD}
CS#	V_{DD}
BUSCLK	DCLKOUT
BS#	V_{DD}
RD/WR#	/CARDxCSL
RD#	/RD
WE0#	/WE
WAIT#	/CARDxWAIT
RESET#	RESET#

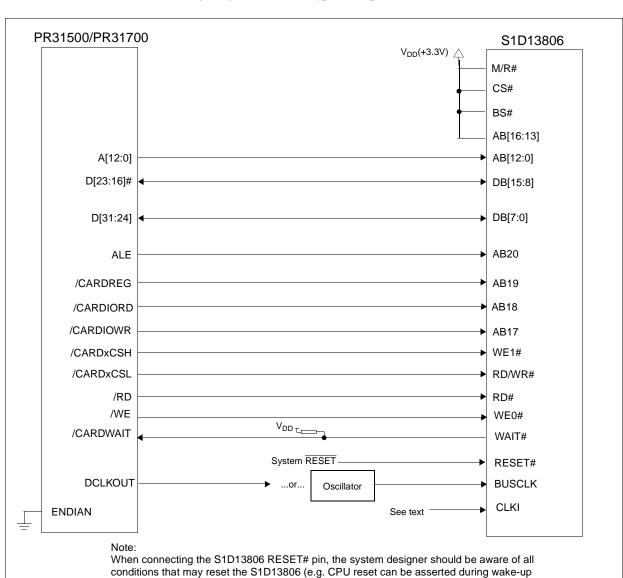
3.2 PR31500/PR31700 Host Bus Interface Signals

When the S1D13806 is configured to operate with the PR31500/PR31700, the Host Bus Interface requires the following signals:

- BUSCLK is a clock input required by the S1D13806 Host Bus Interface. It is separate
 from the input clock (CLKI) and should be driven by the PR31500/PR31700 bus clock
 output DCLKOUT.
- Address input AB20 corresponds to the PR31500/PR31700 signal ALE (address latch enable) whose falling edge indicates that the most significant bits of the address are present on the multiplexed address bus (AB[12:0]).
- Address input AB19 should be connected to the PR31500/PR31700 signal /CARDREG.
 This signal is active when either IO or configuration space of the PR31500/PR31700
 PC Card slot is being accessed.
- Address input AB18 should be connected to the TX3912 signal CARDIORD*. Either AB18 or the RD# input must be asserted for a read operation to take place. The presence of two pins which provide the same function, maps the S1D13806 to both IO and attribute space (see Section 4.3, "Memory Mapping and Aliasing" on page 14).
- Address input AB17 should be connected to the TX3912 signal CARDIOWR*. Either AB17 or the WE0# input must be asserted for a write operation to take place. The presence of two pins which provide the same function, maps the S1D13806 to both IO and attribute space (see Section 4.3, "Memory Mapping and Aliasing" on page 14).
- Address inputs AB[16:13] and control inputs M/R#, CS# and BS# must be tied to V_{DD} as they are not used in this interface mode.
- Address inputs AB[12:0], and the data bus DB[15:0], connect directly to the PR31500/PR31700 address and data bus, respectively. MD4 must be set to select the proper endian mode on reset (see Section 4.2, "S1D13806 Configuration" on page 13). Because of the PR31500/PR31700 data bus naming convention and endian mode, S1D13806 DB[15:8] must be connected to PR31500/PR31700 D[23:16], and S1D13806 DB[7:0] must be connected to PR31500/PR31700 D[31:24].
- Control inputs WE1# and RD/WR# should be connected to the PR31500/PR31700 signals /CARDxCSH and /CARDxCSL respectively for byte steering.
- Input RD# should be connected to the PR31500/PR31700 signal /RD. Either RD# or the AB18 input (/CARDIORD) must be asserted for a read operation to take place.
- Input WE0# should be connected to the PR31500/PR31700 signal /WR. Either WE0# or the AB17 input (/CARDIOWR) must be asserted for a write operation to take place.
- WAIT# is a signal output from the S1D13806 that indicates the host CPU must wait
 until data is ready (read cycle) or accepted (write cycle) on the host bus. Since the host
 CPU accesses to the S1D13806 may occur asynchronously to the display update, it is
 possible that contention may occur in accessing the S1D13806 internal registers and/or
 display buffer. The WAIT# line resolves these contentions by forcing the host to wait
 until the resource arbitration is complete.

4 Direct Connection to the Philips PR31500/PR31700

The S1D13806 was specifically designed to support the Philips MIPS PR31500/PR31700 processor. When configured, the S1D13806 will utilize one of the PC Card slots supported by the processor.


4.1 Hardware Description

In this example implementation, the S1D13806 occupies one PC Card slot and resides in the Attribute and IO address range. The processor provides address bits A[12:0], with A[23:13] being multiplexed and available on the falling edge of ALE. Peripherals requiring more than 8K bytes of address space would require an external latch for these multiplexed bits. However, the S1D13806 has an internal latch specifically designed for this processor making additional logic unnecessary. To further reduce the need for external components, the S1D13806 has an optional BUSCLK divide-by-2 feature, allowing the high speed DCLKOUT from the processor to be directly connected to the BUSCLK input of the S1D13806. An optional external oscillator may be used for BUSCLK since the S1D13806 will accept host bus control signals asynchronously with respect to BUSCLK.

The host interface control signals of the S1D13806 are asynchronous with respect to the S1D13806 bus clock. This gives the system designer full flexibility to choose the appropriate source (or sources) for CLKI and BUSCLK. The choice of whether both clocks should be the same, whether to use DCLKOUT as clock source, and whether an external or internal clock divider is needed, should be based on the following criteria.

- pixel and frame rates.
- · power budget.
- part count.
- maximum S1D13806 clock frequencies.

The S1D13806 also has internal CLKI dividers providing additional flexibility.

The following diagram shows a typical implementation of the interface.

Figure 4-1: Typical Implementation of Direct Connection

from power-down modes, or during debug states).

4.2 S1D13806 Configuration

The S1D13806 latches CONF7 through CONF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

The table below shows only those configuration settings important to the PR31500/PR31700 Host Bus Interface.

Table 4-1: Summary of Power-On/Reset Options

S1D13806	state of this pin at rising edge of RESET# is used to configure:(1/0)		
Pin Name	1	0	
CONF[3:0]	1000 = PR31500/PR31700 Host Bus Interface; Little Endian; Active Low WAIT# selected		
CONF4	Reserved. Must be tied to ground.		
CONF5	BUSCLK input divided by 2 (use with DCLKOUT)	BUSCLK input not divided (use with external oscillator)	
CONF6	WAIT# is always driven	WAIT# is tristated when the chip is not accessed by the host	
CONF7	Configure GPIO12 as MediaPlug output pin VMPEPWR and enables MediaPlug functionality	Configure GPIO12 for normal use and disables MediaPlug functionality	
	1		

= configuration for PR31500/PR31700 Host Bus Interface

4.3 Memory Mapping and Aliasing

The PR31500/PR31700 uses a portion of the PC Card Attribute and IO space to access the S1D13806. The S1D13806 responds to both PC Card Attribute and IO bus accesses, thus freeing the programmer from having to set the PR31500/PR31700 Memory Configuration Register 3 bit CARD1IOEN (or CARD2IOEN if slot 2 is used). As a result, the PR31500/PR31700 sees the S1D13806 on its PC Card slot as described in the table below.

Table 4-2: PR31500/PR31700 to PC Card Slots Address Remapping for Direct Connection

S1D13806 Uses PC Card Slot #	Philips Address	Size	Function
	0800 0000h	16M byte	Card 1 IO or Attribute
	0900 0000h	8M byte	S1D13806 registers,
			aliased 4 times at 2M byte intervals
1	0000 0000h	8M byte	S1D13806 display buffer,
	0980 0000h		aliased 4 times at 2M byte intervals
	0A00 0000h	32M byte	Card 1 IO or Attribute
	6400 0000h	64M byte	Card 1 Memory
	0C00 0000h	16M byte	Card 2 IO or Attribute
	0D00 0000h	8M byte	S1D13806 registers,
			aliased 4 times at 2M byte intervals
2	0D80 0000h	8M byte	S1D13806 display buffer,
			aliased 4 times at 2M byte intervals
	0E00 0000h	32M byte	Card 2 IO or Attribute
	6800 0000h	64M byte	Card 2 Memory

5 System Design Using the IT8368E PC Card Buffer

In a system design using one or two ITE IT8368E PC Card and multiple-function IO buffers, the S1D13806 can be interfaced so as to share one of the PC Card slots.

5.1 Hardware Description

The IT8368E can be programmed to allocate the same portion of the PC Card Attribute and IO space to the S1D13806 as in the direct connection implementation described in Section 4, "Direct Connection to the Philips PR31500/PR31700" on page 11.

Following is a block diagram showing an implementation using the IT8368E PC Card buffer.

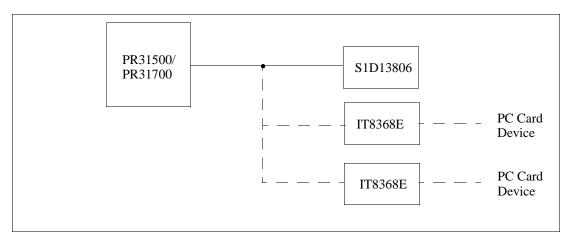


Figure 5-1: IT8368E Implementation Block Diagram

5.2 IT8368E Configuration

The ITE IT8368E is specifically designed to support EPSON LCD/CRT controllers. Older EPSON Controllers not supporting a direct interface to the Philips processor can utilize the IT8368E MFIO pins to provide the necessary control signals, however when using the S1D13806 this is not necessary as the Direct Connection described in Section 4, "Direct Connection to the Philips PR31500/PR31700" on page 11 can be used.

The IT8368E must have both "Fix Attribute/IO" and "VGA" modes enabled. When both these modes are enabled a 16M byte portion of the system PC Card attribute and IO space is allocated to address the S1D13806.

When the IT8368E senses that the S1D13806 is being accessed, it does not propagate the PC Card signals to its PC Card device. This makes S1D13806 accesses transparent to any PC Card device connected to the same slot.

For mapping details, refer to Section 4.3, "Memory Mapping and Aliasing" on page 14. For further information on configuring the IT8368E, refer to the IT8368E PC Card/GPIO Buffer Chip Specification.

5.3 S1D13806 Configuration

For S1D13806 configuration, refer to Section 4.2, "S1D13806 Configuration" on page 13.

6 Software

Test utilities and Windows® CE v2.0/2.11 display drivers are available for the S1D13806. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13806CFG, or by directly modifying the source. The Windows CE v2.0/2.11 display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13806 test utilities and Windows CE v2.0/2.11 display drivers are available from your sales support contact or on the internet at www.eea.epson.com.

7 References

7.1 Documents

- Philips Electronics, PR31500/PR31700 Preliminary Specifications.
- Epson Research and Development, Inc., *S1D13806 Hardware Functional Specification*, Document Number X28B-A-001-xx.
- Epson Research and Development, Inc., *S1D13806 Programming Notes and Examples*, Document Number X28B-G-003-xx.
- Epson Research and Development, Inc., S5U13806B00C Rev. 1.0 ISA Bus Evaluation Board User Manual, Document Number X28B-G-004-xx.

7.2 Document Sources

- Philips Electronics Website: http://www-us2.semiconductors.philips.com.
- Epson Electronics America Website: http://www.eea.epson.com.

8 Technical Support

8.1 EPSON LCD/CRT Controllers (S1D13806)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

8.2 Philips MIPS PR31500/PR31700 Processor

Philips Semiconductors

Handheld Computing Group 4811 E. Arques Avenue M/S 42, P.O. Box 3409 Sunnyvale, CA 94088-3409 Tel: (408) 991-2313 http://www.philips.com

8.3 ITE IT8368E

Integrated Technology Express, Inc.

Sales & Marketing Division 2710 Walsh Avenue Santa Clara, CA 95051, USA Tel: (408) 980-8168 Fax: (408) 980-9232 http://www.iteusa.com

S1D13806 Embedded Memory Display Controller

Interfacing to the Toshiba MIPS TX3912 Processor

Document Number: X28B-G-010-04

Copyright @ 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1	Intro	oduction					
2	Inte	rfacing to the TX3912 					
3	S1D13806 Host Bus Interface						
	3.1	TX3912 Host Bus Interface Pin Mapping					
	3.2	TX3912 Host Bus Interface Signals					
4	Direct Connection to the Toshiba TX3912						
	4.1	Hardware Description					
	4.2	S1D13806 Configuration					
	4.3	Memory Mapping and Aliasing					
5	System Design Using the IT8368E PC Card Buffer						
	5.1	Hardware Description					
	5.2	IT8368E Configuration					
	5.3	S1D13806 Configuration					
6	Soft	ware					
7	Refe	erences					
	7.1	Documents					
	7.2	Document Sources					
8	Tecl	nnical Support					
	8.1	EPSON LCD/CRT Controllers (S1D13806)					
	8.2	Toshiba MIPS TX3912 Processor					
	8.3	ITE IT8368E					

List of Tables

Table 4-1:	TX3912 Host Bus Interface Pin Mapping
	List of Figures
•	Typical Implementation of Direct Connection
Figure 5-1:	IT8368E Implementation Block Diagram

1 Introduction

This application note describes the hardware and software environment necessary to provide an interface between the S1D13806 Embedded Memory Display Controller and the Toshiba MIPS TX3912 Processor.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Electronics America website at www.eea.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the TX3912

The Toshiba MIPS TX3912 processor supports up to two PC Card (PCMCIA) slots. It is through this Host Bus Interface that the S1D13806 connects to the TX3912 processor.

The S1D13806 can be successfully interfaced using one of the following configurations:

- Direct connection to the TX3912 (see Section 4, "Direct Connection to the Toshiba TX3912" on page 11).
- System design using the ITE IT8368E PC Card/GPIO buffer chip (see Section 5, "System Design Using the IT8368E PC Card Buffer" on page 15).

3 S1D13806 Host Bus Interface

The S1D13806 implements a 16-bit Host Bus Interface specifically for interfacing to the TX3912 microprocessor.

The TX3912 Host Bus Interface is selected by the S1D13806 on the rising edge of RESET#. After releasing reset, the bus interface signals assume their selected configuration. For details on S1D13806 configuration, see Section 4.2, "S1D13806 Configuration" on page 13.

Note

At reset, the Register/Memory Select bit in the Miscellaneous Register (REG[001h] bit 7) is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible until a write to REG[001h] sets bit 7 to 0 making all registers accessible. When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.

3.1 TX3912 Host Bus Interface Pin Mapping

The following table shows the function of each Host Bus Interface signal.

S1D13806 Toshiba TX3912 **Pin Names** AB20 ALE AB19 CARDREG* CARDIORD* AB18 AB17 **CARDIOWR*** AB[16:13] V_{DD} AB[12:0] A[12:0] DB[15:8] D[23:16] DB[7:0] D[31:24] CARDxCSH* WE1# M/R# V_{DD} CS# V_{DD} DCLKOUT BUSCLK BS# V_{DD} RD/WR# CARDxCSL* RD# RD* WE* WE0# WAIT# CARDxWAIT*

PON*

Table 3-1: TX3912 Host Bus Interface Pin Mapping

RESET#

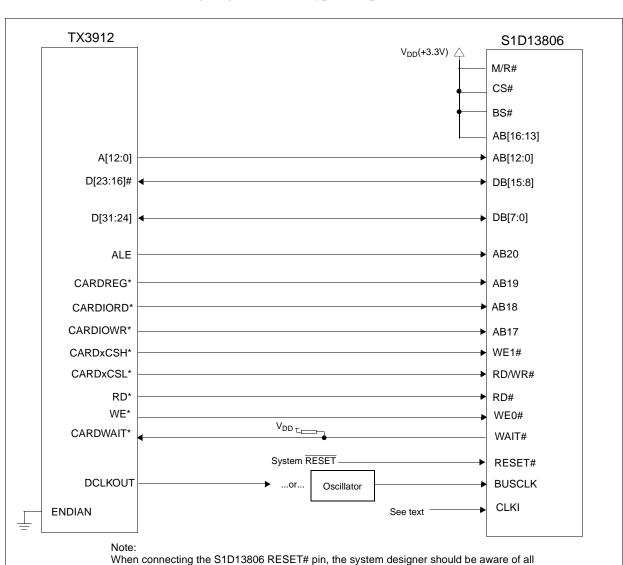
3.2 TX3912 Host Bus Interface Signals

When the S1D13806 is configured to operate with the TX3912, the Host Bus Interface requires the following signals:

- BUSCLK is a clock input required by the S1D13806 Host Bus Interface. It is separate
 from the input clock (CLKI) and should be driven by the TX3912 bus clock output
 DCLKOUT.
- Address input AB20 corresponds to the TX3912 signal ALE (address latch enable) whose falling edge indicates that the most significant bits of the address are present on the multiplexed address bus (AB[12:0]).
- Address input AB19 should be connected to the TX3912 signal CARDREG*. This
 signal is active when either IO or configuration space of the TX3912 PC Card slot is
 being accessed.
- Address input AB18 should be connected to the TX3912 signal CARDIORD*. Either AB18 or the RD# input must be asserted for a read operation to take place. The presence of two pins which provide the same function, maps the S1D13806 to both IO and attribute space (see Section 4.3, "Memory Mapping and Aliasing" on page 14).
- Address input AB17 should be connected to the TX3912 signal CARDIOWR*. Either AB17 or the WE0# input must be asserted for a write operation to take place. The presence of two pins which provide the same function, maps the S1D13806 to both IO and attribute space (see Section 4.3, "Memory Mapping and Aliasing" on page 14).
- Address inputs AB[16:13] and control inputs M/R#, CS# and BS# must be tied to V_{DD} as they are not used in this interface mode.
- Address inputs AB[12:0], and the data bus DB[15:0], connect directly to the TX3912 address and data bus, respectively. The S1D13806 supports the TX3912 in little endian mode only. Because of the TX3912 data bus naming convention and endian mode, S1D13806 DB[15:8] must be connected to TX3912 D[23:16], and S1D13806 DB[7:0] must be connected to TX3912 D[31:24].
- Control inputs WE1# and RD/WR# should be connected to the TX3912 signals CARDxCSH* and CARDxCSL* respectively for byte steering.
- Input RD# should be connected to the TX3912 signal RD*. Either RD# or the AB18 input (CARDIORD*) must be asserted for a read operation to take place.
- Input WE0# should be connected to the TX3912 signal WR*. Either WE0# or the AB17 input (CARDIOWR*) must be asserted for a write operation to take place.
- WAIT# is a signal output from the S1D13806 that indicates the TX3912 must wait until
 data is ready (read cycle) or accepted (write cycle) on the host bus. Since the TX3912
 accesses to the S1D13806 may occur asynchronously to the display update, it is possible
 that contention may occur in accessing the S1D13806 internal registers and/or display
 buffer. The WAIT# line resolves these contentions by forcing the host to wait until the
 resource arbitration is complete.

4 Direct Connection to the Toshiba TX3912

The S1D13806 was specifically designed to support the Toshiba MIPS TX3912 processor. When configured, the S1D13806 will utilize one of the PC Card slots supported by the processor.


4.1 Hardware Description

In this example implementation, the S1D13806 occupies one PC Card slot and resides in the Attribute and IO address range. The processor provides address bits A[12:0], with A[23:13] being multiplexed and available on the falling edge of ALE. Peripherals requiring more than 8K bytes of address space would require an external latch for these multiplexed bits. However, the S1D13806 has an internal latch specifically designed for this processor making additional logic unnecessary. To further reduce the need for external components, the S1D13806 has an optional BUSCLK divide-by-2 feature, allowing the high speed DCLKOUT from the processor to be directly connected to the BUSCLK input of the S1D13806. An optional external oscillator may be used for BUSCLK since the S1D13806 will accept host bus control signals asynchronously with respect to BUSCLK.

The host interface control signals of the S1D13806 are asynchronous with respect to the S1D13806 bus clock. This gives the system designer full flexibility to choose the appropriate source (or sources) for CLKI and BUSCLK. The choice of whether both clocks should be the same, whether to use DCLKOUT as clock source, and whether an external or internal clock divider is needed, should be based on the following criteria.

- pixel and frame rates.
- · power budget.
- part count.
- maximum S1D13806 clock frequencies.

The S1D13806 also has internal CLKI dividers providing additional flexibility.

The following diagram shows a typical implementation of the interface.

Figure 4-1: Typical Implementation of Direct Connection

from power-down modes, or during debug states).

conditions that may reset the S1D13806 (e.g. CPU reset can be asserted during wake-up

4.2 S1D13806 Configuration

The S1D13806 latches CONF7 through CONF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

The table below shows the configuration settings important to the TX3912 Host Bus Interface.

Table 4-1: Summary of Power-On/Reset Options

S1D13806	state of this pin at rising edge of RESET# is used to configure:(1/0)		
Pin Name	1	0	
CONF[3:0]	1000 = TX3912 Host Bus Interface; Little Endian; Active Low WAIT# selected		
CONF4	Reserved. Must be tied to ground.		
CONF5	BUSCLK input divided by 2 (use with DCLKOUT)	BUSCLK input not divided (use with external oscillator)	
CONF6	WAIT# is always driven	WAIT# is tristated when the chip is not accessed by the host	
CONF7	Configure GPIO12 as MediaPlug output pin VMPEPWR and enables MediaPlug functionality	Configure GPIO12 for normal use and disables MediaPlug functionality	
		1	

= configuration for TX3912 Host Bus Interface

4.3 Memory Mapping and Aliasing

The TX3912 uses a portion of the PC Card Attribute and IO space to access the S1D13806. The S1D13806 responds to both PC Card Attribute and IO bus accesses, thus freeing the programmer from having to set the TX3912 Memory Configuration Register 3 bit CARD1IOEN (or CARD2IOEN if slot 2 is used). As a result, the TX3912 sees the S1D13806 on its PC Card slot as described in the table below.

Table 4-2: TX3912 to PC Card Slots Address Remapping for Direct Connection

S1D13806 Uses PC Card Slot #	Toshiba Address	Size	Function
	0800 0000h	16M byte	Card 1 IO or Attribute
	0900 0000h	8M byte	S1D13806 registers,
			aliased 4 times at 2M byte intervals
1	0980 0000h	8M byte	S1D13806 display buffer,
			aliased 4 times at 2M byte intervals
	0A00 0000h	32M byte	Card 1 IO or Attribute
	6400 0000h	64M byte	Card 1 Memory
	0C00 0000h	16M byte	Card 2 IO or Attribute
	0D00 0000h	8M byte	S1D13806 registers,
			aliased 4 times at 2M byte intervals
2	0D80 0000h	8M byte	S1D13806 display buffer,
			aliased 4 times at 2M byte intervals
	0E00 0000h	32M byte	Card 2 IO or Attribute
	6800 0000h	64M byte	Card 2 Memory

5 System Design Using the IT8368E PC Card Buffer

In a system design using one or two ITE IT8368E PC Card and multiple-function IO buffers, the S1D13806 can be interfaced so as to share one of the PC Card slots.

5.1 Hardware Description

The IT8368E can be programmed to allocate the same portion of the PC Card Attribute and IO space to the S1D13806 as in the direct connection implementation described in Section 4, "Direct Connection to the Toshiba TX3912" on page 11.

Following is a block diagram showing an implementation using the IT8368E PC Card buffer.

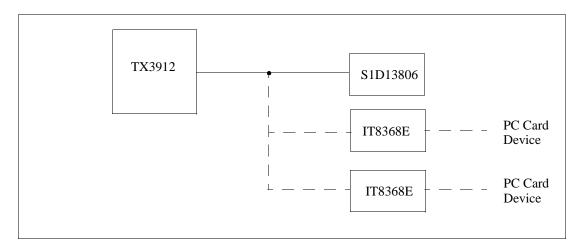


Figure 5-1: IT8368E Implementation Block Diagram

5.2 IT8368E Configuration

The ITE IT8368E is specifically designed to support EPSON LCD/CRT controllers. Older EPSON Controllers not supporting a direct interface to the Toshiba processor can utilize the IT8368E MFIO pins to provide the necessary control signals, however when using the S1D13806 this is not necessary as the Direct Connection described in Section 4, "Direct Connection to the Toshiba TX3912" on page 11 can be used.

The IT8368E must have both "Fix Attribute/IO" and "VGA" modes enabled. When both these modes are enabled a 16M byte portion of the system PC Card attribute and IO space is allocated to address the S1D13806.

When the IT8368E senses that the S1D13806 is being accessed, it does not propagate the PC Card signals to its PC Card device. This makes S1D13806 accesses transparent to any PC Card device connected to the same slot.

For mapping details, refer to Section 4.3, "Memory Mapping and Aliasing" on page 14. For further information on configuring the IT8368E, refer to the IT8368E PC Card/GPIO Buffer Chip Specification.

5.3 S1D13806 Configuration

For S1D13806 configuration, refer to Section 4.2, "S1D13806 Configuration" on page 13.

6 Software

Test utilities and Windows® CE v2.0/2.11 display drivers are available for the S1D13806. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13806CFG, or by directly modifying the source. The Windows CE v2.0/2.11 display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13806 test utilities and Windows CE v2.0/2.11 display drivers are available from your sales support contact or on the internet at www.eea.epson.com.

7 References

7.1 Documents

- Toshiba America Electrical Components, Inc., TX3905/12 Specification.
- Epson Research and Development, Inc., *S1D13806 Hardware Functional Specification*, Document Number X28B-A-001-xx.
- Epson Research and Development, Inc., *S1D13806 Programming Notes and Examples*, Document Number X28B-G-003-xx.
- Epson Research and Development, Inc., S5U13806B00C Rev. 1.0 ISA Bus Evaluation Board User Manual, Document Number X28B-G-004-xx.

7.2 Document Sources

- Toshiba America Electrical Components Website: http://www.toshiba.com/taec.
- Epson Electronics America Website: http://www.eea.epson.com.

8 Technical Support

8.1 EPSON LCD/CRT Controllers (S1D13806)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0

Fax: 089-14005-0

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238

Fax: (408) 922-0238 http://www.eea.epson.com

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911

Fax: 334-2716

8.2 Toshiba MIPS TX3912 Processor

http://www.toshiba.com/taec/nonflash/indexproducts.html

8.3 ITE IT8368E

Integrated Technology Express, Inc.

Sales & Marketing Division 2710 Walsh Avenue Santa Clara, CA 95051, USA Tel: (408) 980-8168

Fax: (408) 980-9232 http://www.iteusa.com

S1D13806 Embedded Memory Display Controller

Interfacing to the NEC VR4121™ Microprocessor

Document Number: X28B-G-011-04

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1	Introduction	. 7
2	Interfacing to the NEC VR4121	. 8
	2.1 The NEC VR4121 System Bus	. 8
	2.1.1 Overview	
	2.1.2 LCD Memory Access Cycles	. 9
3	S1D13806 Host Bus Interface	10
	3.1 Host Bus Interface Pin Mapping	1(
	3.2 Host Bus Interface Signal Descriptions	
4	VR4121 to S1D13806 Interface	12
	4.1 Hardware Description	12
	4.2 S1D13806 Configuration	13
	4.3 NEC VR4121 Configuration	13
	4.4 Register/Memory Mapping	14
5	Software	15
6	References	16
	6.1 Documents	16
	6.2 Document Sources	16
7	Technical Support	17
	7.1 Epson LCD/CRT Controllers (S1D13806)	17
	7.2 NEC Electronics Inc. (VR4121)	17

List of Tables

	Host Bus Interface Pin Mapping
	Register/Memory Mapping for Typical Implementation
	List of Figures
Figure 2-1:	NEC VR4121 Read/Write Cycles
Figure 4-1:	NEC VR4121 to S1D13806 Configuration Schematic

1 Introduction

This application note describes the hardware and software environment necessary to provide an interface between the S1D13806 Embedded Memory Display Controller and the NEC $V_R4121^{\text{\tiny TM}}(\mu PD30121)$ microprocessor.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Electronics America website at www.eea.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the NEC VR4121

2.1 The NEC VR4121 System Bus

The VR-Series family of microprocessors features a high-speed synchronous system bus typical of modern microprocessors. Designed with external LCD controller support and Windows CE based embedded consumer applications in mind, the VR4121 offers a highly integrated solution for portable systems. This section provides an overview of the operation of the CPU bus in order to establish interface requirements.

2.1.1 Overview

The NEC VR4121 is designed around the RISC architecture developed by MIPS. This microprocessor is based on the 166MHz VR4120 CPU core which supports 64-bit processing. The CPU communicates with the Bus Control Unit (BCU) using its internal SysAD bus. The BCU in turn communicates with external devices using its ADD and DATA buses which can be dynamically sized to 16 or 32-bit operation.

The NEC VR4121 has direct support for an external LCD controller. Specific control signals are assigned for an external LCD controller providing an easy interface to the CPU. A 16M byte block of memory is assigned for the LCD controller and its own chip select and ready signals are available. Word or byte accesses are controlled by the system high byte signal (SHB#).

2.1.2 LCD Memory Access Cycles

Once an address in the LCD block of memory is placed on the external address bus (ADD[25:0]), the LCD chip select (LCDCS#) is driven low. The read or write enable signals (RD# or WR#) are driven low for the appropriate cycle and LCDRDY is driven low to insert wait states into the cycle. The high byte enable (SHB#) in conjunction with address bit 0 allows for byte steering.

The following figure illustrates typical NEC VR4121 memory read and write cycles to the LCD controller interface.

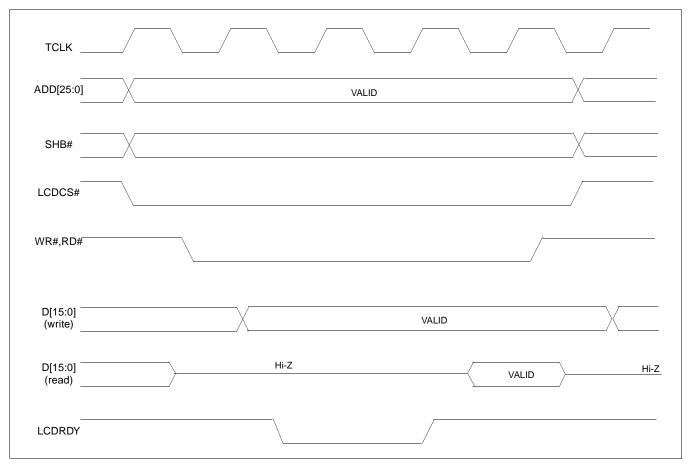


Figure 2-1: NEC VR4121 Read/Write Cycles

3 S1D13806 Host Bus Interface

The S1D13806 directly supports multiple processors. The S1D13806 implements a 16-bit MIPS/ISA Host Bus Interface which is most suitable for direct connection to the VR4121 microprocessor.

The MIPS/ISA Host Bus Interface is selected by the S1D13806 on the rising edge of RESET#. After releasing reset the bus interface signals assume their selected configuration. For details on S1D13806 configuration, see Section 4.2, "S1D13806 Configuration" on page 13.

Note

At reset, the Register/Memory Select bit in the Miscellaneous Register (REG[001h] bit 7) is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible until a write to REG[001h] sets bit 7 to 0 making all registers accessible. When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

NEC VR4121 Pin Name S1D13806 Pin Name AB[20:0] ADD[20:0] DB[15:0] DAT[15:0] WE1# SHB# M/R# ADD21 LCDCS# CS# BUSCLK BUSCLK BS# V_{DD} RD/WR# V_{DD} RD# RD# WE0# WR# WAIT# LCDRDY RESET# connected to system reset

Table 3-1: Host Bus Interface Pin Mapping

3.2 Host Bus Interface Signal Descriptions

The S1D13806 MIPS/ISA Host Bus Interface requires the following signals.

- BUSCLK is a clock input which is required by the S1D13806 Host Bus Interface. It is separate from the input clock (CLKI) and is typically driven by the host CPU system clock.
- The address inputs AB[20:0], and the data bus DB[15:0], connect directly to the VR4121 address (ADD[20:0]) and data bus (DAT[15:0]), respectively. CONF[3:0] must be set to select the MIPS/ISA Host Bus Interface with little endian mode.
- M/R# (memory/register) selects between memory or register access. It may be connected to an address line, allowing system address ADD21 to be connected to the M/R# line.
- Chip Select (CS#) must be driven low by LCDCS# whenever the S1D13806 is accessed by the VR4121.
- WE1# connects to SHB# (the high byte enable signal from the VR4121) which in conjunction with address bit 0 allows byte steering of read and write operations.
- WE0# connects to WR# (the write enable signal from the VR4121) and must be driven low when the VR4121 bus is writing data to the S1D13806.
- RD# connects to RD# (the read enable signal from the VR4121) and must be driven low when the VR4121 bus is reading data from the S1D13806.
- WAIT# connects to LCDRDY and is a signal output from the S1D13806 that indicates the VR4121 bus must wait until data is ready (read cycle) or accepted (write cycle) on the host bus. Since VR4121 bus accesses to the S1D13806 may occur asynchronously to the display update, it is possible that contention may occur in accessing the S1D13806 internal registers and/or display buffer. The WAIT# line resolves these contentions by forcing the host to wait until the resource arbitration is complete.
- The BS# and RD/WR# signals are not used for the MIPS/ISA Host Bus Interface and should be tied high (connected to V_{DD}).

4 VR4121 to S1D13806 Interface

4.1 Hardware Description

The NEC V_R4121 microprocessor is specifically designed to support an external LCD controller. It provides all the necessary internal address decoding and control signals required by the S1D13806.

The diagram below shows a typical implementation utilizing the S1D13806.

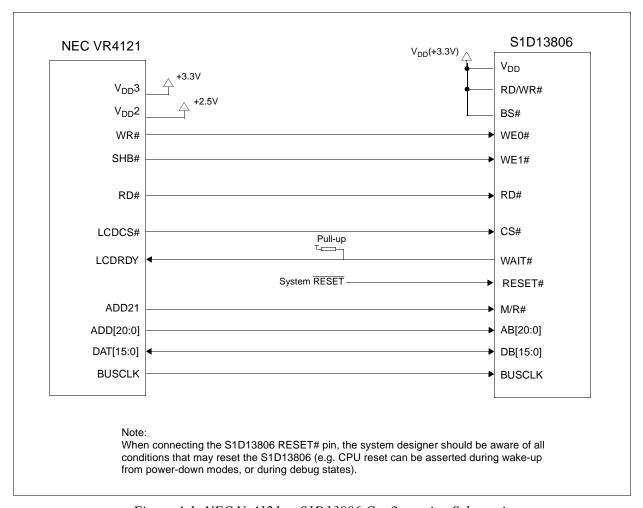


Figure 4-1: NEC VR4121 to S1D13806 Configuration Schematic

Note

For pin mapping see Table 3-1:, "Host Bus Interface Pin Mapping," on page 10.

4.2 S1D13806 Configuration

The S1D13806 latches CONF7 through CONF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

The table below shows the configuration settings important to the MIPS/ISA Host Bus Interface used by the NEC V_R4121 microprocessor.

state of this pin at rising edge of RESET# is used to configure:(1/0) S1D13806 **Pin Name** CONF[3:0] 0100 = MIPS/ISA Host Bus Interface; Little Endian; Active Low WAIT# selected CONF4 Reserved. Must be tied to ground. CONF5 BUSCLK input divided by 2 **BUSCLK** input not divided WAIT# is tristated when the chip is not accessed by CONF6 WAIT# is always driven the host Configure GPIO12 for normal use and disables Configure GPIO12 as MediaPlug output pin CONF7 MediaPlug functionality VMPEPWR and enables MediaPlug functionality

Table 4-1: Summary of Power-On/Reset Options

4.3 NEC VR4121 Configuration

In the NEC V_R4121 register BCUCNTREG1, the ISAM/LCD bit must be set to 0. A 0 indicates that the reserved address space is used by the external LCD controller rather than the high-speed ISA memory.

In the register BCUCNTREG2, the GMODE bit must be set to 1 indicating that LCD controller accesses use a non-inverting data bus.

In the register BCUCNTREG3, the LCD32/ISA32 bit must be set to 0. This sets the LCD interface to operate using a 16-bit data bus.

Note

Setting the LCD32/ISA32 bit to 0 in the BCUCNTREG3 register affects both the LCD controller and high-speed ISA memory access.

The frequency of BUSCLK output is programmed from the state of pins TxD/CLKSEL2, RTS#/CLKSEL1 and DTR#/CLKSEL0 during reset, and from the PMU (Power Management Unit) configuration registers of the NEC V_R4121. The S1D13806 works at any of the frequencies provided by the NEC V_R4121.

⁼ configuration for NEC VR4121 microprocessor

4.4 Register/Memory Mapping

The NEC V_R4121 provides the internal address decoding necessary to map an external LCD controller. Physical address 0A00 0000h to 0AFF FFFFh (16M bytes) is reserved for an external LCD controller such as the S1D13806.

The S1D13806 is a memory-mapped device. The internal registers are mapped in the lower address space starting at zero. The display buffer requires 1.25M bytes and is mapped in the third and fourth megabytes (0A20 0000h to 0A33 FFFFh).

A typical implementation as shown in Figure 4-1: "NEC VR4121 to S1D13806 Configuration Schematic," on page 12 has the Memory/Register select pin (M/R#) connected to NEC VR4121 address line ADD21. ADD21 selects between the S1D13806 display buffer (ADD21=1) and internal registers (ADD21=0). This implementation decodes as shown in the following table.

ADD21 ADD12 ADD20 **Physical Address Range Function** (M/R#) 0 0 0A00 0000h to 0A00 01FFh Control Registers Decoded 0 0 1 0A00 1000h to 0A00 1FFFh MediaPlug Registers Decoded 0 1 0A10 0000h to 0A1F FFFFh BitBLT Registers Decoded Х 0A20 0000h to 0A33 FFFFh 1 Х Х Display Buffer Decoded

Table 4-2: Register/Memory Mapping for Typical Implementation

x = don't care

The NEC V_R4121 provides 16M bytes of address space. Since the NEC V_R4121 address bits ADD[23:22] are ignored, the S1D13806 registers and display buffer are aliased within the allocated address space. If aliasing is undesirable, the address space must be fully decoded.

Note

Address lines ADD[25:24] are set at 10b and never change while the LCD controller is being addressed.

5 Software

Test utilities and Windows® CE v2.0/2.11 display drivers are available for the S1D13806. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13806CFG, or by directly modifying the source. The Windows CE v2.0/2.11 display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13806 test utilities and Windows CE v2.0/2.11 display drivers are available from your sales support contact or on the internet at www.eea.epson.com.

6 References

6.1 Documents

- NEC Electronics Inc., *VR4121 Preliminary Users Manual*, Document Number U13569EJ1V0UM00.
- Epson Research and Development, Inc., *S1D13806 Hardware Functional Specification*, Document Number X28B-A-001-xx.
- Epson Research and Development, Inc., *S1D13806 Programming Notes and Examples*, Document Number X28B-G-003-xx.
- Epson Research and Development, Inc., S5U13806B00C Rev. 1.0 ISA Bus Evaluation Board User Manual, Document Number X28B-G-004-xx.

6.2 Document Sources

- NEC Electronics Website: http://www.necel.com.
- Epson Electronics America Website: http://www.eea.epson.com.

7 Technical Support

7.1 Epson LCD/CRT Controllers (S1D13806)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911

Tel: 337-7911 Fax: 334-2716

7.2 NEC Electronics Inc. (VR4121).

NEC Electronics Inc. (U.S.A.)

Corporate Headquarters 2880 Scott Blvd. Santa Clara, CA 95050-8062, USA Tel: (800) 366-9782

Fax: (800) 729-9288 http://www.nec.com http://www.vrseries.com

S1D13806 Embedded Memory Display Controller

Interfacing to the StrongARM SA-1110 Processor

Document Number: X28B-G-012-05

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1	Intro	oduction			 		•	 •	•	 •	•	•	. 7
2	Inte	rfacing to the StrongARM SA-1110 E	Bus		 	 							. 8
	2.1	The StrongARM SA-1110 System Bus											. 8
	2	2.1.1 StrongARM SA-1110 Overview .		 	 								. 8
	2	2.1.2 Variable-Latency IO Access Overv	view	 	 								. 8
	2	2.1.3 Variable-Latency IO Access Cycle	s.	 	 								. 9
3	S1D	13806 Host Bus Interface			 	 							11
	3.1	Host Bus Interface Pin Mapping											11
	3.2	Host Bus Interface Signal Descriptions											12
4	Stro	ngARM SA-1110 to S1D13806 Interfa	ace	 	 	 							13
	4.1	Hardware Description											13
	4.2	S1D13806 Hardware Configuration											14
	4.3	Performance											14
	4.4	StrongARM SA-1110 Register Configura	ation										15
	4.5	Register/Memory Mapping											16
5	Soft	ware			 	 							17
6	Refe	erences			 	 							18
	6.1	Documents											
	6.2	Document Sources											
7	Tecl	nnical Support											
-	7.1	EPSON LCD/CRT Controllers (S1D1380											
	7.2	Intel StrongARM SA-1110 Processor .											

List of Tables

Table 3-1:	Host Bus Interface Pin Mapping	11
Table 4-1:	Summary of Power-On/Reset Options	14
Table 4-2:	RDFx Parameter Value versus CPU Maximum Frequency	15
Table 4-3:	Register/Memory Mapping for Typical Implementation	16

List of Figures

Figure 2-1:	SA-1110 Variable-Latency IO Read Cycle	9
Figure 2-2:	SA-1110 Variable-Latency IO Write Cycle	10
Figure 4-1:	Typical Implementation of SA-1110 to S1D13806 Interface	13

1 Introduction

This application note describes the hardware and software environment required to provide an interface between the S1D13806 Embedded Memory Display Controller and the Intel StrongARM SA-1110.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Electronics America website at www.eea.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the StrongARM SA-1110 Bus

2.1 The StrongARM SA-1110 System Bus

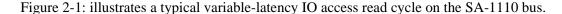
The StrongARM SA-1110 microprocessor is a highly integrated communications microcontroller that incorporates a 32-bit StrongARM RISC processor core. The SA-1110 is ideally suited to interface to the S1D13806 LCD controller and provides a high performance, power efficient solution for embedded systems.

2.1.1 StrongARM SA-1110 Overview

The SA-1110 system bus can access both variable-latency IO and memory devices. The SA-1110 uses a 26-bit address bus and a 32-bit data bus which can be used to access 16-bit devices. A chip select module with six chip select signals (each accessing 64M bytes of memory) allows selection of external devices. Only chip selects 3 through 5 (nCS[5:3]) may be used to select variable-latency devices which use RDY to extend access cycles. These chip selects are individually programmed in the SA-1110 memory configuration registers and can be configured for either a 16 or 32-bit data bus.

Byte steering is implemented using the four signals nCAS[3:0]. Each signal selects a byte on the 32-bit data bus. For example, nCAS0 selects bits D[7:0] and nCAS3 selects bits D[31:24]. For a 16-bit data bus, only nCAS[1:0] are used with nCAS0 selecting the low byte and nCAS1 selecting the high byte. The SA-1110 can be configured to support little or big endian mode.

2.1.2 Variable-Latency IO Access Overview


A data transfer is initiated when a memory address is placed on the SA-1110 system bus **and** a chip select signal (nCS[5:3]) is driven low. If all byte enable signals (nCAS[3:0]) are driven low, then a 32-bit transfer takes place. If only nCAS[1:0] are driven low, then a word transfer takes place through a 16-bit bus interface. If only one byte enable is driven low, then a byte transfer takes place on the respective data lines.

During a read cycle, the output enable signal (nOE) is driven low. A write cycle is specified by driving nOE high and driving the write enable signal (nWE) low. The cycle can be lengthened by driving RDY high for the time needed to complete the cycle.

2.1.3 Variable-Latency IO Access Cycles

The first nOE assertion occurs two memory cycles after the assertion of chip select (nCS3, nCS4, or nCS5). Two memory cycles prior to the end of minimum nOE or nWE assertion (RDF+1 memory cycles), the SA-1110 starts sampling the data ready input (RDY). Samples are taken every half memory cycle until **three consecutive samples** (at the rising edge, falling edge, and following rising edge of the memory clock) indicate that the IO device is ready for data transfer. Read data is latched one-half memory cycle after the third successful sample (on falling edge). Then nOE or nWE is deasserted on the next rising edge and the address may change on the subsequent falling edge. Prior to a subsequent data cycle, nOE or nWE remains deasserted for RDN+1 memory cycles. The chip select and byte selects (nCAS/DQM[1:0] for 16-bit data transfers), remain asserted for one memory cycle after the final nOE or nWE deassertion of the burst.

The SA-1110 is capable of burst cycles during which the chip select remains low while the read or write command is asserted, precharged and reasserted repeatedly.

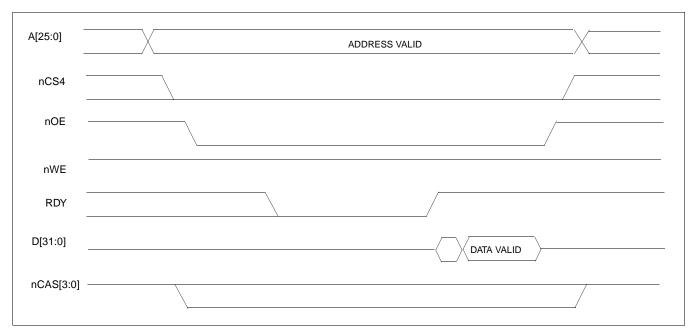


Figure 2-1: SA-1110 Variable-Latency IO Read Cycle

Figure 2-2: illustrates a typical variable-latency IO access write cycle on the SA-1110 bus.

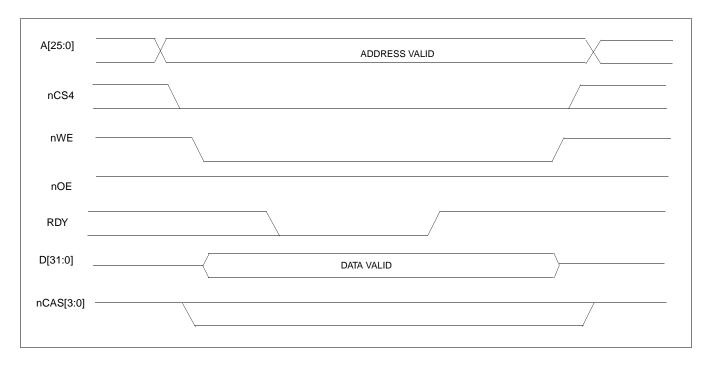


Figure 2-2: SA-1110 Variable-Latency IO Write Cycle

3 S1D13806 Host Bus Interface

The S1D13806 directly supports multiple processors. The S1D13806 implements a 16-bit PC Card (PCMCIA) Host Bus Interface which is most suitable for direct connection to the SA-1110.

The PC Card Host Bus Interface is selected by the S1D13806 on the rising edge of RESET#. After releasing reset the bus interface signals assume their selected configuration. For details on S1D13806 configuration, see Section 4.2, "S1D13806 Hardware Configuration" on page 14.

Note

At reset, the Register/Memory Select bit in the Miscellaneous Register (REG[001h] bit 7) is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible **until a write to REG[001h] sets bit 7 to 0 making all registers accessible**. When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13806 Pin Name	SA-1110
AB[20:1] ¹	A[20:1]
DB[15:0]	D[15:0]
WE1#	nCAS1
M/R#	A21
CS#	nCS4
BUSCLK	SDCLK2
BS#	V_{DD}
RD/WR#	nCAS0
RD#	nOE
WE0#	nWE
WAIT#	RDY
RESET#	system RESET

Table 3-1: Host Bus Interface Pin Mapping

Note

¹ The bus signal A0 is not used by the S1D13806 internally.

3.2 Host Bus Interface Signal Descriptions

The S1D13806 PC Card Host Bus Interface requires the following signals.

- BUSCLK is a clock input which is required by the S1D13806 Host Bus Interface. It is
 driven by one of the SA-1110 signals SDCLK1 or SDCLK2 (the example implementation in this document uses SDCLK2). For further information, see Section 4.3, "Performance" on page 14.
- The address inputs AB[20:1], and the data bus DB[15:0], connect directly to the SA-1110 address (A[20:1]) and data bus (D[15:0]), respectively. CONF[3:0] must be set to select the PC Card Host Bus Interface with little endian mode.
- M/R# (memory/register) selects between memory or register access. It may be connected to an address line, allowing system address A21 to be connected to the M/R# line.
- Chip Select (CS#) must be driven low by nCSx (where x is the SA-1110 chip select used) whenever the S1D13806 is accessed by the SA-1110.
- WE1# and RD/WR# connect to nCAS1 and nCAS0 (the byte enables for the high-order and low-order bytes). They are driven low when the SA-1110 is accessing the S1D13806.
- RD# connects to nOE (the read enable signal from the SA-1110).
- WE0# connects to nWE (the write enable signal from the SA-1110).
- WAIT# is a signal output from the S1D13806 that indicates the SA-1110 must wait until data is ready (read cycle) or accepted (write cycle) on the host bus. Since SA-1110 accesses to the S1D13806 may occur asynchronously to the display update, it is possible that contention may occur in accessing the S1D13806 internal registers and/or display buffer. The WAIT# line resolves these contentions by forcing the host to wait until the resource arbitration is complete.
- The Bus Start (BS#) signal is not used for this Host Bus Interface and should be tied high (connected to V_{DD}).
- The RESET# (active low) input of the S1D13806 may be connected to the system RESET.

4 StrongARM SA-1110 to S1D13806 Interface

4.1 Hardware Description

The S1D13806 is designed to directly support a variety of CPUs, providing an interface to the unique "local bus" of each processor. The S1D13806's PC Card Host Bus Interface provides a "glueless" interface to the SA-1110.

In this implementation, the address inputs (AB[20:1]) and data bus (DB[15:0]) connect directly to the CPU address (A[20:1]) and data bus (D[15:0]). M/R# is treated as an address line so that it can be controlled using system address A21.

BS# (Bus Start) is not used and should be tied high (connected to V_{DD}).

The following diagram shows a typical implementation of the SA-1110 to S1D13806 interface.

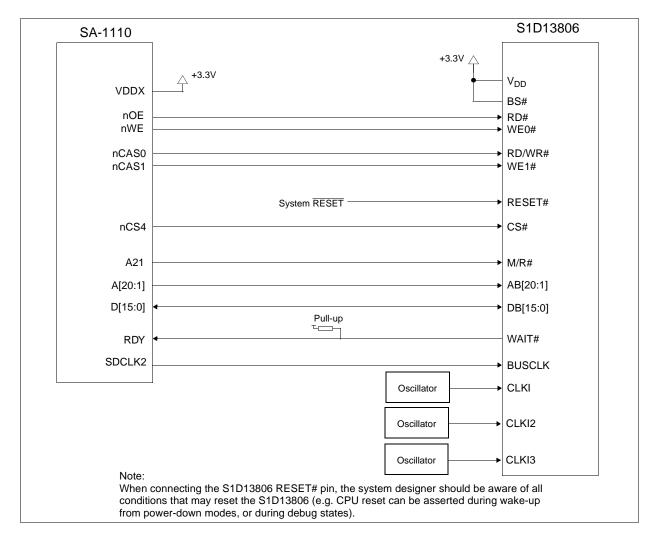


Figure 4-1: Typical Implementation of SA-1110 to S1D13806 Interface

M SA-1110 Processor

4.2 S1D13806 Hardware Configuration

The S1D13806 latches CONF7 through CONF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

The table below shows the configuration settings important to the PC Card Host Bus Interface used by the StrongARM SA-1110 microprocessor.

value on this pin at rising edge of RESET# is used to configure:(1/0) S1D13806 Pin Name 1001 = PC Card Host Bus Interface; Little Endian; Active Low WAIT# selected CONF[3:0] CONF4 Reserved. Must be tied to ground. CONF5 BUSCLK input divided by 2 **BUSCLK** input not divided WAIT# is tristated when the chip is not accessed by CONF6 WAIT# is always driven Configure GPIO12 for normal use and disables Configure GPIO12 as MediaPlug output pin CONF7 MediaPlug functionality VMPEPWR and enables MediaPlug functionality

Table 4-1: Summary of Power-On/Reset Options

= configuration for StrongARM SA-1110 microprocessor

4.3 Performance

The S1D13806 PC Card Interface specification supports a BUSCLK up to 50MHz, and therefore provides a high performance display solution.

The BUSCLK signal input to the S1D13806 (from one of the SDCLK[2:1] pins) is a derivative of the SA-1110 internal processor speed. Since the PC Card Host Bus Interface on the S1D13806 has a maximum BUSCLK of 50MHz, the output clock from the SA-1110 must be a divided down from the processor clock. If the processor clock is higher than 100MHz, either divide the BUSCLK input by two (CONF5 = 1) or set SDCLK1/SDCLK2 to CPU clock divided by four using the DRAM Refresh Control Register (MDREFR) which determines the output of this signal.

- If SDCLK2 is used, bit 26 should be set to 1 to divide the CPU clock by 4.
- If SDCLK1 is used, bit 22 should be set to 1 to divide the CPU clock by 4.

4.4 StrongARM SA-1110 Register Configuration

The SA-1110 requires configuration of several of its internal registers to interface to the S1D13806 PC Card Host Bus Interface.

• The Static Memory Control Registers (MSC[2:0]) are read/write registers containing control bits for configuring static memory or variable-latency IO devices. These registers correspond to chip select pairs nCS[5:4], nCS[3:2], and nCS[1:0] respectively. Each of the three registers contains two identical CNFG fields, one for each chip select within the pair. Since only nCS[5:3] controls variable-latency IO devices, MSC2 and MSC1 should be programmed based on the chip select used.

Parameter RTx<1:0> should be set to 01b (selects variable-latency IO mode).

Parameter RBWx should be set to 1 (selects 16-bit bus width).

Parameter RDFx<4:0> should be set according to the maximum desired CPU frequency as indicated in the table below.

Table 4-2: RDFx Parameter Value versus CPU Maximum Frequency

CPU Frequency (MHz)	RDFx
57.3 - 85.9	1
88.5 - 143.2	2
147.5 - 200.5	3
206.4 - 221.2	4

Parameter RDNx<4:0> should be set to 0 (minimum command precharge time).

Parameter RRRx<2:0> should be set to 0 (minimum nCSx precharge time).

- The S1D13806 endian mode is set to little endian. To program the SA-1110 for little endian set bit 7 of the control register (register 1) to 0.
- The BUSCLK signal input to the S1D13806 (from one of the SDCLK[2:1] pins) is a derivative of the SA-1110 internal processor speed. Since the PC Card Host Bus Interface on the S1D13806 has a maximum BUSCLK of 50MHz, the output clock from the SA-1110 must be a divided down from the processor clock. If the processor clock is higher than 100MHz, either divide the BUSCLK input by two (CONF5 = 1) or set SDCLK1/SDCLK2 to CPU clock divided by four using the DRAM Refresh Control Register (MDREFR) which determines the output of this signal.
 - If SDCLK2 is used, bit 26 should be set to 1 to divide the CPU clock by 4.
 - If SDCLK1 is used, bit 22 should be set to 1 to divide the CPU clock by 4.

M SA-1110 Processor

4.5 Register/Memory Mapping

The S1D13806 is a memory-mapped device. The SA-1110 uses the memory assigned to a chip select (nCS4 in this example) to map the S1D13806 internal registers and display buffer. The internal registers are mapped in the lower SA-1110 memory address space starting at zero. The display buffer requires 1.25M bytes and is mapped in the third and fourth megabytes of the SA-1110 address space (ranging from 20 0000h to 33 FFFFh).

This implementation decodes as shown in the following table.

Table 4-3: Register/Memory Mapping for Typical Implementation

A21 (M/R#)	A20	A12	Address Range	Function
0	0	0	0 to 1FFh	Control Registers Decoded
0	0	1	1000h to 1FFFh	MediaPlug Registers Decoded
0	1	Х	10 0000h to 1F FFFFh	BitBLT Registers Decoded
1	Х	Х	20 0000h to 33 FFFFh	Display Buffer Decoded

x = don't care

Each chip select on the SA-1110 provides 64M byte of address space. Since the SA-1110 address bits A[25:22] are ignored, the S1D13806 registers and display buffer are aliased within the allocated address space. If aliasing is undesirable, the address space must be fully decoded.

5 Software

Test utilities and Windows® CE display drivers are available for the S1D13806. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13806CFG, or by directly modifying the source. The Windows CE display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13806 test utilities and Windows CE display drivers are available from your sales support contact or on the internet at www.eea.epson.com.

6 References

6.1 Documents

- Intel Corporation, *StrongARM*® *SA-1110 Microprocessor Advanced Developer's Manual*, Order Number 278240-001.
- Epson Research and Development, Inc., *S1D13806 Hardware Functional Specification*, Document Number X28B-A-001-xx.
- Epson Research and Development, Inc., *S1D13806 Programming Notes and Examples*, Document Number X28B-G-003-xx.
- Epson Research and Development, Inc., S5U13806B00C Rev. 1.0 ISA Bus Evaluation Board User Manual, Document Number X28B-G-004-xx.

6.2 Document Sources

- Intel Developers Website: http://developer.intel.com.
- Intel Literature contact: 1(800) 548-4725.
- Epson Electronics America Website: http://www.eea.epson.com.

7 Technical Support

7.1 EPSON LCD/CRT Controllers (S1D13806)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911

Fax: 334-2716

7.2 Intel StrongARM SA-1110 Processor

INTEL

Intel Customer Support (ICS) for StrongARM: (800) 628-8686

Website for StrongARM Processor http://developer.intel.com/design/strong/

S1D13806 Embedded Memory Display Controller

Interfacing to the Intel Cotulla Application Processor

Document Number: X28B-G-014-01

Copyright @ 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1	Intro	oduct	tion	•	•	•	 . 7
2	Inte	rfacin	ng to the Intel Cotulla Bus				 . 8
	2.1	The l	Intel Cotulla Memory Bus				. 8
	2	2.1.1	Intel Cotulla Overview				. 8
	2	2.1.2	Variable-Latency IO Access Overview				. 8
	2	2.1.3	Variable-Latency IO Access Cycles				. 9
3	S1D	13806	06 Host Bus Interface				11
	3.1	Host	st Bus Interface Pin Mapping				11
	3.2	Host	st Bus Interface Signal Descriptions				12
4	Inte	l Cotu	tulla to S1D13806 Interface				13
	4.1	Hard	dware Description				13
	4.2	S1D	D13806 Hardware Configuration				14
	4.3	Perfo	formance				14
	4.4	Intel	el Cotulla Register Configuration				15
	4.5	Regi	gister/Memory Mapping				16
5	Soft	ware	9				17
6	Refe	erenc	ces				18
	6.1		cuments				
	6.2		cument Sources				
7	Tecl		al Support				
	7.1		SON LCD/CRT Controllers (S1D13806)				
	7.2		el Cotulla Processor				

List of Tables

Table 3-1	Host Bus Interface Pin Mapping	11
Table 4-1	Summary of Power-On/Reset Options	14
Table 4-2	Register/Memory Mapping for Typical Implementation	16

List of Figures

Figure 2-1	Cotulla Variable-Latency IO Read Cycle	9
Figure 2-2	Cotulla Variable-Latency IO Write Cycle	10
Figure 4-1	Typical Implementation of Cotulla to S1D13806 Interface	13

1 Introduction

This application note describes the hardware and software environment required to provide an interface between the S1D13806 Embedded Memory Display Controller and the Intel Cotulla application processor.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the Intel Cotulla Bus

2.1 The Intel Cotulla Memory Bus

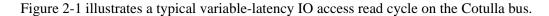
The Intel Cotulla microprocessor is a highly integrated communications microcontroller that incorporates a 32-bit Intel XScale processor core. The Cotulla is ideally suited to interface to the S1D13806 LCD controller and provides a high performance, power efficient solution for embedded systems.

2.1.1 Intel Cotulla Overview

The Cotulla memory bus can access both variable-latency IO and memory devices. The Cotulla uses a 26-bit address bus and a 32-bit data bus which can be used to access 16-bit devices. A chip select module with six chip select signals (each accessing 64M bytes of memory) allows selection of external devices. Only chip selects 3 through 5 (nCS[5:3]) may be used to select variable-latency devices which use RDY to extend access cycles. These chip selects are individually programmed in the Cotulla Asynchronous Static Memory Control Registers (MSC2-0) and can be configured for either a 16 or 32-bit data bus.

Byte steering is implemented for write cycles using the four signals DQM[3:0]. Each signal selects a byte on the 32-bit data bus. For example, DQM0 selects bits MD[7:0] and DQM3 selects bits MD[31:24]. For a 16-bit data bus, only DQM[1:0] are used with DQM0 selecting the low byte and DQM1 selecting the high byte. The Cotulla can be configured to support little or big endian mode.

2.1.2 Variable-Latency IO Access Overview


A data transfer is initiated when a memory address is placed on the Cotulla memory bus **and** a chip select signal (nCS[5:3]) is driven low. For write cycles, if all byte enable signals (DQM[3:0]) are driven low, then a 32-bit transfer takes place. If only DQM[1:0] are driven low, then a 16-bit transfer takes place through a 16-bit bus interface. If only one byte enable is driven low, then a byte transfer takes place on the respective data lines. For read cycles, DQM[3:0] are all driven low.

During a read cycle, the output enable signal (nOE) is driven low. A write cycle is specified by driving nOE high and driving the write enable signal (nPWE) low. The cycle can be lengthened by driving RDY low for the time needed to complete the cycle.

2.1.3 Variable-Latency IO Access Cycles

The first nOE assertion occurs two memory cycles after the assertion of chip select (nCS3, nCS4, or nCS5). Two memory cycles prior to the end of minimum nOE or nPWE assertion (RDF+1 memory cycles), the Cotulla starts sampling the data ready input (RDY). Samples are taken every half memory cycle until **three consecutive samples** (at the rising edge, falling edge, and following rising edge of the memory clock) indicate that the IO device is ready for data transfer. Read data is latched one-half memory cycle after the third successful sample (on falling edge). Then nOE or nPWE is deasserted on the next rising edge and the address may change on the subsequent falling edge. Prior to a subsequent data cycle, nOE or nPWE remains deasserted for RDN+1 memory cycles. The chip select and byte selects (nCS[5:3]/DQM[1:0] for 16-bit data transfers), remain asserted for one memory cycle after the final nOE or nPWE deassertion of the burst.

The Cotulla is capable of burst cycles during which the chip select remains low while the read or write command is asserted, precharged and reasserted repeatedly.

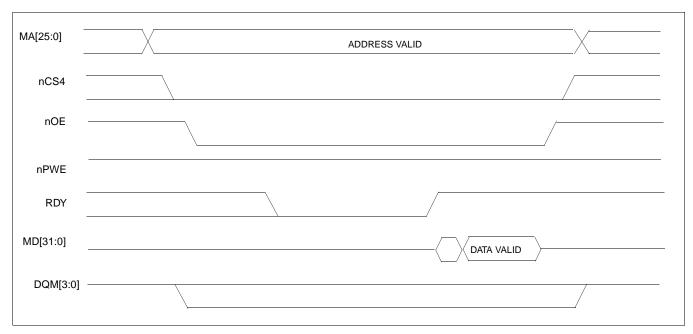


Figure 2-1 Cotulla Variable-Latency IO Read Cycle

Figure 2-2 illustrates a typical variable-latency IO access write cycle on the Cotulla bus.

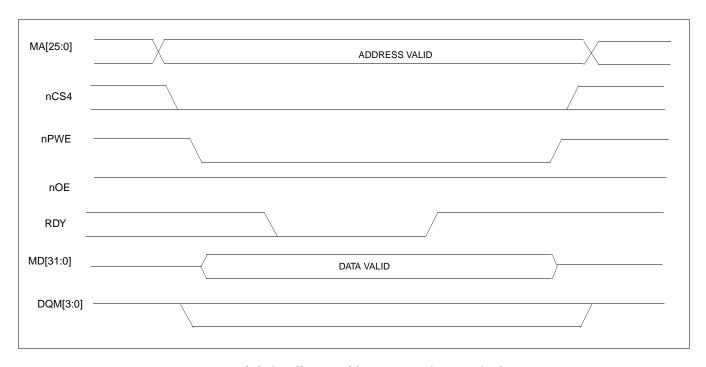


Figure 2-2 Cotulla Variable-Latency IO Write Cycle

3 S1D13806 Host Bus Interface

The S1D13806 directly supports multiple processors. The S1D13806 implements a 16-bit PC Card (PCMCIA) Host Bus Interface which is most suitable for direct connection to the Cotulla.

The PC Card Host Bus Interface is selected by the S1D13806 on the rising edge of RESET#. After releasing reset the bus interface signals assume their selected configuration. For details on S1D13806 configuration, see Section 4.2, "S1D13806 Hardware Configuration" on page 14.

Note

At reset, the Register/Memory Select bit in the Miscellaneous Register (REG[001h] bit 7) is set to 1. This means that only REG[000h] (read-only) and REG[001h] are accessible until a write to REG[001h] sets bit 7 to 0 making all registers accessible. When debugging a new hardware design, this can sometimes give the appearance that the interface is not working, so it is important to remember to clear this bit before proceeding with debugging.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13806 Pin Name	Cotulla Pin Names
AB[20:1] ¹	MA[20:1]
DB[15:0]	MD[15:0]
WE1#	DQM1
M/R#	MA21
CS#	nCS4
BUSCLK	SDCLK2
BS#	V_{DD}
RD/WR#	DQM0
RD#	nOE
WE0#	nPWE
WAIT#	RDY
RESET#	system RESET

Table 3-1 Host Bus Interface Pin Mapping

Note

¹ The bus signal A0 is not used by the S1D13806 internally.

3.2 Host Bus Interface Signal Descriptions

The S1D13806 PC Card Host Bus Interface requires the following signals.

- BUSCLK is a clock input which is required by the S1D13806 Host Bus Interface. It is driven by one of the Cotulla clock signals SDCLK1 or SDCLK2 (the example implementation in this document uses SDCLK2). For further information, see Section 4.3, "Performance" on page 14.
- The address inputs AB[20:1], and the data bus DB[15:0], connect directly to the Cotulla address (MA[20:1]) and data bus (MD[15:0]), respectively. CONF[3:0] must be set to select the PC Card Host Bus Interface with little endian mode.
- M/R# (memory/register) selects between memory or register access. It may be connected to an address line, allowing system address MA21 to be connected to the M/R# line.
- Chip Select (CS#) must be driven low by nCSx (where x is the Cotulla chip select used) whenever the S1D13806 is accessed by the Cotulla.
- WE1# and RD/WR# connect to DQM1 and DQM0 (the byte enables for the high-order and low-order bytes). They are driven low when the Cotulla is accessing the S1D13806.
- RD# connects to nOE (the read enable signal from the Cotulla).
- WE0# connects to nPWE (the write enable signal from the Cotulla).
- WAIT# is a signal output from the S1D13806 that indicates the Cotulla must wait until
 data is ready (read cycle) or accepted (write cycle) on the host bus. Since Cotulla
 accesses to the S1D13806 may occur asynchronously to the display update, it is possible
 that contention may occur in accessing the S1D13806 internal registers and/or display
 buffer. The WAIT# line resolves these contentions by forcing the host to wait until the
 resource arbitration is complete.
- The Bus Start (BS#) signal is not used for this Host Bus Interface and should be tied high (connected to V_{DD}).
- The RESET# (active low) input of the S1D13806 may be connected to the system RESET.

4 Intel Cotulla to S1D13806 Interface

4.1 Hardware Description

The S1D13806 is designed to directly support a variety of CPUs, providing an interface to the unique "local bus" of each processor. The S1D13806's PC Card Host Bus Interface provides a "glueless" interface to the Cotulla memory bus.

In this implementation, the address inputs (AB[20:1]) and data bus (DB[15:0]) connect directly to the CPU address (MA[20:1]) and data bus (MD[15:0]). M/R# is treated as an address line so that it can be controlled using system address MA21.

BS# (Bus Start) is not used and should be tied high (connected to V_{DD}).

The following diagram shows a typical implementation of the Cotulla to S1D13806 interface.

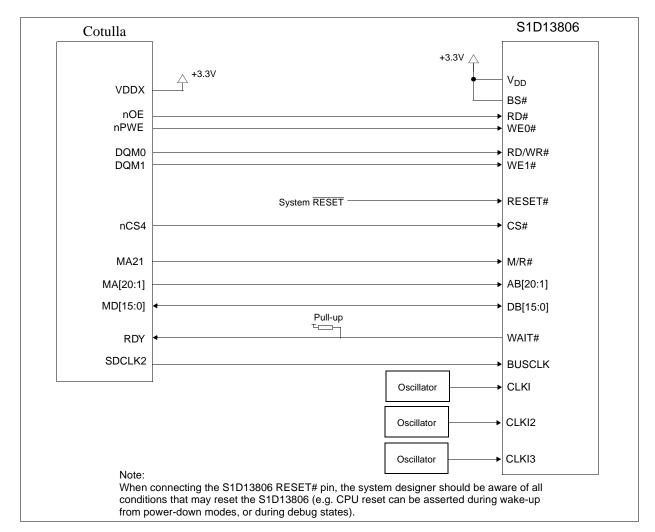


Figure 4-1 Typical Implementation of Cotulla to S1D13806 Interface

la Application Processor

4.2 S1D13806 Hardware Configuration

The S1D13806 latches CONF7 through CONF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13806 Hardware Functional Specification, document number X28B-A-001-xx.

The table below shows the configuration settings important to the PC Card Host Bus Interface used by the Intel Cotulla microprocessor.

S1D13806	value on this pin at rising edge of RESET# is used to configure:(1/0)						
Pin Name	1	0					
CONF[3:0]	1001 = PC Card Host Bus Interface; Little Endian; Active Low WAIT# selected						
CONF4	F4 Reserved. Must be tied to ground.						
CONF5	BUSCLK input divided by 2	BUSCLK input not divided					
CONF6	WAIT# is always driven	WAIT# is tristated when the chip is not accessed by the host					
CONF7	Configure GPIO12 as MediaPlug output pin VMPEPWR and enables MediaPlug functionality	Configure GPIO12 for normal use and disables MediaPlug functionality					

Table 4-1 Summary of Power-On/Reset Options

= configuration for Intel Cotulla microprocessor

4.3 Performance

The S1D13806 PC Card Interface specification supports a BUSCLK up to 50MHz, and therefore provides a high performance display solution.

The BUSCLK signal input to the S1D13806 (from one of the SDCLK[2:1] pins) is a derivative of the Cotulla memory clock which in turn is a derivative of the internal processor speed. The Cotulla MCLK can be set to either 99.5MHz, 117.96MHz, 132.71MHz, 147.46MHz, or 165.89MHz. These frequencies are determined by the L variable in the CCCR register, bits [4:0]. The frequency of the SDCLK[2:1] signals can be set to be the same as MCLK or half of MCLK. This SDCLK setting is controlled in the MDREFR register with bit 19 controlling SDCLK2 and bit 17 controlling SDCLK1.

Since the PC Card Host Bus Interface on the S1D13806 has a maximum BUSCLK of 50MHz (BUSCLK source input may be 100MHz if divided by 2 using the CONF5 pin), the output clock from the Cotulla must not exceed 50MHz if no BUSCLK input divide is selected, or 100MHz if BUSCLK input divide by 2 is selected. The optimal setting would be to set MCLK to 99.5MHz and set either of the SDCLK[2:1] signals to be divided by 2, providing a 49.75MHz BUSCLK signal to the S1D13806.

4.4 Intel Cotulla Register Configuration

The Cotulla requires configuration of several of its internal registers to interface to the S1D13806 PC Card Host Bus Interface.

• The Asynchronous Static Memory Control Registers (MSC[2:0]) are read/write registers containing control bits for configuring static memory or variable-latency IO devices. These registers correspond to chip select pairs nCS[5:4], nCS[3:2], and nCS[1:0] respectively. Each of the three registers contains two identical CNFG fields, one for each chip select within the pair. Since only nCS[5:3] controls variable-latency IO devices, MSC2 and MSC1 should be programmed based on the chip select used.

Parameter RTx<2:0> should be set to 100b (selects variable-latency IO mode).

Parameter RBWx should be set to 1 (selects 16-bit bus width).

Parameter RDFx<3:0> should be set to 0011 to start sampling RDY two clocks after nOE or nPWE is asserted.

- Parameter RDNx<4:0> should be set to 2 (minimum command deassert time between cycles).
- Parameter RRRx<2:0> should be set to 0 (minimum nCSx deassert time between cycles).
- Parameter L [4:0] of the CCCR register and the K2DB2 or K1DB2 parameter of the MDREFR Register must be set to provide a valid clock frequency to the BUSCLK input of the S1D13806. See Section 4.3, "Performance" on page 14 for more details. The suggested setting is Parameter L = 00001 and parameter KxDB2 = 1.

4.5 Register/Memory Mapping

The S1D13806 is a memory-mapped device. The Cotulla uses the memory assigned to a chip select (nCS4 in this example) to map the S1D13806 internal registers and display buffer. The internal registers are mapped in the assigned Cotulla memory address space starting at zero. The display buffer requires 1.25M bytes and is mapped in the third and fourth megabytes of the assigned Cotulla address space.

The implementation used decodes as shown in the following table.

Table 4-2 Register/Memory Mapping for Typical Implementation

A21 (M/R#)	A20	A12	Address Range	Function
0	0	0	0 to 1FFh	Control Registers Decoded
0	0	1	1000h to 1FFFh	MediaPlug Registers Decoded
0	1	Х	10 0000h to 1F FFFFh	BitBLT Registers Decoded
1	Х	Х	20 0000h to 33 FFFFh	Display Buffer Decoded

x = don't care

Each chip select on the Cotulla provides 64M byte of address space. Since the Cotulla address bits A[25:22] are ignored, the S1D13806 registers and display buffer are aliased within the allocated address space. If aliasing is undesirable, the address space must be fully decoded.

5 Software

Test utilities and display drivers are available for the S1D13806. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13806CFG, or by directly modifying the source. The display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13806 test utilities and display drivers are available from your sales support contact or on the internet at www.erd.epson.com.

6 References

6.1 Documents

- Intel Corporation, Intel® Cotulla and Sabinal Application Processors Developer's Manual.
- Epson Research and Development, Inc., *S1D13806 Hardware Functional Specification*, Document Number X28B-A-001-xx.
- Epson Research and Development, Inc., *S1D13806 Programming Notes and Examples*, Document Number X28B-G-003-xx.
- Epson Research and Development, Inc., S5U13806B00C Rev. 1.0 ISA Bus Evaluation Board User Manual, Document Number X28B-G-004-xx.

6.2 Document Sources

- Intel Developers Website: http://developer.intel.com.
- Intel Literature contact: 1(800) 548-4725.
- Epson Research and Development Website: http://www.erd.epson.com.

7 Technical Support

7.1 EPSON LCD/CRT Controllers (S1D13806)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

7.2 Intel Cotulla Processor

INTEL

Intel Customer Support (ICS) for Cotulla: (800) 628-8686 Website for Cotulla Processor http://developer.intel.com/design

