
24 April 2001

CONFIDENTIAL
®

7170179 D

STi5518
SINGLE-CHIP SET-TOP BOX DECODER WITH MP3 AND

HARD DISK DRIVE SUPPORT
DATA SHEET

 The information in this data sheet is subject to change without notice.

n Integrated 32-bit host CPU up to 81 MHz
• 2 Kbytes of Icache, 2 Kbytes of Dcache, and

4 Kbytes of SRAM configurable as Dcache.
n Audio decoder

• 5.1 channel Dolby Digital® /MPEG-2 multi-channel
decoding, 3 X 2-channel PCM outputs

• IEC60958 -IEC61937 digital output
• SRS®/TruSurround®
• DTS® digital out and MP3 decoding
• Alignment beep for satellite dishes.

n Video decoder
• Supports MPEG-2 MP@ML
• Fully programmable zoom-in and zoom-out
• NTSC to PAL conversion.

n DVD and SVCD subpicture decoder
n High performance on-screen display

• 2 to 8 bits per pixel OSD options
• Anti-flicker, anti-flutter and anti-aliasing filters.

n PAL/NTSC/SECAM encoder
• RGB, CVBS, Y/C and YUV outputs with 10-bit DACs
• Macrovision® 7.01/6.1 compatible (optional).

n Shared SDRAM memory interface
• 1 or 2x16-Mbit, or 1x64-Mbit 125 MHZ SDRAM.

n Programmable CPU memory interface for SDRAM,
ROM, peripherals...

n Front-end interface
• DVD, VCD, SVCD and CD-DA compatible
• Serial, parallel and ATAPI interfaces
• Hardware sector filtering
• Integrated CSS decryption and track buffer.

n Hardware transport-stream demultiplexor
• Parallel/serial input
• DES and DVB descramblers
• 32 PID support.

n Integrated peripherals

• 2 UARTs, 2 SmartCards, I2C controller, 3 PWM
outputs, 3 capture timers

• Modem support
• 44 bits of programmable I/O
• IR transmitter/receiver.

n Professional toolset support
• ANSI C compiler and libraries.

n 208 pin PQFP package.

The STi5518 is a highly integrated single-chip decoder,
designed for use in feature-rich mass-market set-top
boxes. It integrates a high-performance 32-bit CPU, a
dedicated block for DVB/DirecTV transport demultiplexing
and descrambling, modules for MPEG-2 video and audio
decoding with 3D-surround and MP3 support, advanced
display and graphics features, a digital video encoder and
all of the system peripherals required in a typical low-cost
interactive receiver.

To cover the needs of DVD-capable set-top boxes,
STi5518 integration options include a CSS decryption
block, a Dolby Digital audio decoder and Macrovision
copy protection.

An ATAPI interface is built-in, supporting the glueless
connection of standard Hard Disk Drives. In this way, the
STi5518 is ideal for set-top boxes featuring trick modes
such as live TV recording, pausing and time-shifting.

The STi5518 is backward compatible with the popular
STi5500 set-top box decoder, allowing easy migration
from the previous generation.

The high level of integration in a single PQFP-208
package makes the STi5518 ideally suited for low-cost,
high-volume set-top box applications.

DMA
channels
arbitrator

Front-end interface
(sector processor
& DVD decryption)

2K
instruction
cache

2K data
cache and
4K SRAM

S
T

20
 C

P
U

2 UART,
2 SmartCard,
PIO, 3PWM,
MAFE interface
IR blaster

Diagnostics
controller and
system services

Programmable
CPU memory
interface

MPEG2 video
Sub-picture
OSD & background

PAL/NTSC
& SECAM

MPEG-2 multichannel
Dolby Digital®
MP3, Alignment beep

w
w

w
.D

a
ta

S
h

e
e

t4
U

.c
o

m

w
w
w
.d

at
as

he
et

4u
.c
om

L STi5518
CONFIDENTIA
Table of contents
1 Architecture overview - 9

1.1 Introduction - 9

1.2 Central processor - 10

1.3 MPEG video decoder - 10

1.4 Audio decoder - 11

1.5 IR transmitter/receiver - 11

1.6 Modem analog front-end interface - 11

1.7 Memory subsystem - 12

1.8 Serial communication - 12

1.9 Front-end interface - 13

1.10 On-chip PLL - 13

1.11 Diagnostic controller (DCU) - 13

1.12 Interrupt subsystem - 13

1.13 PAL/NTSC/SECAM encoder - 13

1.14 SmartCard interfaces - 13

1.15 PWM and counter module - 14

1.16 Parallel I/O module - 14

2 Pin data - 15

2.1 Pin out - 15

2.2 Pin list sorted by function - 16

2.3 Pins sorted by pin number - 20

3 Central processing unit - 27

3.1 Registers - 27

3.2 Processes and concurrency - 28

3.3 Priority - 29

3.4 Process communications - 30

3.5 Timers - 30

3.6 Traps and exceptions - 31

3.6.1 Trap groups - 32
3.6.2 Events that can cause traps - 33
3.6.3 Trap handlers - 33
3.6.4 Restrictions on trap handlers - 35

4 Instruction set - 36

4.1 Instruction cycles - 36

4.2 Instruction characteristics - 37

4.3 Instruction-set tables - 38

5 Interrupt system - 45

5.1 Introduction - 45

5.2 Interrupt controller - 45

5.3 Interrupt vector table - 46

5.4 Interrupt handlers - 47
2/294 7170179 D

LSTi5518
CONFIDENTIA
5.5 Interrupt latency - 48

5.6 Pre-emption and interrupt priority - 48

5.7 Restrictions on interrupt handlers - 48

5.8 Interrupt level controller - 49

5.9 Interrupt assignments - 50

6 Memory map- 51

6.1 Overview - 51

6.2 Mapping - 52

6.3 System memory use - 55

7 Memory - 56

7.1 External memory - 56

7.2 On-chip SRAM memory - 56

7.3 Caching - 56

7.3.1 Outline of operation - 57
7.3.2 Cache initialization - 58
7.3.3 Cache subsystem control - 58
7.3.4 Data cache - 58
7.3.5 Instruction cache - 59
7.3.6 Cacheable and non-cacheable memory locations - 60

8 Programmable CPU memory interface - 63

8.1 Pin functions - 64

8.2 Configuration list - 68

8.3 External bus cycles - 70

8.3.1 DRAM - 71
8.3.2 SDRAM - 75
8.3.3 SRAM or peripheral access cycles - 78
8.3.4 Wait - 79
8.3.5 Bank-width based address shifting - 80

8.4 EMI configuration - 80

8.5 Default configuration - 80

9 System services - 82

9.1 Power-on hard reset - 82

9.2 Bootstrap - 82

10 Diagnostic controller - 83

10.1 Diagnostic hardware - 83

10.2 Access features - 84

10.3 Software debugging features - 84

10.4 Controlling the diagnostic controller - 86

10.5 Peeking and poking the host from the target - 87

11 Test access port - 88

12 Data flow- 89

12.1 On-chip modules - 89

12.2 Video data flow - 90
 7170179 D 3/294

L STi5518
CONFIDENTIA
12.3 Audio data flow - 91

13 Front-end interface - 92

13.1 Introduction - 92

13.2 Serial interface - 93

13.3 DVB-CI mode (optional) - 94

13.4 Parallel interface - 95

13.5 ATAPI interface - 97

13.6 I2S interface - 98

13.7 Decryption cell - 104

14 Link - 105

14.1 Introduction - 105

14.2 MPEG-2 & DSS systems layers - 105

14.3 Overview - 107

14.4 Detailed description - 109
14.4.1 Input interface - 109
14.4.2 NRSS interface - 109
14.4.3 Descrambler - 111
14.4.4 SDAV/P1394 interface - 113
14.4.5 FRAM - 116
14.4.6 DMA - 120
14.4.7 Clock recovery - 123
14.4.8 Interrupts - 124

14.5 DVD/link data analyzer - 128

14.6 Hard disk drive buffer control - 132

15 MPEG video decoder - 133

15.1 Decoder operation - 133

15.2 Reset - 133

15.3 Bit buffer and start-code detection (video) - 134

15.3.1 Bit buffer - 134
15.3.2 Start code detection - 134
15.3.3 Handling time-stamps - 135

15.4 Video decoding pipeline control - 136

15.5 Quantization table loading - 137

15.6 Memory mapping of data - 137

15.6.1 Mapping 1 or 2 x 16-Mbit SDRAM - 138
15.6.2 Mapping 1 x 64-Mbit SDRAM - 140
15.6.3 Memory segments - 142
15.6.4 Arrangement of pixel-pairs inside a luma SDRAM row - 142
15.6.5 Arrangement of pixel-pairs inside a chroma SDRAM row - 143

15.7 Using picture pointers - 143

15.8 Video pipeline - 144

15.8.1 Decoding task - 144
15.8.2 Error recovery and missing macroblock concealment - 145

15.9 PES parser - 147

15.10 Enhanced trick-modes - 148
4/294 7170179 D

LSTi5518
CONFIDENTIA
16 Sub-picture decoder- - 150

16.1 Introduction - 150

16.2 Buffer management and pointers - 151

16.3 Operation - 151

16.4 Sub-picture display - 153
16.4.1 Look-up tables - 153
16.4.2 Sub-picture areas - 153

17 Overlay graphics and texts - 154

17.1 Introduction - 154

17.2 Buffer management - 154

17.3 Operation - 155

17.4 Display - 155

18 Display planes - 156

18.1 Overview - 156

18.2 Background color plane - 157

18.3 MPEG video plane - 158

18.3.1 Setting-up the display - 158
18.3.2 Sample rate converter - 159
18.3.3 Block-to-row converter - 163
18.3.4 Degradation mode - 169

18.4 On-screen display (OSD) - 169

18.4.1 Using the OSD - 170
18.4.2 OSD regions - 170
18.4.3 OSD specification - 171
18.4.4 OSD region position - 173
18.4.5 Color palette - 174
18.4.6 OSD bit-map - 177
18.4.7 OSD block header format - 177
18.4.8 OSD specification block examples - 178
18.4.9 Mixing OSD with video - 181
18.4.10 Anti-flicker and anti-flutter filters - 181
18.4.11 OSD active signal - 182

18.5 Sub-picture or cursor plane - 183

18.6 Mixing display planes - 183

18.6.1 4:2:2 Output control - 185

19 SDRAM block move - 186

20 Digital encoder - 187

20.1 Introduction - 187

20.2 Video timing - 187

20.3 Reset procedure - 192

20.4 Master mode - 192

20.5 Slave modes - 193

20.5.1 Introduction - 193
20.5.2 Line-based synchronization - 193
20.5.3 Frame-based synchronization - 194
20.5.4 Sync-in-data based synchronization - 196

20.6 Input demultiplexor - 198
 7170179 D 5/294

L STi5518
CONFIDENTIA
20.7 Subcarrier generation - 199

20.8 Burst insertion (PAL and NTSC) - 200

20.9 Subcarrier insertion (SECAM) - 200

20.10 Luminance encoding - 201

20.11 Chrominance encoding - 203

20.12 Composite video signal generation - 204

20.13 RGB and UV encoding - 206

20.14 Closed-captioning - 207

20.15 CGMS encoding - 208

20.16 WSS encoding - 209

20.17 VPS encoding - 209

20.18 Teletext encoding - 209

20.19 Line skip and line insert capability - 212

20.20 CVBS, S-VHS, RGB and UV outputs - 212

21 Teletext DMA - 214

21.1 Introduction - 214

21.2 Teletext packet format - 214

21.3 Data transfer sequence - 214

21.4 Interrupt control - 215

21.5 Teletext registers - 215

22 Double triple video DAC - 216

22.1 Description - 216

22.2 Input codes for video application - 217

22.3 Video output voltage level - 217

22.4 Video specifications and DAC setup - 218

22.5 Output-stage adaptation and amplification - 218

23 Audio decoder - 219

23.1 Features - 219

23.2 Architecture overview - 220

23.3 Decoding process - 222

23.4 Operation - 222

23.5 Decoding states - 223

23.6 Stream parsers - 224

23.7 Decoding modes - 224

23.8 PCM output - 229

23.9 SPDIF output - 233

23.10 Interrupts - 235

23.11 Audio/video synchronization - 236

23.12 PCM beep tone - 237

23.13 Audio trick modes - 238

23.13.1 Description - 238
23.13.2 Slow forward - 238
23.13.3 Fast forward - 239
23.13.4 SPDIF output for audio trick modes - 240
6/294 7170179 D

LSTi5518
CONFIDENTIA
24 External audio decoder interface - 241

25 Clock generator - 242

25.1 Introduction - 242

25.2 System clocks - 243

25.3 PCM clock - 244

25.4 SmartCard clocks - 245

25.5 Auxiliary clock - 245

25.6 Low-power, watchdog and power-down - 246

26 MPEGDMA controller - 247

27 Block move DMA - 248

28 PWM and counter module - 249

28.1 External interface - 249

28.2 PWM outputs - 249

28.3 Capture inputs - 249

28.4 Compare (programmable timer) facilities - 250

28.5 Capture/compare counter, prescaling and clocking - 250

29 Smartcard interface - 251

29.1 External interface - 251

29.2 SmartCard clock generator - 252

30 Asynchronous serial controller - 253

30.1 Control - 253
30.1.1 Resetting the FIFOs - 253
30.1.2 Transmission and reception - 253

30.2 Data frames - 254

30.2.1 8-bit data frames - 254
30.2.2 9-bit data frames - 254

30.3 Transmission - 255

30.3.1 Transmission with FIFOs enabled - 255
30.3.2 Double-buffered transmission - 256

30.4 Reception - 256
30.4.1 Hardware error detection - 256
30.4.2 Input buffering modes - 257
30.4.3 Time-out mechanism - 258

30.5 Baud rate generation - 258

30.5.1 Baud rates - 258

30.6 Interrupt control - 260

30.6.1 Using the ASC interrupts when FIFOs are disabled (double-buffered operation) - - - - - - - - - - - - - - - - 260
30.6.2 Using the ASC interrupts when FIFOs are enabled - 261

30.7 SmartCard operation - 262
30.7.1 Control registers - 262
30.7.2 Transmission - 263
30.7.3 Reception - 264
30.7.4 Divergence from ISO SmartCard specification - 264
 7170179 D 7/294

L STi5518
CONFIDENTIA
31 Synchronous serial controller- - 265

31.1 Introduction - 265

31.2 Synchronous serial channel operation - 266

31.3 SSC clocking - 267

31.4 Half-duplex operation - 268

31.5 Continuous transfers - 268

31.6 Baud rates - 269

31.7 Hardware error detection capabilities - 269

31.8 Interrupt control - 270

31.9 I2C hardware configuration - 271

32 Parallel input/output port - 272

33 Modem analog front-end interface - 273

33.1 Overview - 273

33.2 Using the MAFEIF to connect to a modem - 273

33.3 Software - 274

33.3.1 Data exchange - 274
33.3.2 Control/status exchange - 274

34 Infrared transmitter/receiver- - 275

34.1 Introduction - 275

34.2 Functional description - 275

35 Electrical specifications - 278

35.1 Absolute maximum ratings - 278

35.2 DC electrical characteristics - 278

35.2.1 Static - 278
35.2.2 ST20 running at 60.75 MHz - 279
35.2.3 ST20 running at 81.0 MHz - 279

35.3 AC test conditions - 280

35.4 Operating conditions - 280

35.5 Timing diagrams for IO interfaces - 281
35.5.1 Input clock - 281
35.5.2 SMI interface - 282
35.5.3 Video interface - 285
35.5.4 EMI interface - 286
35.5.5 TAP interface - 287
35.5.6 Link interface - 288
35.5.7 I2S interface - 288
35.5.8 Parallel interface - 289
35.5.9 Audio interface - 289
35.5.10 ATAPI interface - 290

36 Package mechanical data - 291

37 Revision history - 292

37.1 Changes for rev D - 292

37.2 Changes for rev C - 292

37.3 Changes for rev B - 292
8/294 7170179 D

LSTi5518 1 Architecture overview
CONFIDENTIA
1 Architecture overview

1.1 Introduction

The figure below shows the architecture of the STi5518.

This chapter gives a brief overview of each of the functional blocks of the STi5518.

Figure 1 Functional block diagram

Internal peripherals

Front-end &
link interface

DMA

Central
command port

b
lo

ck
 m

o
ve

D
e
b
u
g

M
P

E
G

M
P

E
G

DMAs

Communications
arbiter

CPU
(C2+)

Clock
generator

Refill
control

RID

Diagnostic
controller

DCache

SRAM

ICache

TAP

CPU arbiter

CACHE SUBSYSTEM

ST20 arbiter & memory controller

I/F SDRAM
block move CD FIFOs Command I/F

SDRAM arbiter (LMC)

OSD, SP
decoder Video

filtering
DENC

Programmable
CPU interface
(EMI)

Shared SDRAM
interface (SMI)

Video
decoderand mixing

JTAG
debugging
interface

Analog/digital
video output

16, 32 or
64 Mbit

SDRAM

Ext peripherals:
Flash, additional
DRAM SDRAM

QPSK, QAM
or COFDM

receiver,
ATAPI, DVD

2 UART &
2 SmartCards

I2C

Audio
decoder

Audio out
 7170179 D 9/294

L1 Architecture overview STi5518
CONFIDENTIA
1.2 Central processor

The STi5518 Central Processing Unit is a ST20C2+ 32-bit processor core. It contains instruction processing logic,
instruction and data pointers, and an operand register. It directly accesses the high-speed on-chip SRAM, which can
store data or programs and uses the cache to reduce access time to off-chip program and data memory.

The processor can access memory via the Programmable CPU Interface (often referred to as the EMI) or the Shared
Memory Interface (SMI), which is shared with the video, audio, sub-picture and OSD decoders.

1.3 MPEG video decoder

This is a real-time video compression processor supporting the MPEG-1 and MPEG-2 standards at video rates up to
720 x 480 x 60 Hz and 720 x 576 x 50 Hz. Picture format conversion for display is performed by vertical and horizontal
filters. User-defined bitmaps can be super-imposed on the display picture by using the on-screen display function.

The display unit is part of the MPEG video decoder, it overlays the four display planes shown in the figure below. The
display planes are normally overlaid in the order illustrated, with the background color at the back and the sub-picture
at the front (used as a cursor plane). The sub-picture plane can alternatively be positioned between the OSD and
MPEG video planes where it can be used as a second on-screen display plane.

Figure 2 Display planes

On-screen display

08:23pm

Replay Score Stats

Replay Score Stats

Sub-picture plane

08:23pm

ReplayScoreStats

08:23pm

MPEG video

Overlaid planes

Background color
10/294 7170179 D

LSTi5518 1 Architecture overview
CONFIDENTIA
1.4 Audio decoder

The audio decoder accepts: Dolby Digital, MPEG-1 layers I, II and III, MPEG-2 layer II 6-channel, PCM, CDDA data
formats; MPEG2 PES streams for MPEG-2, MPEG-1, Dolby Digital, MP3, and Linear PCM (LPCM). The audio decoder
supports DTS® digital out (DVD DTS and CDDA DTS).

SPDIF input data (IEC-60958 or IEC-61937 standards) is accepted if an external circuitry extracts the PCM clock from
the stream.

Skip frame, repeat blocks and soft mute frame features can be used to synchronize audio and video data. PTS audio
extraction is also supported.

The device outputs up to 6 channels of PCM data and appropriate clocks for external digital-to-analog converters.

Programmable downmix enables 1,2,3 or 4 channel outputs. Data can be output in either I²S format or Sony format.
The decoder can format output data according to IEC-60958 standard (for non compressed data: L/R channels, 16, 18,
20 and 24-bits) or IEC-61937 standard (for compressed data), for FS = 96 kHz, 48 kHz, 44.1 kHz or 32 kHz.

Sampling frequencies of 96 kHz, 48 kHz, 44.1 kHz, 32 kHz and half sampling frequencies are supported. A
downsampling filter (96 kHz/48 kHz) is available.

The decoder supports dual mode for MPEG and Dolby Digital. It includes a Dolby surround compatible downmix and a
ProLogic decoder.

A pink noise generator enables the accurate positioning of speakers for optimal surround sound setup.

PCM beep tone is a special mode used for Set Top Box. It generates a triangular signal of variable frequency and
amplitude on the left and right channels.

In global mute mode, the decoder decodes the incoming bitstream normally but the PCM and SPDIF outputs are
softmuted. This mode is used to prepare a period of decoding mode, to synchronize audio and video data without
hearing the audio.

Slow-forward and fast-forward trick modes are available for compressed and non-compressed data.

The control interface of the decoder is activated via memory mapped registers in the ST20 address space.

1.5 IR transmitter/receiver

The STi5518 provides a pulse-position modulated signal for automatic VCR programming by the set-top box. The
signal is output to the IR blast pin and an accessory jack pin, simultaneously. The pulse frequency, number of pulses
(envelope length) and the total cycle time is controlled by registers.

1.6 Modem analog front-end interface

The Modem Analog Front-end interface is used to transfer transmit and receive DAC and ADC samples between the
memory and an external modem analog front-end (MAFE), using a synchronous serial protocol. DMA is used to
transfer the sample data between memory buffers and the MAFE interface module, with separate transmit and receive
buffers and double buffering of the buffer pointers. FIFOs are used to take into account the access latency to memory,
in a worst case system and to allow the use of bursts for memory bandwidth efficiency improvement. The V22 bis
standard is supported.
 7170179 D 11/294

L1 Architecture overview STi5518
CONFIDENTIA
1.7 Memory subsystem

On-chip

The on-chip memory includes 2Kbytes of instruction cache, 2Kbytes of data cache and 4Kbytes of SRAM that can be
optionally configured as data cache. The subsystem provides 240M/bytes of internal bandwidth, supporting pipelined 2-
cycle internal memory access.

The instruction and data caches are direct-mapped, with a write-back system for the data-cache. The caches support
burst accesses to the external memories for refill and write-back. Burst access increases the performance of page-
mode DRAM memories.

Off-chip

There are two off-chip memory interfaces:

• The external memory interface (EMI) accessed by the ST20 is used for the transfer of data and programs between
the STi5518 and external peripherals, flash and additional SDRAM and DRAM.

• Shared memory interface (SMI) controls the movement of data between the STi5518 and 16, 32 or 64 Mbits of
SDRAM. This external SDRAM stores the display data generated by the MPEG decoder and CPU and the C2+
code data.

The EMI uses minimal external support logic to support memory subsystems, and accesses a 32 Mbytes of physical
address space (greater if SDRAM or DRAM is used) in four general purpose memory banks of 8 or 16 bits wide, 21 or
22 address lines, and byte select. For applications requiring extra memory, the EMI supports this extra memory with
zero external support logic, even for 16-bit SDRAM devices. The EMI can be configured for a wide variety of timing and
decode functions by the configuration registers. The timing of each of the four memory banks can be set separately,
with different device types being placed in each bank with no need for external hardware.

1.8 Serial communication

Asynchronous serial controllers

The Asynchronous Serial Controller (ASC), also referred to as the UART interface, provides serial communication
between the STi5518 and other microcontrollers, microprocessors or external peripherals. The STi5518 has four
ASCs, two of which are generally used by the SmartCard controllers.

Eight or nine bit data transfer, parity generation, and the number of stop bits are programmable. Parity, framing, and
overrun error detection increase data transfer reliability. Transmission and reception of data can be double-buffered, or
16-deep FIFOs can be used. A mechanism to distinguish the address from the data bytes is included for multiprocessor
communication. Testing is supported by a loop-back option. A 16-bit baud-rate generator provides the ASC with a
separate serial clock signal.

Two ASCs support full-duplex and 2 half-duplex asynchronous communication, where both the transmitter and the
receiver use the same data frame format and the same baud rate. Each ASC can be set to operate in SmartCard mode
for use when interfacing to a SmartCard.

Synchronous serial controller

Two Synchronous Serial Controllers (SSC) provide high-speed interfaces to a wide variety of serial memories, remote
control receivers and other microcontrollers. The SSCs support all of the features of the Serial Peripheral Interface bus
(SPI) and the I2C bus. The SSCs can be programmed to interface to other serial bus standards. The SSCs share pins
with the parallel input/output (PIO) ports, and support half-duplex synchronous communication.
12/294 7170179 D

LSTi5518 1 Architecture overview
CONFIDENTIA
1.9 Front-end interface

The STi5518 can be connected to a front-end through the following interfaces:

• I2S interface;

• multi-format serial interface;

• multi-format parallel interface;

• ATAPI interface (for Hard Disk Drives and DVD-ROMs)

1.10 On-chip PLL

The on-chip PLL accepts 27 MHz input and generates all the internal high-frequency clocks needed for the CPU,
MPEG and audio subsystems.

1.11 Diagnostic controller (DCU)

The ST20 Diagnostic Controller Unit (DCU) is used to boot the CPU and to control and monitor the chip systems via the
standard IEEE 1194.1 Test Access Port. The DCU includes on-chip hardware with ICE (In Circuit Emulation) and LSA
(Logic State Analyzer) features to facilitate verification and debugging of software running on the on-chip CPU in real
time. It is an independent hardware module with a private link from the host to support real-time diagnostics.

1.12 Interrupt subsystem

The interrupt system allows an on-chip module or external interrupt pin to interrupt an active process so that an
interrupt handling process can be run. An interrupt can be signalled by one of the following: a signal on an external
interrupt pin, a signal from an internal peripheral or subsystem, software asserting an interrupt in the pending register.

Interrupts are implemented by an on-chip interrupt controller and an on-chip interrupt-level controller. The interrupt
controller supports eight prioritized interrupts as inputs and manages the pending interrupts. This allows the nesting of
pre-emptive interrupts for real-time system design. Each interrupt can be programmed to be at a lower or higher priority
than the high priority process queue.

1.13 PAL/NTSC/SECAM encoder

The integrated digital encoder converts a multiplexed 4:2:2 or 4:4:4 YCbCr stream into a standard analog baseband
PAL/NTSC or SECAM signal and into RGB, YUV, Yc and CVBS components. The encoder can perform closed-caption,
CGMS encoding, and allows MacrovisionTM 7.01/6.1 copy protection.

The DENC is able to encode Teletext according to the “CCIR/ITU-R Broadcast Teletext System B” specification, also
known as “World System Teletext”.

In DVB applications, Teletext data is embedded within DVB streams as MPEG data packets. It is the responsibility of
the software to handle incoming data packets and in particular to store Teletext packets in a buffer, which then passes
them to the DENC on request.

1.14 SmartCard interfaces

Two SmartCard interfaces support SmartCards compliant with ISO7816-3. Each interface is has a UART (ASC), a
dedicated programmable clock generator, and eight bits of parallel IO port.
 7170179 D 13/294

L1 Architecture overview STi5518
CONFIDENTIA
1.15 PWM and counter module

The PWM and counter module provides three PWM encoder outputs, three PWM decoder (capture) inputs and four
programmable timers. Each capture input can be programmed to detect rising edge, falling edge, both edges or neither
edge (disabled). These facilities are clocked by two independent clocks, one for PWM outputs and one for capture
inputs/timers. The PWM counter is 8-bit, with 8-bit registers to set the output-high time. The capture/compare counter
and the compare and capture registers are 32-bit. The module generates a single interrupt signal.

1.16 Parallel I/O module

44 bits of parallel I/O are configured in 6 ports, and each bit is programmable as output or input. The output can be
configured as a totem-pole or open-drain driver. The input compare logic can generate an interrupt on any change of
any input bit. Many parallel IO have alternate functions and can be connected to an internal peripheral signal such as a
UART or SSC.
14/294 7170179 D

C
O

N
FID

E
N

TIA
L

S
T

i5518
2 P

in
 d

ata

2
P

in
 d

ata

2.1
P

in
 o

u
t

208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157

PIO2[4]
PIO2[3]
PIO2[2]
PIO2[1]
PIO2[0]
TRIGGER_OUT
TRIGGER_IN
PIO1[5]
PIO1[4]
VSS
VDD2_5
PIO1[3]
PIO1[2]
PIO1[1]
PIO1[0]
PIO0[7]
PIO0[6]
PIO0[5]
PIO0[4]
PIO0[3]
PIO0[2]
PIO0[1]
PIO0[0]
VSS
VDD3_3
CPU_ADR[21]
CPU_ADR[20]
CPU_ADR[19]
CPU_ADR[18]
CPU_ADR[17]
CPU_ADR[16]
CPU_ADR[15]
CPU_ADR[14]
CPU_ADR[13]
CPU_ADR[12]
CPU_ADR[11]
VSS
VDD2_5
CPU_ADR[10]
CPU_ADR[9]
CPU_ADR[8]
CPU_ADR[7]
CPU_ADR[6]
CPU_ADR[5]
CPU_ADR[4]
CPU_ADR[3]
CPU_ADR[2]
CPU_ADR[1]
VSS
VDD3_3
CPU_DATA[15]
CPU_DATA[14]

12345678910

P
IO

2[5
]

P
IO

2[6
]

P
IO

2[7
]

V
D

D
3_3

V
S

S
P

IO
3[0

]
P

IO
3[1

]
P

IO
3[2

]
P

IO
3[3

]
P

IO
3[4

]

V
DV
S

V
_I_V
DVV

_I_V
DV
S

D
A

D
A

C
_P

C

156
155
154
153
152
151
150
149
148
147

C
P

U
_D

A
TA

[13]
C

P
U

_D
A

TA
[12]

C
P

U
_D

A
TA

[11]
C

P
U

_D
A

TA
[10]

C
P

U
_D

A
TA

[9]
C

P
U

_D
A

TA
[8]

V
S

S
V

D
D

2_5
C

P
U

_D
A

TA
[7]

C
P

U
_D

A
TA

[6]
 7170179 D

15/294

111213141516171819202122232425262728293031323334353637383940414243444546474849505152

P
IO

3[5
]

P
IO

3[6
]

P
IO

3[7
]

V
D

D
2_5

V
S

S
B

_D
A

TA
B

_B
C

LK
B

_F
LA

G
B

_S
Y

N
C

P
IO

5[0
]

P
IO

5[1
]

P
IO

5[2
]

D
_R

G
B

S
_R

G
B

B
_O

U
T

G
_O

U
T

R
_O

U
T

R
E

F
_R

G
R

E
F

_R
G

D
_Y

C
C

S
S

_Y
C

C
Y

_O
U

T
C

_O
U

T
C

V
_O

U
T

R
E

F
_Y

C
R

E
F

_Y
C

V
D

D
2_5

V
S

S
P

IO
4[0

]
P

IO
4[1

]
P

IO
4[2

]
P

IO
4[3

]
P

IO
4[4

]
P

IO
4[5

]
P

IO
4[6

]
P

IO
4[7

]
V

D
D

3_3
D

_P
C

M
S

_P
C

M
V

S
S

C
_S

C
LK

M
O

U
T

0

146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105

C
P

U
_D

A
TA

[5]
C

P
U

_D
A

TA
[4]

C
P

U
_D

A
TA

[3]
C

P
U

_D
A

TA
[2]

C
P

U
_D

A
TA

[1]
C

P
U

_D
A

TA
[0]

C
P

U
_C

A
S

1
C

P
U

_C
A

S
0

C
P

U
_R

A
S

1
V

S
S

V
D

D
3_3

C
P

U
_C

E
[0]

C
P

U
_C

E
[1]

C
P

U
_C

E
[2]

C
P

U
_C

E
[3]

C
P

U
_W

A
IT

C
P

U
_R

W
C

P
U

_B
E

[1]
C

P
U

_B
E

[0]
IR

Q
[0

]
IR

Q
[1

]
IR

Q
[2

]
R

E
S

E
T

V
S

S
_P

L
L

V
D

D
_P

LL
V

S
S

P
IX

_C
LK

V
D

D
2_5

C
P

U
_P

R
O

C
L

K
C

P
U

_O
E

P
W

M
0

P
W

M
1

P
W

M
2

T
C

K
T

D
I

T
D

O
T

M
S

T
R

S
T

V
S

S
V

D
D

3_3
A

U
X

C
L

K
P

IO
5[5]

DAC_PCMOUT1
DAC_PCMOUT2

DAC_PCMCLK
DAC_LRCLK
SPDIF_OUT
SMI_ADR[4]
SMI_ADR[5]
SMI_ADR[6]
SMI_ADR[7]
SMI_ADR[8]
SMI_ADR[9]

VDD2_5
VSS

SMI_ADR[3]
SMI_ADR[2]
SMI_ADR[1]
SMI_ADR[0]

SMI_ADR[10]
SMI_ADR[11]
SMI_ADR[12]
SMI_ADR[13]

SMI_CS[0]
SMI_CS[1]
SMI_RAS
SMI_CAS
SMI_WE

SMI_DQML
SMI_DQMU

VDD3_3
SMI_CLKIN

VSS
SMI_DATA[0]
SMI_DATA[1]
SMI_DATA[2]
SMI_DATA[3]
SMI_DATA[4]
SMI_DATA[5]
SMI_DATA[6]
SMI_DATA[7]
SMI_DATA[8]
SMI_DATA[9]

VDD2_5
SMI_CLKOUT

VSS
SMI_DATA[10]
SMI_DATA[11]
SMI_DATA[12]
SMI_DATA[13]
SMI_DATA[14]
SMI_DATA[15]

PIO5[3]
PIO5[4]

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

P
Q

F
P

 208
(rev F

)

S
Ti5518

L2 Pin data STi5518
CONFIDENTIA
2.2 Pin list sorted by function

Alternate functions printed in Italic show a suggested use of the PIO; alternate functions not printed in Italic are
multiplexed with a specific hardware.

Pin number Pin name Main function
Alternate function

Type
Input Output

Audio DAC

51 DAC_SCLK over sampling clock EXT_AUD_CLK O

52 DAC_PCMOUT0 PCM output 0 EXT_AUD_DATA O

53 DAC_PCMOUT1 PCM output 1 EXT_AUD_REQ I/O

54 DAC_PCMOUT2 PCM output 2 O

55 DAC_PCMCLK PCM clock I/O

56 DAC_LRCLK Left/right clock EXT_AUD_WCLK O

57 SPDIF_OUT SPDIF output O

48 VDD_PCM VDD freq synthesizer=2.5V PWR
2.5V

49 VSS_PCM VSS freq synthesizer=GND PWR

Clock & reset

124 RESET Chip reset I

122 VDD_PLL VDD PLL=2.5V PWR
2.5V

123 VSS_PLL GND PLL=GND PWR

120 PIX _CLK 27 MHz main clock I

PIOs and communication

186 PIO0[0] PIO0[0] UART0_DATA (SC0_DATA) I/O

187 PIO0[1] PIO0[1] TTX_IN_CLOCK ATAPI_RD I/O

188 PIO0[2] PIO0[2] ATAPI_WR I/O

189 PIO0[3] PIO0[3] SC0_CLOCK I/O

190 PIO0[4] PIO0[4] SC0_RST I/O

191 PIO0[5] PIO0[5] SC0_CMD_VCC I/O

192 PIO0[6] PIO0[6] SC0_DATA_DIR I/O

193 PIO0[7] PIO0[7] SC0_DETECT I/O

194 PIO1[0] PIO1[0] SSC0_DATA (MTSROut/MRSTin) I/O

195 PIO1[1] PIO1[1] SSC0_CLOCK I/O

196 PIO1[2] PIO1[2] SC EXTERNAL CLOCK
PARA_DVALID

I/O

197 PIO1[3] PIO1[3] UART2_TXD I/O

200 PIO1[4] PIO1[4] UART2_RXD I/O

201 PIO1[5] PIO1[5] PARA_SYNC UART1_TXD I/O

202 TRIGGER_IN Trigger input for DCU I/O

203 TRIGGER_OUT Trigger output for DCU I/O

204 PIO2[0] PIO2[0] UART3_DATA (SC1_DATA) I/O

205 PIO2[1] PIO2[1] UART1_RXD MAFEIF_DOUT
PARA_REQ

I/O

Table 1 Pins sorted by function
16/294 7170179 D

LSTi5518 2 Pin data
CONFIDENTIA

206 PIO2[2] PIO2[2] PARA_STR MAFEIF_HC1 I/O

207 PIO2[3] PIO2[3] SC1_CLOCK I/O

208 PIO2[4] PIO2[4] SC1_RST I/O

1 PIO2[5] PIO2[5] SC1_CMD_VCC I/O

2 PIO2[6] PIO2[6] SC1_DATA_DIR I/O

3 PIO2[7] PIO2[7] SC1_DETECT I/O

6 PIO3[0] PIO3[0] MAFEIF_SCLK
PARA_DATA{0]

I/O

7 PIO3[1] PIO3[1] MAFEIF_DIN
PARA_DATA[1]

I/O

8 PIO3[2] PIO3[2] MAFEIF_FSI
PARA_DATA[2]

I/O

9 PIO3[3] PIO3[3] CAPTURE_IN0
PARA_DATA[3]

I/O

10 PIO3[4] PIO3[4] CAPTURE_IN1
PARA_DATA[4]

UART1 RTS (RTS1) I/O

11 PIO3[5] PIO3[5] CAPTURE_IN2
PARA_DATA[5]

UART2 RTS (RTS2) I/O

12 PIO3[6] PIO3[6] PARA_DATA[6]
UART1 CTS (CTS1)

COMP_OUT1 I/O

13 PIO3[7] PIO3[7] PARA_DATA[7]
UART2 CTS (CTS2)

COMP_OUT0 I/O

39-46 PIO4[0:7] PIO4[0:7] YC[0:7] I/O

20 PIO5[0] PIO5[0] B_WCLK I/O

SSC1_DATA/ NRSS_CLOCK1

21 PIO5[1] PIO5[1] B_V4 NRSS_OUT 2 and 1 I/O

SSC1_CLOCK

22 PIO5[2] PIO5[2] IRB_IRinput/NRSS_IN2 I/O

SDAV_CLK/ P1394_Clk3

103 PIO5[3]4 PIO5[3] IRB_UHFinput4 I/O

SDAV_DATA3

104 PIO5[4] PIO5[4] IRB_drivePPMsignal I/O

SDAV_DIR / P1394_P_CLK3

105 PIO5[5] PIO5[5] IRB_drive0orZ5 (jack) I/O

OSC_IN_CLK3

Auxiliary Clock

106 Auxiliary Clock O

EMI Interface

161-170 CPU_ADR[1:10] Address[1:10] O

173-183 CPU_ADR[11:21] Address[11:21] O

141-148 CPU_DATA[0:7] Data[0:7] I/O

Pin number Pin name Main function
Alternate function

Type
Input Output

Table 1 Pins sorted by function
 7170179 D 17/294

L2 Pin data STi5518
CONFIDENTIA

151-158 CPU_DATA[8:15] Data[8:15] I/O

138 CPU_RAS1 DRAM RAS NOT_SDRAM_CS1
CHIPSEL. BANK3

I/O

131 CPU_WAIT Wait state I

130 CPU_RW Read-not-write NOT_SDRAM_WE O

128 CPU_BE[0] Byte 0 enable DQM[0] O

129 CPU_BE[1] Byte 1 enable DQM[1] O

139 CPU_CAS0 DRAM CAS 0 SDRAM_CAS/
CPU_ADR[22]

O

140 CPU_CAS1 DRAM NOT_SDRAM_CS0 O

135 CPU_CE[0] DRAM RAS 0 SDRAM_RAS
NOTCHIPSELBANK0

O

134 CPU_CE[1] Chip sel. bank 1 O

133 CPU_CE[2] Chip sel. bank 2 O

132 CPU_CE[3] Chip sel. bank 3 CS_SUB_BANK3 O

118 CPU_PROCLK EMI clock O

117 CPU_OE Output enable I/O

Interrupt

127 IRQ[0] IRQ[0] (SERVO_IRQ) I

126 IRQ[1] IRQ[1] (ATAPI IRQ) I

125 IRQ[2] IRQ[2] (MD_IRQ) I

Timers

116 PWM0 Pulse Width Modulator 0 HSYNC I/O

115 PWM1 Pulse Width Modulator 1 BOOT_FROM_ROM6 I/O

114 PWM2 Pulse Width Modulator 2 VSYNC I/O

JTAG

113 TCK Test clock I

112 TDI Test data in I

111 TDO Test data out O

110 TMS Test mode select I

109 TRST7 Test reset I

Front-end

16 B_DATA I2S data FEC_DATA I

17 B_BCLK I2S bit clock FEC_B_CLK I

18 B_FLAG I2S error flag dvd FEC_D_VALID (DVD)
FEC_P_CLK (DVB/DSS)

I

19 B_SYNC I2S sector/ABS time FEC_P_START (DVD)
FEC_ERROR (DVB/
DSS)

I

Video DAC

27, 26, 25 R_OUT, G_OUT, B_OUT R_OUT, G_OUT, B_OUT O

Pin number Pin name Main function
Alternate function

Type
Input Output

Table 1 Pins sorted by function
18/294 7170179 D

LSTi5518 2 Pin data
CONFIDENTIA

32, 33, 34 Y_OUT, C_OUT,
CV_OUT

Y_OUT, C_OUT, CV_OUT O

29 I_REF_RGB RGB DAC reference current I

28 V_REF_RGB RGB DAC reference voltage I

36 I_REF_YCC YCC DAC reference current I

35 V_REF_YCC YCC DAC reference voltage I

23 VDD_RGB VDDA_RGB=2.5V PWR
2.5V

24 VSS_RGB VSSA_RGB=GND PWR

30 VDD_YCC VDDA_YCC=2.5V PWR
2.5V

31 VSS_YCC VSSA_YCC=GND PWR

Shared memory interface

69-66 SMI_ADR[0:3] Address bus SDRAM O

58-63 SMI_ADR[4:9] Address bus SDRAM O

70-73 SMI_ADR [10:13] Address bus SDRAM O

84-93, 97-102 SMI_DATA[0:15] Data bus SDRAM I/O

74, 75 SMI_CS[0,1] Chip select bank 0,1 O

76 SMI_RAS RAS SDRAM O

77 SMI_CAS CAS SDRAM O

78 SMI_WE SDRAM write enable O

79, 80 SMI_DQML, U DQ mask en low, up O

82 SMI_CLKIN SDRAM clock in I

95 SMI_CLKOUT SDRAM clock out O

Power supply

4, 47, 81, 107,
136, 159, 184

VDD3_3 3.3 V POWER SUPPLY PWR

14, 37, 64, 94,
119, 149, 171,
198

VDD2_5 2.5V POWER SUPPLY PWR

5, 15, 38, 50,
65, 83, 96,
108, 121, 137,
150, 160, 172,
185, 199

VSS Ground PWR

1. FEI_CFG bits 8 and 9 must be programmed according to the required NRSS configuration.

2. The NRSS_IN and NRSS_OUT pins are swapped around on the STi5518 compared to the STi5508.

3. Register LNK_SDAV_CONF bit 22 (SDE) must be set to 1 to validate the output path.

4. Inverted. ATTENTION! the PIO input is also inverted.

5. The PIO must be configured in open drain.

6. BOOT_FROM_ROM is active during reset.

7. Tie low whenever JTAG is not used.

Pin number Pin name Main function
Alternate function

Type
Input Output

Table 1 Pins sorted by function
 7170179 D 19/294

L2 Pin data STi5518
CONFIDENTIA
2.3 Pins sorted by pin number

Pin N° Pin name Main function
Alternate function

Dir func.
Input Output

Left Side

1 PIO2[5] PIO2[5] SC1_CMD_VCC I/O

2 PIO2[6] PIO2[6] SC1_DATA_DIR I/O

3 PIO2[7] PIO2[7] SC1_DETECT I/O

4 VDD3_3 3.3 V power supply POWER

5 VSS Ground POWER

6 PIO3[0] PIO3[0] MAFEIF_SCLK
PARA_DATA{0]

I/O

7 PIO3[1] PIO3[1] MAFEIF_DIN
PARA_DATA[1]

I/O

8 PIO3[2] PIO3[2] MAFEIF_FSI
PARA_DATA[2]

I/O

9 PIO3[3] PIO3[3] CAPTURE_IN0
PARA_DATA[3]

I/O

10 PIO3[4] PIO3[4] CAPTURE_IN1
PARA_DATA[4]

UART1 RTS (RTS1) I/O

11 PIO3[5] PIO3[5] CAPTURE_IN2
PARA_DATA[5]

UART2 RTS (RTS2) I/O

12 PIO3[6] PIO3[6] PARA_DATA[6]
UART1 CTS (CTS1)

COMP_OUT1 I/O

13 PIO3[7] PIO3[7] PARA_DATA[7]
UART2 CTS (CTS2)

COMP_OUT0 I/O

14 VDD2_5 2.5V power supply POWER

15 VSS Ground POWER

16 B_DATA I2S data FEC_DATA I

17 B_BCLK I2S bit clock FEC_B_CLK I

18 B_FLAG I2S error flag DVD FEC_D_VALID (DVD)
FEC_P_CLK (DVB/DSS)

I

19 B_SYNC I2S sector/ABS time FEC_P_START (DVD)
FEC_ERROR (DVB/
DSS)

I

20 PIO5[0] PIO5[0] B_WCLK I/O

SSC1_DATA/ NRSS_CLOCK1

21 PIO5[1] PIO5[1] B_V4 NRSS_OUT2 and 1 I/O

SSC1_CLOCK

22 PIO5[2] PIO5[2] IRB_IRinput/NRSS_IN2 I/O

SDAV_CLK/ P1394_CLK3

23 VDD_RGB VDDA_RGB=2.5V POWER

24 VSS_RGB VSSA_RGB=GND POWER

25 B_OUT B output O

Table 2 Pins sorted by number
20/294 7170179 D

LSTi5518 2 Pin data
CONFIDENTIA

26 G_OUT G output O

27 R_OUT R output O

28 V_REF_RGB RGB DAC reference voltage I

29 I_REF_RGB RGB DAC reference current I

30 VDD_YCC VDDA_YCC=2.5V POWER

31 VSS_YCC VSSA_YCC=GND POWER

32 Y_OUT Y output O

33 C_OUT C output O

34 CV_OUT CV output O

35 V_REF_YCC YCC DAC reference voltage I

36 I_REF_YCC YCC DAC reference current I

37 VDD2_5 2.5V power supply POWER

38 VSS Ground POWER

39 PIO4[0] PIO4[0] YC[0] I/O

40 PIO4[1] PIO4[1] YC[1] I/O

41 PIO4[2] PIO4[2] YC[2] I/O

42 PIO4[3] PIO4[3] YC[3] I/O

43 PIO4[4] PIO4[4] YC[4] I/O

44 PIO4[5] PIO4[5] YC[5] I/O

45 PIO4[6] PIO4[6] YC[6] I/O

46 PIO4[7] PIO4[7] YC[7] I/O

47 VDD3_3 3.3 V power supply POWER

48 VDD_PCM VDD freq synthesizer=2.5V POWER

49 VSS_PCM VSS freq synthesizer=GND POWER

50 VSS Ground POWER

51 DAC_SCLK Sampling clock EXT_AUD_CLK O

52 DAC_PCMOUT0 PCM output 0 EXT_AUD_DATA O

Bottom side

53 DAC_PCMOUT1 PCM output 1 EXT_AUD_REQ I/O

54 DAC_PCMOUT2 PCM output 2 O

55 DAC_PCMCLK PCM clock I/O

56 DAC_LRCLK Left/right clock EXT_AUD_WCLK O

57 SPDIF_OUT SPDIF output O

58 SMI_ADR[4] Address bus SDRAM O

59 SMI_ADR[5] Adress bus SDRAM O

60 SMI_ADR[6] Adress bus SDRAM O

61 SMI_ADR[7] Adress bus SDRAM O

62 SMI_ADR[8] Adress bus SDRAM O

63 SMI_ADR[9] Adress bus SDRAM O

64 VDD2_5 2.5V power supply POWER

Pin N° Pin name Main function
Alternate function

Dir func.
Input Output

Table 2 Pins sorted by number
 7170179 D 21/294

L2 Pin data STi5518
CONFIDENTIA

65 VSS Ground POWER

66 SMI_ADR[3] Adress bus SDRAM O

67 SMI_ADR[2] Adress bus SDRAM O

68 SMI_ADR[1] Adress bus SDRAM O

69 SMI_ADR[0] Adress bus SDRAM O

70 SMI_ADR[10] Adress bus SDRAM O

71 SMI_ADR[11] Adress bus SDRAM O

72 SMI_ADR[12] Adress bus SDRAM O

73 SMI_ADR[13] Adress bus SDRAM O

74 SMI_CS[0] Chip select bank 0 O

75 SMI_CS[1] Chip select bank 1 O

76 SMI_RAS RAS SDRAM O

77 SMI_CAS CAS SDRAM O

78 SMI_WE SDRAM write enable O

79 SMI_DQML DQ mask en low O

80 SMI_DQMU DQ mask en up O

81 VDD3_3 3.3 V power supply POWER

82 SMI_CLKIN SDRAM clock in I

83 VSS Ground POWER

84 SMI_DATA[0] Data bus SDRAM I/O

85 SMI_DATA[1] Data bus SDRAM I/O

86 SMI_DATA[2] Data bus SDRAM I/O

87 SMI_DATA[3] Data bus SDRAM I/O

88 SMI_DATA[4] Data bus SDRAM I/O

89 SMI_DATA[5] Data bus SDRAM I/O

90 SMI_DATA[6] Data bus SDRAM I/O

91 SMI_DATA[7] Data bus SDRAM I/O

92 SMI_DATA[8] Data bus SDRAM I/O

93 SMI_DATA[9] Data bus SDRAM I/O

94 VDD2_5 2.5V power supply POWER

95 SMI_CLKOUT SDRAM clock out O

96 VSS Ground POWER

97 SMI_DATA[10] Data bus SDRAM I/O

98 SMI_DATA[11] Data bus SDRAM I/O

99 SMI_DATA[12] Data bus SDRAM I/O

100 SMI_DATA[13] Data bus SDRAM I/O

101 SMI_DATA[14] Data bus SDRAM I/O

102 SMI_DATA[15] Data bus SDRAM I/O

103 PIO5[3] PIO5[3] IRB_UHFinput4 I/O

SDAV_DATA3

Pin N° Pin name Main function
Alternate function

Dir func.
Input Output

Table 2 Pins sorted by number
22/294 7170179 D

LSTi5518 2 Pin data
CONFIDENTIA

104 PIO5[4] PIO5[4] IRB_drivePPM signal I/O

Sdav_dir / P1394_P_CLK3

Right side

105 PIO5[5] PIO5[5] IRB_drive0orZ5 (jack) I/O

OSC_IN_CLK3

106 Auxiliary Clock O

107 VDD3_3 3.3 V power supply POWER

108 VSS Ground POWER

109 TRST6 Test reset I

110 TMS Test mode select I

111 TDO Test data out O

112 TDI Test data in I

113 TCK Test clock I

114 PWM2 Pulse Width Modulator 2 VSYNC I/O

115 PWM1 Pulse Width Modulator 1 BOOT_FROM_ROM7 I/O

116 PWM0 Pulse Width Modulator 0 HSYNC I/O

117 CPU_OE Output enable I/O

118 CPU_PROCLK EMI clock O

119 VDD2_5 2.5V power supply POWER

120 PIX _CLK 27 MHz main clock I

121 VSS Ground POWER

122 VDD_PLL VDD PLL=2.5V POWER

123 VSS_PLL GND PLL=GND POWER

124 RESET Chip reset I

125 IRQ[2] IRQ[2] (MD_IRQ) I

126 IRQ[1] IRQ[1] (ATAPI IRQ) I

127 IRQ[0] IRQ[0] (SERVO_IRQ) I

128 CPU_BE[0] Byte 0 enable DQM[0] O

129 CPU_BE[1] Byte 1 enable DQM[1] O

130 CPU_RW Read-not-write NOT_SDRAM_WE O

131 CPU_WAIT Wait state I

132 CPU_CE[3] Chip select bank 3 CS_SUB_BANK3 O

133 CPU_CE[2] Chip select bank 2 O

134 CPU_CE[1] Chip select bank 1 O

135 CPU_CE[0] DRAM RAS 0 SDRAM_RAS O

136 VDD3_3 3.3 V power supply POWER

137 VSS Ground POWER

138 CPU_RAS1 DRAM RAS 1 NOT_SDRAM_CS1
CHIPSEL. BANK3

I/O

Pin N° Pin name Main function
Alternate function

Dir func.
Input Output

Table 2 Pins sorted by number
 7170179 D 23/294

L2 Pin data STi5518
CONFIDENTIA

139 CPU_CAS0 DRAM CAS 0 SDRAM_CAS
CPU_ADR[22]

O

140 CPU_CAS1 DRAM CAS 1 NOT_SDRAM_CS0 O

141 CPU_DATA[0] Data[0] I/O

142 CPU_DATA[1] Data[1] I/O

143 CPU_DATA[2] Data[2] I/O

144 CPU_DATA[3] Data[3] I/O

145 CPU_DATA[4] Data[4] I/O

146 CPU_DATA[5] Data[5] I/O

147 CPU_DATA[6] Data[6] I/O

148 CPU_DATA[7] Data[7] I/O

149 VDD2_5 2.5V power supply POWER

150 VSS Ground POWER

151 CPU_DATA[8] Data[8] I/O

152 CPU_DATA[9] Data[9] I/O

153 CPU_DATA[10] Data[10] I/O

154 CPU_DATA[11] Data[11] I/O

155 CPU_DATA[12] Data[12] I/O

156 CPU_DATA[13] Data[13] I/O

Top side

157 CPU_DATA[14] Data[14] I/O

158 CPU_DATA[15] Data[15] I/O

159 VDD3_3 3.3 V power supply POWER

160 VSS Ground POWER

161 CPU_ADR[1] Address[1] O

162 CPU_ADR[2] Address[2] O

163 CPU_ADR[3] Address[3] O

164 CPU_ADR[4] Address[4] O

165 CPU_ADR[5] Address[5] O

166 CPU_ADR[6] Address[6] O

167 CPU_ADR[7] Address[7] O

168 CPU_ADR[8] Address[8] O

169 CPU_ADR[9] Address[9] O

170 CPU_ADR[10] Address[10] O

171 VDD2_5 2.5V power supply POWER

172 VSS Ground POWER

173 CPU_ADR[11] Address[11] O

174 CPU_ADR[12] Address[12] O

175 CPU_ADR[13] Address[13] O

176 CPU_ADR[14] Address[14] O

Pin N° Pin name Main function
Alternate function

Dir func.
Input Output

Table 2 Pins sorted by number
24/294 7170179 D

LSTi5518 2 Pin data
CONFIDENTIA

177 CPU_ADR[15] Address[15] O

178 CPU_ADR[16] Address[16] O

179 CPU_ADR[17] Address[17] O

180 CPU_ADR[18] Address[18] O

181 CPU_ADR[19] Address[19] O

182 CPU_ADR[20] Address[20] O

183 CPU_ADR[21] Address[21] O

184 VDD3_3 3.3 V power supply POWER

185 VSS Ground POWER

186 PIO0[0] PIO0[0] UART0_DATA
(SC0_DATA)

I/O

187 PIO0[1] PIO0[1] TTX_IN_CLOCK ATAPI_RD I/O

188 PIO0[2] PIO0[2] ATAPI_WR I/O

189 PIO0[3] PIO0[3] SC0_CLOCK I/O

190 PIO0[4] PIO0[4] SC0_RST I/O

191 PIO0[5] PIO0[5] SC0_CMD_VCC I/O

192 PIO0[6] PIO0[6] SC0_DATA_DIR I/O

193 PIO0[7] PIO0[7] SC0_DETECT I/O

194 PIO1[0] PIO1[0] SSC0_DATA (MTSROut/MRSTin) I/O

195 PIO1[1] PIO1[1] SSC0_CLOCK I/O

196 PIO1[2] PIO1[2] SC EXTERNAL CLOCK
PARA_DVALID

I/O

197 PIO1[3] PIO1[3] UART2_TXD I/O

198 VDD2_5 2.5V power supply POWER

199 VSS Ground POWER

200 PIO1[4] PIO1[4] UART2_RXD I/O

201 PIO1[5] PIO1[5] PARA_SYNC UART1_TXD I/O

202 TRIGGER_IN Trigger input for DCU I/O

203 TRIGGER_OUT Trigger output for DCU I/O

204 PIO2[0] PIO2[0] UART3_DATA (SC1_DATA) I/O

205 PIO2[1] PIO2[1] UART1_RXD MAFEIF_DOUT
PARA_REQ

I/O

206 PIO2[2] PIO2[2] PARA_STR MAFEIF_HC1 I/O

207 PIO2[3] PIO2[3] SC1_CLOCK I/O

208 PIO2[4] PIO2[4] SC1_RST I/O

1. FEI_CFG bits 8 and 9 must be programmed according to the required NRSS configuration.

2. The NRSS_IN and NRSS_OUT pins are swapped around on the STi5518 compared to the STi5508.

3. Register LNK_SDAV_CONF bit 22 (SDE) must be set to 1 to validate the output path.

4. Inverted. ATTENTION! the PIO input is also inverted.

5. The PIO must be configured in open drain.

Pin N° Pin name Main function
Alternate function

Dir func.
Input Output

Table 2 Pins sorted by number
 7170179 D 25/294

L2 Pin data STi5518
CONFIDENTIA
6. Tie low whenever JTAG is not used

7. BOOT_FROM_ROM is active during reset.
26/294 7170179 D

LSTi5518 3 Central processing unit
CONFIDENTIA
3 Central processing unit
The STi5518 Central Processing Unit is a ST20C2+ 32-bit processor core. It contains instruction processing logic,
instruction and data pointers, and an operand register. It directly accesses the high-speed on-chip SRAM, which can
store data or programs, and uses the cache to reduce access time to off-chip program and data memory.

The CPU can access memory via the general purpose external memory interface (EMI) or the local memory interface
(LMI), which is shared with the MPEG decoder.

The processor performs the following manipultations:

• fast integer-multiply - 4 cycle multiply;

• fast bit-shift - single cycle barrel shifter;

• byte and part-word handling;

• scheduling and interrupt support;

• 64-bit integer arithmetic support.

The scheduler provides a single level of pre-emption. In addition, multi-level pre-emption is provided by the interrupt
subsystem. Additionally, there is a per-priority trap handler to improve the support for arithmetic errors and illegal
instructions.

3.1 Registers

The CPU contains six registers which are used in the execution of a sequential integer process. The six registers are:

• Workspace pointer (Wptr) which points to an area of store where local data is kept.

• Instruction pointer (Iptr) which points to the next instruction to be executed.

• Status register (Status).

• Areg, Breg and Creg registers which form an evaluation stack.

The Areg, Breg and Creg registers are the sources and destinations for most arithmetic and logical operations. Loading
a value into the stack pushes Breg into Creg, and Areg into Breg, before loading Areg. Storing a value from Areg, pops
Breg into Areg and Creg into Breg. Creg is left undefined.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example, the add
instruction adds the top two values in the stack and places the result on the top of the stack. The use of a stack
removes the need for instructions to explicitly specify the location of their operands. No hardware mechanism is

Figure 3 Registers used in sequential integer processes

Areg

Breg

Creg

Wptr

Iptr

Local data ProgramRegisters
 7170179 D 27/294

L3 Central processing unit STi5518
CONFIDENTIA
provided to detect that more than three values have been loaded onto the stack; it is easy for the compiler to ensure
that this never happens.

Note that a location in memory can be accessed relative to the workspace pointer, enabling the workspace to be of any
size.

The use of shadow registers provides fast, simple and clean context switching.

3.2 Processes and concurrency

This section describes the default behavior of the CPU and it should be noted that the user can alter this behavior, for
example by disabling timeslicing or installing a user scheduler.

A process starts, performs a number of actions, and then either stops without completing or terminates complete.
Typically, a process is a sequence of instructions. The CPU can run several processes in parallel (concurrently).
Processes may be assigned either high or low priority, and there may be any number of each.

The processor has a microcoded scheduler which enables any number of concurrent processes to be executed
together, sharing the processor time. This removes the need for a software kernel, although kernels can still be written
if desired.

At any time, a process may be

The scheduler operates in such a way that inactive processes do not consume any processor time. Each active high
priority process executes until it becomes inactive. The scheduler allocates a portion of the processor’s time to each
active low priority process in turn (see section Section 3.3). Active processes waiting to be executed are held in two
linked lists of process work spaces, one of high priority processes and one of low priority processes. Each list is
implemented using two registers, one of which points to the first process in the list, the other to the last. In the linked
process list shown below, process S is executing and P, Q and R are active, awaiting execution. Only the low priority
process queue registers are shown; the high priority process ones behave in a similar manner.

active -
-
-

being executed
interrupted by a higher priority process
on a list waiting to be executed

inactive -
-
-

waiting to input
waiting to output
waiting until a specified time

Figure 4 Linked process list

P

Q

R

S

Areg

Breg

Creg

Wptr

Iptr

FptrReg1

BptrReg1

Registers Local data

Iptr.s
Link.s

Iptr.s
Link.s

Iptr.s

Program
28/294 7170179 D

LSTi5518 3 Central processing unit
CONFIDENTIA

Each process runs until it has completed its action or is descheduled. In order for several processes to operate in
parallel, a low priority process is only permitted to execute for a maximum of two timeslice periods. After this, the
machine deschedules the current process at the next timeslicing point, adds it to the end of the low priority scheduling
list and instead executes the next active process. The timeslice period is 1ms.

There are only certain instructions at which a process may be descheduled. These are known as descheduling points.
A process may only be timesliced at certain descheduling points. These are known as timeslicing points and are
defined in such a way that the operand stack is always empty. This removes the need for saving the operand stack
when timeslicing. As a result, an expression evaluation can be guaranteed to execute without the process being
timesliced part way through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and the next
process taken from the list.

The processor core provides a number of special instructions to support the process model, including startp (start
process) and endp (end process). When a main process executes a parallel construct, startp is used to create the
necessary additional concurrent processes. A startp instruction creates a new process by adding a new workspace to
the end of the scheduling list, enabling the new concurrent process to be executed together with the ones already being
executed. When a process is made active it is always added to the end of the list, and thus cannot pre-empt processes
already on the same list.

The correct termination of a parallel construct is assured by use of the endp instruction. This uses a data structure that
includes a counter of the parallel construct components which have still to terminate. The counter is initialized to the
number of components before the processes are started. Each component ends with an endp instruction which
decrements and tests the counter. For all but the last component, the counter is non zero and the component is
descheduled. For the last component, the counter is zero and the main process continues.

3.3 Priority

The following section describes ‘default’ behavior of the CPU and it should be noted that the user can alter this
behavior, for example, by disabling timeslicing and priority interrupts.

The processor can execute processes at one of two priority levels, one level for urgent (high priority) processes, one for
less urgent (low priority) processes. A high priority process will always execute in preference to a low priority process if
both are able to do so.

High priority processes are expected to execute for a short time. If one or more high priority processes are active, then
the first on the queue is selected and executes until it has to wait for a communication, a timer input, or until it completes
processing.

If no process at high priority is active, but one or more processes at low priority are active, then one is selected. Low
priority processes are periodically timesliced to provide an even distribution of processor time between tasks which use
a lot of computation.

If there are n low priority processes, then the maximum latency from the time at which a low priority process becomes
active to the time when it starts processing is the order of 2n timeslice periods. It is then able to execute for between
one and two timeslice periods, less any time taken by high priority processes. This assumes that no process
monopolizes the time of the CPU; i.e. it has frequent timeslicing points.

Function High priority Low priority

Pointer to front of active process list FptrReg0 FptrReg1

Pointer to back of active process list BptrReg0 BptrReg1

Table 3 Priority queue control registers
 7170179 D 29/294

L3 Central processing unit STi5518
CONFIDENTIA
The specific condition for a high priority process to start execution is that the CPU is idle or running at low priority and
the high priority queue is non-empty.

If a high priority process becomes able to run while a low priority process is executing, the low priority process is
temporarily stopped and the high priority process is executed. The state of the low priority process is saved into
‘shadow’ registers and the high priority process is executed. When no further high priority processes are able to run, the
state of the interrupted low priority process is re-loaded from the shadow registers and the interrupted low priority
process continues executing. Instructions are provided on the processor core to allow a high priority process to store
the shadow registers to memory and to load them from memory. Instructions are also provided to allow a process to
exchange an alternative process queue for either priority process queue. These instructions allow extensions to be
made to the scheduler for custom run-time kernels.

A low priority process may be interrupted after it has completed execution of any instruction. In addition, to minimize the
time taken for an interrupting high priority process to start executing, the potentially time consuming instructions are
interruptible. Also some instructions may be aborted, and are restarted when the process next becomes active (refer to
Chapter 4: Instruction set on page 36).

3.4 Process communications

Communication between processes takes place over channels, and is implemented in hardware. Communication is
point-to-point, synchronized and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same CPU is implemented by a single word in memory; a channel
between processes executing on different processors is implemented by point-to-point links. The processor provides a
number of operations to support message passing, the most important being in (input message) and out (output
message).

The in and out instructions use the address of the channel to determine whether the channel is internal or external. This
means that the same instruction sequence can be used for both hard and soft channels, allowing a process to be
written and compiled without knowledge of where its channels are implemented.

Communication takes place when both the inputting and outputting processes are ready. Consequently, the process
which first becomes ready must wait until the second one is also ready. The inputting and outputting processes only
become active when the communication has completed.

A process performs an input or output by loading the evaluation stack with, a pointer to a message, the address of a
channel, and a count of the number of bytes to be transferred, and then executing an in or out instruction.

3.5 Timers

There are two 32-bit hardware timer clocks which ‘tick’ periodically. These are independent of any on-chip peripheral
real time clock. The timers provide accurate process timing, allowing processes to deschedule themselves until a
specific time.

One timer is accessible only to high priority processes and is incremented approximately every microsecond, cycling
completely in approximately 4295 seconds. The other is accessible only to low priority processes and runs 64 times
slower, giving 15625 ticks per second. It has a full period of approximately 76 hours.

Actual timer speeds are derived from the processor speed CPU_PROCLK and are given in the Clocks chapter. The
periods may be calculated as follows:

High_priority_clock_period = 1µs × Nominal_speed / CPU_PROCLK_speed
30/294 7170179 D

LSTi5518 3 Central processing unit
CONFIDENTIA
Low_priority_clock_period = High_priority_clock_period x 64

The current value of the processor clock can be read by executing a ldtimer (load timer) instruction. A process can
arrange to perform a tin (timer input), in which case it will become ready to execute after a specified time has been
reached. The tin instruction requires a time to be specified. If this time is in the ‘past’ then the instruction has no effect.
If the time is in the ‘future’ then the process is descheduled. When the specified time is reached the process becomes
active. In addition, the ldclock (load clock), stclock (store clock) instructions allow total control over the clock value and
the clockenb (clock enable), clockdis (clock disable) instructions allow each clock to be individually stopped and re-
started.

Figure 5 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

3.6 Traps and exceptions

A software error, such as arithmetic overflow or array bounds violation, can cause an error flag to be set in the CPU.
The flag is directly connected to the ErrorOut pin. Both the flag and the pin can be ignored, or the CPU stopped.
Stopping the CPU on an error means that the error cannot cause further corruption. As well as containing the error in
this way it is possible to determine the state of the CPU and its memory at the time the error occurred. This is

Register Function

ClockReg0 Current value of high priority (level 0) process clock.

ClockReg1 Current value of low priority (level 1) process clock.

TnextReg0 Indicates time of earliest event on high priority (level 0) timer queue.

TnextReg1 Indicates time of earliest event on low priority (level 1) timer queue.

TptrReg0 High priority timer queue.

TptrReg1 Low priority timer queue.

Table 4 Timer registers

Figure 5 Timer registers

ClockReg0

TnextReg0

TptrReg0

Work spaces

Program
5

21

31

Empty

Comparator

Alarm 21
 7170179 D 31/294

L3 Central processing unit STi5518
CONFIDENTIA
particularly useful for postmortem debugging where the debugger can be used to examine the state and history of the
processor leading up to and causing the error condition.

In addition, if a trap handler process is installed, a variety of traps/exceptions can be trapped and handled by software.
A user supplied trap handler routine can be provided for each high/low process priority level. The handler is started
when a trap occurs and is given the reason for the trap. The trap handler is not re-entrant and must not cause a trap
itself within the same group. All traps can be individually masked.

3.6.1 Trap groups

The trap mechanism is arranged on a per priority basis. For each priority there is a handler for each group of traps, as
shown in Figure 6 .

There are four groups of traps, as detailed below.

Breakpoint trap: The breakpoint instruction (j0) calls the breakpoint routine via the trap mechanism.

Errors: The traps in this group are IntegerError and Overflow. Overflow represents arithmetic overflow, such as
arithmetic results which do not fit in the result word. IntegerError represents errors caused when data is erroneous, for
example when a range checking instruction finds that data is out of range.

System operations: This group consists of the LoadTrap, StoreTrap and IllegalOpcode traps. The IllegalOpcode trap
is signalled when an attempt is made to execute an illegal instruction. The LoadTrap and StoreTrap traps allow a kernel
to intercept attempts by a monitored process to change or examine trap handlers or trapped process information. It
enables a user program to signal to a kernel that it wishes to install a new trap handler.

Scheduler: The scheduler trap group consists of the ExternalChannel, InternalChannel, Timer, TimeSlice, Run, Signal,
ProcessInterrupt and QueueEmpty traps. The ProcessInterrupt trap signals that the machine has performed a priority
interrupt from low to high. The QueueEmpty trap indicates that there is no further executable work to perform. The other
traps in this group indicate that the hardware scheduler wants to schedule a process on a process queue, with the
different traps enabling the different sources of this to be monitored.

The scheduler traps enable a software scheduler kernel to use the hardware scheduler to implement a multi-priority
software scheduler.

Note that scheduler traps are different from other traps as they are caused by the micro-scheduler rather than by an
executing process.

Figure 6 Trap arrangement

Low priority traps High priority traps

CPU Error
trap handler

System operations
trap handler

Scheduler
trap handler

Breakpoint
trap handler

CPU Error
trap handler

System operations
trap handler

Scheduler
trap handler

Breakpoint
trap handler
32/294 7170179 D

LSTi5518 3 Central processing unit
CONFIDENTIA
Trap groups encoding is shown in below. These codes are used to identify trap groups to various instructions.

In addition to the trap groups mentioned above, the CauseError flag in the Status register is used to signal when a trap
condition has been activated by the causeerror instruction. It can be used to indicate when trap conditions have
occurred due to the user setting them, rather than by the system.

3.6.2 Events that can cause traps

Table 6 summarizes the events that can cause traps and gives the encoding of bits in the trap Status and Enable
words.

3.6.3 Trap handlers

For each trap handler there is a trap handler structure and a trapped process structure. Both the trap handler structure
and the trapped process structure are in memory and can be accessed via instructions, see section Section .

The trap handler structure specifies what should happen when a trap condition is present, see .

Trap group Code

Breakpoint 0

CPU errors 1

System operations 2

Scheduler 3

Table 5 Trap group codes

Trap cause
Status/Enable
codes

Trap group Comments

Breakpoint 0 0 When a process executes the breakpoint instruction (j0) then it traps to
its trap handler.

IntegerError 1 1 Integer error other than integer overflow - e.g. explicitly checked or
explicitly set error.

Overflow 2 1 Integer overflow or integer division by zero.

IllegalOpcode 3 2 Attempt to execute an illegal instruction. This is signalled when opr is
executed with an invalid operand.

LoadTrap 4 2 When the trap descriptor is read with the ldtraph instruction or when the
trapped process status is read with the ldtrapped instruction.

StoreTrap 5 2 When the trap descriptor is written with the sttraph instruction or when
the trapped process status is written with the sttrapped instruction.

InternalChannel 6 3 Scheduler trap from internal channel.

ExternalChannel 7 3 Scheduler trap from external channel.

Timer 8 3 Scheduler trap from timer alarm.

Timeslice 9 3 Scheduler trap from timeslice.

Run 10 3 Scheduler trap from runp (run process) or startp (start process).

Signal 11 3 Scheduler trap from signal.

ProcessInterrupt 12 3 Start executing a process at a new priority level.

QueueEmpty 13 3 Caused by no process active at a priority level.

CauseError 15
(Status only)

Any, encoded
0-3

Signals that the causeerror instruction set the trap flag.

Table 6 Trap causes and status/enable codes
 7170179 D 33/294

L3 Central processing unit STi5518
CONFIDENTIA
The trapped process structure saves some of the state of the process that was running when the trap was taken.

In addition, for each priority, there is an Enables register and a Status register. The Enables register contains flags to
enable each cause of trap. The Status register contains flags to indicate which trap conditions have been detected.
The Enables and Status register bit encodings are given in Table 6 .

A trap will be taken at an interruptible point if a trap is set and the corresponding trap enable bit is set in the Enables
register. If the trap is not enabled then nothing is done with the trap condition. If the trap is enabled then the
corresponding bit is set in the Status register to indicate the trap condition has occurred.

When a process takes a trap the processor saves the existing Iptr, Wptr, Status and Enables in the trapped process
structure. It then loads Iptr, Wptr and Status from the equivalent trap handler structure and ANDs the value in Enables
with the value in the structure. This allows the user to disable various events while in the handler, in particular a trap
handler must disable all the traps of its trap group to avoid the possibility of a handler trapping to itself.

The trap handler then executes. The values in the trapped process structure can be examined using the ldtrapped
instruction (see section Section). When the trap handler has completed its operation it returns to the trapped process
via the tret (trap return) instruction. This reloads the values saved in the trapped process structure and clears the trap
flag in Status.

Note that when a trap handler is started, Areg, Breg and Creg are not saved. The trap handler must save the Areg,
Breg, Creg registers using stl (store local).

Comments Location

IPTR Iptr of trap handler process. Base + 3

WPTR Wptr of trap handler process. A null Wptr indicates that a trap handler has not been installed. Base + 2

Status Contains the Status register that the trap handler starts with. Base + 1

Enables A word which encodes the trap enable and global interrupt masks, which will be ANDed with the exist-
ing masks to allow the trap handler to disable various events while it runs.

Base + 0

Table 7 Trap handler structure

Comments Location

Iptr Points to the instruction after the one that caused the trap condition. Base + 3

Wptr Wptr of the process that was running when the trap was taken. Base + 2

Status The relevant trap bit is set, see for trap codes. Base + 1

Enables Interrupt enables. Base + 0

Table 8 Trapped process structure
34/294 7170179 D

LSTi5518 3 Central processing unit
CONFIDENTIA
Trap instructions

Trap handlers and trapped processes can be set up and examined via the ldtraph, sttraph, ldtrapped and sttrapped
instructions. Table 9 describes the instructions that may be used when dealing with traps.

The first four instructions transfer data to/from the trap handler structures or trapped process structures from/to an area
in memory. In these instructions Areg contains the trap group code and Breg points to the 4 word area of memory used
as the source or destination of the transfer. In addition Creg contains the priority of the handler to be installed/examined
in the case of ldtraph or sttraph. ldtrapped and sttrapped apply only to the current priority.

If the LoadTrap trap is enabled then ldtraph and ldtrapped do not perform the transfer but set the LoadTrap trap flag. If
the StoreTrap trap is enabled then sttraph and sttrapped do not perform the transfer but set the StoreTrap trap flag.

The trap enable masks are encoded by an array of bits (see Table 6) which are set to indicate which traps are enabled.
This array of bits is stored in the lower half-word of the Enables register. There is an Enables register for each priority.
Traps are enabled or disabled by loading a mask into Areg with bits set to indicate which traps are to be affected and
the priority to affect in Breg. Executing trapenb ORs the mask supplied in Areg with the trap enables mask in the
Enables register for the priority in Breg. Executing trapdis negates the mask supplied in Areg and ANDs it with the trap
enables mask in the Enables register for the priority in Breg. Both instructions return the previous value of the trap
enables mask in Areg.

3.6.4 Restrictions on trap handlers

There are various restrictions that must be placed on trap handlers to ensure that they work correctly.

• Trap handlers must not deschedule or timeslice. Trap handlers alter the Enables masks, therefore they must not
allow other processes to execute until they have completed.

• Trap handlers must have their Enable masks set to mask all traps in their trap group to avoid the possibility of a trap
handler trapping to itself.

• Trap handlers must terminate via the tret (trap return) instruction. The only exception to this is that a scheduler
kernel may use restart to return to a previously shadowed process.

Instruction Meaning Use

ldtraph load trap handler Load the trap handler from memory to the trap handler descriptor.

sttraph store trap handler Store an existing trap handler descriptor to memory.

ldtrapped load trapped Load replacement trapped process status from memory.

sttrapped store trapped Store trapped process status to memory.

trapenb trap enable Enable traps.

trapdis trap disable Disable traps.

tret trap return Used to return from a trap handler.

causeerror cause error Program can simulate the occurrence of an error.

Table 9 Instructions which may be used when dealing with traps
 7170179 D 35/294

L4 Instruction set STi5518
CONFIDENTIA
4 Instruction set
This chapter provides information on the ST20-C2+ instruction set. It contains tables listing all the instructions, and
where applicable provides details of the number of processor cycles taken by an instruction.

The instruction set has been designed for simple and efficient compilation of high-level languages. All instructions have
the same format, designed to give a compact representation of the operations occurring most frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits (MSB) of the byte are
a function code and the four least significant bits (LSB) are a data value, as shown below.

For further information on the instruction set refer to the ST20C2/C4 Instruction Set Manual (document number 72-
TRN-273).

4.1 Instruction cycles

Timing information is available for some instructions. However, it should be noted that many instructions have ranges of
timings which are data dependent.

Where included, timing information is based on the number of clock cycles assuming any memory accesses are to 2
cycle internal memory and no other subsystem is using memory. Actual time will be dependent on the speed of external
memory and memory bus availability.

Note that the actual time can be increased by:

• The instruction requiring a value on the register stack from the final memory read in the previous instruction – the
current instruction will stall until the value becomes available.

• The first memory operation in the current instruction can be delayed while a preceding memory operation
completes - any two memory operations can be in progress at any time, any further operation will stall until the first
completes.

• Memory operations in current instructions can be delayed by access by instruction fetch or subsystems to the
memory interface.

• There can be a delay between instructions while the instruction fetch unit fetches and partially decodes the next
instruction – this will be the case whenever an instruction causes the instruction flow to jump.

Note that the instruction timings given refer to ‘standard’ behavior and may be different if, for example, traps are set by
the instruction.

Figure 7 Instruction format

Function Data

7 4 3 0
36/294 7170179 D

LSTi5518 4 Instruction set
CONFIDENTIA
4.2 Instruction characteristics

Table 12 on page 38 gives the basic function code of each of the primary instructions. Where the operand is less than
16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (pfix) is
required for each additional four bits of the operand. If the operand is negative the first prefix instruction will be nfix.
Examples of pfix and nfix coding are given in Table 10 .

Any instruction which is not in the instruction set tables is an invalid instruction and is flagged illegal, returning an error
code to the trap handler, if loaded and enabled.

The Notes column of the tables indicates the features of an instruction as described in Table 11 .

Mnemonic Function code Memory code

ldc #3 #4 #43

ldc #35

is coded as

pfix #3 #2 #23

ldc #5 #4 #45

ldc #987

is coded as

pfix #9 #2 #29

pfix #8 #2 #28

ldc #7 #4 #47

ldc -31 (ldc #FFFFFFE1)

is coded as

nfix #1 #6 #61

ldc #1 #4 #41

Table 10 Prefix coding

Ident Feature

E Instruction can set an IntegerError trap

L Instruction can cause a LoadTrap trap

S Instruction can cause a StoreTrap trap

O Instruction can cause an Overflow trap

I Interruptible instruction

A Instruction can be aborted and later restarted.

D Instruction can deschedule

T Instruction can timeslice

Table 11 Instruction features
 7170179 D 37/294

L4 Instruction set STi5518
CONFIDENTIA
4.3 Instruction-set tables

Function code Memory code Mnemonic Processor cycles Name Notes

0 0X j 5 jump D, T

1 1X ldlp 1 load local pointer

2 2X pfix 0 to 1 prefix

3 3X ldnl 2 load non-local

4 4X ldc 1 load constant

5 5X ldnlp 1 load non-local pointer

6 6X nfix 0 to 1 negative prefix

7 7X ldl 1 load local

8 8X adc 1 add constant O

9 9X call 8 call

A AX cj 1 or 5 conditional jump

B BX ajw 2 adjust workspace

C CX eqc 1 equals constant

D DX stl 1 store local

E EX stnl 2 store non-local

F FX opr 0 operate

Table 12 Primary functions

Memory code Mnemonic Processor cycles Name Notes

22FA testpranal 2 test processor analyzing

23FE saveh 3 save high priority queue registers

23FD savel 3 save low priority queue registers

21F8 sthf 1 store high priority front pointer

25F0 sthb 1 store high priority back pointer

21FC stlf 1 store low priority front pointer

21F7 stlb 1 store low priority back pointer

25F4 sttimer 2 store timer

2127FC lddevid 1 load device identity

27FE ldmemstartval 1 load value of MemStart address

Table 13 Processor initialization operation codes
38/294 7170179 D

LSTi5518 4 Instruction set
CONFIDENTIA
Memory code Mnemonic Processor cycles Name Notes

24F6 and 1 and

24FB or 1 or

23F3 xor 1 exclusive or

23F2 not 1 bitwise not

24F1 shl 1 shift left

24F0 shr 1 shift right

F5 add 1 add A, O

FC sub 1 subtract A, O

25F3 mul 4 multiply A, O

27F2 fmul 6 fractional multiply A, O

22FC div 5 to 37 divide A, O

21FF rem 5 to 40 remainder A, O

F9 gt 1 greater than A

25FF gtu 1 greater than unsigned A

F4 diff 1 difference

25F2 sum 1 sum

F8 prod 4 product A

26F8 satadd 2 saturating add A

26F9 satsub 2 saturating subtract A

26FA satmul 5 saturating multiply A

Table 14 Arithmetic/logical operation codes

Memory code Mnemonic Processor cycles Name Notes

21F6 ladd 2 long add A, O

23F8 lsub 2 long subtract A, O

23F7 lsum 2 long sum

24FF ldiff 2 long diff

23F1 lmul 5 to 6 long multiply A

21FA ldiv 5 to 39 long divide A, O

23F6 lshl 2 long shift left A

23F5 lshr 2 long shift right A

21F9 norm 2 to 5 normalize A

26F4 slmul 5 signed long multiply A, O

26F5 sulmul 5 signed times unsigned long multiply A, O

Table 15 Long arithmetic operation codes
 7170179 D 39/294

L4 Instruction set STi5518
CONFIDENTIA
Memory code Mnemonic Processor cycles Name Notes

F0 rev 1 reverse

23FA xword 4 extend to word A

25F6 cword 3 check word A, E

21FD xdble 2 extend to double

24FC csngl 3 check single A, E

24F2 mint 1 minimum integer

25FA dup 1 duplicate top of stack

27F9 pop 1 pop processor stack

68FD reboot 1 reboot

Table 16 General operation codes

Memory code Mnemonic Processor cycles Name Notes

F2 bsub 1 byte subscript

FA wsub 1 word subscript

28F1 wsubdb 1 form double word subscript

23F4 bcnt 1 byte count

23FF wcnt 1 word count

F1 lb 1 load byte

23FB sb 2 store byte

24FA move move message I

Table 17 Indexing/array operation codes

Memory code Mnemonic Processor cycles Name Notes

22F2 ldtimer 1 load timer

22FB tin timer input I

24FE talt 3 timer alt start

25F1 taltwt timer alt wait D, I

24F7 enbt 2 to 8 enable timer

22FE dist disable timer I

Table 18 Timer handling operation codes
40/294 7170179 D

LSTi5518 4 Instruction set
CONFIDENTIA
Memory code Mnemonic Processor cycles Name Notes

F7 in input message D

FB out output message D

FF outword output word D

FE outbyte output byte D

24F3 alt 2 alt start

24F4 altwt 4 to 7 alt wait D

24F5 altend 9 alt end

24F9 enbs 1 to 2 enable skip

23F0 diss 1 disable skip

21F2 resetch 3 reset channel

24F8 enbc 2 to 5 enable channel

22FF disc 2 to 7 disable channel

Table 19 Input and output operation codes

Memory code Mnemonic Processor cycles Name Notes

22F0 ret 3 return

21FB ldpi 1 load pointer to instruction

23FC gajw 3 general adjust workspace

F6 gcall 6 general call

22F1 lend 5 to 8 loop end T

Table 20 Control operation codes

Memory code Mnemonic Processor cycles Name Notes

FD startp 5 start process

F3 endp 4 to 6 end process D

23F9 runp 3 run process

21F5 stopp 2 stop process

21FE ldpri 1 load current priority

Table 21 Scheduling operation codes
 7170179 D 41/294

L4 Instruction set STi5518
CONFIDENTIA
Memory code Mnemonic Processor cycles Name Notes

21F3 csub0 2 check subscript from 0 A, E

24FD ccnt1 3 check count from 1 A, E

22F9 testerr 2 test error false and clear

21F0 seterr 2 set error

25F5 stoperr 2 to 3 stop on error (no error) D

25F7 clrhalterr 1 clear halt-on-error

25F8 sethalterr 1 set halt-on-error

25F9 testhalterr 2 test halt-on-error

Table 22 Error handling operation codes

Memory code Mnemonic Processor cycles Name Notes

25FB move2dinit 3 initialize data for 2D block move

25FC move2dall 2D block copy I

25FD move2dnonzero 2D block copy non-zero bytes I

25FE move2dzero 2D block copy zero bytes I

Table 23 2D block move operation codes

Memory code Mnemonic Processor cycles Name Notes

27F4 crcword 36 calculate crc on word A

27F5 crcbyte 12 calculate crc on byte A

27F6 bitcnt 3 count bits set in word A

27F7 bitrevword 2 reverse bits in word

27F8 bitrevnbits 2 reverse bottom n bits in word A

Table 24 CRC and bit operation codes

Memory code Mnemonic Processor cycles Name Notes

27F3 cflerr 3 check floating point error E

29FC fptesterr 1 load value true (FPU not present)

26F3 unpacksn 10 unpack single length floating point num-
ber

A

26FD roundsn 7 round single length floating point number A

26FC postnormsn 9 post-normalize correction of single length
floating point number

A

27F1 ldinf 1 load single length infinity

Table 25 Floating point support operation codes
42/294 7170179 D

LSTi5518 4 Instruction set
CONFIDENTIA
Memory code Mnemonic Processor cycles Name Notes

2CF7 cir 3 check in range A, E

2CFC ciru 3 check in range unsigned A, E

2BFA cb 3 check byte A, E

2BFB cbu 2 check byte unsigned A, E

2FFA cs 3 check sixteen A, E

2FFB csu 2 check sixteen unsigned A, E

2FF8 xsword 3 sign extend sixteen to word A

2BF8 xbword 3 sign extend byte to word A

Table 26 Range checking and conversion instructions

Memory code Mnemonic Processor cycles Name Notes

2CF1 ssub 1 sixteen subscript

2CFA ls 1 load sixteen

2CF8 ss 2 store sixteen

2BF9 lbx 1 load byte and sign extend

2FF9 lsx 1 load sixteen and sign extend

Table 27 ndexing/array instructions

Memory code Mnemonic Processor cycles Name Notes

2FF0 devlb 3 device load byte A

2FF2 devls 3 device load sixteen A

2FF4 devlw 3 device load word A

62F4 devmove device move I

2FF1 devsb 3 device store byte A

2FF3 devss 3 device store sixteen A

2FF5 devsw 3 device store word A

Table 28 Device access instructions

Memory code Mnemonic Processor cycles Name Notes

60F5 wait 5 to 11 wait D

60F4 signal 7 to 12 signal

Table 29 Semaphore instructions
 7170179 D 43/294

L4 Instruction set STi5518
CONFIDENTIA
Memory code Mnemonic Processor cycles Name Notes

60F0 swapqueue 4 swap scheduler queue

60F1 swaptimer 5 swap timer queue

60F2 insertqueue 3 to 4 insert at front of scheduler queue

60F3 timeslice 3 to 4 timeslice

60FC ldshadow 6 to 31 load shadow registers A

60FD stshadow 6 to 17 store shadow registers A

62FE restart 20 restart

62FF causeerror 7 to 8 cause error

61FF iret 3 to 11 interrupt return

2BF0 settimeslice 2 set timeslicing status

2CF4 intdis 2 interrupt disable

2CF5 intenb 2 interrupt enable

2CFD gintdis 5 global interrupt disable

2CFE gintenb 5 global interrupt enable

Table 30 Scheduling support instructions

Memory code Mnemonic Processor cycles Name Notes

26FE ldtraph 12 load trap handler L

2CF6 ldtrapped 12 load trapped process status L

2CFB sttrapped 12 store trapped process status S

26FF sttraph 12 store trap handler S

60F7 trapenb 4 trap enable

60F6 trapdis 4 trap disable

60FB tret 8 to 10 trap return

Table 31 Trap handler instructions

Memory code Mnemonic Processor cycles Name Notes

68FC ldprodid 1 load product identity

63F0 nop 1 no operation

Table 32 Processor initialization and no operation instructions

Memory code Mnemonic Processor cycles Name Notes

64FF clockenb 2 clock enable

64FE clockdis 2 clock disable

64FD ldclock 2 load clock

64FC stclock 2 store clock

Table 33 Clock instructions
44/294 7170179 D

LSTi5518 5 Interrupt system
CONFIDENTIA
5 Interrupt system

5.1 Introduction

The interrupt system allows an on-chip module or external interrupt pin to interrupt an active process so that an
interrupt handling process can be run. Interrupts are signalled by one of the following:

• a signal on an external interrupt pin;

• a signal from an internal peripheral or subsystem;

• software asserting an interrupt in the pending register.

Interrupts are implemented by an on-chip interrupt controller and an on-chip interrupt level controller. The interrupt
level controller multiplexes the 31 incoming interrupt sources onto the eight programmable interrupt level inputs of the
interrupt controller. This multiplexing is controlled by software. This is illustrated in the figure below.

5.2 Interrupt controller

The interrupt controller supports eight prioritized interrupts as inputs, and manages the pending interrupts. This allows
nested pre-emptive interrupts for real-time system design. Interrupt level 7 has the highest priority and interrupt level 0
has the lowest priority.

All interrupts are at a higher priority than the low-priority process queue. Each interrupt can be programmed to be at a
lower or higher priority than the high-priority process queue by writing to the priority bit in the INC_HandlerWptr
registers. Interrupts which are specified as higher priority must be contiguous from the highest numbered interrupt
downwards. For example, if 4 interrupts are programmed as high-priority and 4 as low-priority, then the higher priority
interrupts must be set to Interrupt7:4 and the lower priority interrupts to Interrupt3:0.

Each of the eight interrupt levels of the interrupt controller can be programmed with a interrupt trigger mode, using the
INC_TriggerMode register. The trigger mode can be set to be high or low level, or rising edge, falling edge or any edge
sensitive. Note that all on-chip module interrupt sources produce active-high level interrupt signals. Therefore the

Figure 8 STi5518 Interrupt system

CPU

Interrupt
controller

Interrupt
level

controller

8 prioritized
interrupt levels

N
 in

te
rr

up
t s

ou
rc

es
 (

w
he

re
 N

 is
 0

-3
0

)

On-chip module N=2

On-chip module N=1

On-chip module N=23

On-chip module N=22

On-chip module N=0

IRQ0 pin 127 - SERVO interrupt request (N=24)
IRQ1 pin 126 - ATAPI interrupt request (N=25)

IRQ2 pin 125 - MD interrupt request (N=26)

Audio interrupt from MPEGAV Block (N=27)

Video interrupt from MPEGAV Block (N=28)

AC3 interrupt from MPEGAV Block (N=29)

Link Interface Interrupt (N=30)
 7170179 D 45/294

L5 Interrupt system STi5518
CONFIDENTIA
interrupt level that these interrupt sources are multiplexed onto (by the interrupt level controller) must be programmed
with a high-level trigger mode.

Furthermore, each of the eight interrupt levels can be programmed to be enabled or disabled by the INC_MASK
register. The default state of INC_MASK is that all interrupt levels are disabled. A corresponding level bit is set in the
INC_PENDING register if the interrupt signal from the interrupt level controller matches the level trigger condition. If this
is the highest priority bit set in the INC_PENDING register, the CPU will then execute the interrupt handler associated
with that level by the INC_HANDLERWPTR register and the INC_PENDING bit will then be reset. If the level bit set in
the INC_PENDING register is not the highest priority bit set, then the bit remains set until it is the highest priority level
bit, then the CPU executes the associated interrupt handler for that level. Note the CPU will only execute the interrupt
handler and then clear the INC_PENDING register bit if it is enabled in the INC_MASK register. Software can write to
the INC_PENDING register to generate a software interrupt on any of the eight interrupt-levels.

Programming of the INC_MASK, INC_PENDING and INC_TRIGGERMODE registers is supported via the operating
system run time library functions of STLite (a.k.a OS20).

The interrupt controller also contains an INC_EXEC register used by the interrupt controller logic to keep a record of
which interrupt-level handler is currently executing on the CPU (or was previously executing before being pre-empted
by a high priority process, for low priority interrupts) and which levels have been pre-empted by higher priority interrupt
levels. This register can be read by user software, if required, but the register must never be written to as its behavior
is undefined.

5.3 Interrupt vector table

The interrupt controller contains a table of pointers to interrupt handlers. There are 8 interrupt handlers, each controlled
by a work-space register INC_HandlerWptr 0-7. The table of pointer values contains a work-space pointer for each
interrupt level.

The INC_HandlerWptr registers access the code, data and interrupt-save area of the interrupt handler. The position of
the INC_HandlerWptr register in the interrupt table sets the priority of the interrupt.

The operating system run time library (STLite a.k.a. OS20) supports the setting and programming of the vector table.

Figure 9 Interrupt priority

Interrupt 7

Interrupt 0

High priority

Low priority

Increasing
pre-emption

.

...

process

process

Interrupt 7

Interrupt 0

.

...

when Priority bit set to 1

when Priority bit set to 1

when Priority bit set to 0

when Priority bit set to 0
46/294 7170179 D

LSTi5518 5 Interrupt system
CONFIDENTIA
5.4 Interrupt handlers

At any interruptible point in its execution, the CPU can receive an interrupt request from the interrupt controller. The
CPU immediately acknowledges the request.

In response to receiving an interrupt, the CPU performs a procedure call to the process in the vector table. The state of
the interrupted process is stored in the work space of the interrupt handler as shown in Figure 10 . Each interrupt level
has its own work space.

The interrupt routine is initialized with space below HandlerWptr. The Iptr and Status word for the routine are stored
there permanently. This should be programmed before the HandlerWptr is written into the vector table.

The behavior of the interrupt differs depending on the priority of the CPU when the interrupt occurs. If an interrupt
occurs when the CPU is running at high priority, and the interrupt is set at a higher priority than the high priority process
queue, the CPU saves the current process state (Areg, Breg, Creg, Wptr, Iptr and Status) into the workspace of the
interrupt handler. The value HandlerWptr, which is stored in the interrupt controller, points to the top of this work space.
The values of Iptr and Status to be used by the interrupt handler are loaded from this work space and starts executing
the handler. The value of Wptr is then set to the bottom of this save area.

If an interrupt occurs when the CPU is running at high priority, and the interrupt is set at a lower priority than the high
priority process queue, no action is taken and the interrupt waits in a queue until the high priority process queue is
empty (see Pre-emption and interrupt priority on page 48).

Interrupts always take priority over low priority processes. If an interrupt occurs when the CPU is idle or running at low
priority, the Status is saved. This indicates that no valid process is running (Null Status). The interrupted processes
(low priority process) state is stored in shadow registers. This state can be accessed via the ldshadow (load shadow
registers) and stshadow (store shadow registers) instructions. The interrupt handler is then run at high priority.

When the interrupt routine has completed it must adjust Wptr to the value at the start of the handler code and then
execute the iret (interrupt return) instruction. This restores the interrupted state from the interrupt handler structure and
signals to the interrupt controller that the interrupt has completed. The processor will then continue from where it was
before being interrupted.

Figure 10 State of interrupted process

Before interrupt

HandlerWptr

Areg

Breg

Creg

Interrupting high priority

HandlerWptr

Wptr

Iptr

Status

HandlerWptr

Null Status

process
Interrupting low priority

process or CPU idle

Handler Iptr

Handler Status

Handler Iptr

Handler Status

Handler Iptr

Handler Status
 7170179 D 47/294

L5 Interrupt system STi5518
CONFIDENTIA
5.5 Interrupt latency

The interrupt latency depends on the type of data being accessed, and the position in memory of the interrupt handler
and the interrupted process. This allows a trade-off of between fast internal SRAM memory and interrupt latency.

5.6 Pre-emption and interrupt priority

Each interrupt channel has an implied priority fixed by its place in the interrupt vector table. All interrupts cause
scheduled processes of any priority to be suspended and the interrupt handler started. Once an interrupt has been sent
from the controller to the CPU the controller keeps a record of the current executing interrupt priority in the INC_EXEC
register. This is only cleared when the interrupt handler executes a return from interrupt (iret) instruction. Interrupts of a
lower priority arriving are blocked by the interrupt controller until the interrupt priority is low enough for the routine to
execute. An interrupt of a higher priority than the currently executing handler is passed to the CPU and causes the
current handler to be suspended until the higher priority interrupt is serviced. In this way, interrupts can be nested and
a higher priority interrupt always pre-empts a lower priority one.

Note: deep nesting and the placing of frequent interrupts at high priority can result in systems where low priority
interrupts are never serviced or CPU time is consumed in nesting interrupt priorities instead of executing the interrupt
handlers.

5.7 Restrictions on interrupt handlers

For optimum interrupt handling, the following restrictions are placed on interrupt handlers:

• Interrupt handlers must not deschedule.

• Interrupt handlers must not execute communication instructions. However they may communicate with other
processes through shared variables using the semaphore signal to synchronize.

• Interrupt handlers must not perform CPU 2D block move instructions.

• Interrupt handlers must not cause program traps. However they may be trapped by a scheduler trap.
48/294 7170179 D

LSTi5518 5 Interrupt system
CONFIDENTIA
5.8 Interrupt level controller

The interrupt level controller multiplexes 31 incoming interrupt source signals onto the eight interrupt level inputs of the
interrupt controller. In this way, it gives programmable control of the priority of the interrupt sources and extends the
number of possible interrupts to 31.

The incoming interrupt signals can be generated by on-chip subsystems or received from external pins. Table 34 on
page 50 assigns each of the interrupt sources to a number N from 0-30. Software assigns a signal n to one of the 8
interrupt levels by writing the priority of the required input in the register INC_IntnPriority. Each of the 31 interrupt
sources in the interrupt level controller can be selectively enabled or disabled at source, by writing to the
INC_SRC_MASK register. This is in addition to the individual masking of the 8 levels in the interrupt controller. This
means that the user can disable just the interrupt source from generating an interrupt, without disabling all other
interrupt sources mapped onto that interrupt level. This would be the case if the INC_MASK register in the interrupt
controller was used. Each interrupt source can be used to trigger an interrupt and can be programmed to trigger on
rising or falling edges, or on the high or low logic level of the incoming interrupt source signal. This is controlled by
writing to the INC_SRC_TRIGGERMODE registers.

The STi5518 enhanced feature interrupt level controller is software backward compatible with the interrupt level
controller in the STi5500, STi5505 and STi5508. Backward compatibility can be maintained by setting the interrupt
trigger on the interrupt levels in the interrupt controller, as was done before. The default state of the interrupt level
controller trigger mode registers is high, therefore, these new registers do not need to be programmed. In this case the
interrupt level controller will effectively pass the interrupt source signal through, unmodified, to the interrupt
controller. The default state of all of the INC_SRC_MASK register bits is 1, meaning that all of the interrupt sources are
enabled. This is again to maintain software backwards compatibility.

If the non-default trigger modes in the interrupt level controller are to be used, the corresponding trigger mode for the
interrupt level in the interrupt controller that the source(s) are mapped to, must be programmed to high level.
Otherwise, the trigger mode in the interrupt controller and the interrupt level controller may conflict. The
INC_InputInterrupt register has the same function as before in STi5500, STi5505, STi5508 and can be used to indicate
the current logic state of the all the interrupt sources. Note that this register is just a buffered version of the interrupt
source signals before the trigger mode detection stage and does not latch the signal, as does the INC_SRC_STATUS
register, for interrupt sources defined with an edge sensitive trigger mode. The INC_SRC_STATUS register is more
useful, because of this feature, as it can be read by the interrupt handler software routine to determine which interrupt
sources have triggered.

For example, if the interrupt source is external and provides a pulse, the interrupt level controller would have the
interrupt source trigger mode set to be rising edge. On a rising edge the corresponding bit in the INC_SRC_STATUS
register would be set high and would remain set until explicitly cleared by the interrupt handler routine writing to the
corresponding bit in the INC_SRC_CLEAR register. However if the pulse was short, by the time the interrupt handler
was executed and it read the INC_InputInterrupt register, the pulse may have returned to a logic low and the bit would
be read as zero. Thus the cause of interrupt could not be determined if more than one interrupt source had been
multiplexed onto the interrupt level.

So now, using the INC_SRC_STATUS register, it is possible to multiplex interrupt sources of different types, including
edge sensitive, onto the same interrupt level in the interrupt controller.

The STi5518 interrupt level controller also has two new registers mapped into its register address space, that have no
connection with normal interrupt operation. These registers are for controlling waking up the CPU by an external
interrupt pin, when it has been put into low power mode, by the low power controller module. The register
INC_SELNOTINV controls whether the three external interrupt pins are active high or low, to wake up the CPU from low
power mode. Note that the setting of this register has no effect on the triggering of the external interrupt pins in the
interrupt level controller. The register INC_EN_INT is a mask register to enable or disable the external interrupt pins
from waking up the CPU from low power mode. Again, this has no effect on the masking of these interrupts in the
interrupt level controller.
 7170179 D 49/294

L5 Interrupt system STi5518
CONFIDENTIA
5.9 Interrupt assignments

All interrupts are active high. Interrupts from the internal peripherals and external pins are assigned as in the table
below.

INT N Peripheral Description of the functions

0 PIO 0 Compare function

1 PIO 1 Compare function

2 PIO 2 Compare function

3 PIO 3 Compare function

4 PIO 4 Compare function

5 SSC0 SSC0TIR, SSC0RIR, SSC0EIR I2C MASTER

6 SSC1 SSC1TIR, SSC1RIR, SSC1EIR I2C MASTER

7 UART 3 ASC3TIR, ASC3TBIR, ASC3RIR, ASC3EIR

8 UART 2 ASC2TIR, ASC2TBIR, ASC2RIR, ASC2EIR

9 UART 1 ASC1TIR, ASC1TBIR, ASC1RIR, ASC1EIR

10 UART 0 ASC0TIR, ASC0TBIR, ASC0RIR, ASC0EIR

11 PWM and Capture PWMFunctions, (Capture0Int, Capture1Int TBD)

12 MPEG3DMA 0 MPEG3DMA0 Interrupt

13 MPEG3DMA 1 MPEG3DMA1 Interrupt

14 MPEG3DMA 2 MPEG3DMA 2 inside the Link Interface interrupt

15 BLOCK MOVE Blockmove Interrupt

16 MODEM DMA MAFE modem Interface Interrupt

17 PIO5 Compare Function

18 IR Blaster Tx, Rx interrupts

19 TeleText Ttxt DMA interrupt

20-23 Reserved Tied low internally

24 IRQ0 pin 127 SERVO interrupt request

25 IRQ1 pin 126 ATAPI interrupt request

26 IRQ2 pin 125 MD interrupt request

27 MPEGAV block Audio interrupt from MPEGAV block

28 MPEGAV block Video interrupt from MPEGAV block

29 MPEGAV block Sector processor interrupt or HDD link interrupt

30 Link interface interrupt Link interface interrupt

Table 34 STi5518 Interrupt assignments
50/294 7170179 D

LSTi5518 6 Memory map
CONFIDENTIA
6 Memory map

6.1 Overview

The STi5518 has a 32-bit signed 2s-complement address space. A byte of memory is addressed by a 30-bit word
address plus a 2-bit byte-selector identifier in the word. A word of memory is addressed by a 30-bit word address with
the byte-selector set to zero.

Memory is divided into areas with different purposes. Some areas are dedicated to a specific purpose, either because
they contain memory-mapped devices or because they are reserved by the system. The figure below shows the
memory map.

Figure 11 Memory map

4 Kbyte SRAM

2 Kbyte configurable as data cache or SRAM
0x80001800

0xC0000000

0x00000000

0x80000000

0x80001000

Shared SDRAM
0xC0800000

0x40000000

EMI Bank 0

EMI Bank 1

EMI Bank 2

EMI Bank 3

0x50000000

0x60000000

0x70000000

Peripheral configuration registers

0x20040000

R
eg

io
n

0
R

eg
io

n
3

R
eg

io
n

2
R

eg
io

n
1

Not available

Reserved

Not available

0xFFFFFFFF
 7170179 D 51/294

L6 Memory map STi5518
CONFIDENTIA
Memory is normally accessed by the load, store, block move and channel instructions. These will use data cache if
it is enabled, and do not guarantee the order of accesses to different addresses.

6.2 Mapping

The address space is divided into the following regions:

• Region 0: DCache or SRAM, the bottom 4 Kbytes (or 6 Kbytes if the data cache is not used) is occupied by on-chip
SRAM.

• Region 1: Shared SDRAM, the 8 Mbyte area from 0xC0000000 to 0xC07FFFFF is for SDRAM and is shared with
the MPEG decoders;

• Region 2: Peripheral configuration registers, the area from 0x00000000 to 0x3FFFFFFF is dedicated to memory-
mapped or command-mapped on-chip peripherals;

• Region 3: EMI banks0 to 3, 0x40000000 to 0x7FFFFFFF is for external memory and peripherals, accessed through
the EMI

Designation Start End Description

MPEG #00000000 #000001FF MPEG Video

#00000200 #000002FF MPEG Audio

#00000400 #000005FF Sub-Picture decoder

#00000600 #000006FF DENC decoder

#00000700 #000007FF Reserved

#00000800 #000009FF MPEG Video fifos accesses

#00000A00 #00000BFF MPEG Audio fifos accesses

#00000C00 #00000DFF Sub-Picture decoder accesses

#00000E00 #00000FFF MPEG control registers

Configuration #00002000 #00002FFF EMI configuration

#00003000 #00003FFF DCU

#00004000 #00004FFF Cache configuration

#00005000 #1FFFFFFF Reserved

Table 35 STi5518 memory map
52/294 7170179 D

LSTi5518 6 Memory map
CONFIDENTIA
Peripherals #20000000 #20000FFF Int. controller

#20003000 #20003FFF UART0 (ASC0) Smartcard 0

#20004000 #20004FFF UART1 (ASC1)

#20005000 #20005FFF UART2 (ASC2)

#20006000 #20006FFF UART3 (ASC3) Smartcard 1

#20007000 #20007FFF SCCG0 (Smcard 0 clkgen)

#20008000 #20008FFF SCCG1 (Smcard1 clkgen)

#20009000 #20009FFF SSC0

#2000A000 #2000A0FF SSC1

#2000A100 #2000A1FF PIO5

#2000A200 #2000A2FF IR Blaster

#2000A300 #2000A3FF TTXT

#2000A400 #2000AFFF Reserved

#2000B000 #2000BFFF PWM

#2000C000 #2000CFFF PIO 0

#2000D000 #2000DFFF PIO 1

#2000E000 #2000EFFF PIO 2

#2000F000 #2000FFFF PIO 3

#20010000 #20010FFF PIO 4

#20011000 #20011FFF ILC

#20024000 #20024FFF MPEGDMA 0

#20025000 #20025FFF MPEGDMA 1

#20026000 #20026FFF Block Move DMA

#20027000 #20027FFF MODEM DMA

#20030000 #20037FFF Reserved

#20038000 #2003FFFF Link extra (Link Interface)

Designation Start End Description

Table 35 STi5518 memory map
 7170179 D 53/294

L6 Memory map STi5518
CONFIDENTIA
Region 3
EMI banks0 to 3

0x40000000 0x4FFFFFFF EMI bank 0. SDRAM/DRAM supported

0x50000000 0x5FFFFFFF EMI bank 1. SDRAM/DRAM supported

0x60000000 0x6FFFFFFF EMI bank 2. SDRAM/DRAM not supported

0x70000000 0x7FFFFFFF EMI bank 3, normally used for boot ROM. DRAM not sup-
ported

0x7FFFFFFE Boot entry point

Region 0
DCache or SRAM

0x80000000 0x80000003 Reserved

0x80000004 0x8000000F Reserved

0x80000010 0x80000013 Reserved

0x80000014 0x8000003F Reserved

0x80000040 0x8000004F High priority Breakpoint trap handler

0x80000050 0x8000005F High priority Breakpoint trapped process

0x80000060 0x8000006F High priority Error trap handler

0x80000070 0x8000007F High priority Error trapped process

0x80000080 0x8000008F High priority SystemOperations trap handler

0x80000090 0x8000009F High priority SystemOperations trapped process

0x800000A0 0x800000AF High priority Scheduler trap handler

0x800000B0 0x800000BF High priority Scheduler trapped process

0x800000C0 0x800000CF Low priority Breakpoint trap handler

0x800000D0 0x800000DF Low priority Breakpoint trapped process

0x800000E0 0x800000EF Low priority Error trap handler

0x800000F0 0x800000FF Low priority Error trapped process

0x80000100 0x8000010F Low priority SystemOperations trap handler

0x80000110 0x8000011F Low priority SystemOperations trapped process

0x80000120 0x8000012F Low priority Scheduler trap handler

0x80000130 0x8000013F Low priority Scheduler trapped process

0x80000140 0x80000FFF Internal SRAM: < 4 Kbytes user code, data and stack

0x80001000 0x800017FF Internal SRAM if data cache is not enabled.User-code, data
and stack

0x80001800 0xBFFFFFFF Reserved

Region 1
Shared SDRAM

0xC0000000 0xC07FFFFF SDRAM. Video memory, user code, data, stack

0xC0400000 0xFFFFFFFF Reserved

Designation Start End Description

Table 35 STi5518 memory map
54/294 7170179 D

LSTi5518 6 Memory map
CONFIDENTIA
6.3 System memory use

The following sections of address space are reserved for system use:

• The locations below the address MemStart at the bottom of memory are dedicated to processor use. The address
of MemStart is returned by the ldmemstartval instruction.

• When booting from ROM, the system boots from the predefined location BootEntry (0x7FFFFFFE) at the top of
memory.

Areas of memory reserved for processor use should not be accessed directly. Special instructions are provided for
manipulating these areas.

The special address MemStart marks the base of user memory space.

Peek and poke use the two words above MemStart, i.e. memory locations 0x80000140 to 0x80000147. The use of
peek and poke is described in System services on page 82.

Subsystem channels memory

Each channel based DMA subsystem is allocated a word of storage below MemStart. This is used by the processor to
store information about the state of that channel. This information should not normally be examined directly, although
debugging kernels may need to do so.

Interrupting DMA subsystems do not have a channel word allocated and rely on interrupts to perform synchronization
with the processes running on the processor.

Memory for trap handlers

The area of memory reserved for trap handlers is broken down hierarchically as follows:

• each high/low process priority has a set of trap handlers;

• each set of trap handlers has a handler for each of the four trap groups;

• each trap group handler has a trap handler structure and a trapped process structure;

• each of the structures contains four words.

The contents of these addresses can be accessed via ldtraph, sttraph, ldtrapped and sttrapped instructions.

Boot ROM

When the processor boots from ROM, it jumps to a boot program held in ROM with an entry point 2 bytes from the top
of memory at 0x7FFFFFFE. These 2 bytes are used to encode a negative jump of up to 256 bytes down in the ROM
program. For large ROM programs it may then be necessary to encode a longer negative jump to reach the start of the
routine.
 7170179 D 55/294

L7 Memory STi5518
CONFIDENTIA
7 Memory

7.1 External memory

Programmable CPU interface memory

The programmable CPU interface memory (commonly referred to as the EMI) decodes region 3 of the address space
into four banks, into which different external memories and peripherals can be mapped. Further details of the EMI can
be found in Programmable CPU memory interface on page 63. Two of the banks support DRAM and one bank is
normally used for boot ROM.

• Locations 0x40000000 to 0x5FFFFFFF (banks 0 and 1) are generally used for SDRAM/DRAM, but may be used for
any external memory or peripherals.

• The locations 0x60000000 to 0x6FFFFFFF (bank 2) may be used for any external memory or peripherals except
SDRAM/DRAM.

• The locations 0x70000000 to 0x7FFFFFFF (bank 3) may be used for any external memory or peripherals except
SDRAM/DRAM, but are generally used for boot ROM. When booting from ROM, the system boots from the
predefined location BootEntry (0x7FFFFFFE) at the top of memory space.

Accessing some areas of memory causes special access characteristics (strobes etc.) to be generated depending on
the way the EMI is programmed.

The EMI provides address decoding, address and data buses, timing strobes, enabling signals and refresh where
appropriate.

Shared SDRAM memory

The shared SDRAM memory occupies the first 16, 32 or 64 Mbits of region 1, and is shared with the MPEG decoders.
OSD bitmaps, for example, are stored in this memory.

For details of the shared SDRAM memory interface configuration and set-up, refer to the Register Manual.

7.2 On-chip SRAM memory

This internal memory module, known as on-chip memory, contains 6 Kbytes of SRAM, which is mapped into the lowest
6 Kbytes of memory space from MinInt (0x80000000) extending upwards, as shown in Figure 11 on page 51.

Part of the lowest 4 Kbytes of memory is committed to system use; see System memory use on page 55 for details. The
remainder of the lowest 4 Kbytes of memory is uncommitted and can be used to store on-chip data, stack or code for
time-critical routines.

The upper 2 Kbytes of the on-chip memory is also uncommitted SRAM, and is contiguous with the lower 4 Kbytes.
However, it can be configured to be the data cache, as described below, in which case it is not available as SRAM.

Locations between 0x80001800 (or 0x80001000 if data cache is used) and 0xBFFFFFFF should not be addressed.

7.3 Caching

Cache can be used to reduce the average access delay imposed on the CPU when it accesses a memory location to
read or write. Some locations should not be cached, for example those to which other modules have direct memory
access (DMA) and the CPU also requires access to those locations. This is because DMA operations always bypass
the data cache and so cache incoherence problems will occur. It is therefore recommended to configure such memory
locations as being non-cacheable.

The STi5518 cache subsystem provides:
56/294 7170179 D

LSTi5518 7 Memory
CONFIDENTIA
• 2 Kbytes of direct-mapped write-back data cache

• 2 Kbytes of direct-mapped read-only instruction cache

The cache configuration is held in memory-mapped registers. The registers must be accessed using the device access
instructions.

Device access instructions can also be used to force access to external memory as they bypass the cache. Device
writes do not change the value in the cache. These instructions can be used to solve any cache coherency issues, for
example where data is being DMA copied from a cached location. However care must be taken in using device access
instructions to access memory (rather than device registers) as cache coherency problems may occur rather than
being solved, if the CPU also performs normal (therefore cached) memory accesses to these locations.

Registers are provided to configure areas of memory to be cacheable or non-cacheable for data access, as described
in Cacheable and non-cacheable memory locations on page 60.

Note that the correct cache initialization sequences, described in Cache initialization on page 58, must be used before
the caches are enabled.

7.3.1 Outline of operation

The cache is four 32-bit words (16 bytes) wide and 128 lines (2 KBytes, 512 words) high. It is direct-mapped
(sometimes called one way set associative). This is shown in Figure 12 below.

Each line of the cache can only store data from specific four-word sections of memory at 2 Kbyte intervals, with the
bottom line of the cache coinciding with the 4 words just above each 2 Kbyte boundary. Thus the line number of the
cache pinpoints the four-word section of memory within a 2 Kbyte block, i.e. bits 4 to 10 of the address. The 21 most
significant bits of the address selects the 2 Kbyte block. These 21 bits are stored in 128 tag registers, with one tag

Figure 12 Kbyte data or instruction cache2

16 bytes per line

128 lines

Address tag

bits 31 to 11
 7170179 D 57/294

L7 Memory STi5518
CONFIDENTIA
register corresponding to each cache lines. The significance of the parts of the address when using the cache are
shown in the figure below.

If a request is made to access a cacheable memory location, and a copy of that location is held in cache, then the
access is said to have made a cache hit. A hit is identified by comparing the address bits 11 to 31 with the address tag
for the cache line given by the address bits 4 to 10. If the cache is hit, then the access is completed by the cache
subsystem. If the cache is missed, the appropriate cache line is written back to memory, and if necessary the new
location in memory is read into that cache line. All cache reads and writes to memory are complete lines because of the
efficiency of accessing the memory in burst mode.

7.3.2 Cache initialization

Before the caches are enabled, they must be correctly initialized. To do this the cache must first be invalidated before it
is accessed. To ensure this occurs, the invalidate bit of each cache must be set with the cache disabled and then the
enable bit set to enable the cache.

This sequence has the effect of forcing a cache to be invalid, which initializes the cache state before any other
accesses are considered by the cache.

7.3.3 Cache subsystem control

The cache subsystem registers control cache functions such as flushing and invalidation, and are used to mark
sections of memory space as cacheable or not cacheable. Registers should be accessed using the device access
instructions.

The CAC_CACHECONTROLLOCK must be 0 before some registers can be changed. After changing registers, the
CAC_CACHECONTROLLOCK should be set to 1. Once this lock is set it cannot be cleared except by a reset. It is not
recommended to change the cache configuration other than at reset.

7.3.4 Data cache

It is possible to select either data cache or an extra 2 Kbyte of on-chip SRAM. This is done by writing to the
CAC_DCACHENOTSRAM register. The default is to enable the extra on-chip SRAM.

Set the CAC_DCACHENOTSRAM bit to 1 to select data cache mode and enable the cache. Do not access locations
0x80001000 to 0x800017FF when using the data cache. The cache invalidate bit should be set before enabling the
cache. Invalidating a cache marks every line as not containing valid data. This is done by setting the
CAC_INVALIDATEDCACHE register to 1. This register is automatically reset to 0 on completion of the task, but it
cannot be directly read by the CPU as the register is write only. Therefore bit 2 is provided in the CAC_CACHESTATUS
register to indicate when the invalidate operation has completed.

Figure 13 Address fields when using cache

4-bit selector of

byte within cache line

0341031

7-bit selector of line in
2 Kbyte memory block or cache

21-bit address tag
58/294 7170179 D

LSTi5518 7 Memory
CONFIDENTIA
Note that for the data cache, setting the CAC_INVALIDATEDCACHE register before the cache is enabled does not
actually cause the invalidation sequence to begin. This only occurs when the cache is enabled when writing to the
CAC_DCACHENOTSRAM register. So the initialize sequence of operations should be:

• write 1 to the CAC_INVALIDATEDCACHE register;

• write 1 to the CAC_DCACHENOTSRAM register as an “atomic” operation.
Where, “atomic” means than no other CPU software processes / tasks, trap handlers or interrupt handlers can
execute in the time between the write to invalidate register and the write to cache enable register. Note: this will
normally be the case as the cache initialization should be performed during the initialization stage of the application
code, before any operating system (STLite/OS20) or interrupt handlers have been installed.

• wait for the invalidate sequence (128 CPU clock cycles) to finish.
This can done by a software delay loop and/ or by polling bit 2 of the cache status register.

Note it is recommended to ensure that the CPU does not attempt to execute any code or access any data in cacheable
memory locations before the invalidate sequence has finished. Therefore if the cache initialization is done by the CPU
(rather than by poking the registers via the TAP and DCU, before booting the application code from the software
toolset) the CPU software (code and data) that waits for the invalidate sequence to finish should reside in non-
cacheable memory locations, so that the cache is not accessed while it is still invalidating. If this is not ensured it is
possible for data corruption to occur.

It is not recommended to change selection from data cache to SRAM during operation. However, if it is necessary to do
so, it is essential to flush the cache to maintain memory integrity before making the change.

Flushing the cache means forcing a write-back to memory of every dirty line in the cache. A dirty line is a line of cache
that has been written to since it was loaded or last written back. Only the data cache can be flushed; the instruction
cache never needs flushing since it is read only.

To flush the data cache, set the CAC_FLUSHINGDCACHE register to 1. It is automatically reset to 0 on completion of
the task, but cannot be read directly by the CPU as the register is write only. Therefore to check that the flush operation
has finished it is necessary to poll bit 4 of the cache status register.

Ensure that the cache-flush software function is “atomic” and operates as follows:

• writes to the flush register;

• waits for the flush to finish;

• writes to the CAC_DCACHENOTSRAM register as an “atomic” operation.

Where, “atomic” means than no other software processes / tasks, trap handlers or interrupt handlers can execute in the
time between writing to the flush register and the DCache being changed back to SRAM mode.

Note: the CPU code function and associated data used to perform this sequence must be placed in non-cacheable
memory locations, so the cache is not accessed while it is still flushing.

7.3.5 Instruction cache

To use the instruction cache it must be first be invalidated by writing 1 to the CAC_INVALIDATEICACHE register.
Invalidating a cache marks every line as not containing valid data. This is done by setting the
CAC_INVALIDATEICACHE register to 1. This register is automatically reset to 0 on completion of the task (128 CPU
cycles). However this register can not be read by the CPU, as it is write only, therefore bit 3 (Invalidating ICache) in the
CAC_CACHESTATUS register can be read instead to check that the invalidate operation has completed. The
instruction cache must be allowed to complete the invalidate operation before the cache is enabled. Note: unlike the
data cache the instruction cache actually starts the invalidation sequence when the CAC_INVALIDATEICACHE is
written to and so can be allowed to complete before enabling the cache by writing to the CAC_ENABLEICACHE
register.
 7170179 D 59/294

L7 Memory STi5518
CONFIDENTIA
The instruction cache can then be enabled by writing 1 to the CAC_ENABLEICACHE register; the default condition is
disabled, no instruction cache.

The CAC_CACHESTATUS register is read only, and shows the current state of the caches.

The cache configuration can be locked by writing a 1 to the CAC_CACHECONTROLLOCK register bit. Reset of this
flag is only performed by a hardware reset. This bit should be set to 1 after all the cache configuration registers have
been written.

7.3.6 Cacheable and non-cacheable memory locations

Note: The cacheability control registers for both region1 and region 3 should be programmed before the caches are
enabled. In this way the cacheable and non-cacheable memory areas are already defined when the caches are
enabled, see Cache initialization on page 58. Do not dynamically change these registers after cache initialization.

Figure 14 Memory cacheability map

0x80000000

0x40000000

0x7FFFFFFF

4K SRAM

0x80001000

0x00000000

MEMORY SIZE is 1G byte

0xC0100000

0xC0800000
SDRAM 16*512kbyte blocks

SDRAM 16*64kbyte blocks

not available

0x70000000

0x60000000

0x50000000

0xC0000000

not available

0x80001800

Not cacheable as data cache

All cacheable as instruction cache

2Kbytes DCache
configurable as SRAM

Region 0
(Internal SRAM)

Region 1
(Shared memory interface)

Region 2
(Peripheral registers)

Region 3

EMI bank3

EMI bank2

EMI bank1

EMI bank0

EMI block0-7
60/294 7170179 D

LSTi5518 7 Memory
CONFIDENTIA
Region 0

REGION 0 is used only to access internal SRAM and is, therefore, never cacheable for either ICACHE or DCACHE.

There are always 4K of SRAM. Because the DCACHE can be configured to be SRAM, there can be another 2K SRAM
(for a total amount of 6K SRAM). This is controlled by the CAC_DCACHENOTSRAM register, which must be
configured to’0’ for SRAM, or to’1’ for DCACHE.

Region 1

This region is mostly non-cacheable for data access. It can be programmed to be cacheable (default is non-cacheable)
in either 16 blocks of 64K bytes or 16 blocks of 512K bytes. These blocks are contiguous and are placed starting from
the address 0xC0000000. Each one of these blocks may be selected individually as cacheable or non-cacheable for
DCACHE memory accesses. This is controlled by two CAC registers (CAC_CACHECONTROL0 and 1), where each bit
controls the cacheability characteristics of a particular 64K/512K block. To select between 64K byte or 512K byte block
size, bit 8 of CAC_CACHECONTROL0 register is used. After reset, all blocks are marked non-cacheable and the size
of each block is set to 64K byte. The registers must then be programmed to mark certain blocks cacheable.

The remainder of REGION1 is non-cacheable for DCACHE.

Region 2

Always non-cacheable for DCACHE, but is all cacheable for ICACHE.

Figure 15 Region1 cacheable area with block sizes of 64K byte and 512Kbyte.

0xFFFF FFFF

0xC000 0000

0xC010 0000

BLOCK 15 0xC00F 0000
BLOCK 14 0xC00E 0000
BLOCK 13 0xC00D 0000
BLOCK 12 0xC00C 0000
BLOCK 11 0xC00B 0000
BLOCK 10 0xC00A 0000
BLOCK 9 0xC009 0000
BLOCK 8 0xC008 0000
BLOCK 7 0xC007 0000
BLOCK 6 0xC006 0000
BLOCK 5 0xC005 0000
BLOCK 4 0xC004 0000
BLOCK 3 0xC003 0000
BLOCK 2 0xC002 0000
BLOCK 1 0xC001 0000
BLOCK 0 0xC000 0000

64 Kbyte Blocks

0xC00F FFFF

0xFFFF FFFF

0xC000 0000

0xC080 0000

BLOCK 15

BLOCK 14

BLOCK 13

BLOCK 12

BLOCK 11

BLOCK 10

BLOCK 9

BLOCK 8

BLOCK 7

BLOCK 6

BLOCK 5

BLOCK 4

BLOCK 3

BLOCK 2

BLOCK 1

BLOCK 0

512 Kbyte Blocks

0xC07F FFFF

REGION 1 REGION 1

0xC078 0000

0xC070 0000

0xC068 0000

0xC060 0000

0xC058 0000

0xC050 0000

0xC048 0000

0xC040 0000

0xC038 0000

0xC030 0000

0xC028 0000

0xC020 0000

0xC018 0000

0xC010 0000

0xC008 0000

0xC000 0000
 7170179 D 61/294

L7 Memory STi5518
CONFIDENTIA
Region 3

This region is split into 4 EMI banks, 0-3. For ICACHE they are all cacheable. For DCACHE they can be set as
cacheable or non-cacheable by the 4-bit register CAC_CACHECONTROL3, the default is non-cacheable. EMI bank 0
is split into two parts; the upper part is cacheable in the same way as EMI banks 1-3 and the lower part, containing 8 x
64Kbyte blocks, can be set non-cacheable. These blocks, located between 0x40000000 and 0x4007FFFF, can be set
cacheable by the 8-bit register CAC_CACHECONTROL2.

Figure 16 Region 3

0x40000000

0x50000000

0x5FFFFFFF

0x60000000

0x6FFFFFFF

0x70000000

0x7FFFFFFF

0x4007FFFF

0x4FFFFFFF

EMI bank 3

EMI bank 2

EMI bank 1

EMI bank 0

0x4008 0000
BLOCK 7 0x4007 0000
BLOCK 6 0x4006 0000
BLOCK 5 0x4005 0000
BLOCK 4 0x4004 0000
BLOCK 3 0x4003 0000
BLOCK 2 0x4002 0000
BLOCK 1 0x4001 0000
BLOCK 0 0x4000 0000

64 Kbyte Blocks
62/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA
8 Programmable CPU memory interface
The Programmable CPU Interface (EMI) controls the movement of data between the STi5518 and off-chip memory,
except for the shared SDRAM which is connected to a dedicated interface (SMI). The EMI uses minimal external
support logic to support memory subsystems.

The EMI accesses a 32 Mbytes physical address space (greater if SDRAM or DRAM is used) in four general purpose
memory banks of 8 or 16 bits wide, 21 or 22 address lines, and byte select.

For DVD applications requiring extra memory, the EMI supports this extra memory with zero external support logic.

The interface can be configured for a wide variety of timing and decode functions through configuration registers.

The EMI maps external memory into the top quarter of the address space and is partitioned into four banks with each
bank occupying one sixteenth of the total address space.

Systems can use several memory types such as SDRAM, DRAM, SRAM, Flash EPROM, and other peripherals. The
figure below illustrates the Programmable CPU Interface memory allocation.

Warning! It is not possible to have SDRAM and DRAM on the Programmable CPU Interface at the same time.

Figure 17 Memory allocation

00000000

7FFFFFFF

FFFFFFFF

80000000 Internal SRAM

BFFFFFFF
C0000000

3FFFFFFF
40000000

On-chip peripheral registers (including the EMI and cache
configuration registers) are mapped into this region.

Physical addresses

On-chip peripheral

registers

EMI bank0

EMI bank1

EMI bank3

EMI bank2
70000000

60000000

50000000

80001000

80001800
SRAM (D-cache off)
 7170179 D 63/294

L8 Programmable CPU memory interface STi5518
CONFIDENTIA
The timing of each of the four memory banks can be selected separately, with different device types being placed in
each bank with no external hardware support. Banks can be configured to contain 8-bit wide or 16-bit wide devices.

The EMI supports three memory types:

• SDRAM with a multiplexed row and column address;

• DRAM with a multiplexed row and column address used to support fast page mode;

• SRAM or peripherals, which is used to support SRAMs, peripherals, EPROM or Flash ROMs.

EMI banks 0 and 1 support either memory type, while banks 2 and 3 only support SRAM or peripheral memory types.

Words of 1 byte and 2 bytes can be addressed.

The behavior of some strobes depends on whether the bank being accessed has been configured as SDRAM, DRAM
or SRAM / peripheral

8.1 Pin functions

Note A cycle is defined as one processor clock cycle, and a phase as a half of one processor clock cycle.

The table below describes the functions of the Programmable CPU Interface pins. Note that a signal name prefixed by
not indicates that the pin is active-low. The pins are listed in alphabetical order.

Pin Function

BOOT_FROM_
ROM

When the BOOT_FROM_ROM pin is held low, the STi5518 boots from the DCU. When the
BOOT_FROM_ROM pin is held high, the STi5518 boots from ROM. Boot code is run from an external ROM in
bank 3 (at the top of memory). The BOOT_FROM_ROM pin is also used to encode the size of bank3 (which is
16-bit), and this value overrides the PortSize value in the bank 3 configuration registers.

If the STi5518 is being booted by the DCU, then the bootstrap must execute from internal memory until the EMI
has been configured.

CPU_ADDR[1:21]
and [22]

The address bus operates in both multiplexed and non-multiplexed modes. When a bank is configured to con-
tain SDRAM, DRAM, or another multiplexed memory, the device type is set to SDRAM or DRAM, and the inter-
nally generated 32-bit address is multiplexed as row and column addresses through the external address bus.

An extra address bit CPU_ADDR[22] is used when no DRAM or SDRAM support is required on the Program-
mable CPU Interface. This pin allows direct addressing of up to 8Mbytes in peripheral SRAM modes. It is also
used for the notCPU_CAS[0] signal.

CPU_DATA[0:15] The data bus transfers 16 or 8-bit data items depending on the bus width configuration. The least significant bit
of the data bus is always CPU_DATA[0]. The most significant bit varies with bus width. It will be CPU_DATA15
for 16-bit data items, and CPU_DATA7 for 8-bit data items.

CPU_PROCLK This is a reference signal for external bus cycles, which oscillates at the processor clock frequency.

CPU_RW This signal indicates whether the current cycle is a read or a write cycle. During writes, the signal is asserted
low at the beginning of the access (i.e. at the start of RASTime for DRAM banks and at the start of CSTime for
SRAM / peripheral banks) and de-asserted high at the end of the access (end of CASTime / CSTime). At all
other times this signal is held high.

CPU_WAIT Wait states can be generated by taking CPU_WAIT high. CPU_WAIT is only sampled during SRAM or periph-
eral accesses.

CPU_WAIT retains the state of any strobe during the cycle after the one in which it was asserted, until it is de-
asserted. When CPU_WAIT is de-asserted the access continues as programmed by the configuration inter-
face. The CPU_WAIT signal can be treated as synchronous or asynchronous to the CPU_PROCLK clock,
depending on the state of a bit 5 in the EMI_ConfigPadLogic register.

This pin can not be disabled by software. If it is not used, this pin should be pulled down with a resistor.

Table 36 Programmable CPU interface pin descriptions
64/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA
notCPU_BE[0:1] The EMI uses word addressing, two byte-enable strobes are provided, and the use of the byte enable pins

depends on the bus width.

16-bit wide memory is defined as an array of 2-byte words: 31 address-bits in the ST20 memory space select a
2-byte word and “notCPU_BE[0:1]” selects one byte within the word.

8-bit wide memory is defined as an array of 1-byte words with 32 address-bits selecting a word. For 8-bit wide
memory, the lower order address bit (A0) is multiplexed onto the unused byte-enable pin notCPU_BE[1] to give
a 32-bit address bus. This address bit can be made available to the address bus by configuring the bank width
as below.

For banks configured as SDRAM, notCPU_BE pins provide DQ mask signals.

For banks configured as DRAM, notCPU_BE strobes are valid from the start of CASTime to one phase before
the end of CASTime.

For banks configured as SRAM, notCPU_BE pins used as data-enable strobes have the same timing and may
be configured to be active on read cycles, write cycles, or both read and write cycles.

notCPU_CAS[0:1] The two notCPU_CAS[0:1] strobes have different meanings depending on the contents of banks 0 & 1 - DRAM
(bank and byte mode), SDRAM and SRAM. The three configurations are described below.

Pin Function

Table 36 Programmable CPU interface pin descriptions

Pin 16-bit external port size 8-bit external port size

notCPU_BE[1] enables CPU_Data[8:15] notCPU_ADDR[0]

notCPU_BE[0] enables CPU_Data[0:7] enables CPU_Data[8:15]
 7170179 D 65/294

L8 Programmable CPU memory interface STi5518
CONFIDENTIA
notCPU_CAS[0:1]
DRAM
configuration

The CAS strobes can be programmed on a per-bank basis in one of two modes.

• Bank mode in which only one CAS strobe is used for the entire bank and sub-banks (if any).

• Byte mode in which each CAS strobe is used as a byte decoded CAS strobe and can be used across both
banks (and any sub-banks).

Byte mode supports 16-bit wide DRAMs or DRAM modules that provide multiple CAS strobes, one for each
byte, and a single write signal for byte write operations.

The alternative type DRAMs that have multiple write signals, one for each byte, and a single CAS to allow byte
write operations or banks that are constructed from 1, 4, or 8-bit wide DRAMs can be interfaced using bank
mode.

Note Bank or byte mode can be selected independently for banks 0 and 1.

CAS strobes in bank mode (DRAM)

If banks 0 and1 are set to DRAM device type with bank mode selected then notCPU_CAS[0] is the sole CAS
strobe for bank 0 and notCPU_CAS[1] is the sole CAS strobe for bank1. Unused CAS strobes remain inactive
during an access.

CAS strobes in byte mode (DRAM)

For banks containing DRAM, which require byte decoded CAS strobes, one programmable CAS strobe is allo-
cated to each byte. Each of the CAS strobes in this mode will have the timing programmed into the CAS timing
configuration registers, of the bank being accessed, if they are active during that cycle. Byte mode CAS strobes
are active during an access if the byte corresponding to the strobe is being accessed. During refresh cycles, all
CAS strobes will go low at the start of the cycle and remain low until the end of the cycle.

The table below shows how the CAS strobes are used in byte mode. Note that the strobes are common to both
banks and any sub-banks. Only the CAS strobes that enable bytes which are being accessed will be active dur-
ing an access cycle.

The table below summarizes the Byte mode notCPU_CAS[0:1] strobe pins

Mixing bank and byte mode (DRAM)

For full flexibility, any permutation of bankwidth CAS mode (byte / bank) is supported for both banks 0 and 1.
The following table gives a full listing of the active strobes for all permutations

Pin Function

Table 36 Programmable CPU interface pin descriptions

CAS strobe Bank 0, 16-bits wide Bank 1, 16-bits wide

notCPU_CAS[1] enables CPU_DATA[8:15] enables CPU_DATA[8:15]

notCPU_CAS[0] enables CPU_DATA[0:7] enables CPU_DATA[0:7]

No of DRAMs Bank Configuration notCPU_CAS[0] notCPU_CAS[1]

One DRAM in bank0 or 1 bank mode active unused

byte mode active CPU_DATA[0:7] active CPU_DATA[8:15]

Two DRAMs in bank 0 and1 DRAM in bank0 bank mode active unused

DRAM in bank0 byte mode active CPU_DATA[0:7] active CPU_DATA[8:15]

DRAM in bank1 bank mode unused unused

DRAM in bank1byte mode active CPU_DATA[0:7] active CPU_DATA[8:15]
66/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA
notCPU_CAS[0:1]
SDRAM
configuration

notCPU_CAS[0:1]
SRAM
configuration

For banks which do not contain SDRAM or DRAM the notCPU_CAS[1] pin is inactive. If there is no SDRAM or
DRAM at all on the programmable CPU interface, notCPU_CAS[0] is CPU_ADDR[22] to allow up to 8MBytes
SRAM addressing.

notCPU_CE[0:3] These four signals are used for programmable strobe (for example, chip select when the corresponding bank is
configured as SRAM/peripheral

When SRAM/DRAM is used on the corresponding CPU interface, notCPU_CE[0:3] is used as the RAS signal.

notCPU_OE The behavior of the notCPU_OE signal depends on the type of memory being accessed. If the
access is to a bank configured as DRAM then the notCPU_OE strobe is active only during a read
access when it is asserted low CASe1Time after the start of CASTime, and de-asserted high at the
end of CASTime. For accesses to configured as SRAM / peripheral the notCPU_OE strobe is
programmable and will behave according to the values in the EMIConfigData registers for that bank.

notCPU_RAS[0:1] These two signals control the RAS strobe for SDRAM and DRAM. The two signals do not necessarily corre-
spond to individual banks. Bank0 (only) may be sub-decoded.

For DRAM, notCPU_RAS[0:1] strobes are used as the RAS strobes for bank0, bank1, or sub-banks.

For SDRAM, one RAS strobe is used for all devices in the bank, and sub-decoding is carried out using the
notCPU_RAS[1] and notCPU_CAS[1]pins.

If bank0 is not programmed as SDRAM or DRAM, the notCPU_RAS[0] strobe is used as chip-select
(notCPU_CE[0]) for the bank.

The table below summarizes the notCPU_RAS[0:1] strobes for banks 0 and 1.

Pin Function

Table 36 Programmable CPU interface pin descriptions

No of DRAMs notCPU_CAS[0] notCPU_CAS[1]

One SDRAM in bank0 or
One SDRAM in bank1

active (CAS strobe for SDRAM) active chip select for SDRAM

One SDRAM in bank0 or
One SDRAM in bank1

active (CAS strobe for both SDRAMs) active chip select for SDRAM in bank 0

Signal Type Definition

notCPU_RAS[0] out RAS strobe for SDRAM/DRAM in Bank 0, or
RAS strobe for lowest DRAM sub-bank in Bank0, or
chip select for Bank0

notCPU_RAS[1] out RAS strobe for SDRAM/DRAM in Bank1, or
RAS strobe for highest DRAM sub-bank in Bank0, or
SDRAM chip select signal for highest sub-bank of Bank0

Bank Configuration notCPU_RAS[0] notCPU_RAS[1]

Bank 0: DRAM with no sub-decoding Bank 0 RAS strobe Unused for bank0

Bank 0: DRAM with two sub-banks Bank 0 sub-bank0 RAS strobe Bank 0 sub-bank1 RAS strobe

Bank 0: SDRAM with no sub-decoding Bank 0 RAS strobe Unused for bank0

Bank 0: SDRAM with two sub-banks Bank 0 sub-bank0 RAS strobe Bank 0 sub-bank1 with chip select

Bank 0: SRAM / peripherals Bank 0 chip select strobe Bank3 sub-decoding

Bank 1DRAM with no sub-decoding Bank 1RAS strobe Unused for bank1

Bank 1DRAM with two sub-banks not possible not possible

Bank 1: SDRAM with no sub-decoding Bank 1 RAS strobe Unused for bank1

Bank 1: SDRAM with two sub-banks not possible not possible

Bank 1contains SRAM / peripheral Unused for bank1 Bank3 sub-decoding
 7170179 D 67/294

L8 Programmable CPU memory interface STi5518
CONFIDENTIA
8.2 Configuration list

The following tables illustrate the different configurations supported by SDRAM, DRAM and peripheral memories, the
different strobes used in each case. Note that it is not possible to have SDRAM and DRAM on the EMI at the same
time.

EMI bank configuration
Strobes

bank0 bank1 bank2 bank3

Peripheral Peripheral Peripheral Peripheral notCPU_CE[0] for bank0, notCPU_CE[1]for bank1, notCPU_CE[2]for bank2 and
notCPU_CE[3]for bank3.

notCPU_RAS1 available to subdecode bank3

notCPU_CAS0 is CPU_ADD[22] to allow up to 8 Mbytes of SRAM addressing

notCPU_CAS1 not used

notCPU_OE shared by each bank

notCPU_BE[1:0] shared by each bank

CPU_R/W shared by each bank

CPU_WAIT shared by each bank

DRAM Peripheral Peripheral Peripheral If DRAM in bank 0: notCPU_CE[1] for bank1

If DRAM in bank1: notCPU_CE[1] for bank0

notCPU_CE[2]for bank2

notCPU_CE[3]for bank3

notCPU_CE[0] (RAS0) for DRAM despite of DRAM position

notCPU_CAS0 (CAS0) used by DRAM

notCPU_CAS1 (CAS1) used by DRAM only if multi-byte mode enabled

If DRAM in (and only in) bank0, then subdecoding up to 2 DRAM sub-banks using
CPU_RAS1

If DRAM in bank0 and no DRAM subdecoding OR DRAM in bank1, CPU_RAS1
available to subdecode bank3

notCPU_OE shared by each bank

notCPU_BE[1:0] shared by each bank.

CPU_R/W shared by each bank.

CPU_WAIT shared by each bank

or

Peripheral DRAM Peripheral Peripheral

Table 37 List of strobes used for all EMI configurations
68/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA

DRAM DRAM Peripheral Peripheral notCPU_CE[0] (RAS0) for DRAM in bank0, notCPU_RAS1 for DRAM in bank1,
notCPU_CE[2] for bank2, notCPU_CE[3] for bank 3, notCPU_CE[1] not used.

No subdecoding is allowed for either DRAM.

No subdecoding of bank3

Multi-byte mode can be allowed for both DRAMS at the same time:

If multi-byte mode is not enabled:
notCPU_CAS0 for DRAM in bank0
notCPU_CAS1 for DRAM in bank1

If multi-byte mode is enabled:
notCPU_CAS0 used as shared by both DRAMs
notCPU_CAS1 used as shared by both DRAMs

notCPU_OE is shared by each bank

notCPU_BE[1:0] is shared by each bank.

CPU_R/W shared by each bank.

CPU_WAIT shared by each bank

SDRAM Peripheral Peripheral Peripheral If SDRAM in bank 0: notCPU_CE[1] for bank1,

If SDRAM in bank1: notCPU_CE[1] for bank0

In both above cases (only 1 SDRAM):

notCPU_CAS1 used as chip select (sdram_cs(0)) for SDRAM

notCPU_CE[0] used as RAS0 strobe for SDRAM

notCPU_CAS0 used as CAS0 strobe for SDRAM

notCPU_RAS1 used to subdecode bank3

If two SDRAM in bank0 (SDRAM subdecoding in bank0):
notCPU_CAS1 used to map sdram_cs(0) for SDRAM 0
notCPU_RAS1 used to map sdram_cs(1) for SDRAM 1

(NOTE: In this case not possible subdecode bank3)

notCPU_CE[0] used as shared RAS0 strobe by both SDRAMs

notCPU_CAS0 used as shared CAS0 strobe by both SDRAMs

In any case: notCPU_CE[2] for bank2 and notCPU_CE[3] for bank3

notCPU_OE shared by each bank

notCPU_BE[1:0] (with DQM functionality for SDRAM) shared by all banks

CPU_R/W shared by each bank.

CPU_WAIT shared by each bank

or

Peripheral SDRAM Peripheral Peripheral

EMI bank configuration
Strobes

bank0 bank1 bank2 bank3

Table 37 List of strobes used for all EMI configurations
 7170179 D 69/294

L8 Programmable CPU memory interface STi5518
CONFIDENTIA

8.3 External bus cycles

The external memory interface supports dynamic memory and other devices such as static memory and IO devices.
This flexibility is provided by allowing the required wave-forms to be programmed via configuration registers (see
Section 8.4: EMI configuration on page 80).

Memory is byte addressed, with words aligned on four-byte boundaries and half-words on two-byte boundaries.

During read cycles, byte-level addressing is performed internally by the STi5518. The EMI can read bytes, half-words
or words. It always reads the size of the bank.

During write cycles, the STi5518 uses the notCPU_BE[0:1] strobes to perform addressing of bytes. If a particular byte
is not to be written then the corresponding data outputs are tri-stated. Writes can be less than the size of the bank.

The internally generated address is indicated on pins notCPUAddr[1:21, 22]. The least significant bit of the data bus is
always CPU_DATA[0]. The most significant bit is adjusted dynamically to suit the required external bus size.

The following sections describe the access cycles for the three device types, DRAM, SDRAM and SRAM/peripherals.

SDRAM SDRAM Peripheral Peripheral notCPU_CAS1 used as chip select (sdram_cs(0)) for SDRAM in bank0

notCPU_RAS1 used as chip select (sdram_cs(2)) for SDRAM in bank1

notCPU_CE[2] for periph in bank2

notCPU_CE[3] for periph in bank3

notCPU_CE[0] used as shared RAS strobe for both SDRAMs

notCPU_CE[1] not used

notCPU_CAS0 used as shared CAS strobe by both SDRAM

No subdecoding is allowed for both SDRAMs.

No subdecoding of bank3.

notCPU_OE shared by each bank

notCPU_BE[1:0] (with DQM functionality for SDRAM) shared by each bank.

CPU_R/W shared by each bank.

CPU_WAIT shared by each bank

EMI bank configuration
Strobes

bank0 bank1 bank2 bank3

Table 37 List of strobes used for all EMI configurations
70/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA
8.3.1 DRAM

DRAM access cycles are supported in Banks 0 and 1 only when these are set to device type DRAM.

The EMI can support either one DRAM bank set in one of the 4 possible banks or two DRAM banks set in bank0 and
bank1.

A DRAM memory access cycle consists of a number of defined periods or times, as shown in the figure below. All of the
named times shown in this diagram together with other parameters such as RAS address shift and page size are
programmable to suit a wide variety of DRAM types.

Figure 18 DRAM memory cycle

notCPU_BE[0-1]

Constant high for reads

Constant high for reads

Read data
latch time

CPU_ADDR

Start of cycle

RASTime CASTime PrechargeTime

Row Column

RASe1Time RASe2Time

CASe1Time CASe2Time

CASe1Time

Bus release
time

Data inData bus (read)

1 phase

Data out

Data drive delay

CPU_DATA (write)

CPU_RW

notCPU_OE (read)

not_CAS[0-1]

not_Ras[0-1]
 7170179 D 71/294

L8 Programmable CPU memory interface STi5518
CONFIDENTIA
Signals RASTime and CASTime are consecutive. The CASTime can be followed by concurrent Precharge and
BusRelease times.

Thus for DRAM, these times are used for RAS address latching, CAS address latching, RAS precharge and output
driver tristate times respectively. For consecutive access to the same bank of DRAM, RASTime will only occur when
there is a page miss. The next access will not commence until the PrechargeTime for a previous access to the same
bank has completed. During the RASTime, a transition can only be programmed on the RAS strobes.

During the CASTime the CAS strobes and either the byte-enable or notCPU_OE strobes are active. The address is
output on the address bus without being RAS shifted. Write data is valid during CASTime. Read data is latched into the
interface at the point defined by the LatchPoint bit in the EMIConfigData3 register for the bank being accessed.

The PrechargeTime and BusReleaseTime commence concurrently at the end of the CASTime. A PrechargeTime will
occur, and the active notCPU_RAS strobe will be taken high if:

• the next access is to the same bank but to a different row address;

• the next access is to a different bank.

The BusReleaseTime runs concurrently with the PrechargeTime and will occur if:

• the current cycle is a read and the next cycle is a write;

• the current cycle is a read and the next cycle is a read from a different bank.

The BusReleaseTime is provided to allow an accessed device to float to a high impedance state.

Page mode

DRAM pages are delineated using the RASBits configuration parameter. These bits are used as an address mask for
comparison with the previous dram address. If an access is requested by an internal subsystem of the STi5518 to a
DRAM bank while a DRAM access is in progress, the new address is compared to the current access address. If the
row addresses are the same, the access may proceed as a page mode access. There is no specific configuration bit to
select pagemode DRAM. If all the RASBits are set to 0, then no pagehits will be caused and normal DRAM RAS/CAS
cycles will always be produced.
72/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA
A page mode access does not include the RASTime period. The notCPU_RAS strobe is not taken high before
commencing the page mode access. If the current access is a read and the page mode access is due to be a write, a
BusReleaseTime is inserted as shown in figure below. The notCPU_RAS strobe is held low during this period.

When setting the RASBits, care must be taken to consider the port size. Also, if the bank has been sub-decoded, the
sub-bank selection address bits must be included in the comparison, so the RASBits corresponding to these addresses
must be set.

For example, if the DRAM bank is composed of 2 x 256k * 16 devices, the sub-bank selection address bit is A19, so the
RASBits corresponding to address bits A19-A10 must be set.

When page mode is active, the RASe2time must be programmed to zero.

Figure 19 Read followed by page mode write

SubBank SubBankSize PortSize SubBank selection address RAS strobe selection

2 256K
1M
4M
16M

8 bit Address<18>
Address<20>
Address<22>
Address<24>

0 = notCPU_RAS[0]
1 = notCPU_RAS[1]

256K
1M
4M
16M

16 bit Address<19>
Address<21>
Address<23>
Address<25>

256K
1M
4M
16M

32 bit Address<20>
Address<22>
Address<24>
Address<26>

Table 38 Address decoding

notCPU_RAS

notCPU_CAS

notCPU_OE

CPU_DATA

CAStimeRAStime

RAS e1 time CAS e1 time RAS e2 time

CAS e2 time

BusRelease time

PrechargeTime

Read data
latch point

CAS CAS

CAStime

Read data Write data

Row Column M Column N

e1 time e2 time

notCPU_BE
 7170179 D 73/294

L8 Programmable CPU memory interface STi5518
CONFIDENTIA
Refresh

DRAM banks are periodically refreshed at intervals specified by the Refresh Interval configuration parameter.

The notCPU_CAS strobe(s) is taken low at the beginning of the refresh time. The position of the RAS falling edge
(RASedge) is programmable and the minimum width of the CAS pulse is the sum of the RASTime and CASTime values
specified for random access. If there is more than one bank of DRAM the refresh configuration will then be taken from
the lowest numbered bank configured as DRAM.

All sub banks are refreshed in the same access and a cycle is inserted between each bank and/or sub-bank in order to
spread current peaks. If no DRAM has been programmed for a bank then no transitions occur on the relevant RAS or
CAS strobes and all unused RAS and CAS strobes (i.e. strobes not used due to the choice of bank/byte mode, sub-
banks and bankwidth) will remain inactive during a refresh cycle.

The EMI ensures that notCPU_CAS and notCPU_RAS are both high for the required time before every refresh cycle by
inserting a PrechargeTime in the last bank being accessed and ensuring all PrechargeTimes are complete.

Note, no refreshes will take place until after a DRAMinitialize command in the ConfigCommand register is performed.

Figure 20 Generic refresh access for one DRAM bank

Figure 21 Generic refresh access for two DRAM banks

Name Programmable value

PrechargeTime 1 - 8 cycles

RefreshInterval (1 - 16) * 128 cycles

RefreshRASedgeTime 1 or 2 cycles after start of refresh

Table 39 Refresh parameters

notCPU_CAS

notCPU_RAS[0]

notCPU_RAS[1]

RAStime + CAStime

RefreshRASedgeTime

1 cycle

Start of refresh

End of refresh

2 sub banks

2 sub banks only

PrechargeTime

No sub banks

notCPU_CAS3-0

notCPU_RAS[0]

notCPU_RAS[1]

RAStime + CAStime

RefreshRASedgeTime

1 cycle

Start of refresh End of refresh

2 sub banks

2 sub banks only

PrechargeTime

No sub banks
74/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA
8.3.2 SDRAM

Note These diagrams show the waveforms at device’s pads, NOT the outputs from the generic EMI block.

Typically the EMI pad logic will re-time the EMI’s outputs to the next cycle. All signals on this interface are synchronous
to the system clock, which is fed to the SDRAMs on the CPU_PROCLK pad.

8.3.2.1 Typical access

The following diagrams shows typical read and write accesses to an SDRAM. This example shows a bank activation,
due to a page miss, then two write accesses in the same bank are performed in page mode.

A precharge is then done in anticipation of another bank activation command. If as in this example only one SDRAM
word is to be written then the notCPU_BE signal is used as a data mask, so that only the correct word is updated.

Figure 22 SDRAM write accesses

notCPU_RAS

notCPU_CAS

CPU_RW

CPU_DATA

ActivateToWrite

(write)

PrechargeTime

Data drive delay

CPU_ADDR ROW COL

(DQM)

(not_we)

(not_cas)

(not_ras)

Bank Write
activate

CPU_PROCLK

notSDRAMCS
(not_cs)

COL

WriteRecoveryTime

Precharge
All

AP=1

NOP NOP NOP

notCPU_BE[
 7170179 D 75/294

L8 Programmable CPU memory interface STi5518
CONFIDENTIA
The following figure shows a bank activation, due to a page miss, then two read accesses in the same bank are per-
formed in page mode. A precharge is then done in anticipation of another bank activation command. If as in this exam-
ple only one SDRAM word is to be read then the notCPU_BE signal is used as a data output enable.

Figure 23 SDRAM read accesses with CAS latency = 2 cycles

notCPU_RAS

notCPU_CAS

CPU_RW

notCPU_BE

CPU_DATA

ActivateToRead

(write)

PrechargeTime

CPU_ADDR ROW COL

(DQM)

(not_we)

(not_cas)

(not_ras)

Bank Read
activate

CPU_PROCLK

notSDRAMCS
(not_cs)

N
COL

M

CAS latency =2

Precharge
All

AP=1

NOP NOP

BusReleaseTime

DQM high to data out
forced to High-Z equals to
2 clock cycles (fixed DQM
latency for reads)
76/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA

Figure 24 SDRAM read accesses with CAS latency = 3 cycles

notCPU_RAS

notCPU_CAS

CPU_RW

notCPU_BE

CPU_DATA

ActivateToRead

(write)

PrechargeTime

CPU_ADDR ROW COL

(DQM)

(not_we)

(not_cas)

(not_ras)

Bank Read
activate

CPU_PROCLK

notSDRAMCS
(not_cs)

N
COL

M

CAS latency = 3

Precharge
All

AP=1

NOP NOP

BusReleaseTime

NOP

DQM high to data out
forced to High-Z equals to
2 clock cycles (fixed DQM
 latency for reads)
 7170179 D 77/294

L8 Programmable CPU memory interface STi5518
CONFIDENTIA
8.3.3 SRAM or peripheral access cycles

A generic peripheral (e.g. SRAM, EPROM, FLASH, etc.) type of access is provided which is suitable for direct
interfacing to a wide variety of SRAM, ROM, Flash and other peripheral devices. No internal sub-decoding is provided
with banks in this configuration. All of the named times shown in Section 8.3.4 together with other parameters such as
bank size and bank size dependent shifts are programmable to suit a wide variety of device types.

For details of the configuration of the EMI see Section 8.4: EMI configuration on page 80.

The distance between signal time pairs OEe1/OEe2 and BEe1/BEe2 is primarily set by the registers
EMI_ConfigData1Bank and EMI_ConfigData2Bank. If this distance is set to maximum by these registers, then an
additional delay of up to 3 wait cycles can be inserted for peripheral accesses to the upper portion of EMIbank3, using
the EMI_Configpadlogic register bit WaitCycles. These bits control a wait period that is inserted both at the start of the
EMI access cycle and at the end (triggered by the CS low-to-high transition). For a 60 MHz clock, this gives a maximum
additional delay of 133ns.

Figure 25 Generic peripheral access

Read data
latch point

BusRelease
time

Data drive delay

CSe1 time CSe2 time

OEe1 time

BEe1 time BE e2 time

AccessCycleTime

CPU_ADDR

notCPU_OE

notCPU_BE

CPU_DATA

(write)

CPU_DATA

(read)

OEe2time

CPU_RW
write

constant high for reads

constant high for reads

notCPU_CE
78/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA
8.3.4 Wait

CPU_WAIT is provided so that external cycles can be extended to enable variable access times, for example, shared
memory access. CPU_WAIT is only effective during accesses to SRAM / peripheral banks and is ignored during
accesses to DRAM banks. The STi5518 can accept either synchronous or asynchronous CPU_WAIT signals. If
CPU_WAIT is synchronous, then wait states can be inserted at precise times during the access. An asynchronous
CPU_WAIT does not require any external synchronization but cannot accurately insert wait states during an access.
The following description and diagrams assume that a synchronous CPU_WAIT is being used. The CPU_WAIT signal
can be enabled on a per-bank basis. Note that the selection of the asynchronous or synchronous CPU_WAIT signal is
the same for all banks. CPU_WAIT freezes the state of the strobes for the duration of the cycles in which it was
sampled high. Any strobe transitions occurring on the sampling edge or the falling edge immediately after this will not
be inhibited, however, transitions on the rising and falling edges of the following cycle will not occur. The following two
figures illustrate the extension of the external memory cycle and the delaying of strobe transitions.

The asynchronous CPU_WAIT uses an extra clock edge to synchronize the signal before it is sampled in the EMI.
Apart from this extra cycle of latency, the response to the two types of CPU_WAIT is the same. Configuration of the
CPU_WAIT pin to a synchronous or asynchronous wait signal is performed by bit 5 of the EMI_ConfigPadLogic
register. Setting this bit high selects a synchronous wait signal, setting it low selects an asynchronous wait signal. Note
the asynchronous CPU_WAIT does not need to meet setup and hold times to the CPU_PROCLK signal rising edges.

Figure 26 Strobe activity without CPU_WAIT

Figure 27 Strobe activity with CPU_WAIT

CPU_PROCLK

CPU_WAIT

Strobe1

Strobe2

Strobe3

CPU_PROCLK

CPU_WAIT
asserted

wait
cycle

CPU_WAIT

Strobe1

Strobe2

Strobe3
 7170179 D 79/294

L8 Programmable CPU memory interface STi5518
CONFIDENTIA
8.3.5 Bank-width based address shifting

Address shifting can be enabled on a per bank basis to allow population options on boards which vary bank widths to
be handled more easily. The shifts can only be enabled in banks programmed to the SRAM or peripheral device type,
the shift amount being dependent on the width of the bank. Shifting is enabled or disabled by 4 bits, one for each bank,
of the EMI padlogic register ConfigPadLogic0-3 where bit 0 refers to bank 0 and so on. The table below shows the
addresses presented on the CPU_ADDR[1:21] pins for different configurations. Note that the addresses presented on
the notCPU_BE[0:1] signals for 16 or 8 bit banks are not affected by the shifting.

8.4 EMI configuration

The EMI configuration is held in memory-mapped registers. The function of the registers is to eliminate external decode
and timing logic. Each EMI bank has several parameters which can be configured. The parameters define the structure
of the external address space and how it is allocated to the four banks and the timing of the strobe edges for the four
banks.

Each EMI bank has 64 bits of configuration data which is held in four 16-bit configuration registers In addition there is
an EMIConfigLock register for each bank, an EMIConfigStatus register, the EMIDRAMInitialize register and an
EMIConfigPadlogic register. For safe configuration, each of the four banks should be configured after reset and then
have their configuration locked by writing to the EMIConfigLock register before any access to an external bank is made.

8.5 Default configuration

The default configuration is loaded into all four banks on reset. It should allow the EMI to read data from a slow ROM
memory. The following parameters are set.

Bank device type configpadlogic0-3 current_portsize<1:0> CPU_ADDR[1:21]

DRAM - -- Address2-23 during CAS time

SRAM or Peripheral 0 = shift disabled

1 = shift enabled

01 (32 bit) Address2-23

10 (16 bit) Address1-22

11 (8 bit) Address0-21

Table 40 SRAM address shifting

Parameter Default value

DataDriveDelay 101 (5 phases)

BusReleaseTime 10 (2 cycles)

CSactive 01 (active during read only)

OEactive 01 (active during read only)

BEactive 00 (inactive)

Portsize Value of the signal portsize_init

DeviceType 000 (peripheral)

AccessTimeRead 1000 (8+2=10 cycles)

CSe1TimeRead 00 (0 phases)

CSe2TimeRead 00 (0 phases)

OEe1TimeRead 00 (0 phases)

OEe2TimeRead 00 (0 phases)

LatchPoint 00 (end of access cycle)

Table 41 Default configuration
80/294 7170179 D

LSTi5518 8 Programmable CPU memory interface
CONFIDENTIA

Figure 28 Default configuration for SDRAMModeReg0/1 registers

SDRAMModeReg0/1

latency mode burst type burst length

15:7 6:4 3 2:0

000000000 010 0 010

Table 42 Default configuration for SDRAMModeReg0/1 registers

CPU_DATA
(write)

CPU_ADDR

notMemCS

notCPU_OE

CPU_DATA
(read)

10 cycles

5 phases

2 cycles

Read data
latch point
 7170179 D 81/294

CONFIDENTIAL9 System services STi5518

82/294 7170179 D

9 System services
The system services module includes all of the necessary logic to initialize the device. Device initialization and
debugging can also be done with the diagnostic controller unit (DCU); see the Diagnostic controller on page 83.

9.1 Power-on hard reset

The RESET pin provides a power-on or “hard” reset function. It must be asserted (low) before the clocks and power
supply are stable. When the RESET pin is asserted (regardless of any other inputs), all modules are asynchronously
forced into their power-on reset state.

The RESET pin should only be de-asserted (high) after both of the following events have taken place:

• the clocks and power are stable, to guarantee well-defined behavior;

• the notTRST TAP reset pin has been asserted.

When the RESET pin is de-asserted, the CPU enters its boot sequence. The sequence starts only after the rising edge
of the RESET pin is internally synchronized and the clocks are stable.

Bootstrap code can either be in off-chip ROM or can be received through the DCU.

9.2 Bootstrap

The STi5518 can be bootstrapped from the diagnostic controller (DCU), or from ROM.

Booting from the DCU

The STi5518 can be booted from the DCU at any time by setting up the test access port (TAP) to do so. The procedure
is explained in the Diagnostic controller chapter.

If the device is not set up to boot from DCU then the STi5518 will boot from ROM as soon as it comes out of reset.

Booting from ROM

When not booting from DCU, the BOOT_FROM_ROM pin sets the STi5518 to boot from ROM as it comes out of reset.

If the BOOT_FROM_ROM pin is high, boot code is run from a slow external ROM placed in bank 3 at the top of
memory. The ROM width is 16-bit wide. When booting from ROM, the value in the configuration registers for the
PortSize for bank 3 is disregarded.

When booting from ROM, the STi5518 starts to execute code from the top two bytes in external memory, at address
#7FFFFFFE, which should contain a backward jump to a bootstrap program in ROM.

LSTi5518 10 Diagnostic controller
CONFIDENTIA
10 Diagnostic controller
The ST20 Diagnostic Controller Unit (DCU) is used to boot the CPU and to control and monitor all of the systems on the
chip, via the standard IEEE 1194.1 Test Access Port. The DCU includes on-chip hardware with ICE (In Circuit
Emulation) and LSA (Logic State Analyzer) features to facilitate verification and debugging of software running on the
on-chip CPU in real time. It is an independent hardware module with a private link from the host to support real-time
diagnostics.

10.1 Diagnostic hardware

The on-chip diagnostic controller assists in debugging, while reducing or eliminating the intrusion into the target code
space, the CPU utilization, and impact on the application. As shown in Figure 29 , the DCU and TAP provide a means
of connecting a diagnostic host to a target board with a suitable JTAG port connector and interface.

The diagnostic controller provides the following facilities for debugging from a host:

• control of target CPU and subsystems including CPU boot;

• hardware breakpoint, watchpoint, datawatch and single instruction step;

• complex trigger sequencing and choice of subsequent actions;

• non-intrusive jump trace and instruction pointer profiling;

• access to the memory of the target while the device is powered up, regardless of the state of the CPU;

• full debugging of ROM code.

When running multi-tasking code on the target, one or more processes can be single-stepped or stopped while others
continue running in real time. In this case, the running threads can be interrupted by incoming hardware interrupts, with
a low latency.

The host can communicate with the DCU via a private link, using the 5 standard test pins.

Target software also has access to the diagnostic facilities and access through the DCU to the host memory.

A logic state analyzer can be connected to the TRIGGER_IN and TRIGGER_OUT pins. The response to TRIGGER_IN
and the events that cause a TRIGGER_OUT signal can be controlled by the host or by target software.

The diagnostic controller provides debugging facilities with much less impact on the software and target performance.
In particular it gives:

• non-intrusive attachment to the host system;

• no intrusion into the performance of the CPU or any subsystems;

Figure 29 Debugging hardware

Host

Host
interface Test

access
port

Diagnostic
controller

ST20Logic
state

analyzer
 7170179 D 83/294

L10 Diagnostic controller STi5518
CONFIDENTIA
• no intrusion into the code space, so the application builder does not need to add a debugging kernel;

• no intrusion into any on-chip functional modules, including any communications facilities;

• no functional external connection pins are used.

The connections between the diagnostic controller and other on-chip modules and external hardware may vary
between ST20 variants.

10.2 Access features

Access to target memory and peripheral registers from host

Full read and write access to the entire on-chip and external memory space and the register space is available via the
TAP. This is independent of the state of the CPU.

Access from target CPU process

The CPU itself can program its own diagnostic controller. Further access may be explicitly prevented by the lock
mechanism so that the application being debugged cannot interfere with the breakpoint and watchpoint settings. When
the breakpoint or watchpoint match occurs, then the diagnostic controller may release the lock according to settings in
the control register.

Access to host memory from target

If the target CPU accesses any address in the top half of the DCU memory space, then these accesses are mapped on
to host memory via the TAP as target initiated peek and poke messages. Peek accesses and poke accesses are
specifically enabled by separate property bits.

10.3 Software debugging features

Control of the target CPU including boot

Various state information about the target CPU may be monitored and the CPU may be controlled from the diagnostic
controller via the TAP. The control of the CPU extends to stalling, forcing a trap and booting.

Non-intrusive IPTR profiling

A copy of the IPTR is visible as a read-only register in the diagnostic controller. This register may be read at any time.
Reading this register is not intrusive on the CPU or its memory space.

Events

Support is provided by the diagnostic controller to trigger actions when certain predefined events occur.

Event Action

Breakpoint The function of the breakpoint is to break before the instruction is executed, but only if it really was going to be
executed. A 32-bit comparator is used to compare the breakpoint register against the instruction pointer of the
next instruction to be executed. The matched instruction is not executed and the CPU state, including all CPU
registers, is defined as at the start of the instruction. The previous instruction is run to completion.

Breakpoint
range

The function of a breakpoint range is equivalent to any single breakpoint but where the breakpoint address can
be anywhere within a range of addresses bounded by lower and upper register values.

Table 43 Software debugging events
84/294 7170179 D

LSTi5518 10 Diagnostic controller
CONFIDENTIA

Following a watchpoint match, or any other condition detectable by the diagnostic controller, the subsequent action
may be programmed to be one of the following:

• stall the CPU, i.e. inhibit further instructions from being executed by the CPU;

• wait until the end of the current instruction, then signal a hardware trap;

• signal an immediate hardware trap;

• continue without intrusion.

In addition, the diagnostic controller may take any combination of the following actions:

• signal on TRIGGER_OUT to a logic state analyzer;

• send a triggered message via the TAP to the host;

• unlock access by the target CPU.

Hardware single instruction step

The function of single stepping one CPU instruction is performed by using a breakpoint range over the code to be single
stepped. The DCU includes a mechanism to prevent the breakpoint trap handler single-stepping itself. By selecting an
inverse range, the effect of single stepping one high level instruction can be achieved.

Jump trace

Jump tracing monitors code jumps, where a jump is any change in execution flow from the stream of consecutive
instructions stored in memory. A jump may be caused by a program instruction, an interrupt or a trap.

When the jump occurs, a 32-bit DCU register is loaded with the origin of the jump. This value points to the instruction
which would have been executed next if the jump had not occurred. The CPU may not have completed the instruction
prior to the change in flow. The diagnostic controller can be set to trace the origin of each jump, the destination, or both.

The DCU copies the details of each jump to a rolling trace buffer in memory. The trace buffer may be located in host
memory, but using target memory will have less impact on performance. The tracing facility has two modes:

• Low intrusion. In this mode the DCU uses dead memory cycles to write the trace into the buffer. This means that the
CPU is not delayed, but some trace information may be lost.

• Complete trace. In this mode, the CPU is stalled on every jump to ensure the data can be written to the buffer. This
means that no trace information is lost, but the CPU performance is affected.

Logic state analyzer (LSA) support

Two signals, TRIGGER_IN and TRIGGER_OUT, are provided to support diagnostics with an external LSA. The action
by the DCU on receiving a TRIGGER_IN signal is programmable. The selection of internal events which trigger a
TRIGGER_OUT signal is also programmable.

Watchpoint The function of a watchpoint is to trigger after a memory access is made to an address within the range speci-
fied by a pair of 32-bit registers. The CPU pipeline architecture allows for the CPU to continue execution of
instructions without necessarily waiting for a write access to complete. So, by the time a watchpoint violation
has been detected, the CPU may have executed a number of instructions after the instruction which caused the
violation. If the subsequent action is to stall the CPU or to take a hardware trap, then the last instruction exe-
cuted before the stall or trap may not be the instruction which caused the violation.

Datawatch The function of a datawatch is to trigger after a data value specified in one 32-bit register is written to a memory
word address specified in another 32-bit register. The subsequent action is equivalent to a watchpoint.

Event Action

Table 43 Software debugging events
 7170179 D 85/294

L10 Diagnostic controller STi5518
CONFIDENTIA
Trigger combinations and sequences

Complex trigger conditions can be programmed. For example:

• the fifth time that breakpoint 3 is encountered;

• enable a watchpoint when a breakpoint occurs.

There is no software intrusion imposed by this mechanism.

10.4 Controlling the diagnostic controller

This section gives a summary of host communications with the diagnostic controller.

The diagnostic controller has direct access to:

• the instruction pointer,

• a selection of CPU state control signals,

• the memory bus,

• memory-mapped peripheral configuration registers.

This access does not depend on the state of the CPU. Access to non-memory-mapped peripheral configuration
registers is via the CPU, and for this the CPU must be active and running the appropriate handler.

The host can give two commands to the diagnostic controller: peek and poke. Peek reads memory locations or
configuration registers, and poke writes to memory locations or configuration registers. The diagnostic controller
responds to a peek command with a peeked message, giving the contents of the peeked addresses.

The diagnostic controller has registers, which are accessed from the host using peek and poke commands. The
registers are used to control breakpoints, watchpoints, datawatch, tracing and other facilities.

The target CPU can also access these registers using the normal load and store instructions, so the target software
running on the CPU can program its own diagnostic controller. A lock is provided to prevent CPU access, which can be
released by the diagnostic controller when a breakpoint or watchpoint match occurs.

In addition, the target CPU can peek and poke the host via the diagnostic controller by reading or writing addresses in
the top half of the memory space of the diagnostic controller. This facility can be disabled.

Various different types of CPU events can be selected as trigger events. When an trigger event occurs, the diagnostic
controller can send a triggered message.

The four types of message are summarized in the table below. The messages are distinguished by the two least
significant bits of the message header byte.

Messages may be initiated from either the host or the target. Target initiated messages, which constitute asynchronous
or unsolicited messages, can be enabled by a property bit.

Message type Direction Bit 1 Bit 0 Meaning

poke Command. 0 0 Write to one or more addresses.

peek Command. 0 1 Read from one or more addresses.

peeked Opposite to peek
command.

1 0 The result of a peek command.

triggered DCU to host. 1 1 A trigger event has occurred.

Table 44 Diagnostic controller message types
86/294 7170179 D

LSTi5518 10 Diagnostic controller
CONFIDENTIA
Messages are composed of a header byte followed by zero or more data bytes, depending on the type of message.
The formats for the four message types are shown in Figure 30 .

10.5 Peeking and poking the host from the target

The target CPU can peek and poke the host via the diagnostic controller. This is done by reading or writing a single
word to a block of addresses within the DCU register block. The DCU will then send a peek or poke message to the
host. After a host peek, the target CPU will wait until the host responds with a peeked message, which the DCU returns
to the CPU as memory read data.

Peeking and poking the host from the target can be enabled or disabled. After reset, these bits are cleared, so peek and
poke from the target are disabled.

Figure 30 Message formats

Poke

Command messages

Response messages

Address First data word Second data word

Peek
Address

Peeked
First data word Second data word Third data word

Triggered
Header

Header

Header

Header
 7170179 D 87/294

CONFIDENTIAL11 Test access port STi5518

88/294 7170179 D

11 Test access port
The STi5518 Test Access Port (TAP) conforms to IEEE standard 1149.1.

The TAP has pins as listed in Table 45 TDO can be over-driven to the power rails, and TCK can be stopped in either
logic state. None of the TAP pins has an internal pull-up.

The instruction register is 5 bits long with no parity. The pattern “00001” is loaded into the register during the Capture-
IR state.

There are four defined public instructions, outlined inthe table below. All other instruction codes are reserved.

There are three test data registers; Bypass, Boundary-Scan and Identification. These registers operate according to
1149.1. The operation of the Boundary-Scan register is defined in the BSDL description.

Identification code.

Cut identification

The cut identification register (address 0x00000180) contains the product cut number coded as cut x.y, where decimal
x occupies the 4 MSBs as binary coded decimal (BCD) and decimal y occupies the 4 LSBs as BCD.

Pin In/Out Function

TDI in Test data input

TDO out Test data output

TMS in Test mode select

TCK in Test clock

notTRST in Test logic reset

Table 45 STi5518 TAP pins

Instruction code1

1. MSB ... LSB; LSB closest to TDO.

Instruction Selected register

0 0 0 0 0 EXTEST Boundary-scan

0 0 0 1 0 IDCODE Identification

0 0 0 1 1 SAMPLE/PRELOAD Boundary-Scan

1 1 1 1 1 BYPASS Bypass

Table 46 Instruction codes

bit 31 bit 0*

Mask rev b ST20 Family Variant STMicroelectronics Manufacturers id c

1 D 4 0 5 0 4 1

0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Table 47 Identification code

LSTi5518 12 Data flow
CONFIDENTIA
12 Data flow
This chapter describes the data flow through the STi5518, from the incoming transport stream to the outgoing analog
video and PCM audio. It shows how the picture and sound modules are used together. The individual modules are
described in the appropriate chapters.

12.1 On-chip modules

The STi5518 reads in an MPEG2 transport stream, demultiplexes it, decodes the audio and video elementary streams
and creates a video picture and audio PCM. Demultiplexing extracts the video and audio MPEG streams plus other
PES data such as DVB subtitles. Hardware modules are provided on-chip for decoding the MPEG video and audio. The
data before decoding is called compressed data (CD), and digital video data after decoding is called pixel data.

The on-chip modules which process the compressed data streams from the incoming transport stream to the decoders
are shown below:

Figure 31 Compressed data modules

Figure 32 Decoded data modules

D
M

A

CD unit:

EMI

Sub-picture
decoder

Video
decoder

Audio
decoder

Video bit buffer

Audio bit buffer

STi5518

64
32

ST20
bus

MPEG
bus

PES parser
and

CD FIFOs
DVD/VCD/CD-DA
program

Front-end interface

External
SDRAM

External
SDRAM

Shared memory
interfaces

Sub-picture
decoder

Video
decoder

Audio
decoder

Display
unit

PCM
audio

Analog
video

Video frame store

OSD

STi5518

MPEG bus

MPEG and display
memory interface

PAL/NTSC/
SECAM
encoder
(DENC)
 7170179 D 89/294

L12 Data flow STi5518
CONFIDENTIA
12.2 Video data flow

The data flow for MPEG-2 video streams is illustrated below.

DVD, VCD, and CDDA data enters the STi5518 through the I2S, parallel, FEC or ATAPI input. These data formats are
described in Front-end interface on page 92. DVD data are descrambled by the CSS decryption module.

DVD, VCD, and CDDA data are transfered by DMA (see Link on page 105) to the track buffer which can be on the
programmable CPU interface or the shared memory interface. The data in the track buffer is demultiplexed by software
into seperate componatnts (video, audio, subpicture/OGT, navigation).

Video data enters the CD unit through the PES parser, which passes the data to the video CD FIFO. The video CD
FIFO holds 128 bytes and writes 512-bit bursts into the video bit buffer in the SDRAM on the shared meory interface.

The video decoder (described in MPEG video decoder on page 133) reads 1024-bit bursts from the video bit-buffer. It
decodes the compressed bit stream and produces a pixel stream. I-frames and P-frames and B-frames are written into
video frame stores. Different programmable pointers allow enhanced trick modes.

The display unit (described in Display planes on page 156) converts the blocks of pixels into rows, and performs
filtering (zoom-in, zoom_out...) and pan/scan. It then mixes the video with the other display planes and sends two pixel
streams to the on-chip PAL/NTSC/SECAM encoder (DENC). One pixel stream is in 4:4:4 format and is generally used
for TV display, while the other is in 4:2:2 format, and is generally used for output to a VCR.

The DENC converts the pixel streams into analog signals for output from the device. The 4:4:4 pixel stream is
converted into YUV and RGB signals, and the 4:2:2 pixel stream is converted into CVBS and YC signals.

Figure 33 Video data flow

External
SDRAM or
DRAM

PID filter (STB)
CSS (DVD)

Link DMADVD FE
FEC input, I2S input,
parallel input and ATAPI
input.

MPEG DMA PES parser Compressed
data FIFO

PTS/DTS
FIFO

External
SDRAM

Video
decoder

External
SDRAM

Display unit PAL/NTSC/
SECAM
DENC

DACS

sector stream
or PES stream

PES stream
Elementary stream

Video bit-buffer

SMISMI

4:4:4

4:2:2

RGB or YUV

Y-C & CVBS

EMI or SMI

Frame buffer
90/294 7170179 D

LSTi5518 12 Data flow
CONFIDENTIA
12.3 Audio data flow

The data flow for audio streams is illustrated in the figure below.

Up to the track buffer, the audio data follows the same path as the video data flow described above.

Audio data are sent to the audio CD FIFO and do not pass through the PES parser in the CD unit.

The audio CD FIFO writes 512-bit bursts into the audio bit buffer in external SDRAM on the shared memory interface.
The CD unit is described in MPEG video decoder on page 133.

The audio decoder (described in Audio decoder on page 219) unit includes its own FIFO and PES parser. It transfers
data from the audio bit-buffer into its FIFO. The data may be either passed to the audio DSP or to an external audio
interface for transfer to an external audio decoder (see External audio decoder interface on page 241).

Figure 34 Audio data flow

External
SDRAM

CSS Link DMADVD FE
I2S input, FEC input,
parallel input and ATAPI
input.

MPEG DMA
Compressed
data FIFO

External
SDRAM

Serializer
Audio
decoder

sector stream
or PES stream

PES stream

Audio bit-buffer

EMI or SMI

F
IF

O

SMI

PES stream

PES stream

External Audio Interface

DAC_PCMOUT0

DAC_PCMOUT1
DAC_PCMOUT2
SPDIF_OUT
 7170179 D 91/294

L13 Front-end interface STi5518
CONFIDENTIA
13 Front-end interface

13.1 Introduction

The figure below illustrates the front-end interface (FEI) architecture. For STB applications, data enters through the
FEC interface.

Figure 35 Link architecture

Parallel

NRSS Interface

ST20 Bus

Controller

FILTER
RAM

MUX FEI_GCF[0]

MUX

MUX

MUX FEI_GCF[5]

I2S Serial Interface
FEC Interface

DVD CSS
decryption

Acquisition
RAM

Descrambler
(reserved)

Transfer
processor

ATAPI

Sector

processor

DMA

Sector
processor

Transport
processor

LINK

FEI

MUX MUX

MUX FEI_GCF[12]

FEI_GCF[6]

InterfaceInterfaceInterface

FEI_ATAPI_CGF[1]

FEI_GCF[1] or FEI_GCF[12]
or FEI_ATAPI_CGF[1]
92/294 7170179 D

LSTi5518 13 Front-end interface
CONFIDENTIA
13.2 Serial interface

The DVD front-end serial interface supports many different formats and can be used for DVD, VCD and CD-DA
applications. For DVD applications, sectors of 2048, 2064, 2066... bytes are accepted. For VCD and CD-DA
applications, subcodes are multiplexed with data, and the CPU software demultiplexes the data. In serial mode, the
STi5518 signals are renamed as in the table below.

Signal FEC_DATA corresponds to the serial stream data and signal FEC_B_CLK corresponds to the serial stream
clock. FEC_B_CLK can be up to 59.5Mbits, or 60Mbits if the clock is synchronized with the ST20 clock.

The FEC_D_VALID signal is active during a burst transmission (data are supposed to be transferred in a burst of at
least 8 bits long). There can be gap of one or more clock cycles between bytes, but there can be no gaps within the 8
bits of a byte. When the FEC_P_START signal is active during the first bit of the first byte of a packet, the serial front-
end interface detects the beginning of a packet. The rising edge is detected on the FEC_P_START pin and the internal
FIFO counter is reset.

When accessing the link through the FEI, the minimum delay between 2 consectutive sectors is ten serial interface
clock cycles.

Signal name Signal name in serial mode Pin number Type

B_DATA FEC_DATA 16 I

B_BCLK FEC_B_CLK 17 I

B_FLAG FEC_D_VALID (DVD)
FEC_P_CLOCK (DVB/DSS)

18 I

B_SYNC FEC_P_START (DVD)
FEC_ERROR (DVB/DSS)

19 I

Table 48 Serial mode signal names

Figure 36 DVD serial interface

Bit 1 Bit 2 Bit 3 Bit n-1 Bit n Bit 1 Bit 2 Bit 3 Bit n-1 Bit nZ

Z

Z

Z

First bit of byte in sector

FEC_B_CLK

FEC_DATA

FEC_D_VALID

FEC_P_START

Micro is activating output
Burst transmission Burst transmission
 7170179 D 93/294

L13 Front-end interface STi5518
CONFIDENTIA
13.3 DVB-CI mode (optional)

This option is intended for set-top box applications using the digital video broadcast common interface (DVB-CI). All
DVD modes are removed on versions with this option.

The DVB-CI mode uses the three FEC interface control pins (17, 18 and 19) , and the PIO3 pins for the transport data:

• MICLK is the data clock, as defined in the DVB-CI specifications (EN 50221).

• The data MDI[7:0] are clocked out of the STV700/1 on the falling edge of MICLK. The STi5518 samples this data on
the rising edge of MICLK in order to comply with the setup and hold times specified in the DVB-CI specifications.

• MISTRT is valid only during the first byte of the input transport packet, that is, when MDI[7:0]=0x47.

• MIVAL indicates valid data bytes on MDI[7:0]. MIVAL may be either at logic 1 for the duration of the transport packet
(burst valid data), or go to logic 0 at any time to indicate data bytes which must be ignored.

To select the front-end mode, you have to program bit 0 of the FEI configuration register, that is FEI_GCF[0]. All the
other bits of FEI_GCF are related to DVD modes and have no effect on this mode:

Pin number Pin name Function Pin type

6-13 PIO3[0:7] MDI[0:7] Input

17 B_BCLK MICLK Input

18 B_FLAG MISTRT Input

19 B_SYNC MIVAL Input

Table 49 Pin functions for the DVB-CI mode

FEI_GCF[0] = 0 DVB-CI compliant mode

FEI_GCF[0] = 1 FEC mode.
94/294 7170179 D

LSTi5518 13 Front-end interface
CONFIDENTIA
The diagram below shows how the different devices are connected together. You can insert either one DVB-CI module
using STV701, or two DVB-CI modules using STV700. These ICs are inserted between front-end and back-end
products, such as the STV399 and the STi5518.

13.4 Parallel interface

The front-end parallel interface is a generic interface that can be used to input data directly to the decryption cell.This
interface has the pins described in the table below:

In order to ensure data continuity in the serializer (60Mbit/s) at the input to the DMA, there is an elastic buffer behind the
asynchronous parallel interface. The handshake over the interface is controlled by the output signal PARA_REQ, which
is, in effect, the "empty signal" for the 2-byte buffer. It goes active when the buffer requires more data. Figure 38, below,
illustrates typical waveforms. The operation of the interface is as follows:

Figure 37 : Satellite set-top box transport flow diagram using the DVB-CI

Pins Name Type Function

13 - 6 (PIO3[7:0]) PARA_DATA[7:0] I Parallel input data bus

206 (PIO2[2]) PARA_STR I Parallel input strobe

205 (PIO2[1]) PARA_REQ O Parallel output request

201 (PIO1[5]) PARA_SYNC I Parallel synchronization

196 (PIO1[2]) PARA_DVALID I Parallel input data valid

Table 50 Parallel interface pins

8

Module interface (PCMCIA connector)

SmartCard
STV720

STi5518
DVB-CI compliant

STV700/701

Tuner
 + ADC
 + FEC

STV399

Transport
stream
(serial or
 parallel)

MISTRT

MIVAL

MICLK

MDI[7:0]

SmartCard reader

LNB

Bypass
 mode

DVB-CI module
 7170179 D 95/294

L13 Front-end interface STi5518
CONFIDENTIA
When PARA_REQ is active then the data on the interface must be written to the buffer. PARA_REQ then goes inactive
since the buffer is no longer empty. However, the buffer is not yet full since it is 2 bytes long; hence, a second byte can
be written if desired. When the buffer needs more data PARA_REQ will again go active.

In terms of FEI clock cycles (of 60 MHz), PARA_REQ goes active after 8 cycles if 1 byte is written, and after 16 cycles
if 2 bytes are written. When the last byte of a sector is written PARA_REQ will stay inactive for an additional 10 cycles
(that is, 10+8 or 10+16 cycles). Furthermore, following an encrypted sector, PARA_REQ stays inactive for an additional
10 cycles (that is, 10+8 or 10+16 cycles) after the first byte of the new sector is written.

The DVD data entering the parallel interface are 2048-byte sectors (if the DVD header has been stripped by the front-
end) or 2064-byte sectors (the sector length is defined in FEI_SLG register).

The data latching signal is selected by register FEI_GCF[13] as the rising edge (for non-inverted polarities) of either
PARA_STR, Figure 38, or (PARA_DVALID & PARA_STR), Figure 39. The polarities of the signals PARA_STR and
PARA_REQ are programmable by register FEI_GCF[3,4]. They must be set up before the parallel interface is selected
(FEI_GCF[1]). With inverted polarities, the clocking edge of PARA_STR is the falling edge.

The parallel interface is automatically configured when FEI_GCF[1] is set. However, since all the parallel interface pins
have alternate functions, they must be separately set to the correct I/O type. That is, each one must be set to ’input’
except PARA_REQ which must be set to ’output’. The I/O type is set by registers PIO_PnC2:0.

The "sector start" signal can be either an external asynchronous input on pin PARA_SYNC or an internally generated
signal using register FEI_SLG. The setup is via register FEI_GCF[10,11].

Figure 38 Generic parallel interface waveforms (PARA_DVALID not used)

Figure 39 Generic parallel interface waveforms (PARA_DVALID activated)

PARA_STR

PARA_DATA[7:0]

PARA_REQ

Tperiod / 2

Tperiod

Tstr_to_req
Treq_to_str

Thold

PARA_SYNC

Data 1 Data 2 Data 3 Data 4

Tsync_to_str

Data 2048

For timing values see Table 129 on page 289.
Tsetup

Optionally, a second byte can be written
when PARA_REQ is inactive.

PARA_STR

PARA_DATA[7:0]

PARA_REQ

PARA_SYNC

Data 1 Data 2 Data 3 Data 4 Data 2048

PARA_DVALID
96/294 7170179 D

LSTi5518 13 Front-end interface
CONFIDENTIA
The PARA_SYNC signal may be used for example to process DVD shortened sectors (that is, sectors that have less
than 2048 data bytes due to, for example, front-end disturbances which cause loss of sync). Shortened sectors are
completed to 2048 bytes by adding extra bytes after the next sync, that is, at the beginning of the following sector. This
following sector is then ignored.

The maximum width of PARA_SYNC is unlimited but it must be asserted 20ns before the first byte of the sector is
written. The minimum width of PARA_SYNC is 20ns. The PARA_SYNC signal must not be active if PARA_REQ is
inactive.

13.5 ATAPI interface

Introduction

The ATA interface (commonly known as ATAPI) is mainly used for mass storage peripherals in desktop computing.
However, some consumer cost-effective DVD drives use the ATAPI interface. The STi5518 interfaces gluelessly to
these drives.

ATAPI drives are memory mapped devices. A set of registers and an interrupt, control the drive. Data can be
transferred in the following two ways:

• programmed input/output (PIO), a memory mapped data register. This is also used to describe one form of data
transfers;

• DMA transfer.

The ATAPI interface is accessed through bank 1 of the CPU programmable interface.

Connecting to the ATAPI drive

The ATAPI drive uses the STi5518 programmable CPU interface for register IO, and block move DMA to move the data
from the ATAPI to the decryption unit. Only the PIO modes up to Mode 2 (Read and Write) are supported by the
decryption unit. The databus width is 16-bits, and the data is connected to the STi5518 front-end interface internally.
The ST20 programmable CPU interface (otherwise called EMI) must be programmed according to the DVD drive
speed. The figure below shows how the ATAPI interface should be connected to the STi5518.

Operating the ATAPI interface

The following signals are used to operate the ATAPI interface in PIO mode:

• DIOW (Device register write), write strobe signal ATAPI_WR

• DIOR (Device register read), read strobe signal ATAPI_RD

• ATAPI enable (interface enable), notCE[1]

Figure 40 Connection of an ATAPI drive to the STi5518

FEIDVD Interface 8

Data

Address

ATAPI Drive

Diow

Dior

ST20

16

STi5518

M
U

X

FEI_ATAPI_CGF[1]
 7170179 D 97/294

L13 Front-end interface STi5518
CONFIDENTIA
• IRQ ATAPI, IRQ1

• 3 address pins, CPU_ADR[16:18]

• 16 data pins, CPU_DATA[0:15]

• 2 chip selects, CPU_ADR[19:20]

The following figure shows the block diagram of the ATAPI interface

Authentication

The ATAPI drive requires authentication as a legal DVD drive. The authentication process carried out by both hardware
and software. The hardware part in the CSS decryption block is accessed via register reads and writes from the ST20.

PIO data transfer

The EMI is programmed by the ST20 to the PIO transfer speed that is supported by the drive. The ATAPI drives (DVD
drive and HDD) support different transfer speeds. Speeds up to and including Mode 4 are supported by the STi5518 if
the CSS decryption unit is not used.

13.6 I2S interface

Introduction

The STi5518 supports DVD drives with an I2S interface. A hardware sector processor is associated to the interface.
Formats accepted on this input are given in the sector processor (SP) and are described below.

Figure 41 ATAPI interface block diagram

3.
3V

 T
ra

ns
ce

iv
er

DIOW

DIOR

ATA-2 Drive

DA0-2

ATAPI IRQ

2

DD0-15

CS0-1

STi5518

CPU_DATA[0:15]

ATAPI_WR(pin188)

ATAPI_RD(pin187)

3

CPU_ADR[19:20]

CPU_ADR[16:18]

IRQ1

DIR OE

CPU_CE[1]

CPU_R/W
98/294 7170179 D

LSTi5518 13 Front-end interface
CONFIDENTIA
Sector processor

The sector processor (SP) only accepts data from the serial interface. The activities of the sector processor are:

• Sector capturing (DVD, VCD, CDDA)

• Subcode capturing (VCD, CDDA)

• Sector filtering (DVD)

• Sector header bytes strip off (DVD, VCD)

• Flywheel subcode error correction

• Serial to parallel conversion for data and subcodes

• Selectable error strategy for received sectors

• Indication of navigation pack reception (DVD)

The main function of the sector processor is to allow the user to filter and capture groups of contiguous DVD sectors by
programming the first and last sector numbers of a group.

This mechanism is used to ensure only the DVD required sectors reach the track buffer. In normal, the use of the sector
processor implies having the track buffer in STi5518 memory space (memory savings).

The sector header information is also stripped and stored. It can be read by the microprocessor via a number of user
registers (useful information for decryption).

The resulting sector payload is then sent to the DMA engine via the decryption engine.

The sector processor also indicates via an interrupt when a navigation pack is received in the sector stream.

Using these capture and filter functions, the overspeed processing function in DVD can be realized.

In CD-DA mode the sector processor uses the subcode information it receives to “sectorize” the data thus allowing
overspeed processing to be handled for these backward compatible modes.

Since there is no general configuration register the user must configure each of the three modes DVD, VCD, CD-DA
separately.

In DVD mode the sector processor expects a sectorized serial bit stream according to the DVD format (Figure 42 and
Figure 43). The B_SYNC signal indicates the start of each sector.

Erroneous sectors are flagged by the B_FLAG signal at the last byte of the sector (CRC check is done by the front end).

Whenever a captured sector is flagged erroneous, an interrupt is given to the ST20.

Depending on the error strategy (SE_EMR_ERRO Mode Register) the following will happen:

1 The last stored sector is removed and the sector processor waits for a new arrival of this erroneous sector (the ST-
20 is expected to issue a seek command).

2 The last stored sector is not removed and capturing continues with the next sector.

Start/stop capturing is checked on a 3 bytes sector address in the sector address. The 2048 bytes of user data are
stored after decryption in the track buffer through DMA. When a navigation pack enters the sector processor, it is
signaled to the ST-20 by means of an interrupt (NPRENAV).

In VCD mode the sector processor receives a sectorized serial bit-stream according to the CDROM-XA format. In this
mode the B_SYNC signal is not valid as a sector sync. Sector synchronization is obtained by detecting the 12 bytes
CDROM sector sync (00 FF FF FF FF FF FF FF FF FF FF 00) in the I2S data. Before interpreting, the sector data is
 7170179 D 99/294

L13 Front-end interface STi5518
CONFIDENTIA
descrambled. Erroneous bytes are flagged by the B_FLAG signal. Whenever a captured sector contains erroneous
bytes, an interrupt (RDERR) is given to the ST-20 and the behavior will be as described above in DVD mode.

After descrambling, start/stop is checked on a 3 byte sector address in MSF (Minutes Seconds Frames) format in the
Header (see Figure 46).

From the real-time sectors, only the sectors containing video and audio (indicated by bits A set or V set of the sub mode
byte in the sub header) are stored into the track buffer (see Figure 47).

Also interrupts are given if certain types of sectors enter the sector processor (Sub header-sub mode byte, bits EOF,
EOR or T set).

Since the sub header is present twice in a sector, some error strategy is implemented. If one of the 2 is erroneous, the
error flag is suppressed and the right one is taken. If both are erroneous a RDERR interrupt will be given.

Set the SE_MOD register to capture static (file system) sectors (mode 2 form 1). The complete sector, excluding sector
sync is stored into the track buffer. Thus enabling the ST-20 to carry out error correction if needed. Error correction is
not done by the sector processor. In the case of real-time data (mode 2 form 2), only sectors which contain audio and
video data (indicated by the submode bytes) are sent to the DMA engine (see Figure 47).

In CDDA mode the sector processor receives a serial bitstream of audio samples.

Start/stop and overspeed control is done by means of the absolute time coded within Q-channel of subcode.

The subcode has a fixed relation to the serial bitstream of audio samples enabling the sector processor to split up the
CD-DA data stream in “sectors” of 2352 bytes.The sector processor uses a flywheel for absolute time, which is set
according incoming subcode, but increments if the subcode is erroneous (CRC check).

This allows to start/stop capturing, even if the subcode of the start/stop sector is erroneous.The subcode is available on
pin B_V4.

Figure 42 DVD data sector structure

Figure 43 DVD data sector identifier

172 Bytes

4 Bytes 2 Bytes 6 Bytes

ID IED CPR_MAI Main Data 160 Bytes (D0 ~ D159)

Main Data 172 Bytes (D160 ~ D331)

Main Data 172 Bytes (D332 ~ D503)

Main Data 172 Bytes (D1708 ~ D1879)

Main Data 168 Bytes (D1888 ~ D2047) EDC

4 Bytes

12 Rows

ID IED CPR_MAI Main data 160 bytes (D0~D159)

Main data 172 bytes (D160~D331)

Main data 160 bytes (D332~D503)

Main data 160 bytes (D1708~D1879)

Main data 160 bytes (D1888~D2047) EDC

b31 b24 b23 b0

Sector Information Sector Number
100/294 7170179 D

LSTi5518 13 Front-end interface
CONFIDENTIA
As with VCD the subcode information is stored into the sub code buffer.

Figure 44 VCD sector format (mode 2 form 1)

Figure 45 VCD sector format (mode 2 form 2)

Figure 46 VCD header and sub header format

Figure 47 VCD submode byte format

Figure 48 CD-DA sector format

SYNC Header Sub Header User Data EDC ECC

12 4 8 2048 4 276

Data Stored in Track Buffer

sync user datasub headerheader EDC
12 4 8 2324 4

data stored in track buffer

Minutes Seconds Frames Mode

Header

File Number Channel Number

Sub Header

Submode Coding Info File Number Channel Number Submode Coding Info

End of Record (OER)
Video (V)
Audio (A)
Data (D)

Trigger (T)
Form (F)
Real Time Sector (RT)
End of File (EOF)

7 6 5 4 3 2 1 0

Audio Samples Audio Samples Audio Samples

Data Stored in Track Buffer

2352 2352 2352

Data Stored in Track Buffer Data Stored in Track Buffer
 7170179 D 101/294

L13 Front-end interface STi5518
CONFIDENTIA

V4 interface

The V4 interface is used in CD-DA and VCD modes to transfer subcode information. The format on B_V4 pin is similar
to the RS232.

Signals

The table below details I2S interface pins.

The inter-IC sound (I2S) bus was initially a serial link for digital audio. It has been extended to VCD and DVD.

Figure 49 CD-DA subcode format

Figure 50 Subcode format and timing at b_v4 pin

Pin N° Name Type Function

16 B_DATA I I2S Data

17 B_BCLK I I2S Bit Clock

18 B_FLAG I Error Flag

19 B_SYNC I Sector Sync/Abs Time Sync

20 B_WCLK I I2S Word Clock

Table 51 I2S interface pins

P Q R S T U V W Q R S T U VP W Q R S T U VP W

96 Bytes

- P’SubChannel:Signalswithaflagwheremusicordatastartonatrack’

- Q’SubChannel:Containstimeinformation’

Control Address Data Abs Minute Abs Second Abs Frame CRC

4 bits 48 bits4 bits 24 bits 16 bits

- R-W’SubChannels:Containgraphicinformation’

24 Words

96 x 6 bits

24 Words 24 Words 24 Words

tSYNC

1 Q1 R1 S1 T1 U1 V1 W1

tBIT

1 Q2

tGAP

W96
102/294 7170179 D

LSTi5518 13 Front-end interface
CONFIDENTIA
The following four figures illustrate the different I2S modes supported.

Figure 51 I2S bus data format (16-bit word length)

Figure 52 I2S bus data format (24-bit word length)

Figure 53 I2S bus data format (32-bit word length)

Figure 54 I2S bus data format (variable word length)

B_BCLK

B_DATA
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D1 D0

Flag-MSB (1 is unreliable) Flag-LSB Flag-MSB
B_FLAG

B_WCLK RightLeft

B_SYNC

D15 D14D2

B_BCLK

B_DATA
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D1 D0

Flag-MSB (1 is unreliable) Flag-LSB Flag-MSB
B_FLAG

B_WCLK RightLeft

B_SYNC

D15 D14D2

B_BCLK

B_DATA
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D1 D0

Flag-MSB (1 is unreliable) Flag-LSB Flag-MSB
B_FLAG

B_WCLK RightLeft

B_SYNC

D15 D14D2

B_DATA
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D1 D0

Flag-MSB (1 is unreliable) Flag-LSB Flag-MSB
B_FLAG

B_WCLK RightLeft

B_SYNC

D15 D14D2

B_BCLK

Variable number of clocks
 7170179 D 103/294

L13 Front-end interface STi5518
CONFIDENTIA
13.7 Decryption cell

The decryption cell provides all the necessary logic to decrypt DVD data as well as perform the transformations
required for authentication. All necessary keys are internally coded and unreadable externally.

Data decryption is performed by the cell after the ST20 has read, from the sector header information registers (in the
sector processor) the title keys and written them into the decryption cell via the key load register. After a hard reset, the
decryption is in reset mode (FEI_GCF[7] is set).

The decryption cell is able to handle automatically encrypted or non-encrypted sectors.

Before initialization, the decryption needs to be bypassed (FEI_GCF[5]).
104/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
14 Link

14.1 Introduction

The link interface accepts a constrained DVB or DSS transport stream input and extracts a Packet Elementary Streams
(PES) for decode and play. Section streams are extracted from the bitstream and stored in buffers for use by the
decoder control unit.

A high-speed SDAV (Simplified Digital Audio Video) interface transfers transport packets between the STi5518 and
external units for recording or playback. This interface supports an external P1394 link layer controller.

The link includes a National Renewable Security System (NRSS) interface for external descrambling. The figure below
illustrates the link architecture.

14.2 MPEG-2 & DSS systems layers

Two layers are used to describe link interface processing:

Figure 55 Link architecture

Parallel

NRSS Interface

ST20 Bus

Controller

FILTER
RAM

MUX FEI_GCF[0]

MUX

MUX

MUX FEI_GCF[5]

I2S Serial Interface
FEC Interface

DVD CSS
decryption

Acquisition
RAM

Descrambler
(reserved)

Transfer
processor

ATAPI

Sector
processor

DMA

Sector
processor

Transport
processor

LINK

FEI

MUX MUX

MUX FEI_GCF[12]

FEI_GCF[6]

InterfaceInterfaceInterface

FEI_ATAPI_CGF[1]

FEI_GCF[1] or FEI_GCF[12]

or FEI_ATAPI_CGF[1]
 7170179 D 105/294

L14 Link STi5518
CONFIDENTIA
• Transport Packets (TP) layer,

• Packetized elementary stream (PES) or sections (for program specific information) layers.

The link interface performs a complete processing at the TP layer and possibly at PES or section layers.

Function DVB layer DSS layer

Acquisition TP TP

Descrambling TP or PES TP

H/W Filtering (PSI for DVB, CA for DSS) SECTION TP

Table 52
106/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
14.3 Overview

The link connects the front-end interface to the MPEG decoders and the ST20. It is composed of the following units,
and the figure below shows the block diagram:

• Acquisition RAM (AR) + NRSS interface

• Descramblers (DESCR)

• SDAV/P1394 interface

• Filter RAM

• Processor units, including a transport processor, section processor and transfer processor

• Adaptation field filtering

• Clock recovery

• DMA engine

Figure 56 Link block diagram

NRSS I/F

Acquisition RAM (64 bytes)

DVB-DSS FEC
Serial Input

or
DVD-CSS

Decryption Output

NRSS Input

NRSS Output External descrambler

FIFO 20 bytes
FIFO 64 bytes

Link I/F Data Bus (7:0)

FRC

FRAM
480x32 bytes

FIFO
16 bytes

AF filtering

Command lines

Address decoder Link interface DMA SDAV splitter

ST20 Data Bus (31:0)

Link I/F registers

Transport
processor

Section
processor

Transfer
processor

Descrambler

SDAV interface
SDAV/P1394 interface input/output
 7170179 D 107/294

L14 Link STi5518
CONFIDENTIA
Input interface (acquisition RAM + NRSS)

Signals at the front-end interface and link interface are asynchronous. Data received from the front-end interface and
provided by the serial-parallel converter, are buffered in the Acquisition RAM (AR), which is a FIFO memory.

The packet processing must start before the watchdog signal is activated (at least a few bytes before the AR is full).

Descrambling

DVB and DES descramblers are both implemented. For DVB, TP and PES level descrambling are supported. For DSS
the descrambling is only done at TP level only.

Up to 8 different key-sets can be used to descramble up to 32 streams. The descrambling keys are located in the FRAM
and are automatically loaded after PID filtering. If the payload contained in an acquired TP is scrambled, the
descrambler is set-up to handle descrambling and to return descrambled bytes. If the payload is not scrambled, the
payload bytes are sent directly.

Note The descrambler is not used for DVD applications.

SDAV/P1394 interface

The high-speed SDAV/P1394 digital interface transfers either scrambled or non-scrambled transport packets between
the STi5518 and an external unit, for recording or playback.

The simplified digital A/V bus is a point-to-point connection. It only allows one source on any bus segment at a time.

The IEEE1934 standard provides a single I/O interface with a simple connector that can handle numerous devices
through a single port.

This block sends a single stream out to a high-speed serial digital bus, or plays back a stream from that bus. SDAV and
IEEE1394 bus formats are supported.

PID filtering

This block contains a filter to receive the TP of one program. It extracts the transport packets of up to 32 streams from
the incoming bitstream.

Note PID filtering is not used for DVD applications.

Section filtering

A second filter function is applied to all section-type data. The section header can be compared to up-to 32 targets for
each stream. The maximum length of the targets is 16 bytes for DSS and 14 bytes for DVB.

Each bit of each target can be masked individually. For one target byte, two bytes of RAM are required. The total
number of target bytes is defined by the size of the filter RAM array.

Note Section filtering is not used for DVD applications.

Adaptation field filtering

Adaption field filtering extracts PCR information, or discards any undesired data contained in the extracted TP.

Note Adaption field filtering is not used for DVD applications.

Processor units and DMA

The transport processor handles the TP-layer relevant bytes, the section processor handles the section-layer relevant
bytes and the transfer processor counts the transferred bytes or discards unwanted data.

The DMA engine handles the transfer or relevant bytes to the appropriate ST20 memory buffer.
108/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
14.4 Detailed description

14.4.1 Input interface

The link interface receives the TP through the input interface section; it is a fully asynchronous FIFO buffer (64bytes)
that decouples write and read clocks.

Data are latched on the falling edge of FEC_B_CLK.

The FEC_P_CLK is active-high during the significant bits of the packet (188 x 8 for DVB, 130x8 for DSS). On this pin,
the rising edge is detected and the internal FIFO counter is reset.

The FEC_ERROR signal should be active high for an entire packet if there is an error somewhere in the packet. These
packets will not be written into the AR. This signal should only transition at the rising edge of FEC_P_CLK.

The maximum input data rate (FEC_B_CLK) is 59.5Mbit/s or 7.43Mbytes/s (7/8 of 68Mbit/s). The internal link interface
block data rate is 60Mbits.T

14.4.2 NRSS interface

The figure below shows the NRSS interface block diagram. The incoming signal comes from the SDAV/P interface for
DVB applications, or from the DVD-FEI for DVD applications. This signal is transferred through the NRSS interface to
an external descrambler, after descrambling the signal is transferred back over the NRSS interface to the NRSS input.
The descrambled signal is then moved into the acquisition RAM.

In DVB applications, the signal can bypass the NRSS interface and pass from the SDAV interface to the acquisition
RAM. The data can pass through without going out to the NRSS.

Clocks Description Value

SYS_CLK descrambler clock 60 MHz

FEC_B_CLK bit clock signal up to 59.5 MHz

Table 53 Link interface data rates

Figure 57 NRSS interface block diagram

1
FEC I/F

2

SDAV I/F
TAPE IN

NRSS IN

0

1

NRSS MODE

0

1

NRSS MODE
or

SDAV_MODE

0

1

SDAV MODE

NRSS OUT

Acquisition RAM

3

S/P

S/P

S/P

P/S

S/P: Serial Parallel Conversion
P/S: Parallel Serial Conversion
 7170179 D 109/294

L14 Link STi5518
CONFIDENTIA
The following paths are used:

Two MUX controls select whether the input is comes from the FEC interface or a reserved input, and whether the NRSS
is used or not. The other FEC signals pass through this block to ensure that proper timing is maintained. Serial/parallel
conversion is performed after NRSS. Register LNK_MODE sets MSB or LSB first in the serial-parallel converter.

When the input is FEC, the NRSS_CLK coming from the link interface is discontinuous. Consequently, the data has to
be maintained at the end of each byte.

The NRSS block inputs are shifted from a serial bit-stream into a serial-to-parallel converter shift-register, using the
incoming clock, FEC_B_CLK.

The parallel byte is then loaded into a register and a single bit is generated that toggles on each new byte. That signal
is then sampled with the SYS_CLK. This asynchronous sampling takes a couple of clock cycles.

The byte is then loaded into the output shift register for the NRSS interface and is shifted out using the SYS_CLK. If the
SYS_CLK is faster than the incoming clock then there will be SYS_CLK cycles where there is no data available to shift
out.

When there is no available data, the NRSS_CLK output is forced to remain low for that clock cycle. This mechanism
can be broken by making the FEC clock (FEC_B_CLK) faster than SYS_CLK.

Normally the acquisition RAM has all four of the FEC input signals (FEC_B_CLK, FEC_DATA, FEC_P_CLOCK, and
FEC_ERROR). Since the NRSS interface has only clock and data, there is no indication of the beginning of a packet.
Within the NRSS interface the Link Interface looks for a synchronization byte (0x47) coming from the NRSS card to
indicate the beginning of a packet and uses that to generate a packet clock.

Acquisition RAM size

The internal FIFO counter is reset by the rising edge of the packet clock signal in DVB/DSS mode, or by the rising edge
of sector start in DVD mode.

FEC -> ARAM

FEC -> NRSS -> ARAM

SDAV → ARAM

SDAV → NRSS → ARAM

Figure 58 Serial input I/F from channel IC or link IC

FEC_B_CLK

FEC_DATA

FEC_P_CLK

FEC_ERROR

Burst Transmission

Bit 1 Bit 2 Bit n-1Bit3 Bit n Bit 1 Bit 2 Bit n-1Bit3 Bit n

Micro is activating
output

Z

Z

Z

Z

Burst Transmission
110/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
When the following packet arrives, the last bytes of the packet in process have to be read. To ensure this, the upper
limit of this FIFO is programmable by software so that the last byte of a packet is written as high as possible in the FIFO,
as shown in the figure below.

The optimal acquisition RAM size for each mode is as follows:

• DSS mode = 44 (2*44 + 42 = 130)

• DVB mode = 63 (2*63 + 62 = 188)

• DVD mode if sector size is 2066 = 53 (38*53 + 52 = 2066)

• CD mode if sector size is 2048 = 58 (43*58 + 54 = 2548)

14.4.3 Descrambler

The figure below shows the TP and PES header format. The link interface contains two descramblers conforming to the
DVB/DES descrambler specifications. Byte # 1 is the 1st byte of the TP - bit(7) = MSB Descrambler DVB.

Figure 59 Acquisition RAM

Figure 60 TP & PES Headers

1st byte of a packet

FIFO
(64 bytes)

Last byte
DSS = 42

Last byte
DVB = 62

Bytes 1 to 44 (44)

Bytes 45 to 88 (44)

Bytes 89 to 130 (42)

Bytes 1 to 63 (63)

Bytes 64 to 126 (63)

Bytes 127 to 188 (62)

Upper
Limit = 44

Upper
Limit = 63

0x47

Byte 1/188
Scrambling
TP Level

Sync_byte

Playload_unit_start_indicator (byte 6)

PID (13 bytes)

Scrambling control - Bytes (7:6)
(scrambling + odd/even) AF Control Bytes (5:4)

CC Bytes (3:0)

Playload
184 bytes

Scrambled at TP level if scrambling control(1) = 1

1 9+N

N

2 3 4 5 6 7 8 9 10 11 12 13

...

PES HEADER PAYLOAD

PES Header Length

Scrambling
PES LevelScrambling Control

Bytes (5:4)

Scrambled at PES level if scrambling control(1) = 1
 7170179 D 111/294

L14 Link STi5518
CONFIDENTIA

The scrambling algorithm operates on the payload of a TP in the case of TS-level scrambling.

A structuring of PES packets is used to implement PES-level scrambling with the same scrambling algorithm.

The scrambling of MPEG-2 sections is at TP level.

PES-level scrambling

The PES data format is shown in the figure below. The following recommendations must be followed for PES-level
scrambling.

1 The PES packet header must not be scrambled.

2 The header of a scrambled packet must not span multiple TP.

3 The TP containing parts of a scrambled PES packet should not contain an Adaptation Field (with the exception of
the TP containing the end of the PES packet).

4 The TP carrying the start of a scrambled PES packet must be filled by the PES header and the first part of the PES
payload.

In this way, the first part of the PES packet payload is scrambled exactly as a TP with a similar payload. The
remaining part of the PES packet payload is split in super-blocks of 184 bytes. Each block is scrambled exactly as
a TP payload of 184 bytes.

5 The end of the PES packet payload is aligned with the end of the TP by inserting an Adaptation Field of suitable
size (as required in ISO/IEC 13818-1).

If the length of a packet is not a multiple of 184 bytes, the last part of the PES packet payload (from 1 to 183) is
scrambled exactly as a TP with a similar payload.

Scrambling Control Bits MSB LSB (if MSB = 1)

DVB TP Level Byte # 4
Bits(7:6)

1: scrambled
0: non-scrambled

1: odd key
0: even key

DVB PES Level Byte # 11
Bits(5:4)

1: scrambled
0: non-scrambled

1: odd key
0: even key

DSS Byte # 1
Bits(5:4)

1: non-scrambled
0: scrambled

1: odd key
0: even key

Table 54

Figure 61 PES data format

PES HEADER PES DATA (Scrambled)

PES HEADER PES DATA

PES DATA

AF PES DATA

TS PACKETS
112/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
14.4.4 SDAV/P1394 interface

The SDAV/P1394 interface carries a single stream out to a high-speed serial digital bus, or plays back a stream from
that bus. SDAV and IEEE1394 bus formats are supported, this section describes each format.

SDAV bus format

This format uses a 49.152 MHz bit-rate in a non-return-to-zero (NRZ) encoding method. The following signals are used:

The signals STROBE_TX and DATA_TX are reversed for transmit and receive, i.e. the signal STROBE_TX acts as the
data signal in receive mode and the strobe in transmit mode, the DATA_TX signal acts as the strobe signal in receive
mode and data in transmit mode. The signal DIRECTION controls the mode; when DIRECTION is high, the mode is
transmit and the other two signals are outputs.

The time stamp, which is used to maintain proper packet placement, is the value of the LSB’s of a continuously running
27 MHz clock. This time stamp is added for SDAV bus and optionally for 1394 bus in tape-out mode, but it is simply
discarded when received from these busses in tape-in mode.

For SDAV, during packet transmission, there is only a single mode transmitting on the bus so the media can operate in
a half-duplex mode using two signals: DATA_TX/RX and STROBE_TX/RX. NRZ.Data is transmitted on DATA_TX/RX
and is a accompanied by the STROBE_TX/RX signal, which changes state whenever two consecutive NRZ bits are the
same. This ensures that a transition occurs on either DATA_TX/RX or STROBE_TX/RX for each bit. A clock with
transition on each bit-period is derived from the exclusive-or of DATA_TX/RX with STROBE_TX/RX as show below.

Signal
direction

Pin
name

Pin
number

Pin
direction

SDAV
direction

SDAV
description

In SDAV_DATA 103 I/O I STROBE_RX (49.1 MHz) (NRZ decoding) (only header + playload)

SDAV_CLK 22 I/O I DATA_RX (NRZ decoding)

SDAV_DIR 104 I/O O DIRECTION (tape in)

Out SDAV_DATA 103 I/O O DATA_TX (NRZ encoding)

SDAV_CLK 22 I/O O STROBE_TX (49.1 MHz) (NRZ encoding) (only header + payload)

SDAV_DIR 104 I/O O DIRECTION (tape out)

Table 55 SDAV bus format on the SDAV/P1394 interface

Figure 62 Format for DSS and DVB in SDAV Mode

Figure 63 DATA_STROBE NRZ Encoding (inside STi5518)

12 bits
reserved

20 bits
time stamp

130 bytes
DSS packet

10 bytes
Stuffing

12 bits
reserved

20 bits
time stamp 188 bytes DVB packet

d q

d q

q

DATA_TX

STROBE_TX

DATA

CLOCK
 7170179 D 113/294

L14 Link STi5518
CONFIDENTIA

Packets are synchronized by introducing a clock “gap” of 16 clock (49.152 MHz) cycles (= clock stopped in Figure 63
and Figure 64). So if such a gap is detected, then the packet is finished. The following edge of the clock indicates the
beginning of a new packet.

P1394 bus format

This mode uses the STi5518 in conjunction with an external 1394 link layer circuit to interface to the physical bus. The
following signals are used.

All three signals are outputs for tape-out mode, and inputs for tape-in mode. The clock is continuous and the
DATA_VALID signal is active for the entire packet, without gaps between the bytes.

The DATA_VALID signal defines the size of the packet. The rising edge of DATA_VALID determines the start of the
packet. As for SDAV mode, a clock “gap” of 16 clock cycles (up to 60 MHz) is needed before the next rising edge of
DATA_VALID.

Figure 64 DATA_STROBE NRZ Decoding (inside STi5518)

Signal
direction

Pin
name

Pin
number

Pin
direction

SDAV
direction

SDAV
description

In SDAV_DATA 103 I/O I DATA_IN (no NRZ decoding)

SDAV_CLK 22 I/O I CLOCK_IN continuous (up to 60 MHz)

SDAV_DIR 104 I/O I DATA_VALID_IN (packet clock)

Out SDAV_DATA 103 I/O O DATA_OUT (no NRZ encoding)

SDAV_CLK 22 I/O O CLOCK continuous (60 MHz)

SDAV_DIR 104 I/O O DATA_VALID_OUT (packet clock)

Table 56 SDAV bus format on the SDAV/P1394 interface

Figure 65 Format for DSS and DVB in 1394 Mode

d q

d q

q

DATA_1
(rising edge of clock)

DATA_0
(falling edge of clock)

DATA_RX

STROBE_RX

Clock = DATA_RX + STROBE_RX

12 bits
reserved

20 bits
time stamp

130 bytes
DSS packet

10 bytes
Stuffing

12 bits
reserved

20 bits
time stamp 188 bytes DVB packet

Optional Optional

Optional
114/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
If the rising edge is asserted before this period has passed, the behavior is undefined.

HEADER if SDAV or (1394 and header_enable) and not(PCM or DVD).

PADDING if incomplete DMA and not(PCM or DVD).

STUFFING if DSS and (SDAV or (1394 and header_enable).

Data path

The maximum input rate is about 7.5Mbytes/s (7/8 * 68Mbits/s). The data are sent to the SDAV interface either
scrambled or not. Note that the descrambler works up to 60Mbits/s. Null packets are not transmitted to the digital bus.

Packets concerning other programs, and any useless information are discarded. In such cases, packets may be
generated by the ST20 and transmitted by DMA transfer for example.

Those packets must be isochronous with the packets extracted from the original multiplex. Some tables(PAT, PMT)
may be modified by S/W to create new program guides for use in playback mode

Tape-in

In tape-in mode the SDAV interface serves as a data source similar to, and instead of, the FEC input. The data is
received from the interface and sent to the NRSS block and into the acquisition RAM. The data can be sent directly or
re-synchronized to SYS_CLK.

Figure 66 Timings in P1394 Mode

Bus Mode
Incomplete
DMA

Header_
enable

Stuffing_
enable

Header
bytes

TP
bytes

Padding
bytes

Stuffing
bytes

Total

SDAV DVB 0 X X 4 188 192

SDAV DVB 1 X X 4 X 188-X 192

SDAV DSS 0 X X 4 130 10 144

SDAV DSS 1 X X 4 Y 130-Y 10 144

1394 DVB 0 0 X 188 188

1394 DVB 0 1 X 4 188 192

1394 DVB 1 0 X X 188-X 188

1394 DVB 1 1 X 4 X 188-X 192

1394 DSS 0 0 0 130 130

1394 DSS 0 0 1 130 10 140

1394 DSS 0 1 0 4 130 134

1394 DSS 0 1 1 4 130 10 144

1394 DSS 1 0 0 Y 130-Y 130

1394 DSS 1 0 1 Y 130-Y 10 140

1394 DSS 1 1 0 4 Y 130-Y 134

1394 DSS 1 1 1 4 Y 130-Y 10 144

Table 57

CLOCK_IN/OUT

DATA_IN/OUT

DATAVALID_IN/OUT
 7170179 D 115/294

L14 Link STi5518
CONFIDENTIA
Any header or stuffing, if enabled, are stripped from the packet and discarded with the exception of the 12 reserved bits
in the header. These reserved bits are latched in the register LNK_EXTRA_BITS. If these bits differ from the contents
of the register prior to the latching, an interrupt is generated.

The SDAV_overflow interrupt is generated to indicate to the ST20 that some extra_bits are available. Both fields
(SDAV_overflow and SDAV_underflow) are set in the LNK_STAT_FIFO.

This IRQ can be masked by register bit LNK_EXTRA_BITS[0], and is generated only when the incoming extra_bits
changes value.

Tape-out

In Tape-out mode, the SDAV block receives data from the acquisition RAM, or from the descrambler. The Link I/F
system clock (SYS_CLK) is used as CLK_IN (60 MHz).

The output clock is the interface clock (49.1 for SDAV, up to 60 MHz for 1394). The input data stream speed varies with
the speed of the incoming FEC data, or it will be at whatever speed the DMA engine can provide.

The data are latched (at the CLK_IN frequency) into a single port RAM to guarantee the output of one complete packet
at the corresponding clock frequency. This means that the SDAV block will receive about one byte every 8 clock cycles
(CLK_IN).

As soon as there is enough information in the RAM (not to run out of data before the end of the packet), the SDAV I/F
generates the header information and then converts the data to the SDAV bus serial format.

CPU generated packets

The CPU can create custom program guide packets for insertion into the bitstream and DMA the packets to the SDAV
block.

The packets are inserted into the out-going stream where possible. The DMA is set-up to send 32-bit word data to the
SDAV block. Before enabling the DMA, the ST20 must set the value of the LNK_SDAV_DMA_EN register bits
FIRST_BYTE_POSIT and LAST_BYTE_POSIT.

• FIRST_BYTE_POSIT should be loaded with the 2 LSB of the address of the first byte to be transferred.

• LAST_BYTE_POSIT should be loaded with the 2 LSB of the address of the last byte to be transferred.

If the data that is being sent starts at address 0x40001000 and ends at address 400010FF, the value of
FIRST_BYTE_POSIT is 00 and the value of LAST_BYTE_POSIT is 0x11. If the data to be sent starts on an odd
boundary such as 0x40001001, the DMA should start with the address 0x40001000 but the FIRST_BYTE_POSIT
should be loaded with 01. Similarly, if the data to be sent ends on an odd boundary such as 0x400010FE, the DMA
should transfer the entire 32 bit word starting at address 0x400010FC but the LAST_BYTE_POSIT should be loaded
with 10.

14.4.5 FRAM

Introduction

The FRAM is a dual port 480 x 32 bit RAM that holds all of the link interface information. This includes the filter
information, the stream configurations, descrambler keys and the IRQ words. One port is used by the micro to initialize
the RAM. The other port is used by the processor, the filter and the descrambler.

SDAV Input SDAV Output

SDAV_OVERFLOW EXTRA_BITS_IRQ SDAV_OVERFLOW

SDAV_UNDERFLOW when both = 1 SDAV_UNDERFLOW

Table 58
116/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
After the PID is filtered, the stream number is used to generate the address for the stream initialization. This
configuration determines how stream is processed (section, error code, filtering...). For power reduction, the FRAM is
only enabled when an access from one of the processors occurs. This happens in case of PID filtering, AF filtering,
section filtering, the loading of the stream configuration, the saving of the stream configuration at the end of the packet
(section length if section is over 2 TP, CC...) and the IRQ status word read and write operations.

Filtering

Filtering is done by pre-calculating the result. The byte to be filtered generates the address in the FRAM. A “1” at an
address means a match. For a 8 bit value, this would give 256 bits in the RAM.

To reduce the RAM size, filtering is done in four steps per incoming byte. In each step, 2 bits of the incoming byte plus
a 2-bit pointer, generate the address in the RAM. This gives a 16-bit RAM for one filter byte. Each bit of the byte to be
filtered can be masked individually as described below. Because the RAM is 32 bits wide, 32 targets can be filtered in
parallel. However, it is also possible to filter on less then 32 targets. In this case the MUX at the output of the FRAM
allows selection of only a part of the data.

With each new byte to be filtered, the address of this MUX changes (by adding the filter number) and selects a different
part of the output data. Therefore, the lower bit of the filter match register holds the result of the filter process. For
example, if only one target is filtered, the LSB of the register holds the result.

Figure 67 First and last bytes for DMA transfer to the SDAV interface

[31:24] [23:16] [15:8] [7:0]

First Byte

FIRST_BYTE_POSIT (SDAV_DMA_EN register)

VALID11

VALID VALID10

VALID VALID01 VALID

VALID VALID01 VALID VALID

[31:24] [23:16] [15:8] [7:0]

Last Byte

LAST_BYTE_POSIT (SDAV_DMA_EN register)

VALID00

VALID VALID01

VALID VALID10 VALID

VALID VALID11 VALID VALID
 7170179 D 117/294

L14 Link STi5518
CONFIDENTIA

Error procedures

The following error mechanisms are applied.

The CC error code insertion can be switched on or off for each stream individually, by the stream configuration.

Figure 68 FRAM organization

Filter Mask Value in FRAM Filter Mask Value in FRAM

01101100
11111111

0100 0010 0001 1000 ...

01101100
11111110

0100 0010 0001 1100 01101100
00000010

1111 1111 1111 1100

01101100
11111101

0100 0010 0001 1010 01101100
00000001

1111 1111 1111 1010

... 01101100
00000000

1111 1111 1111 1111
All input bytes are valid

Table 59 Error filtering examples

Error Mode Description

FEC DVB
DSS

This signal is delivered by the Link_IC and signals a packet error. In this case the transport
packet is not processed, it is not written into the AR.

SYNC_BYTE DVB If the sync_byte in the packet header is not correct (!= 0x47), the TP is rejected.

TRANSPORT_ERROR
_INDICATOR

DVB This bit belongs to the TP header; if it is set the TP is rejected. This is done with the filter
process.

CC DVB,
DSS

If the received CC does not match the expected one, different mechanisms are applied
according to the stream type.

Table 60 Error mechanisms

Event Action

Suspend = ’0’ No CC Error Generated

Table 61 CC error code

P
ID

 F
IL

T
E

R
IN

G
 (

32
 X

 3
2

B
IT

)

K
E

Y
 M

E
M

O
R

Y
 (

32
 X

 3
2

B
IT

)
F

O
R

 U
P

 T
O

 E
IG

H
T

 S
C

R
A

M
B

LE
D

 S
T

R
E

A
M

S

S
T

R
E

A
M

 C
O

N
F

IG
U

R
A

T
IO

N
 #

1
(3

2
X

 3
2

B
IT

)

S
T

R
E

A
M

 C
O

N
F

IG
U

R
A

T
IO

N
 #

2
(3

2
X

 3
2

B
IT

)

S
T

R
E

A
M

 C
O

N
F

IG
U

R
A

T
IO

N
 #

3
(3

2
X

 3
2

B
IT

)

IR
Q

 R
E

G
IS

T
E

R
S

 (
32

 X
 3

2
B

IT
)

SECTION
FILTERING

(288 X 32 BIT)

0x
00

0

0x
02

0

0x
14

0

0x
16

0

0x
18

0

0x
1A

0

0x
1C

0

32 Bit

UC Bus

RAM ARRAY (480 X 32 BIT)

32 Bit

TO
F_RAM
CNTRL.
118/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA

The following table summarizes the CC processing for DVB.

1 This will create a CC error for the next packet on this PID.

2 If discontinuity_indicator is set (in the AF) and if an error code was inserted, this code must be removed.

Not equal filtering

The not equal filtering mode can be used only in DVB, not in DSS.

This mode filters on a not-equal condition (defined in register STREAM_CONF_1). The byte to which this is applied is
programmable. This filtering can also be done in parallel, on up-to 8 different targets. When using this function, one
additional byte has to be filtered after the ’not-equal’ byte.

After the section length, register LNK_STREAM_CONF_1 bit SEC_F_INV is loaded. It cannot be loaded with “111”. The
function is activated by register LNK_STREAM_CONF_1 bit SEC_F_INV.

CC Error and ERROR_PATT = ’1’ and not (only AF) and PES Error code is Generated: B4 00 00 01 B4

CC Error for a Section Stream If section is active, the stream is disabled and IRQ is generated
(see below)

AF Payload Event Link I/F processing

0 0 CC is Incremented or not - Skipped TP: Dummy Xfer

1 0 CC n ÷ CC n-1- CC n 1 CC n-1 - End of CC processing
- CCstored is Modified by the Link I/F (1)

0 1 CC is Incremented
CC n ÷ CC n-1- CC is not Incremented

- End of CC processing
- Duplicated TP: Dummy Xfer
- Section + Suspend = 1: sTream Disabled (2)
- Section + Suspend = 0: Nothing
- PES + Suspend = 1: Insert Error Code
- PES + Suspend = 0: Nothing

1 1 Same processing as previous combination (2)

Table 62 CC processing for DVB

Figure 69 Basic principle of filter mechanism

Table 61 CC error code

2550

F BYTE (8 BIT)

In this case the filter byte gives direct the address in the RAM array.

RAM array of 256 x 1 for each filtered byte
Result
 7170179 D 119/294

L14 Link STi5518
CONFIDENTIA
One byte of each target can be checked to be different from a specific value. At the beginning, all sections can be
received. This is done by masking the specified byte (the FRAM is initialized with 00h in not_equal mode). After each
section has arrived, the filter for the specified byte can be written into the FRAM (see Table 63).

Note 0: bit is masked, 1: bit is not masked

14.4.6 DMA

MPEG audio, video and system data can be transferred to any location in the ST20 address space (internal SRAM,
external SDRAM or DRAM, MPEG decoders) via a DMA controller.

The DMA transfers the data from the link interface to a destination address which can be set individually for each
stream.

Figure 70 Section filtering example

Filter Mask Value in FRAM Equal mode Not-equal mode

01101100
11111111

0100 0010 0001 1000 01101100 valid All Valid Except
01101100

01101100
01101100

0100 0010 0001 1100 01101100 and01101101 valid All valid except
01101100 and 01101101

01101100
10011111

1100 1010 0001 1010 01101100 and
00101100 and
01001100 and
00001100 valid

All valid except
01101100 and
00101100 and
01001100 and
00001100 valid

...

01101100
00000000

1111 1111 1111 1111 All bytes valid No byte valid

01101100 0000 0000 0000 0000At least
1 nibble = 0000

No byte valid All bytes valid

Table 63 Equal and not-equal filtering

Table_id

Section_length

Not Equal Mode
Available for One
of these 6 bytes

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

100
011
010
001
000

SEC_F_INV
Sec_f_count = 100
(from STREAM_CONF_1)

Not Equal Mode

Result available (1 Byte Later)

These bytes can be written into the FIFO (16 bytes).
This Means that up to 14 Bytes
(Max Filter Length) can be filtered.
120/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
DMA configuration

The figure below shows the DMA address configuration, the following table gives the DMA configuration registers.

DMA description

At the beginning of the packet, the DMA is initialized by registers LNK_STREAM_CONF_2 and
LNK_STREAM_CONF_3. There are two basic DMA modes: incremental (circular and linear) and non incremental.

At the end of the packet, the current DMA address can be stored back to the FRAM. This is reloaded by the link
interface when the next packet on this stream arrives. Address write-back is not performed in DVD mode.

• If register LNK_STREAM_CONF_2 bit INCREMENT is set to ’1’, and register LNK_MODE bit DFB is set to ’0’, the
last transfer will be a burst transfer, where unused bytes are filled with dummy data.

• If register LNK_STREAM_CONF_2 bit INCREMENT is set to ’0’, or register LNK_MODE bit DFB is set to ’1’, the
exact number of bytes is transferred (MPEG decoders).

The address counter keeps the value of the last valid byte that is transferred. Two buffers are used in the DMA (two
times 4x32 bits). While one buffer is transferred, the second one is filled. This allows data to be read from the link
interface even if the DMA has to wait for the ST20 bus.

The address pointer, which is normally increment every time something is transferred, must be limited in order not to
destroy information from other buffers or program code. Therefore, circular buffers are implemented.

Circular buffer (incremental mode)

To stop the transfer when the circular buffer is full, the CPU writes the STOP_ADDRESS in the link interface. In this
case, when the transfer pointer (START_ADDRESS) reaches this value, the DMA is aborted. This prevents overwriting
of data which has not been processed.

The CPU updates the STOP_ADDRESS each time it has finished processing data. A START_ADDRESS(2:0) and a
STOP_ADDRESS(9:0) are specified. The meaning of these bits depends on the BUFFER_SIZE(2:0). The following
figure illustrates how the buffer-size is defined.

Table 64 DMA address

Register Bits Circular buffer

LNK_STREAM_CONF_2

Buffer_size 26:24 Circular Buffer Size

Stop_address 23:14 Dma_stop_address(14:5) to (7:0)

Start_address 13:11 Dma_start_address(14:12) to (7:5)

Dma_bank_addr 10:7 Dma_address(31:28)

Dma_high_addr 6:0 Dma_address(21:15)

LNK_STREAM_CONF_3

Dma_low_addr 26:12 Dma_address(14:0)

Table 65 DMA configuration registers

31 28 21 14 10 6 3 0

DMA_BANK_ADDRESS[3:0] DMA_HIGH_ADDRESS[6:0] CURRENT_ADDRESS[14:0]

ADDRESS STORED IN FRAM
 7170179 D 121/294

L14 Link STi5518
CONFIDENTIA

Figure 71 Buffer_size definition

BUFFER_SIZE SIZE
0 0 0 256 Bytes

BASE ADDRESS 0 0 0 0 0 0 0 0Start

BASE ADDRESSCurrent

BASE ADDRESSStop

End BASE ADDRESS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMA_BANK_ADDR NOT USED DMA_HIGH_ADDR

Current_address = first byte to be written
Stop_address = last byte read

0 0 0 0 0

1 1 1 1 1 1 1 1

START_ADDRESS
STOP_ADDRESS

BUFFER_SIZE SIZE
0 0 1 512 Bytes

BASE ADDRESS 0 0 0 0 0 0 0 0Start

BASE ADDRESSCurrent

BASE ADDRESSStop

End BASE ADDRESS

0 0 0 0 0

1 1 1 1 1 1 1 1

s1

s1 + 1

BUFFER_SIZE SIZE
0 1 0 1024 Bytes

BASE 0 0 0 0 0 0 0 0Start

BASECurrent

BASEStop

End BASE

0 0 0 0 0

1 1 1 1 1 1 1 1

s2 s1

s2s1 + 11

BUFFER_SIZE SIZE
0 1 1 1536 Bytes

BASE 0 0 0 0 0 0 0 0Start

BASECurrent

BASEStop

End BASE

0 0 0 0 0

1 1 1 1 1 1 1 1

s3 s2 s1

s3s2s1 + 101

Start

Current

Stop

End

Start

Current

Stop

End

Start

Current

Stop

End

Start

Current

Stop

End

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BASE

BUFFER_SIZE SIZE

1 0 0 2048 Bytes

BUFFER_SIZE SIZE

1 0 1 3072 Bytes

BUFFER_SIZE SIZE

1 1 0 4608 Bytes

BUFFER_SIZE SIZE

1 1 1 8192 Bytes

0 0 0 0 0 0 0 0

0 0 0 0 0

1 1 1 1 1 1 1 1

s3 s2 s1

s3s2s1 + 111

0 0 0 0 0 0 0 0

0 0 0 0 0

1 1 1 1 1 1 1 1

s4 s3 s2 s1

s4s3s2s1 + 1011

0 0 0 0 0 0 0 0

0 0 0 0 0

1 1 1 1 1 1 1 1

s5s4 s3 s2 s1

s5s4s3s2s1 + 10001

0 0 0 0 0 0 0 0

0 0 0 0 0

1 1 1 1 1 1 1 1

s5s4 s3 s2 s1

s5s4s3s2s1 + 11111

End Address = Start_address + 256-1
122/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
When the transfer address reaches the top of the circular buffer, it is reset to the bottom of the circular buffer and the
transfer continues. The figure below illustrates the circular buffer operation.

If the transfer is aborted (if STOP_ADDRESS is reached), the DMA engine generates a DMA overflow and the rest of
the packet is discarded. The DMA buffer is flushed to its destination, STREAM_CONF_3 is saved back to the FRAM,
and the stream is automatically disabled. The DMA_overflow-bit is set, along with the STREAM_NUMBER in the status
word. The status word is written into the LNK_STAT_FIFO register.

DVD buffer (linear mode)

In DVD mode, the DMA can be incremental or non-incremental. If it is incremental, the circular buffer is not used.

• If register bit LNK_STREAM_CONF_2.INCREMENT=1, the start address is set by register bit
LNK_STREAM_CONF_3.DMA_LOW_ADDR, and is incremented after each access, independent of the start and
stop addresses.

• If register LNK_STREAM_CONF_2.INCREMENT=0, all of the data is written to the address specified by register
bits LNK_STREAM_CONF_2.DMA_HIGH_ADDR and LNK_STREAM_CONF_3.DMA_LOW_ADDR.

Non-incremental buffer

This mode is used when addressing the CD FIFOs. The current_address(1:0) is incremented by ’1’ after each access.

14.4.7 Clock recovery

This block assists the control unit in the clock recovery and clock synchronization processes. It uses local counters
clocked with the video clock (27 MHz).

The counter values are latched in four registers that can be read by the control unit: PCR_EXT, PCR and V_PTS.

LNK_PCR_EXT(8:0) and LNK_PCR(31:0) are updated with the local time counters when a new packet occurs. If an AF
with PCR is found (if PCR flag is present in LNK_AF byte #0), a sample of the 27 Mhz clock is latched and the first 8

Figure 72 Circular buffer diagram

Circular buffer DVD buffer Non-incremental buffer

BUFFER_SIZE not used

STOP_ADDRESS not used

START_ADDRESS

DMA_BANK_ADDRESS Used to initialize the DMA

DMA_HIGH_ADDRESS

DMA_LOW_ADDRESS

Table 66 Non-incremental buffer

Start + Size 1 1

Stop(y:1) 0 0

...

...

DMA_LOW(x:1)

Start(w:1) 0 0...

0 0 0 ... 0 0 0

Start of TP
 7170179 D 123/294

L14 Link STi5518
CONFIDENTIA
bytes of the incoming Adaptation Field are stored in LNK_AF[1:0]. It allows the controller unit to synchronize the
decoder clock reference (27 MHz). A new PCR can’t be latched if the current PCR (AF[1]) has not been read by the
micro. The signal PCR_LATCH_EN is set to indicate that a new PCR can be latched.

LNK_V_PTS (or LNK_A_PTS) is updated with the local time counter(31:0) when a rising edge is detected on V_PTS
_LATCH (or A_PTS_LATCH from the audio decoder or external AC3).

The V_PTS_LATCH and A_PTS_LATCH are reset by the clock recovery entity after the register has been read by the
control unit.

A counter (19:0) is also required to generate the time stamp used for the SDAV header. The time stamp value is
updated at the beginning of each packet, as illustrated below.

14.4.8 Interrupts

There are nine interrupt sources for each stream. Each interrupt source has a corresponding status bit in the register
LNK_STAT_FIFO. If the interrupt is enabled (mask=1) and the corresponding status bit is set, an interrupt event is
generated.

Successive interrupts generate successive status words (LNK_STAT_FIFO) that are stored in chronological order in a
32-word FIFO. This is useful if multiple interrupts occur within a packet (multiple sections per packet). The FIFO is
implemented as a circular buffer in the FRAM.

In the status-word, the stream-number field (LNK_STAT_FIFO.SN) and interrupt status bits are always applicable. The
target-match (LNK_STAT_FIFO.TM) and other-match (LNK_STAT_FIFO.OM) are only valid on end-of-filter
(LNK_STAT_FIFO.EOF) and incomplete-filter interrupts (LNK_STAT_FIFO.IF). In addition, the filter_offset field is only
valid on incomplete-filter interrupts.

The LNK_STAT register indicates whether interrupts are pending (fifo-not-empty, LNK_STAT_FIFO.FNE). Each time a
status-word is written to (resp. read from) the FIFO, a write (resp. read) pointer is incremented (LNK_STAT). The FIFO
is read by the micro through the LNK_STAT_FIFO register. When a word is read, it is removed from the FIFO.

The ST20 checks the LNK_STAT (for FIFO emptiness or overflow) prior to reading the LNK_STAT_FIFO. The ST20
does not read the FIFO if it is empty. When at least one status word is present in the LNK_STAT_FIFO, the interrupt line
to the ST20 is set active and kept active as long as the FIFO is not empty. The interrupt line becomes inactive when the
last word is read from the FIFO. If the FIFO is full and new interrupt events occur, no further status-word is written to the
FIFO and the FIFO overflow bit (LNK_STAT.FO) is set. This bit is reset when the ST20 reads a word out of the FIFO.

Figure 73 Clock recovery

COUNTER (8:0) / 300 COUNTER (31:0)

LNK_PCR_EXT

COUNTER (19:0)

TIME_STAM_REG

LNK_PCR

LNK_A_PTS

AND9

20

PCR_LATCH

32

PCR_LATCH_EN (from AF block)

V_PTS_LATCH

A_PTS_LATCH

PCR_LATCH (pulse)

Packet_clock
(from FEC or SDAV/P1394)

LNK_V_PTS
124/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
The table below describes the interrupt sources.

Interrupt source Description

AR overflow

Status bit
LNK_STAT_FIFO.AO

Not maskable, no stream disabling

IRQ generation

An AR overflow occurs if at least one of the following condition is true:

• a new packet has started to be stored in the AR, and its processing has not started as
“AR_timeout” bytes have been stored;

• the write pointer of the AR reaches the read pointer.

This can happen if the link interface hangs, or if the ST20 bus traffic prevents data to be output
fast enough.

IRQ processing

The stream is not disabled when such an AR overflow occurs, the current packet processing is
aborted. All packet data which have not already been passed to the DMA write-buffer are
discarded. The DMA write-buffer is flushed to its destination. An internal reset signal is
generated to put the whole link interface into a state where it expects a new packet to arrive:

• if a start-of-packet is present in the AR, data input is not stopped and overwrites the
discarded data;

• if a start-of-packet is already present in the AR, its processing starts immediately.

The stream_conf_3 of the aborted packet is not saved back to FRAM. Therefore, appropriate
error processing will be performed due to CC discontinuity on the next packet of the same PID.

The ar_overflow bit is set along with the stream_number in the status-word, and the status-
word is written into the link_stat_fifo.

DMA overflow

Status bit
LNK_STAT_FIFO.DO

Not maskable, stream disabling possible.

IRQ generation

A DMA_overflow interrupt occurs when the write-pointer of the DMA transfer reaches the stop
value stored in stream_conf_2.

IRQ processing

The stream is disabled. The rest of the packet is discarded. The DMA buffer is flushed to its
destination. stream_conf_3 is saved back to FRAM. The DMA_overflow bit is set along with
the stream_number in the status-word, and the status-word is written into the link_stat_fifo.

Table 67 Interrupt sources
 7170179 D 125/294

L14 Link STi5518
CONFIDENTIA
Bad section

Status bit
LNK_STAT_FIFO.BS

Not maskable, stream disabling possible.

IRQ generation

When saving a section to memory, the link interface counts the section length and detects the
end of the section.

The following conditions will generate a bad section interrupt:

• The PUS of the current packet is set and the pointer_field at the beginning of the packet
does not correspond to the number of remaining bytes in the currently transferred section.

• The CC of the current packet has the wrong value on a section packet when a section is
being processed.

• The PUS is not set and the bytes following the current section are not stuffing bytes (FF).

IRQ processing

The stream is disabled.In this case, the bad_sec bit is set along with the stream_number in the
status-word, and the status-word is written into the link_stat_fifo.(Note that the CC is checked
on PES streams if the error_patt bit of the stream_conf_1 is set, but no IRQ is generated
there.)

End-of-section filtering

Status bit
LNK_STAT_FIFO.EOF

Maskable, no stream disabling.

IRQ generation

DSS/DVB mode: An EOF interrupt is generated if the eof_irq bit is set for the current stream
and a filtering operation has been completed with a match.

DVD mode: An EOF interrupt is generated if the eof_irq bit is set for the stream 0 and the DMA
engine has been initialized with the parameters stored in FRAM.

IRQ processing

Normal processing continues.

DSS/DVB mode: The eof_flag is set along with the stream_number in the status word. The
values of target_match and other_match are stored in the status word which is pushed into the
link_stat_fifo. This information can be useful for the application software.

DVD mode: The EOF_flag is set along with the STREAM_NUMBER in the status word.

End-of-section transfer

Status bit
LNK_STAT_FIFO.EOS

Maskable, no stream disabling.

IRQ generation

DSS/DVB mode: An eos interrupt is generated if the eos_irq bit is set for the current stream
number and a section has been completely transferred by the DMA controller to memory.

DVD mode: An eos interrupt is generated if the eos_irq bit is set for the stream 0 and the DMA
engine has finished the transfer of a packet.

IRQ processing

Normal processing continues.

DSS/DVB mode: The eos_flag is set along with the stream_number in the status word. The
status word is written into the link_stat_fifo.

DVD mode: The EOS_flag is set along with the STREAM_NUMBER in the status word.

Interrupt source Description

Table 67 Interrupt sources
126/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
Incomplete filtering

Status bit
LNK_STAT_FIFO.IF

Maskable, no stream disabling.

IRQ generation

An incomplete filtering interrupt is generated if the incomplete_irq bit is set, a section filtering
operation is not complete at the end of a packet and at least one temporary match is pending.
The filtering is considered as successful and the section transfer starts.

IRQ processing

Normal processing continues.

The values of target_match and other_match are stored in the status word and the
incomplete_filter bit is set along with the stream_number and filter_offset in the status word
and pushed into the link_stat_fifo. The application software can use this information to
complete the section filtering.

AF

Status bit
LNK_STAT_FIFO.AF

Maskable, no stream disabling.

IRQ generation

An LNK_AF interrupt is generated if the af_irq bit is set for the current stream number and an
AF with at least one flag set is present in the packet and the previous one has been read by
the ST20. The first 8 bytes of the AF are stored into the AF[1..0]. If the AF is less than 8 bytes,
some payload bytes are written in the AF buffer. If AF length is 0, there is no match and no
storage.

IRQ processing

Normal processing continues. Once the Adaptation Field information has been written into the
AF registers, the PCR counter value is latched and no new AF information can overwrite it until
the CPU has read the register AF[1].If another AF is received before the previous one has
been read by the CPU, it is discarded.The af_flag is set in the status word along with the
stream_number, and an interrupt is generated.

SDAV underflow

Status bit
LNK_STAT_FIFO.SU

Not maskable, no stream disabling.

IRQ generation

A SDAV underflow is generated if a SDAV packet has started to be output to the SDAV port
and no more data is present in the SDAV block to be sent.

IRQ processing

The stream is not disabled. The output packet is corrupted and further data belonging to that
packet is discarded. Since the SDAV operates independently from the rest of the Link I/F, the
stream_number present in the status word may not be relevant.When such a SDAV underflow
error occurs, the sdav_underflow bit is set along with the stream_number in the status word
and the status word is written into the link_stat_fifo.

Interrupt source Description

Table 67 Interrupt sources
 7170179 D 127/294

L14 Link STi5518
CONFIDENTIA

14.5 DVD/link data analyzer

The DVD data analyzer can only be used for the sector data structures described below.

The DVD data analyzer facilitates trick modes and uses packet identification and video start-code detection functions.
The DVD data analyzer is enabled by the start-code detector register bit LNK_MODE.E_SCD. The start-code detection
circuits in the link are enabled when E_SCD is set and DVDmode is selected bit (LNK_MODE.DVD_M).

Packet identification and video start-code detection are two of the DVD data-analyzer functions. A byte counter tracks
the start-code locations and is reset by the Sector_Start signal. The start-code type and location are written to the
FRAM. The packet-type and the number of start-codes inside the sector are set by the LNK_STAT_FIFO register.

Processing a new sector

When both the DATA_VALID and Sector_Start signals go high, the first bit of a 2066 byte sector is transmitted over the
serial interface from the front-end. Each sector is treated independently of the adjacent sectors. Any potential start-
codes that are cross-sectored (straddled between two sectors) are flagged on the first sector. The ST20 checks for a
start-code at the beginning of the next appropriate sector when the start-code continuation flag has been set from the
first sector.

• If LNK_MODE.E_SCD=0, all sectors are processed as in the STi5518.

• If LNK_MODE.E_SCD=1, all sectors are processed as in the STi5518, but the link hardware non-destructively
evaluates the data as it passes through the link.

Sector data structure

Each sector consists of 2066 bytes transmitted over the serial interface in the following order:

• Bytes 1:4 (4 bytes) for the sector ID (Identification Information) (1 byte Sector Information, 3 bytes, byte 2 to 4,
Sector Number);

• bytes 5:6 (2 bytes) for the IEC (ID Error Correction Code);

• bytes 7:12 (6 bytes) of Copyright Management Information (CPR_MAI);

SDAV overflow

Status bit
LNK_STAT_FIFO.SO

Not maskable, no stream disabling.

IRQ generation

A SDAV underflow is generated if the SDAV buffer is full and new data is presented at the input
of the buffer to be stored.

IRQ processing

The stream is not disabled. Meanwhile, a new packet has possibly started being processed by
the Link I/F. Note that the SDAV block is supposed to accept data as delivered by the rest of
the Link I/F and can in no way suspend Link I/F operation.

When this occurs, the output of the current packet is aborted and all remaining data belonging
to that packet is discarded. The read and write pointers are reset. If a new packet_start is
already present, data input is not stopped and overwrites the discarded data. The read pointer
points now to the first byte of this new packet. Since the SDAV operates independently from
the rest of the Link I/F, the stream_number present in the status word may not be relevant.
When such a SDAV overflow error occurs, the sdav_overflow bit is set along with the
stream_number in the status word and the status word is written into the link_stat_fifo.

Interrupt source Description

Table 67 Interrupt sources
128/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA
• bytes 13:2060 (2048 bytes) of the pack data referenced as D1:D2048;

• bytes 2061:2064 (4 bytes) for the EDC (Error Detection Code);

• bytes 2065:2066 (2 bytes) for the Read Solomon error codes sent by the channel IC.

The Sector number or sector ID is saved for later processing. “Pack data” is the area containing the packet identification
and the MPEG data with the start codes. All other parts are passed without processing.

Identifying a packet

1 Determine if bytes 13:16 (4 bytes) or D1:D4 contain the pack_start_code (0x000001BA).

• If the pack-start code is found, continue.

• If the pack-start code is not found, write a ‘100’ in register bit LNK_STAT_FIFO.PT.

2 Determine the type of packet contained in the sector by parsing the packet header.

3 Extract the first 4 bytes of the packet header, D15:D18, and set the packet-type bits of the LINK_STAT_FIFO regis-
ter, according to the table below.

4 Follow the actions identified for the packet-type.

4 bytes (1:4) 2 bytes (5:6) 6 bytes (7:12) 2048 bytes
(13:1060)

4 bytes
(2061:2064)

2 bytes
(2065:2066)

ID IEC CPR_MAI pack data
(D1:D2048)

EDC RSEC

Table 68 Sector data structure

Packet type Start code Action

Video packet 0x000001E0 Set the flag identifying the packet as a video packet in the Link_stat_fifo register
and continue processing the data per the section on video packet processing.

Navigation packet 0x000001BB Set the flag identifying the packet as a navigation packet in the Link_stat_fifo reg-
ister. No further action is required on this sector.

Audio packet or sub-
picture packet
(private_stream_1)

0x000001BD Skip the next 4 bytes D19:D22 for the PES structure information.

Save the next byte, D23, and use its value in the next step.

Skip the number of bytes defined in D23.

The next byte is the sub_stream_id byte. For example, if D23 = 2 then skip D24:D25. D26
would be the sub_stream_id byte. If D23 = 0 then D24 would be the sub_stream_id byte.

• If the sub_stream_id byte contains 10100xxxb, set the flag identifying the
packet as a LPCM audio packet in the Link_stat_fifo register. No further
action is required on this sector.

• If the sub_stream_id byte contains 10000xxxb, set the flag identifying the
packet as an AC3 audio packet in the Link_stat_fifo register. No further
action is required on this sector.

• If the sub_stream_id byte contains 001xxxxxb, set the flag identifying the
packet as an subpicture packet in the Link_stat_fifo register. No further
action is required on this sector.

• If the sub_stream_id byte contains any other value, set the flag identifying the
packet as unknown in the Link_stat_fifo register. No further action is required
on this sector.

Table 69 Packet types and start codes
 7170179 D 129/294

L14 Link STi5518
CONFIDENTIA

Processing a video packet

1 Find the beginning of the video MPEG bit stream payload within the sector and locate a video packet
(0x000001E0).

2 Skip bytes D19:D22 for the PES structure information.

3 Save byte D23 for use in the next step.

4 Skip the number of bytes defined in D23. The next byte is the first byte of the MPEG bit stream payload of this sec-
tor. The byte range is from D24 to D44 (bytes 37-57 from start of sector). If D23 = 2, skip bytes D24 and D25, use
byte D26 as the first MPEG byte. If D23 = 0, then D24 is the first MPEG byte.

5 Provide a start-code detector for the incoming video bitstream.

For start-codes located inside a sector (byte aligned) use the following table:

For cross-sector start-codes, process the last 4 bytes (D2045:D2048) of the sector as follows:

MPEG audio packet 0x000001CX Set the flag identifying the packet as an MPEG audio packet in the Link_stat_fifo
register. No further action is required on this sector.

MPEG-2 audio packet
containing an exten-
sion audio stream

0x000001DX Set the flag identifying the packet as an MPEG audio packet in the Link_stat_fifo
register. No further action is required on this sector.

Unknown packet type Any other code No further action is required on this sector.

Start code Start code type

0x00000100 SC = ‘001’ picture_start_code (32 bits)

0x000001B3 SC = ‘010’ sequence_header_code (32 bits)

0x000001B4 SC = ‘011’ sequence_error_code (32 bits)

0x000001B5 SC = ‘100’ extension_start_code (32 bits)

* Report it only If the next four bits are one of the following:

0001 Sequence Extension ID

0111 Picture Display Extension ID

1000 Picture Coding Extension ID

 * if not, do not report it in FRAM and continue to the next start code

0x000001B7 SC = ‘101’ sequence_end_code (32 bits)

0x000001B8 SC = ‘110’ group_start_code (32 bits)

SC = ‘000’ and SC = ‘111’ not used

Table 70 Identity for start-codes located inside a sector

Byte Action

D2045:D2048 0x000001B5 Set flag (bit 7) in link_stat_fifo to indicate continuation of a SC into the next sector
and write SC into FRAM using ‘001’ as number of bytes carrying to the next sector.

D2046:D2048 0x000001 Set flag (bit 7) in Link_stat_fifo register to indicate continuation of a SC into the next
sector and write SC into FRAM using ‘010’ as number of bytes carrying to the next
sector.

Table 71 Identity for cross-sector start-codes

Packet type Start code Action

Table 69 Packet types and start codes
130/294 7170179 D

LSTi5518 14 Link
CONFIDENTIA

Reporting start codes

The start-code information is reported in both FRAM and LNK_STAT_FIFO register. A portion of FRAM (from 0x00 to
0x7F) containing 128 32-bit words is used for reporting SCs in this mode. The FRAM is partitioned into 4 sections of 32
words, each is used for one sector of SC information. The FRAM has data written to it only when the start-codes are
found within the sector being processed, but the LNK_STAT_FIFO register is updated after every sector is transferred.

FRAM address

The FRAM address is defined as follows:

Four sections of the FRAM can be addressed using the two MSBs of the 7-bit address. The two MSBs are incremented
in value for the next sector, only when the present sector has data to be written into the FRAM. If no data is written into
the FRAM for the present sector, the two MSBs remain the same for the present and the next sector. In this way, the
ST20 can keep track of data during jumps and skipping of non-video sectors. These two bits are reset by setting the
Start_code_enable signal to inactive, and then resetting it to active.

The 5 LSBs of the FRAM address start at ‘00000’ at each sector start. Each time a start code is written into the FRAM,
the 5 LSBs are incremented. A maximum of 31 words (‘11111’) are written into the FRAM for any sector. All writing of
data into the FRAM stops after ‘11111’ for any sector, to prevent overwriting of earlier start codes found in this sector.
Therefore, the FRAM can report maximum of 31 start-codes in one sector. If a sector has more than 31 start-codes, the
ST20 must take action. The two MSBs used to define the section of FRAM containing the start-code is communicated
in bits 6:5 of the LNK_STAT_FIFO register. The number of start-codes found in the sector and reported in the FRAM,
are communicated in bits 4:0 of the LNK_STAT_FIFO register.

FRAM data

Start-code reports must contain the following information in a 32 bit word:

For start-codes within a sector:

For cross-sector start-code, one additional FRAM write is performed in the following format:

D2047:D2048 0x0000 Set flag (bit 7) in Link_stat_fifo register to indicate continuation of a SC into the next
sector and write SC into FRAM using ‘011’ as number of bytes carrying to the next
sector.

D2048 0x00 Set flag (bit 7) in Link_stat_fifo register to indicate continuation of a SC into the next
sector and write SC into FRAM using ‘100’ as number of bytes carrying to the next
sector.

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Sector_ID (15:0) start-code type Location in the sector

Bitfield Description

11:0 Location of the last byte of the start-code in that sector.
For the extension_start_code 0x000001B5, report the location of the next byte

14:12 Start-code type

30:15 Sector_ID LSBs

31 Indicates possibility of cross-sector start code case. If this bit is set, the software must check the beginning of the
next continuous video sector to see if there is a start code

31 30 29 28 28 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 Sector_ID (15:0) 14:12 00000000000

Table 71 Identity for cross-sector start-codes
 7170179 D 131/294

L14 Link STi5518
CONFIDENTIA

If start-codes of more that 32 bits are found, the bits above bit 31 are not processed and the information is lost.

14.6 Hard disk drive buffer control

A HDD_BC (HDD buffer controller), positioned between the link interface and the ST20 interconnect, traps the
addresses associated with the video pid and adds an offset in order to establish a much bigger buffer within the external
memory.

In normal operation, the base address of the circular buffer in external memory is set by DMA_LOW_ADDRESS
programmed in LNK_STREAM_CONF3, and DMA_HIGH_ADDRESS and DMA_BANK_ADDRESS programmed in
LNK_STREAM_CONF2 register. The circular buffer size can be programmed to a maximum of 8K by
LNK_STREAMCONF2.

In HDD mode, the buffer size is programmable but its position in the external memory must be on a boundary that is an
integer multiple of its size. To use the HDD_BC, the link circular buffer must be set to its maximum 8KByte size. In HDD
mode the base address of the circular buffer is set in exactly the same way as in normal mode until the buffer reaches
8K, then the DMA_HIGH_ADDRESS is incremented by the HDD_BC and programmed in the HDD register
LNK_HDD_ADDRHIGH. The size of the circular buffer is now controlled by the HDD_BC through register
LNK_HDD_BUFSIZE, and the stop mechanism in the link interface must be disabled by programming the stop pointer
location outside the 8K circular buffer (by register LNK_STREAM_CONF_2 bits STOP_ADDR). This causes an HDD
link interrupt (interrupt assignment number N=29). All of the HDD dedicated registers are described in the HDD Buffer
Control section in the Link chapter of the STi5518 Register Manual.

Bitfield Description

11:0 00000000000
14:12 Number of bytes carrying to the next sector of a possible start code (max value is ‘100”).
30:15 Sector_ID LSBs

31 Indicates possibility of cross-sector start code case. If this bit is set, the software must check the beginning of the
next continuous video sector to see if there is a start-code
132/294 7170179 D

LSTi5518 15 MPEG video decoder
CONFIDENTIA
15 MPEG video decoder
The MPEG video decoder decompresses a MPEG 2 bit-stream and constructs a picture. The display functions are
described in Sub-picture decoder on page 150 and the MPEG video decoder registers are described in the STi5518
Register Manual.

15.1 Decoder operation

The video decoder is a picture decoder; it decodes one picture and then stops until instructed to decode the next
picture in the video bit-stream.

Normally, the decoding of a new picture starts in response to the start-of-display of a new picture. The registers whose
contents can change from picture to picture are double-banked and are updated automatically when decoding starts.
The bit-stream is read from the bit-buffer into the variable-length code decoder (VLD), and picture can be built. Any
required predictors are fetched from the appropriate area of the external memory, and the reconstructed picture is
written back into the area of this memory assigned to the decoded picture.

While a picture is being decoded, the start-code detector locates the start of the next picture header. The CPU then
uses this to set-up the double-banked registers to decode the next picture.

All of these tasks can be synchronized using interrupts generated on start-code hits and vertical-sync signals.

Start code search

The video decoder is able to decode in its entirety a video bit-stream from the slice layer downwards. The higher layers
(i.e. picture and upwards) are decoded by the driver in order to extract the information needed for decoding and set up
the appropriate video decoder registers and quantization tables. Since the header information is byte-aligned and
requires minimal interpretation, this task represents only a small load on the CPU.

The start code detector parses the bit-stream stored in the bit buffer and locates start codes corresponding to picture
layer and above. When one of these start codes has been found, the start code detector stops and raises an interrupt.

The CPU is then able to read the header data following the start code. The start code detector starts automatically
whenever the decoding of a new picture starts and on user command. In normal operation, start code parsing is
performed one picture in advance of decoding.

Bandwidth reduction mode

Bandwidth reduction mode is the only decoding mode that is supported by the device. In this mode, where I, P and B-
frames are decoded into and displayed from frame buffers in external memory, the decoder uses three frame buffers in
external memory. This mode opimizes memory bandwidth use.

15.2 Reset

Hard reset is a global signal and is described in the System Services chapter. The following types of soft reset can be
used for the video decoder:

• Total soft reset is generated by setting and resetting bit VID_CTL.SRS and register AUD_RES. They must be set for
a duration of at least 1µs.

• Audio, video and sub-picture subsystems may be individually soft reset by setting and resetting VID_SRA and
AUD_RES, VID_SRV and SPD_SPR respectively.

• Pipeline reset is generated by setting and resetting bit VID_CTL.PRS. It must be set for a duration of at least 40ns.

After a soft reset, all processes concerning decoding and bit buffer control are reset. Any data remaining in the bit
buffer, the compressed data FIFO and the start code detector FIFO are lost.
 7170179 D 133/294

L15 MPEG video decoder STi5518
CONFIDENTIA
The interrupt unit is reset. All registers maintain their contents and the display process is not disturbed. A soft reset
would normally be used when the decoding of the current bit-stream must be terminated and it is required to restart on
a new sequence.

After a hard or a soft reset or a video soft reset, the first task performed by the pipeline when it has been enabled will
always be a search for the beginning of a new sequence. The bit buffer data is flushed until the first picture start code
following a sequence start code is detected by the pipeline, at which time it stops. At this point normal picture decoding
behavior is resumed. After a hard or a soft reset, the first search performed by the start code detector in response to the
first DSYNC will always be a search for a sequence start code, after which it stops. After this, the start code detector
operates normally.

A pipeline reset terminates the decoding of the current picture. The remaining bits of the picture are flushed from the bit
buffer until the next picture start code is detected by the pipeline. At this point normal behavior is resumed, i.e. the
pipeline waits for the next picture decoding instruction. No other part of the circuit is affected by a pipeline reset. A
pipeline reset would normally be used as part of a manual error recovery procedure. A pipeline reset has no effect if the
decoding pipeline is in its idle state.

15.3 Bit buffer and start-code detection (video)

15.3.1 Bit buffer

The transfer of compressed data is carried out using the link DMA engines. Compressed data can be taken from any
memory space visible to the CPU and transferred to the relevant elementary stream decoder.

15.3.2 Start code detection

The start code detector operates in parallel with the decoding pipeline. The purpose of this unit is to allow external
access to the header data which follows start codes in the input bit-stream. Compressed data is read twice from the bit
buffer- once into the pipeline, and once into the start code detector through the 128-byte header FIFO. The transfer of
data into the header FIFO does not affect the bit buffer level; only the data transfer into the pipeline can reduce the bit
buffer level.

Start code detection is initiated in two ways:

• Automatically whenever the internal event DSYNC occurs. DSYNC is derived from VSYNC as described in
Decoding task on page 144. A DSYNC is generated every time the pipeline starts a new picture decoding task.

• By software writing to the VID_HDS register with bit VID_HDS.HDS set.

When start code detection has been started, data is read continuously from the bit buffer into the header FIFO and
parsed by the start code detector, which receives the FIFO output data. When a start code is detected, the data
scanning stops and the status bit VID_STA.SCH becomes 1. When a start code has been detected, it can be identified
by reading the VID_HDF register. The start code detector detects all start codes other than the codes from 0x00000102
through to 0x000001AF. The first slice start code 0x00000101 can be optionally detected to help driver development.
134/294 7170179 D

LSTi5518 15 MPEG video decoder
CONFIDENTIA
The register VID_HDF should always be read twice to return a 16-bit value. The most significant byte is read first. After
detection of a start code, VID_HDF will return one of the 16-bit values shown below:

The first step is to examine the first byte read from VID_HDF. If this contains 0x01, then the start code can be identified
by a second read at the same address. If the first byte is not 0x01 then it must be the last byte of the start code and the
second byte is the first byte of the header data. In both cases subsequent reads from VID_HDF will give access to the
header data which follows the start code.

Scanning for start codes will recommence on the next DSYNC or a write to VID_HDS.HDS. Whenever a start code has
been detected, the VID_HDF register must be read in order for the start code detector to restart correctly. The number
of reads before a manual or automatic (DSYNC) restart must always be even.

The first start code search after a hard or soft reset will be a search for a sequence header start code; all other start
codes will be ignored. When this start code has been read, all subsequent searches will look for any start codes other
than slice start codes.

The two status bits VID_STA.HFE (header FIFO empty) and VID_STA.HFF (header FIFO full) indicate the state of the
header FIFO. Reading from HDF must never be performed if VID_STA.HFE is 1. VID_STA.HFF is set whenever the
header FIFO contains at least 66 bytes.

The start code detector can also be programmed to stop on the first slice of the picture. This allows the use of the start
code search even after reception of the picture start code. All header data that is not used by the application can then
be skipped without risk, in order to jump to the next picture start code.

This mode is enabled by setting bit VID_HDS.SOS. To differentiate between first slice start code (00 00 01 01) and
other start codes, it is possible to detect at which position (MSB or LSB) the Last Byte of Start code is positioned in the
VID_HDF register. Register bit VID_HDS.SCM when set indicates that the Last Byte of Start code is held by the MSB
of VID_HDF; it is zero otherwise.

15.3.3 Handling time-stamps

The video decoder accept MPEG-1 system streams and MPEG-2 packet streams.

For video/audio elementary streams, time-stamps contained in the video packet headers are associated with the
picture decode time. This is important because the number of pictures which may be stored in the bit-buffer at any
instant is unknown, and therefore there is a variable delay between the input of a picture into the bit buffer and its entry
into the decoding pipeline.

There is a 24-bit counter at the input and at the output of the CD FIFO - bit buffer - header FIFO chain, as shown in
Figure 75. Each time a byte is written into the CD FIFO the counter “CDcount” is incremented. Each time a 16-bit word

Figure 74 States of VID_HDF after detection of a start code

VID_HDF Last byte of Start Code First header byte

VID_HDF 01 Last byte of Start Code

First read Second read

Header data First header byte

First header byte

Third read
 7170179 D 135/294

L15 MPEG video decoder STi5518
CONFIDENTIA
is read from the header FIFO, the counter “SCDcount” is incremented. Both of the counters are reset by a hard or soft
reset. Both are modulo 224, that is, the state following FFFFFF is 000000.

When the first byte of video data from a new packet containing a time-stamp is written into the CD FIFO,
VID_CDcount[23:0] is read.

This value and the time-stamp is recorded in a FIFO. When a picture start code is detected by the start code detector,
VID_SCDcount is read. If this value multiplied by two, is greater (modulo 224) than the last CDcount in the FIFO, then
the next picture to be decoded is associated with the time-stamp stored at this position of the FIFO.

The “time-stamp association” information is available in the PES_TSx register. The same mechanism is implemented
for the “DSM trick mode” association (register PES_TMx).

15.4 Video decoding pipeline control

Note The video decoder only operates in bandwidth reduction mode.

The pipeline is the core of the decoder. It is that part of the circuit which converts the compressed bit-stream data for
each picture into a decoded (or reconstructed) picture. These pictures can be frame or field pictures. The operation of
the pipeline is controlled picture-by-picture. The decoding of a new picture can potentially start on every VSYNC, but
usually the rate of decoding is faster than the VSYNC rate.

The pipeline is controlled by the pipeline controller. When the pipeline controller starts the decoding pipeline a DSYNC
signal is issued and VID_STA.PSD is set.

This signal is also sent to the start code detector. When the pipeline has completed its decoding operation, a
completion signal is sent to the pipeline controller, which is then able to launch another decoding operation, either
immediately or when the next VSYNC occurs.

The pipeline controller interprets certain bits of the decoding instruction, which must be set up by the user before the
start of each new task. The remaining bits of the instruction define the decoding task itself.

The pipeline receives its compressed data from the bit buffer. This data is first processed by the variable length decoder
(VLD) which regenerates the run/level coded DCT coefficients and the motion vectors (if present) for each macroblock.
The picture data is reconstructed by passing the run/level data through the inverse quantizer and inverse DCT blocks.

This is then added to the predictors which have been fetched from the memory taking into account the macroblock
prediction modes and motion vectors.

Figure 75 Handling time-stamps with VID_CDCount and VID_SDCount

SDRAM

Video
bit-buffer

V

L

D

S

C

D

Video

decoder

VID_SDCount[23:0]

S
D

R
A

M
 a

rb
ite

r
(L

M
C

)

ST20 arbiter

and bus

VID_CDCount[23:0]
...

Audio

CD FIFO

Sub-picture

CD FIFO

PES

parser

Video CD FIFO

(128 bytes)
136/294 7170179 D

LSTi5518 15 MPEG video decoder
CONFIDENTIA
Finally, the decoded picture is written back into the memory, from where it can be accessed by the display unit for
output.

The pipeline is also able to skip through picture data for various reasons. The different possibilities are:

• Skip to Next Sequence. This occurs unconditionally on the first instruction execution after a hard or soft reset (see
Reset on page 133). Compressed data is skipped until the first picture start code following a sequence start code is
found. The pipeline then indicates task completion and waits for a new instruction.

• Skip to Next Picture. This occurs either after a pipeline reset (see Reset on page 133) or when the decoding
instruction specifies that one or two pictures should be skipped (see Decoding task on page 144). In the first case
compressed data is skipped until the next picture start code is found, after which the pipeline indicates task
completion and waits for a new instruction. In the second case, after the skipping operation the decoding of the
following picture is started immediately.

• Skip to Next Slice. This occurs after automatic error concealment (see Error recovery and missing macroblock
concealment on page 145). Compressed data is skipped until the next slice start code in the picture is found, after
which normal decoding resumes.

• Before starting to decode a sequence, certain static parameters must be set up. These are:

• MPEG-1 or MPEG-2 mode selection. Bit VID_PPR2.MP2 must be set for an MPEG-2 sequence, reset for an
MPEG-1 sequence.

• Decoded picture size. Register VID_DFW must be set up with the picture width in macroblocks, and register
VID_DFS must be set up with the number of macroblocks in the picture.

Decoding is enabled by setting bit VID_CTL.EDC.

15.5 Quantization table loading

The two quantization matrices (intra and non-intra) used by the inverse quantizer must be initialized by the user. There
are no built-in quantization matrices. Therefore, they must be loaded either with default matrices or with those extracted
from the bit-stream by the ST20.

The quantization tables are double-buffered. This enables one or both tables to be updated without disturbing the
decoding task in progress.

The video decoder maintains two bits which record whether one or both of the tables have been modified. A modified
table is automatically brought into operation at the start of the next decoding operation, i.e. when the next DSYNC
occurs.

After a hard reset, the same pair of tables is always selected. The data previously loaded into the tables is not affected.
Other types of reset have no effect on the quantization tables.

The quantization tables are written at the address held in the register VID_QMW. Bit VID_HDS.QMI is used to select
the Intra or Non-Intra quantization table; when it is set, the Intra table is selected; when clear the Non Intra table is
selected.

15.6 Memory mapping of data

Two types of external SDRAM can be mapped from the STi5518.

• 1 or 2 x 16-Mbit SDRAM

• 1 x 64-Mbit SDRAM

This section discusses video decoder memory (SDRAM) addressing, 32-bit word addressing for the CPU and 64-bit
word addressing for FIFO for both of these types of external SDRAM.
 7170179 D 137/294

L15 MPEG video decoder STi5518
CONFIDENTIA
15.6.1 Mapping 1 or 2 x 16-Mbit SDRAM

Video decoder memory SDRAM addressing (for 1 or 2 x 16-Mbit SDRAM)

The locations in an SDRAM are addressed row-by-row, bank A then bank B, as shown below:

32-bit word addressing for the CPU (for 1 or 2 x 16-Mbit SDRAM)

The CPU accesses the SDRAM by using a 19-bit address for each 32-bit word. It is the task of the SDRAM memory
controller to re-map the logical address space of the CPU onto the SDRAM address space.

The logical address map seen by the CPU is different from the one described above. For each row, both banks are
used. The addresses seen by the CPU through the SDRAM interface are counted in the following order:

Bank A row0 --> Bank B row0 --> Bank A row1 --> Bank B row1 --> ... and so on, as illustrated in Figure 77:

When using a second SDRAM chip, addresses continue in a similar way, starting from the next address above the first
SDRAM, as illustrated in Figure 77 on page 138. A maximum of two SDRAM chips is supported.

Figure 76 Standard addressing in a SDRAM (16-bit words) for 1 or 2 x 16-Mbit SDRAM

Figure 77 32-bit word addressing, as seen by the CPU for 1 or 2 x 16-Mbit SDRAM

Row

0x080000

0x0FFFFF

Row

0x0000FF

0x07FFFF

0

Bank A
Bank B

0x080000

Row n

0x0FFFFF

0x07FFFF

Row n

0x0000FF

Row n

0x00007F 0

Row n

0x0800FF

0x000080

0x0001FF
0x0002FF

SDRAM 0

SDRAM 1

 The system supports up to 2 SDRAM chips

Bank A

Bank B Bank A

Bank B
138/294 7170179 D

LSTi5518 15 MPEG video decoder
CONFIDENTIA
64-bit word addressing for FIFO processes (for 1 or 2 x 16-Mbit SDRAM)

The video decoder uses circular buffers mapped into external SDRAM which act as software FIFOs. The processes
pertaining to these circular buffers are managed with a 64-bit granularity. The memory mapping for these buffers is
similar to that of the CPU and is shown in Figure 81 on page 141.

When using a second SDRAM chip, addresses continue in a similar way, starting from the next address above the first
SDRAM. A maximum of two SDRAM chips is supported.

Figure 78 64-bit word addressing for FIFO processes for 1 or 2 x 16-Mbit SDRAM

0x040000

Row n

0x07FFFF

0x03FFFF

Row n

Row n

0x00003F 0

Row n

0x04007F

0x000040

0x0000FF

SDRAM 0

SDRAM 1

0x00007F

0x000080

Bank A

Bank ABank B

Bank B
 7170179 D 139/294

L15 MPEG video decoder STi5518
CONFIDENTIA
15.6.2 Mapping 1 x 64-Mbit SDRAM

Video decoder memory SDRAM addressing (for 1 x 64-Mbit SDRAM)

The locations in an SDRAM are addressed row-by-row, bank A, B , C then bank D, as shown below:

32-bit word addressing for the CPU (for 1 x 64-Mbit SDRAM)

The CPU accesses the SDRAM by using a 21-bit address for each 32-bit word. It is the task of the SDRAM memory
controller to re-map the logical address space of the CPU onto the SDRAM address space.

The logical address map seen by the CPU is different from the one described above. For each row, both banks are
used. The addresses seen by the CPU through the SDRAM interface are counted in the following order:

Figure 79 Standard addressing in a SDRAM (16-bit words) for 1 x 64-Mbit SDRAM

Bank D

Row

Bank C

Bank B

Row

Bank A

0x0FFFFF

0x000000

0x1FFFFF

0x100000

0x2000000x300000

0x2FFFFF0x3FFFFF
140/294 7170179 D

LSTi5518 15 MPEG video decoder
CONFIDENTIA
Bank A row0 --> Bank B row0 --> Bank A row1 --> Bank B row1 --> ... --> Bank A row 4005 --> Bank B row 4005,
--> Bank C row 0 --> Bank D row 0... and so on, as illustrated in Figure 80 on page 141:

64-bit word addressing for FIFO processes (for 1 x 64-Mbit SDRAM)

The video decoder uses circular buffers mapped into external SDRAM which act as software FIFOs. The processes
pertaining to these circular buffers are managed with a 64-bit granularity. The memory mapping for these buffers is
similar to that of the CPU and is shown in the figure below.

Figure 80 32-bit word addressing, as seen by the CPU for 1 x 64-Mbit SDRAM

Figure 81 64-bit word addressing for FIFO processes for 1 x 64-Mbit SDRAM

0x100000

Row n

0x1FFFFF

0x0FFFFF

Row n

0x0000FF

Row n

0x00007F 0

Row n

0x1000FF

0x000080

0x0001FF

0x0002FF

Bank D

Bank A

Bank C

Bank B

0x080000

Row n

0x0FFFFF

0x07FFFF

Row n

Row n

0x00003F 0

Row n

0x08007F

0x000040

0x0000FF
0x00007F

0x000080

Bank A

Bank CBank D

Bank B
 7170179 D 141/294

L15 MPEG video decoder STi5518
CONFIDENTIA
15.6.3 Memory segments

The circular-buffer start and end pointers are programmed by the user, in segments, where each segment is 256 bytes.
The values in the configuration registers are numbers of segments. For example a value of 4 means 4 x 256 bytes =
1kbyte or 128 x 64-bit words. This would result in a pointer pointing to a 64-bit word address of 128 (0x80). This
address would be physically mapped to the first word in the second row of bank A of SDRAM 0, as shown below;

15.6.4 Arrangement of pixel-pairs inside a luma SDRAM row

Every SDRAM row in a luma frame contains 256 16-bit words and can store up to two luma macroblocks. Every 16-bit
word contains a pair of horizontally adjacent luma pixels. The row itself stores a pair of horizontally adjacent luma
macroblocks. The pixel pairs are arranged in line order; the first 16 words store the first line of pixels for the two
macroblocks, the next 16 words the second line and so on, as shown below:

Figure 82 SDRAM segments as seen by the user

Figure 83 Arrangement of pixel pairs in a luma SDRAM row

3 2

7 6

1 0

5 4

8

Address = 0x80

Bank B Bank A

16-bit word addresses
 in SDRAM row 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Arrangement of
luma pixel pairs

Y =
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

16-bit word addresses
 in SDRAM row F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Arrangement of
luma pixel pairs Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Macroblock 0 Macroblock 1

2 pixels
142/294 7170179 D

LSTi5518 15 MPEG video decoder
CONFIDENTIA
15.6.5 Arrangement of pixel-pairs inside a chroma SDRAM row

Every SDRAM row in a chroma frame contains 256 16-bit words and can store up to four chroma macroblocks. Every
16-bit word contains a pair of horizontally adjacent 8-bit chroma pixels.

The row stores pixel pairs in line order for macroblocks 0 and 1 and then macroblocks 2 and 3. The Cb and Cr words
are interleaved two by two in the linear addressing order, as shown below:

15.7 Using picture pointers

Before decoding a picture, the following frame buffer pointers must be set up:

• VID_RFC, VID_RFP for reconstructed frame pointers for chroma and luma. These pointers define the memory
buffer to which the decoded picture is written.

• VID_FFC, VID_FFP for forward prediction frame pointers for chroma and luma. These pointers define the areas in
memory from which the predictors are fetched.

• VID_BFC, VID_BFP for backward prediction frame pointers for chroma and luma. These pointers define the areas
in memory from which the predictors are fetched.

The displayed frame pointers, VID_DFC, VID_DFP, are described in Sub-picture display on page 153.

The following rules must be followed when using prediction-frame pointers:

1 Pictures are always stored as frames of interleaved lines. Therefore, to access a field (top or bottom), the starting
address of the frame must be defined.

2 P-frame picture (frame, field or dual-prime prediction): VID_FFP and VID_FFC are set to the address of the predic-
tor frame (in which the two predictor fields lie). VID_BFP and VID_BFC are not used.

3 B-frame picture (frame or field prediction): VID_FFP and VID_FFC are set to the address of the forward predictor
frame (in which the two predictor fields lie). VID_BFP and VID_BFC are set to the address of the backward predic-
tor frame (in which the two predictor fields lie).

Figure 84 Arrangement of pixel pairs in a chroma SDRAM row

16-bit word addresses
 in SDRAM row 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Arrangement of
luma pixel pairs

Cb = Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr

16-bit word addresses
 in SDRAM row 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

Arrangement of
luma pixel pairs Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr

Macroblock 0 Macroblock 1

2 pixels

16-bit word addresses
 in SDRAM row 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

Arrangement of
luma pixel pairs Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr

16-bit word addresses
 in SDRAM row F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Arrangement of
luma pixel pairs Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr Cb Cb Cr Cr

Macroblock 2 Macroblock 3
 7170179 D 143/294

L15 MPEG video decoder STi5518
CONFIDENTIA
4 P-field picture (field, 16 x 8 or dual-prime prediction): When decoding either field, VID_FFP and VID_FFC are set to

the address of the previous decoded I or P frame. VID_BFP and VID_BFC are not used.

5 B-field picture (field or 16 x 8 prediction): VID_FFP and VID_FFC are set to the address of the frame in which the
two forward predictor fields lie. VID_BFP and VID_BFC are set to the address of the frame in which the two back-
ward predictor fields lie.

6 I-pictures: For I-picture decoding, no predictors are necessary, but VID_FFP and VID_FFC must be set to the
address of the last decoded I- or P-picture for use by the automatic error concealment function.

15.8 Video pipeline

15.8.1 Decoding task

A task is a single picture decoding operation. A task is specified by the task description or instruction, which is set up
before the decoding of each picture. A task starts when the internal signal DSYNC is generated. A task completes (the
decoder becomes idle) when the picture is entirely reconstructed in the memory and the picture header of the following
picture is detected by the pipeline. The instruction is double buffered, so that during execution of a decoding task, the
instruction for the next task can be set up by the CPU. When the next instruction is activated, a DSYNC can be
generated and the next decoding task started. The buffering mechanism is illustrated in the figure below. Note that
some instruction bits are latched by VSYNC, others by a signal from the pipeline controller “new instruction”.

The instruction is written into registers VID_PPR1 and VID_PPR2. If a new instruction is not written, the task descriptor
will be the same as the previous one.

Normally, it is VSYNC starts the execution of a new instruction and, thus, the generation of DSYNC. If however, a
VSYNC occurs before task completion (i.e. before the pipeline becomes idle), the start of the next task is delayed until
the present one is completed. In this way, the picture decoding can extend beyond the nominal period by one or two
VSYNC periods.

Three status bits (and thus interrupts) are associated with pipeline control:

• VID_STA.PSD indicates the occurrence of a DSYNC.

• VID_STA.PII indicates that the pipeline is idle.

• VID_STA.DEI indicates that the decoder is idle, i.e. the pipeline is idle and the next picture start code has been
found.

Figure 85 Instruction buffering

“New instruction” or VSYNC

From
CPU

Task
description

Instruction
register

Slave
register

Registers VID_PPR1, VID_PPR2, VID_TIS.SKP[1:0]
144/294 7170179 D

LSTi5518 15 MPEG video decoder
CONFIDENTIA
The operation of the pipeline controller is shown in the diagram below. The abbreviations used in the diagram are
explained in the following table.

The instruction bits which affect state transitions are VID_TIS.EXE and VID_TIS.FIS. The events to which the controller
responds are:

• VSYNC, which could be a VSYNC top or a VSYNC bottom and

• IDLE representing the idle state of the pipeline.

15.8.2 Error recovery and missing macroblock concealment

For the video decoder, there are four levels of error-detection and recovery:

• bit-stream syntax error detection with the option of automatic missing macroblock concealment;

• bit-stream semantic error detection with the option of automatic concealment or skip to the next picture;

Figure 86 Task control state diagram

Abbreviation Meaning

ERC Automatic error concealment

EXE.FIS Both VID_TIS.EXE and VID_TIS.FIS are set

EXE.Vsync Bit VID_TIS.EXE set when external VSYNC occurs

PII Pipeline idle

DEI Decoder idle interrupt generated

PSC Picture start code

PSD Pipeline start decode interrupt generated

SEQ Sequence start code

Skip and decode VID_TIS = EXE | SKP[01] and VSYNC occurred

Skip and stop VID_TIS = EXE | SKP[11] and VSYNC occurred

Skip twice and decode VID_TIS = EXE | SKP[10] and VSYNC occurred

Table 72 State transition abbreviations

Reset state

Seeking SEQ

IDLE

Skipping

Skipping twice

Skipping once

Waiting for data
Decoding picture

Error
concealment

(then stop)

Reset
EXE.Vsync
OR EXE.FIS

PSD
Found first PSC

after SEQ
DEI

OR EXE.Vsync
EXE.FIS

PSDBit buffer empty

New data input

End of ERCSyntax error

Found next PSC

Skip once and decode
End of decode
and PSC found

PII

DEI

PSD
Found next PSC

PSD

Skip twice and decode

Skip and stop
Found next PSC
 7170179 D 145/294

L15 MPEG video decoder STi5518
CONFIDENTIA
• pipeline overflow or underflow error detection;

• user-initiated skip to next sequence using soft reset.

Syntax error detection and concealment

In normal operation of the STi5518, error concealment must always be enabled, i.e. VID_CTL.EDC should be reset.

If the VLD detects a syntax error in the bit-stream, the pipeline will copy macroblocks from the previous picture using
the motion vectors reconstructed for the previous row of macroblocks in the current picture, while scanning the bit-
stream until a slice start code is detected. At this point normal decoding resumes. If the slice in which the error occurred
was the last one in the picture, concealment will continue until the end of the picture, at which time the pipeline stops
normally (assuming that the following picture start code is intact).

The concealment macroblocks are accessed using the pointers VID_FFP and VID_BFP. Lost macroblocks in the first
row are copied directly from the previous pictures (i.e. as P-macroblocks with zero motion vectors). If an intra picture is
coded with concealment motion vectors, these will be used. If not, then the concealment will be a simple copy from the
previous picture using zero vectors. Even in intra pictures, the pointer VID_FFP must be set up.

The table below gives the rules that are used for fetching concealment macroblocks.

If an error is detected in the bit-stream before it enters the parser, then an error start code can be inserted into the bit-
stream in order to initiate concealment. However, when doing this there are certain restrictions on the placement of the
error start code in order to avoid emulation of other start codes. An Application Note is available on this topic.

Overflow or underflow error

An overflow error occurs whenever the pipeline reconstructs more macroblocks than are defined by the decoded
picture size, VID_DFS. This can occur when the input data to the decoder contains undetected errors. This condition is
signalled by bit VID_STA.SER. Decoding is automatically halted when this error is detected. In order to restart decoding
a pipeline reset must be performed.

An underflow error occurs whenever the pipeline reconstructs less macroblocks than are defined by the decoded
picture size, VID_DFS. This condition is signalled by bit VID_STA.PDE. Decoding is automatically halted when this
error occurs. In order to restart decoding a pipeline reset must be performed.

Picture type Macroblock type Fetch rule

I-picture I-macroblock without vectors Copy with zero motion.

I-macroblock with vectors Copy as forward predicted macroblock.

P-picture I-macroblock without vectors Copy with zero motion.

I-macroblock with vectors Copy as forward predicted macroblock.

P-macroblock Copy using stored vector.

P-field-macroblock Copy in field mode using both vectors.

Skipped macroblock Copy with zero vector.

Dual-prime macroblock Copy using stored vector.

B-picture I-macroblock without vectors Copy with zero motion.

I-macroblock with vectors Copy as forward predicted macroblock.

Forward macroblock Copy using stored vector.

Backward macroblock Copy using stored backward vector.

Bidirectional macroblock Only the forward vectors are stored, concealed as forward macrob-
lock.

Skipped macroblock Copy in frame mode using the same mode and vectors as the previ-
ous macroblock.

Table 73 Rules for fetching concealment macroblocks
146/294 7170179 D

LSTi5518 15 MPEG video decoder
CONFIDENTIA
15.9 PES parser

Description

The PES parser is situated between the ST20 arbiter/bus and the compressed data FIFOs of the video/audio core. It
has a 100 Mbits/sec (max burst) bit rate, and allows the following input streams:

• Packetized PES (MPEG-2), ISO 13818-1

• MPEG-1 system layer (ISO 11172-1)

The MPEG2 PES &MPEG1 system parser accepts PES streams in the same way that pure audio or video streams are
accepted.

For packetized elementary stream data which is demultiplexed from a transport stream (MPEG-2), the data stream
consists of concatenated, incomplete packets of audio, and video PES. To handle this configuration, the STi5518
contains two separate parsers: one for the audio (audio PES parser in audio decoder) and one for the video (MPEG2
PES & MPEG1 system parser).

As the audio or video data is input, it is demultiplexed by each parser and the audio / video streams are placed in their
respective buffers. For program stream data or MPEG-1 systems stream data, the audio and video packets are
complete so that a single parser (MPEG2 PES & MPEG1 system parser) can be used. The packets are internally
separated into video and audio streams. If required, the two parsers can still be used but the packets must be
separated by the ST20 (recommended mode). See the figure below.

When the MPEG2 PES & MPEG1 system parser is configured to accept MPEG-2 PES audio/video packets (mode 3),
the parser extracts audio & video bit-streams in accordance with the programmed stream ID. For the audio stream this
is contained in PES_CF1; for the video stream in PES_CF2. Any audio or video packets which are not selected for

Figure 87 System parser internal architecture

ST20 arbiter and bus

MPEG2 PES parser &
MPEG1 system parser

Video
CD FIFO (128 bytes)

Video
Bit buffer (SDRAM)

Video decoder

PTS/DTS
FIFO

Audio
CD FIFO (128 bytes)

Audio
Bit buffer (SDRAM)

Audio PES parser

Audio decoder

Sub-picture
CD FIFO (128 bytes)

Sub-picture
Bit buffer (SDRAM)

Sub-picture
decoder

Video elementary
stream

Audio PES packet or
Audio elementary stream

Sub-picture
elementary

stream

*1

*2

1* This path can be used for audio MPEG1
system stream decode or audio MPEG2
program stream decode. However, this path is
more sensitive to errors retrievals. The
MPEG2 PES & MPEG1 system parser can not
output elementary stream on this path.

2* The audio PES parser is handled by the
audio decoder (software parser).
 7170179 D 147/294

L15 MPEG video decoder STi5518
CONFIDENTIA
decode (because their stream IDs do not match the programmed values) are discarded. The audio PES are output on
path 1 (see Figure 87 on page 147).

When used for decoding program streams or MPEG-1 system streams, the audio, video and system level data are
automatically separated internally to the MPEG2 PES & MPEG1 system parser. Time-stamp association is supported
by the decoder.

During parsing, decode or display time-stamps (DTSs or PTSs, selected by PES_CF1.SDT) are stored in an internal
FIFO. When the image corresponding to these time-stamps is decoded (or, in the case of video, about to be decoded)
the corresponding time-stamp is made available and a flag or interrupt is given.

Functional modes

The parsers are enabled by setting register PES_CF2.SS for the video parser, and registers STREAMSEL/
DECODESEL for the audio parser. Depending on the required mode, one or both of the parsers are required.

Four different modes can be configured with the two mode bits of register PES_CF2[7:6]:

• Mode 0: Automatic configuration. The parser examines the incoming stream and self-configures for decode. The
mode selected can be read back from PES_TM2[1].

• Mode 1: MPEG-1 system stream decode. Single data strobe input format. The audio elementary stream is
extracted by the MPEG-2 PES PARSER & MPEG-1 SYSTEM PARSER block and sent to the CD audio FIFO.

• Mode 2: MPEG-2 PES decode. Twin data strobe input format. The video PES stream and the audio PES stream
are sent separately and respectively to MPEG-2 PES PARSER & MPEG-1 SYSTEM PARSER block and audio CD
FIFO. This is the most common way to enter data into the circuit.

• Mode 3: MPEG-2 whole PES Audio/Video Packets. Single data strobe input format. This is used to decode MPEG-
2 program streams. The audio PES are output on path 1 (see Figure 87 on page 147) extracted by the MPEG-2
PES PARSER & MPEG-1 SYSTEM PARSER block and send to the CD audio FIFO.

The video parser is reset by setting PES_CF2.SS to 0.

15.10 Enhanced trick-modes

DVD trick-modes, especially backward-mode, require more video decoding flexibility than standard MPEG applications.
The STi5518 supports the following trick-mode features:

• Programmable video CD (Compressed Data) FIFO pointer

• Programmable SCD (Start Code Detector) pointer

• Programmable VLD (Variable Length Decoder) pointer
148/294 7170179 D

LSTi5518 15 MPEG video decoder
CONFIDENTIA
The figure below illustrates the video decoder features which enhance DVD trick-modes.

Programming a video CD FIFO pointer

The video CD FIFO destination is programmed inside the SDRAM shared memory (up to 64 Mbits).

1 Set register bit VID_TP_LDP.TM to “1”.

2 Flush the FIFO by writing 64 bytes (0xff) to the CD FIFO.

3 Write a new 20-bit CD pointer value to the VID_TP_CD register (this is a 3 x 8-bit register).

4 Set bit CWL of register VID_CWL to “1”. This starts the FIFO reset mechanism.

Status bit CWR of the VID_ITS register indicates that the CD FIFO is ready for transfer into SDRAM.

Register VID_TP_CALINIT can be used for overwrite protection.

Programming an SCD pointer

1 Set register bit VID_TP_LDP.TM to “1”.

2 Write a new 20-bit SCD pointer value to the VID_TP_SCD register (this is a 3 x 8-bit register).

3 Set bit STL of register VID_STL to “1”. This starts the FIFO reset mechanism.

Status bit SWR of the VID_ITS register indicates that the SCD FIFO is ready for transfer into SDRAM.

Programming a VLD pointer

1 Set register bit VID_TP_LDP.TM to “1”.

2 Set register VID_TRF with the temporal reference, and set register VID_TP_VLD with a new read-pointer.

3 Set bit TR_TML of register VID_TRF to “1”.

Status bit TR_OK of register VID_ITS indicates that the VLR read pointer has been loaded into the memory
controller, and that the VLD is ready to decode the selected picture.

Figure 88 Enhanced trick-mode support

SDRAM

Video
bit-buffer

V
L
D

S
C
D

Video

decoder

S
D

R
A

M
 a

rb
ite

r
(L

M
C

)

ST20 arbiter

and bus

...

Audio

CD FIFO

Sub-picture

CD FIFO

PES

parser

Video CD FIFO

(128 bytes)

These three pointers are programmable
 7170179 D 149/294

L16 Sub-picture decoder STi5518
CONFIDENTIA
16 Sub-picture decoder

16.1 Introduction

A hardware sub-picture decoder is integrated in the STi5518. The sub-picture bit-buffer that contains sub-picture units
(SPU) is integrated in SDRAM external memory and has a programmable size. Its position and size can be set in
multiples of 2 Kbytes. The sub-picture bit buffer is set-up at power-up reset. During player operation, its size and
location are constant.

Compressed data is input into the bit-buffer using a DMA, or by a CPU write. Once control is given to the sub-picture
decoder, it runs autonomously until stopped by software control. The sub-picture decoder can decode complete sub-
picture units - which consist of a sub-picture unit header, compressed pixel data and the display control sequence table
- without any interaction from the CPU.

The sub-picture decoder can also be used as a hardware cursor unit. The priority of the sub-picture is first raised by
programming a register so it is in front of all the other display planes. A cursor can be defined using an optionally
compressed (run-length encoded) bitmap stored in external SDRAM. The bitmap can be any size up to a full screen.
Per-pixel alpha-blending factors can be defined for each cursor to provide anti-aliasing with the background. The cursor
is then moved around using register writes into X and Y coordinate registers.

The figure below illustrates the sub-picture decoder architecture.

Figure 89 Display planes

Figure 90 Sub-picture unit architecture

Sub-picture optional
positions

Decompressed
video

Sub-picture
plane

On-screen
display

Sub-picture
plane

DCSQ parser

Sub-picture bit
buffer

Highlight
area detect

Sub-picture
area detect

8 x PCI
area detect

Run length
decoder

Area
prioritization
logic

8 x line control
LUTs

Color
and

contrast
mux

Mixing
unit

Sub-picture
LUT

Highlight
LUT

Main
LUT
150/294 7170179 D

LSTi5518 16 Sub-picture decoder
CONFIDENTIA
16.2 Buffer management and pointers

There are four registers which control the sub-picture bit buffer read and write processes, as shown in Figure 91:

• Bit buffer base address (VID_SPB). This is an offset relative to the ST20 SDRAM base address. It is programmed in
units of 2 Kbytes.

• Bit buffer end address (VID_SPE). This address is an offset relative to the ST20 SDRAM base address. It is
programmed in units of 2 Kbytes.

• Bit buffer read pointer (VID_SPRead). It is set by software for each sub-picture unit. This is done before control is
given to the sub-picture hardware decoder. This register is double buffered. The shadow register is updated with
each field VSYNC event. This pointer is an offset relative to the ST20 SDRAM base address. It is programmed in
units of 64-bit words.

• Bit buffer write pointer (VID_SPWrite). It is set by the ST20 before transferring each sub-picture unit into the bit
buffer. This pointer is an offset relative to the ST20 SDRAM base address. It is programmed in units of 64 bit words.

16.3 Operation

Each sub-picture unit data-buffer start-position is programmed using the register VID_SPWrite. Subsequently the sub-
picture header, the pixel data, the display control sequences are sent via fifos to the sub-picture decoder. Write into fifos
is done by DMA or by CPU write. Only data belonging to the sub-picture unit (SPUH, PXD, DCSQT) are transferred into
the sub-picture bit buffer. Sub-picture pack headers are removed by the software demultiplexor.

The decoder reads the header of the first packet (see Figure 92) and jumps to the first display control sequence using
the command pointer.

Figure 91 Buffer management

Figure 92 Sub-picture unit structure

SPUH (Header)

Unused SPU1 SPU2 SPU3 SPUn

Bit buffer
base address

(VID_SPB)

Read pointer
(VID_SPRead)

Write pointer
VID_SPWrite)

Bit buffer
end address
(VID_SPE)

64-bit boundary

PXD (Pixel Data) DCSQT (Display Control Sequence Table)

SPUn (cont.)

PXD Position
DCSQ Position

Wrap around

H Sub-picture bit map DCSQ DCSQ

Sub-picture

data start

Bit map start Next PTS held

in a register
 7170179 D 151/294

L16 Sub-picture decoder STi5518
CONFIDENTIA
The instructions found in the DCSQ packets enable the sub-picture unit to program the palettes, set mixing factors etc.
for each region. The DCSQ packets also contain a time stamp which indicates to which image the sub-picture
information refers.

This information is related to a local time for this sub-picture unit. The micro should enable a given sub-picture unit at
the right global time via some registers: data buffer start position, start sub-picture unit status bit.

The overall control of the sub-picture decoder is performed by software.

The final information in the DCSQ packet is the region size (rectangle) and the relative position, in bytes, of the bit-map
start.

A key point here is that the sub-picture decoder must read beyond the end of the DCSQ packet in order to verify the
next PTS. With this information held in a register, the sub-picture decoder knows, in advance, when to change the
DCSQ or bit-map information. The sub-picture unit simply executes the same DCSQ until the image corresponding to
the next time-stamp is reached.

This is done at the beginning of every field so that the sub-picture decoder can load all the relevant information from
DCSQ before the first sub-picture pixel is required.

The sub-picture region declaration is held in registers in the decoder so that the sub-picture decoder is turned on and
off at the correct position on the screen (see Figure 93). The bit-map start-pointer indicates where, in the bit map data,
to start decoding. When the correct image, corresponding to the local time stamp contained in the DCSQ, should be
displayed the sub-picture controller enables the sub-picture decode for that image.

A pause mode is defined in the sub-picture decoder. As explained previously, the sub-picture decoder is autonomous
within a sub-picture unit.

This means that the DCSQ switching is timed automatically using an internal 90 kHz clock. During video trick modes,
where the video stream may be frozen or slowed down the same thing should be possible with the sub-picture decoder
in order to maintain the synchronization between the two streams.

A pause mode is implemented for the sub-picture decoder which stops the 90 kHz counter and therefore pauses the
sub-picture decoder. This is controlled using the P field in the SPD_CTL1 register and is synchronized to the VSYNC
signal. This control bit can therefore be used as a pause and a single step control bit.

The sub-picture decoder registers are put together in the sub-picture memory map except:

• sub-picture software reset (register SPD_SPR),

• sub-picture pause mode (SPD_CTL1.P bit),

• sub-picture FIFO full (bit 18 of VID_ITS and VID_STA register).

Figure 93 Sub-picture region declaration

SPD_SYD0

Maximum 8 regions per line
Minimum
8 pixelsSPD_SXD0

SPD_SYD1

SPD_SXD1
152/294 7170179 D

LSTi5518 16 Sub-picture decoder
CONFIDENTIA
16.4 Sub-picture display

16.4.1 Look-up tables

There are 11 look-up tables inside the sub-picture decoder:

• 1 highlight LUT (2 bits to 4 bits mapping)

• 1 sub-picture LUT (2 bits to 4 bits mapping)

• 8 PCI LUTs (2 bits to 4 bits mapping)

• 1 main LUT (4 bits to 24 bits mapping)

The sub-picture and PCI LUTs are automatically supplied by the decoder itself (sub-picture commands contained in the
SPU). The highlight and main LUTs need to be loaded by the ST20 (SPD_HCN, SPD_HCOL, SPD_LUT registers).

The output of the sub-picture main LUT is mixed with the other planes. The contrast value between these two sources
is set by the SET_CONTR DCSQ command, by the PCINFs of a CHG_COLCON command or by a highlight color
information (the highlight LUT has the highest priority, followed by the PCI LUTs. The sub-picture LUT has the lowest
priority).

The mixed video is a 24 bits Y, Cr, Cb video where:

• YMIXED = [YPLANES x (16 - k) + YSUBP x k] / 16

• CrMIXED = [CrPLANES x (16 - k) + CrSUBP x k] / 16

• CbMIXED = [CbPLANES x (16 - k) + CbSUBP x k] / 16

• k = 0 if contrast value from high light, sub-picture, PCI LUTs = 0

• k = contrast value + 1 if contrast value > 0

16.4.2 Sub-picture areas

The active sub-picture decoding area can be 720 x 576 or 720 x 480 pixels. In order to align the sub-picture decoding
area with the video decoding area, the upper left corner of the active sub-picture decoding area has to be set by
software, using the registers SPD_XD0 and SPD_YD0. The same semantics have been defined as for the video
decoder, as shown in Figure 94 . The active sub-picture display area is defined in a similar manner, using the
SPD_SXD0, SPD_SYD0, SPD_SXD1 and SPD_SYD1 registers.

The highlighted area is defined by SPD_HLS, SPD_HLSY, SPD_HLEX, SPD_HLEY registers, and is set by software.

Figure 94 Sub-picture areas

Vertical blanking intervalSPD_YD0SPD_XD0

H
or

iz
on

ta
l b

la
nk

in
g

in
te

rv
al

Sub-picture
display area

Sub-picture
decoding area

SPD_SYD0
(0,0)

SPD_SYD1

SPD_SXD1

(0,575 or 479)
(0,624 or 524)

(0,863 or 857)

SPD_SXD0

(0,0)
 7170179 D 153/294

L17 Overlay graphics and texts STi5518
CONFIDENTIA
17 Overlay graphics and texts

17.1 Introduction

The STi5518 has integrated OGT (overlay graphics and texts) hardware used for SVCD. The data stream is similar to
the sub-picture stream. The OGT bit stream is made up of OGT pages, where each page contains a header sequence
followed by a bitmap packet (1 picture/page). OGT compressed data are stored in a bit-buffer with programmable
position and size (in any multiple of 2 Kbytes). The OGT decoder can decode a complete page of 2 fields in accordance
with IEC SC100B/NP177/PTD-003 SVCD specifications.

The figure below illustrates the OGT model, with an OGT page placed in a screen and 2 highlight areas.

17.2 Buffer management
The bit-buffer is configured at reset. Its size is defined by registers VID_SPB and VID_SPE and is constant during the
decoding process.The OGT uses the following 4 sub-picture registers to control the OGT bit-buffer read and write proc-
esses:

• VID_SPB bit-buffer base address, programmed in units of 2 kbytes.

• VID_SPE bit-buffer end address, programmed in units of 2 kbytes.

• VID_SPRead bit-buffer read pointer. This register must be updated with the vsync_bottom to re-decode the same
OGT page, or to decode the next page. vsync_bottom is an offset to the ST20 SDRAM base address, it is
programmed in units of 64-bit words.

• VID_SPWrite bit-buffer write pointer. This register must be set by the ST20 before transferring each OGT page into
the bit-buffer. The address is an offset to the ST20 SDRAM base address, it is programmed in units of 64-bit words.

Figure 95 OGT display model

Screen Display area (704x480) or (740x576) pixels

OGT page area (width x height)

top_line: left pixel

Highlights Area1

Highlights Area 2

OGT_XDO,OGT_YDO.

OGT_SXDO,OGT_SYDO

SPD_HLXS, SPD_HLYS

OGT_HL2XO,OGT_HL2YO
154/294 7170179 D

LSTi5518 17 Overlay graphics and texts
CONFIDENTIA
17.3 Operation
OGT page data are sent via the sub-picture data FIFO to the OGT decoder. The FIFO is written to by DMA or by CPU
write. Only bit-map data are transferred into the bit-buffer. The parameters contained into the OGT header (areas,
highlight, LUT,) are extracted by software and are held in the OGT registers.

Each OGT page contains an associated presentation time stamp (PTS) which controls when the OGT page is dis-
played. When the PTS is reached, the register OGT_CTL.S (start_decode) is set and register VID_SPRead is pro-
grammed on the vsync, before the vsync_top where the OGT page is displayed. The OGT decoder displays the same
page until the next PTS, or until the display time (defined by the duration time) is reached.

To re-decode and re-display the same page, the read pointer must be reprogrammed and register bit OGT_CTL.S
must be set to 1 before each vsync top.

To stop the display, OGT_CTL.S must be reset before the vsync_top, where the “PTS + duration” time is reached.

17.4 Display
The OGT decoder contains 3 look-up tables: one OGT and two highlight.

The CLUT defines 4 color and transparency values for the pixels of the OGT page. The CLUT can be changed from
page to page. The highlight and main LUT are loaded by registers OGT_LUT, OGT_LUT_H1, OGT_LUT_H2.

The active OGT decoding area can be 704x576 or 70x480 pixels. To align the OGT decoding area with the video
decoding area, the upper left corner of the active OGT area must be set by software using the registers OGT_XDI and
OCT_YDI. The active OGT decoding area is defined by registers SPD_SXDO, SPD_SYDO, SPD_SXD1 and
SPD_SYD1.

2 highlight areas can be defined in each OGT area. However, the bottom of the highlight1 area must always be above
the top of the highlight2 area. The position of highlight1 is defined by registers SDP_HLSX, SPD_HLSY, SPD_HLEX,
SPD_HLEY; The position of highlight2 is defined by registers OGT_HL2XO, OGT_HL2YO, OGT_HL2Y1,
OGT_HL2X1.
 7170179 D 155/294

L18 Display planes STi5518
CONFIDENTIA
18 Display planes

18.1 Overview

The graphics and display subsystem reads, processes, overlays and mixes pixel data stored in the various buffers of
the SDRAM, and produces a combined image for display on a TV. The buffers are called display planes.

The graphics and display subsystem has four display planes as listed and illustrated below:

• Background color (Background color plane on page 157);

• MPEG video plane (MPEG video plane on page 158);

• On-screen display plane (On-screen display (OSD) on page 169);

• Sub-picture plane (Sub-picture or cursor plane on page 183).

The display planes are normally overlaid in the order shown above, with the background color at the back and the sub-
picture used as a cursor plane at the front. The position of the sub-picture plane is programmable through bit
VID_OUT.SPO. It can be configured to be:

• the most forward layer, as shown above;
In this case it can be used as a cursor plane or a second on-screen display plane.

• behind the OSD plane, in front of the MPEG video.
In this case it can be used as a second on-screen display plane.

Figure 96 Display planes

On-screen display

08:23pm

Replay Score Stats

Replay Score Stats

Sub-picture plane

08:23pm

Replay Score Stats

08:23pm

Decompressed video

Overlaid planes

Background color
156/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
Figure 97 shows a simplified block diagram of the graphics and display subsystem.

The planes can be blended together using the mixing unit, as described in Mixing display planes on page 183.

The mixing unit has two outputs as illustrated in the figure above:

• A 4:2:2 output that is input to the DENC to generate CVBS and YC output. This format is generally used for VCR
recording. The OSD and sub-picture display planes can be disabled from this output as described in on page 185.

• A 4:4:4 output, used in either of the following ways:

• As an input to the DENC to generate the YUV and RGB signals. This is generally used for TV display, and
includes ALL of the available display planes.

• As a digital signal that bypasses the DENC and is output to the YUV pins “YC0 to YC7”. This signal is
downsampled to 4:2:2 format by removing the chroma. It is used, for example, for connection to an external
graphics device.

The routing of the 4:4:2 and 4:4:4 signals from the mixing unit, through the DENC to the DACs, is controlled by the
DEN_CFG2 and DEN_CFG8 registers. When the YCrCb 4:4:2 signal is used, the presence of OSD in the DENC output
is selected or deselected by the OSD block header format field S (see Table 85: OSD block header format on page
177). When the YCrCb 4:4:4 signal is used, OSD is always present in the DENC output.

18.2 Background color plane

The background color plane has the same size and position as the MPEG video plane. This plane is always at the back
with all the other display planes on top. The color of the plane is defined by three registers: VID_BCK_Y, VID_BCK_U
and VID_BCK_V.

Figure 97 Graphics and display subsystem

16

SDRAM EMI

Video
decoder

1D block
move
engine

DENC

Mixing

4:2:2

Vertical
processor

Horizontal
SRC

OSD

Sub-picture
decoder

4:2:2

4:4:4

4:4:4

4:4:4

SDRAM

Block
to rowMux

4:2:0

unit

YCrCb 4:2:2
digital output

Down
sample
to 4:2:2

4:
4:

4

CVBS & YC

YUV &RGB

DEN_CFG2
DEN_CFG8

Presence of OSD in the
DENC output is set here
by the OSD block header
format field S

Syncro
ETU656
&601

SDRAM bus & arbiter
 7170179 D 157/294

L18 Display planes STi5518
CONFIDENTIA
18.3 MPEG video plane

The MPEG video plane displays a moving image decoded from an MPEG video stream by the MPEG video decoder.
The display priority has the MPEG video as the third layer, on top of the background color. The sub-picture and OSD
output are on top of the MPEG video plane.

The picture data is received either from the display frame buffer area of the external memory, or directly from the MPEG
video decoder in the case of B frames in memory reduction mode.

The data is passed through three FIFOs (one for luminance and two for chrominance) into the block-to-row converter.
The block-to-row converter generates a line based raster from the frame store, which is organized as MPEG
macroblock. It also performs the pan/scan operation and vertical post-processing of the decoded video. The block-to-
row converter is described in Section 18.3.3.

The output of the block-to-row converter is fed to the sample rate converter (SRC). The SRC is an 8-tap filter, which has
two functions:

• up and down scaling of pel data when the displayed line length is greater or smaller than the decoded picture width,
and implementation of the fractional part of the pan-scan horizontal offset.

The outputs from the SRC are upsampled lines each having equal numbers of luminance and chrominance samples.
The SRC can be bypassed if desired.

The sample rate converter is described in Sample rate converter on page 159.

18.3.1 Setting-up the display

The VID_DFP and VID_DFC registers must be set up with the base address of the buffer containing the picture to be
displayed. This register is double-buffered; when a new value is written it is taken into account on the occurrence of a
VSYNC. Thus it is possible to write a new value for this pointer every field, although it would normally be updated only
once per frame.

The picture stored in the buffer is always treated as a frame by the STi5518. If at any time no display is required, bit
VID_DCF.EVD may be reset, in which case a constant black value is output.

The size and location of the display window is defined by the registers VID_XDO, VID_XDS, VID_YDO and VID_YDS.
The values loaded into these registers define the horizontal and vertical boundaries of the displayed picture, as shown
in Figure 98 .

Figure 98 Display window positioning

Decoded
picture
display

VID_YDO

VID_XDO

VID_XDS

VID_YDS

Background color border
158/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
18.3.2 Sample rate converter

The purpose of the sample rate converter (SRC) is to allow up or down sampling of picture data in order to increase or
decrease the number of horizontal samples in a line. Upsampling is necessary if the horizontal size of the display is
greater than the decoded picture width. For example if it is required to display a 720-pel wide 16:9 source image on a
4:3 display also of 720-pel width, then 540 pels selected from each source line must be upsampled to 720.
Downsampling is required when the resolution of the display is less than that of the decoded image. For example when
square pixels are required for an NTSC image the 720 pixel wide image decoded must be downsampled to 640 pixels.

To enable the SRC, bit VID_DCF.DSR must be reset. If this bit is set, the SRC is bypassed and the horizontal resolution
of the decoded picture is not changed. The sample rate converter can change the sampling rate by a programmable
factor. The upsampling ratio is limited to 8 and the downsampling to less than or equal to a factor of 2. The same filter
is used both for upsampling and downsampling. As either of these limits is approached artifacts may appear in the
displayed image. The SRC operates by directly interpolating samples required for the new sampling rate by using those
of the decoded picture data read from the display buffer. This is performed by an 8-tap interpolation filter with the
structure shown in Figure 99 .

The filter has three sets of delay registers multiplexed between the Y, CB and CR samples. It has 8 sets of coefficients,
each set defining one of 8 sub-pel interpolation positions. Consider an upsampling example, for sub-pel position 0, the
output is aligned with stored sample “r4”, for sub-pel position 1, the output corresponds to an interpolated pel position
one eighth of the distance from sample “r4” to sample “r5”, and so on. The number of inputs clocked into the SRC is
equal to the number of samples used in each line of the source image, and the number of outputs generated is equal
to the number of samples displayed. Thus the rate of generation of outputs will be greater than the input data rate in the
case of upsampling and less in the case of downsampling.

Figure 99 8-tap interpolation filter

r7

c1

r6

c2

r5

c3

r4

c4

r3

c5

r2

c6

r1

c7

r8

c0

Σ

Input from display buffer (0, 1 or 2 samples)
X(n’)

D
el

ay
 r
eg

is
te

rs

New input

Output to
vertical filter

Y(m’)
 7170179 D 159/294

L18 Display planes STi5518
CONFIDENTIA
Operation of the SRC

The sample rate converter works in the following manner: The SRC takes block of M samples of the input signal
denoted as x(n’), n’ = 0,1,2,3,.... M-1. and computes a block of L output samples y(m’), m’ = 0,1,2,. L-1.

For each output sample time m’, m’ = 0,1,2.., L-1 the 8 samples in the filter are multiplied with one of the 8 sets of filter
coefficients the products are accumulated to give the output y(m’). Each time the quantity m’M/L increases by one, one
sample from the input buffer is shifted into the filter.

The coefficient set used will depend on the position of the sample being generated relative to the original samples of the
source image. Thus after L output values are computed M input samples have been shifted into the filter delay
registers.

The SRC up/down sampling factor is set up in the VID_LSR register. The re-sampling factors for the luminance and
chrominance components are exactly the same. The resampling factor is equal to L/M. The value programmed into
VID_LSR is 256 × M/L. This value is used to determine both the rate of input of data into the filters and the sequence
of sub-pel interpolation positions. The mechanism by which this is achieved is shown in Figure 100 .

Upsampling example

The example in Figure 101 illustrates the operation of the sample rate converter when the upsampling ratio is 8:7. For
every 8 samples clocked out of the filters, 7 samples are clocked in.

To illustrate the interpolation positions, at the right of Figure 101 are shown the outputs which would occur with a
simple linear interpolation (i.e.a 2-tap filter). The actual SRC output values are the 8-tap filter outputs with coefficients

Figure 100

10-bit adder

New input Sub-pel
position

Initialize

Start

LSR
160/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
appropriate to sub-pel positions 0, 7, 6, 5, 4, 3, 2, 1, 0 etc. The SRC output is limited to lie within the range [1,254], so
the codes 0x00 and 0xFF are never output, giving compatibility with ITU-R 656.

The VID_LSR value is added into an accumulator register at a rate equal to the filter output rate. The top two bits
indicate how many new inputs are to be loaded into the filter (0,1 or 2). The next three bits of the accumulator register
are used to select the sub-pel position. For example, with an upsampling factor of 8:7, the VID_LSR value is (256/8) ×
7 = 224. The sequence of values in the accumulator register will be as shown in Table 74 , assuming that it is initialized
to zero.

Figure 101 SRC example for 8:7 upsampling

Accumulator register New input Sub-pel position

0 yes 0

224 no 7

192 yes 6

160 yes 5

128 yes 4

96 yes 3

64 yes 2

32 yes 1

0 yes 0

Table 74 Accumulator register sequence for upsampling example

A - Relation of input and output samples

Input

Output

Sub-pel position

0 7 6 5 4 3 2 1 0

B - Filter operation

n+7 n+3n+6 n+5

n+10

n+4 n+2 n+1

n+7 n+3n+6 n+5 n+4 n+2 n+1

n+7 n+3n+6 n+5 n+4 n+2 n+1n+8

n+9

n+11

n+12

n+13

n+14

n+7 n+3n+6 n+5 n+4 n+2n+8

n+9 n+7 n+3n+6 n+5 n+4n+8

n+10 n+9 n+7 n+6 n+5 n+4n+8

n+11 n+10 n+9 n+7 n+6 n+5n+8

n+12 n+11 n+10 n+9 n+7 n+6n+8

n+13 n+12 n+11 n+10 n+9 n+7n+8

n

n

r8 r7 r6 r5 r4 r3 r2 r1

Delay register contents
(One cycle per output clock cycle)

No input
sample read

3/4 (n+5) +1/4 (n+4)

5/8 (n+6) +3/8 (n+5)

1/2 (n+7) +1/2 (n+6)

3/8 (n+8) +5/8 (n+7)

1/4 (n+9) +3/4 (n+8)

1/8 (n+10) +7/8 (n+9)

n+10

n+3

7/8 (n+4) + 1/8 (n+3)

Output
(shown interpolated linearly)
 7170179 D 161/294

L18 Display planes STi5518
CONFIDENTIA
The VID_LSR value thus defines a cycle of sub-pel positions as well as the rate of data input. If a value of less than 32
is loaded into VID_LSR, i.e. an upsampling ratio of greater than 8 is defined, there could be repeated values in the filter
output. This may cause unacceptable display artifacts.

Downsampling example

The example shown in Figure 102 illustrates the operation of the sample rate converter when the downsampling ratio
is 9:8 (720:640).

The VID_LSR value required for a downsampling ratio of 9:8 is 256 x 9 /8 = 288.

Figure 102 SRC example for 9:8 downsampling

Accumulator register Number of inputs Sub-pel position

0 1 0

288 1 1

576 1 2

864 1 3

128 1 4

416 1 5

704 1 6

992 1 7

0 2 0

Table 75 Accumulator register sequence for downsampling example

A - Relation of input and output samples

Input

Output

Sub-pel position

0 1 2 3 4 5 6 7 0

B - Filter operation

n+7 n+3n+6 n+5

n+10

n+4 n+2 n+1

n+7 n+3n+6 n+5 n+4 n+2 n+1n+8

n+9

n+11

n+12

n+13

n+14

n+7 n+3n+6 n+5 n+4 n+2n+8

n+9 n+7 n+3n+6 n+5 n+4n+8

n+10 n+9 n+7 n+6 n+5 n+4n+8

n+11 n+10 n+9 n+7 n+6 n+5n+8

n+12 n+11 n+10 n+9 n+7 n+6n+8

n+13 n+12 n+11 n+10 n+9 n+7n+8

n

r8 r7 r6 r5 r4 r3 r2 r1

Delay register contents
(One cycle per output clock cycle)

1/4 (n+6) +3/4 (n+5)

3/8 (n+7) +5/8 (n+6)

1/2 (n+8) +1/2 (n+7)

5/8 (n+9) +3/8 (n+8)

3/4 (n+10) +1/4 (n+9)

7/8 (n+11) +1/8 (n+10)

n+11

n+3

1/8 (n+5) +7/8 (n+4)

Output
(shown interpolated linearly)

n+14 n+13 n+12 n+11 n+10 n+9 n+8n+15
162/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
At the start of a line, the 3 sets of delay registers r1, r2 and r3 are loaded with the black value (Y=16, CB=CR=128).

The first output is thus derived from the inputs stored in registers r4 to r8. At the end of a line, the last eight input
samples are stored in registers r1 to r8.

The last valid interpolation is between the samples stored in r4 and r5. Correct Interpolation is not possible beyond this
except in the case where the next output is in sub-pel position 0. This output is valid since coefficient C0 is zero for this
position and the invalid sample beyond the end of the line is ignored.

There is thus no valid interpolation possible between the last four input samples. This is illustrated in Figure 103 in
which 544 pels are upsampled to 721, in which the upsampling ratio is 4:3. The VID_LSR register would be loaded with
the value 192.

The number of valid outputs generated can be calculated as follows:

The ratio between the number of input and output samples is 256:VID_LSR. Given that the last output sample cannot
occupy a position beyond the fourth-last input sample, the following inequality is always true:

VID_LSR (N-1) ≤ 256 (M-4)

where N is the number of output samples and M is the number of input samples. The value of N is thus given by:

N = 256 (M-4) / VID_LSR + 1

where x indicates the integer part of x.

The value programmed into the VID_XDS register must ensure that all samples beyond the last valid sample are
masked.

18.3.3 Block-to-row converter

The block-to-row converter generates a line-based raster scan of individual video components (YCbCr) from an MPEG
macroblock-organized frame store.

The block-to-row converter also performs:

• pan/scan;

• vertical post-processing of decoded video, such as:

• vertical zoom-out x2, x3, x4

• vertical programmable filtering with any zoom-in, and zoom-out up to x2;

Figure 103 Downsampling example

Input

Output

Start of line

1 2 3 4 5 6

1 2 3 4 5

Input

Output

End of line

717 718 719 720 721

538 539 540 541 542 543 544

Last valid output
(sub-pel position 0)
 7170179 D 163/294

L18 Display planes STi5518
CONFIDENTIA
• horizontal zoom-out x2 (for zoom-out by more than x2).

Pan/scan vectors

When the display window has a smaller horizontal dimension than the decoded picture, a vector can be programmed in
order to define the starting point of the displayed picture, as shown in Figure 104 . The vertical component must be
macroblock aligned, so the line number must be a multiple of 16.

This vector defines the point in the decoded picture which corresponds to the top-left-hand corner of the displayed
picture. The displayed picture size and location is defined by the numbers programmed in registers VID_XDO,
VID_XDS, VID_YDO and VID_YDS.

The pan/scan vector components are programmed into the registers VID_PAN, VID_LSO, VID_CSO and VID_SCN.
These registers are double-buffered; when a new value is written it is taken into account on the occurrence of a
VSYNC. Thus it is possible to write a new value of the pan/scan vector for every field.

The integer part of the horizontal component of the pan/scan vector is loaded into the VID_PAN register, and the
fractional part defines the contents of the VID_LSO and VID_CSO registers. The relationship between these quantities
is illustrated in Figure 105 .

The numbers loaded into the VID_LSO and VID_CSO registers are used to initialize the luminance and chrominance
upsampling control registers at the start of every line. VID_LSO is set up directly with the value of the fractional part of
the pan/scan vector horizontal component. VID_CSO is set up with half of this number, plus 128 if the integer part is an
odd number. The resolution to which the horizontal component can be defined is 1/8 pel.

The vertical component of the pan/scan vector is programmed into VID_SCN, in units of macroblock rows (i.e. units of
16 lines). Scanning can done line-by-line on any of the 8 lines in each field, by programing the OFFEVEN and OFFODD
bits of the VID_VFCMODE and VID_VFLMODE registers.

Figure 104 Pan/scan vector

Figure 105 Components of the pan/scan vector

Decoded picture

Displayed
picture

Vector

Luma

Chroma

Decoded

Displayed

Chroma

Luma

VID_LSO

VID_PAN

VID_CSO

Pan vector
164/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
Vertical filter

The block-to-row converter has an output filter for vertical post-processing of the video. This vertical filter performs the
chroma reconstruction from 4:2:0 to 4:2:2 format, and upsamples and downsamples the luma and chroma components.
Any zoom, from any zoom-in to zoom-out by 4, can be performed in addition to the following basic modes

• zoom-in by 2;

• zoom-out by 2, 3 or 4 (Zoom-out by 4 must be set by register bit VID_DCF.zoom4);

• zoom-out by n (where n lines are produced for each line stored, 1/16 ≤ n ≤ 2);

• 16:9 and 14:9 letter box filtering.

The programmable PAL/NTSC vertical filter optimizes video quality according to the type of source - full or half
resolution, interlaced or progressive. One luma filter operation and one chroma filter operation can run at the same
time. The chroma filter mode is programmed in the VID_VFCMODE register, and the luma filter mode is programmed
in the VID_VFLMODE register. This table describes the function of these registers and Table 76 on page 167 lists the
recommended configurations.

Here are the VID_VFLMODE and VID_VFCMODE I program for the zoomout by 3 in full progressive and half
progressive source resolution.

The interface between the block-to-row converter and the next block (horizontal Sample Rate Converter (SRC)), has
three video components. The video data output is in 4:2:2 format.

Successive samples are presented at the relevant video component port (Y, Cr or Cb) synchronously with the relevant
output sample clocking signal.

Bitfield Description

INCREMENT The INCREMENT bit is used for downsampling up to zoom-out x2, and in conjunction with ZOOMOUT
for fractional zoom-out between x2-x3, or x3-x4, for example x2.1, x2.2... etc.

Define the vertical ratio of the zoom, and given by the formula:

Where framestoresize is the number of lines in the framestore, and desiredsize is the number of
lines in the display region.

Ex, to display a 525 line framestore onto a 625 display region:

OFFEVEN Vertical scans for even fields. Adjusts and superposes the luma and chroma filtering. The offset is a
variable distance from the first line.

OFFODD Vertical scans for odd fields. Adjusts and superposes the luma and chroma filtering. The offset is a
variable distance from the first line.

ZOOMOUT The INCREMENT bit is used for downsampling up to zoom-out x2, for zoom-out x3 and x4, ZOOMOUT
must be used in as below. For zoom-out between x2-x3, or x3-x4, for example x2.1, x2.2... etc. ZOO-
MOUT must be used in conjunction with INCREMENT.
00: zoom-out up to x2
01: zoom-out by 2
10: zoom-out by 3
11: zoom-out by 4

INTP Interpolation field forces line repeat instead of integration (if 0, the top-line value is reproduced).
HORIZDN Horizontal downsample by 2; neighboring samples are averaged.

NOTE: That no other post processing filter can be used at the same time as this function. The lines
in the macroblock buffer RAM are read out as they are, however, the line offset part of start_offset is
still used.

increment
framestoresize

desiredsize
--------------------------------------- 512×

 1–=

increment
525
625
--------- 512×

 1– 429= =
 7170179 D 165/294

L18 Display planes STi5518
CONFIDENTIA
Horizontal compression

For zoom-out by three or four, a frame store must not only be compressed vertically by three or four, but also
horizontally by three or four. The SRC is able to downsample up to a factor of two.

For zoom-out by three or four horizontally, the block-to-row converter must pre-process its output data for the SRC.
This is set by bit 39 of the VID_VFCMODE and VID_VFLMODE registers.
166/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
Filter modes

The vertical filter supports an unlimited number of configurations, however, recommended configurations are listed in
the table below.

Display

Source Resolution Luminance reg. (VID_VFLMODE) Chrominance reg. (VID_VFCMODE) VID_DCF

Spacial Temporal

[39] [38] [37:36] [35:23] [22:10] [9:0] [39] [38] [37:36] [35:23] [22:10] [9:0] [1] [0]

h
o

ri
z

d
o

w
n

in
te

rp
o

la
te

zo
o

m
-o

u
t

o
ff

se
t

o
d

d

o
ff

se
t

ev
en

in
cr

em
en

t

h
o

ri
z

d
o

w
n

in
te

rp
o

la
te

zo
o

m
-o

u
t

o
ff

se
t

o
d

d

o
ff

se
t

ev
en

in
cr

em
en

t

L
F

B

C
F

B

Full screen Full Interlaced or
progressive

0 1 00 255 255 509 0 1 00 0 0 254 0 0

Interlaced or
progressive

0 0 00 0 0 511 0 0 00 0 0 255 0 0

Progressive 0 1 00 0 0 511 0 1 00 0 0 511 0 1

Half Interlaced or
Progressive

0 1 00 255 127 253 0 1 00 0 0 126 0 0

Progressive 0 0 00 127 0 511 0 0 00 0 0 255 1 1

16:9 letter box Full Interlaced or
progressive

0 1 00 255 255 679 0 1 00 0 0 339 0 0

Progressive 0 1 01 255 0 679 0 1 01 0 0 339 1 1

Half Interlaced 0 1 00 255 127 339 0 1 00 0 0 169 0 0

Progressive 0 1 00 127 0 679 0 1 00 0 0 339 1 1

14:9 letter box Full Interlaced
(field based)

0 1 00 0 36 583 0 1 00 0 0 291 0 0

480 to 576 Full Interlaced/Pr. 0 1 00 512 469 425 0 1 00 192 42 212 0 0

576 to 480 Full Interlaced/Pr. 0 1 00 512 563 611 0 1 00 192 90 305 0 0

zoom-in x 2 Full Interlaced or
progressive

0 1 00 0 127 255 0 1 00 192 0 127 0 0

Full Progressive 0 1 00 256 191 511 0 1 00 0 0 255 1 1

zoom-in x4 Full Interlaced 0 1 00 255 511 127 0 1 00 0 0 63 0 0

zoom-in x4 Half Interlaced 0 1 00 255 288 63 0 1 00 0 0 31 0 0

zoom-in x2 Half Progressive 0 1 00 128 0 255 0 1 00 0 0 127 1 1

zoom-out x2 Full Interlaced/
progressive

0 1 00 0 0 1019 0 1 00 0 0 509 0 0

Half Interlaced 0 1 00 255 255 509 0 1 00 0 0 253 0 0

Half Progressive 0 1 01 127 0 509 0 1 00 0 0 509 1 1

zoom-out x3 Full Interlaced/
Progressive

1 0 10 0 0 573 1 0 01 0 0 382 0 0

Half Interlaced 0 1 01 0 0 380 0 1 00 0 0 380 0 0

Half Progressive 0 0 10 0 0 573 0 0 01 0 0 382 1 1

zoom-out x4 Full Interlaced/
Progressive

1 0 11 0 0 509 1 0 11 0 0 254 0 0

Half Interlaced 0 1 00 0 0 1019 0 1 00 0 0 509 0 0

Half Progressive 0 0 11 255 64 507 0 0 11 0 0 253 1 1

Table 76 Vertical filter modes
 7170179 D 167/294

L18 Display planes STi5518
CONFIDENTIA

Figure 106 Filter mode examples

A

B

C

D

E

F

G

H

A
A
B
B
C
C
D
D
E
E
F
F
G
G
H
H

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

No zoom-out

parameter value

start_offset_odd 000000000

start_offset_even 000000000

increment 0111111111

interpolate don’t care1

zoom_out_mode 00

horizontal_downsample 0

increment 255 offset 0 no interpolation

parameter value

start_offset_odd 000000000

start_offset_even 000000000

increment 0011111111

interpolate 0

zoom_out_mode 00

horizontal_downsample 0

A

B

C

D

E

F

G

H

A
(4A+4B)/8
B
(4B+4C)/8
C
(4C+4D)/8
D
(4D+4E)/8
E
(4E+4F)/8
F
(4F+4G)/8
G
(4G+4H)/8
H
(4H+4I)/8

increment 255 offset 0

parameter value

start_offset_odd 000000000

start_offset_even 000000000

increment 0011111111

interpolate 1

zoom_out_mode 00

horizontal_downsample 0
168/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
18.3.4 Degradation mode

In certain situations the system constraints may justify use of the STi5518 in a configuration where the available
bandwidth on the SDRAM interface is limited. There could be many reasons for these constraints, such as a low clock
frequency to use cheaper SDRAMS, or the processor making heavy use of the SDRAM. MPEG decode and display,
being a real-time process and also a heavy user of SDRAM memory bandwidth, will then require a graceful degradation
mode.

The effective distance (in pixels) between the display process and the decode process is measured by hardware. In
conditions of limited bandwidth the decoder will become late and therefore may get caught by the real-time limited
display process.

Degradation mode can be enabled or disabled using the panic threshold register VID_PTH. A threshold or minimum
allowable distance between the decode and display processes can be set. If this threshold is crossed, the decoder will
automatically ensure that any bidirectionally predicted macroblock access will result in only a single prediction access
to external memory, thus reducing the bandwidth required by the decoder, and allowing recovery.

18.4 On-screen display (OSD)

The STi5518 has an integrated On-Screen Display (OSD) unit. This can be used to overlay the video picture with
graphics generated by software. The display priority puts the OSD in front of the MPEG video. It can be configured to
be either in front of or behind the sub-picture plane by clearing or setting VID_OUT.SPO respectively. The OSD can be
enabled by setting OSD_CFG.ENA. The OSD bit-map is defined with respect to the display area and is independent of
the decoded picture size and any pan/scan offset. The output from the OSD is in 4:4:4 format.

The OSD of the STi5518 has the following special features:

• Linked-list memory management;

• Selectable 2, 4 or 8-bits per pixel palette modes giving 4, 16 or 256 palette colors;

• Either 6-bit luma resolution and 4-bit chroma resolution per component or 8-bit luma resolution and 8-bit chroma
resolution;

• Programmable 4-bit mixing factor for each OSD region to blend the video plane and OSD data;

• When anti-aliasing is enabled, each color in an OSD region can be assigned a separate 6-bit mixing factor for
mixing with video;

• Optional anti-flicker and anti-flutter filters;

• Half resolution mode.

These features are described in the following sections.

The OSD unit uses color look-up-tables (LUTs), also called palettes, with 2-bit, 4-bit or 8-bit input. The LUT means that
memory is used efficiently when only a few colors are needed. A 2-bit LUT means that four colors can be used at once,
and each pixel of the bit-map occupies only two bits of memory. A 4-bit LUT gives 16 colors and an 8-bit LUT gives 256
colors. The palette of 4, 16 or 256 predefined colors is loaded into the SDRAM by software using the shared memory
interface. The palette modes are described in Section 18.4.5.

The output from the LUT can be 14-bit pixels (6-bit Y, 4-bit Cb, 4-bit Cr) or 24-bit pixels (8-bit Y, 8-bit Cb, 8-bit Cr) plus
one bit or six bits for transparency control. The color modes are described in Section 18.4.5.

The OSD can consist of a number of display regions, each with its own palette and characteristics. The number of OSD
regions resident in memory at any time is limited only by the amount of memory available. Each region has a
specification, stored in memory, which contains a header, possibly including a palette, and a bit-map. The specifications
for the regions are linked in a list structure. The bit-map data in each specification is contiguous with the palette
 7170179 D 169/294

L18 Display planes STi5518
CONFIDENTIA
information, as shown in Figure 112: OSD specification on page 173. The bit-map refers to the 2-, 4- or 8-bit color
definitions in the palette to create the required picture.

During the display of an image a small state machine first picks up the palette from SDRAM and loads it into the LUT
then the OSD region start and stop addresses are read. When the display reaches the OSD start position (defined in
the bit-map) the bit-map is sent pixel by pixel to the LUT and the display switches from video to the output of the LUT
or a mixture of both.

This process continues until the defined stop position. Thus, for the defined OSD region, the video display is overlaid by
the colors which are defined by a combination of the LUT and the bit-map.

18.4.1 Using the OSD

The OSD is enabled if bit OSD_CFG.ENA is set. The starting address in memory of the OSD specification for the top
field is defined by register VID_OTP, and that for the bottom field is defined by register VID_OBP.

The line numbers used to define the top and bottom of an OSD region are the internal (field) line numbers defined in
Figure 107 . It is thus possible to share the same OSD specification for both fields of a frame. In this case the VID_OTP
and VID_OBP registers would be loaded with the same address.

OSD specifications can be written into the SDRAM using the ST20 or the block move DMA. They can be rapidly moved
within SDRAM using the SDRAM block move function.

18.4.2 OSD regions

The OSD function can be used to display a user-defined bit-map over any part of the displayable (i.e. non-blanked)
screen, independent of the size and location of the active video area (defined by VID_XDO, VID_XDS, VID_YDO,
VID_YDS). This bit-map can be defined independently for each field.

Figure 107 Internal line numbering

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 90

Top field

Bottom field

B/T

HSYNC

B/T

HSYNC
170/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
The OSD consists of one or more regions in the display. Each region is a rectangle, and can have its own palette and
other properties. Figure 108 shows examples of OSD regions. Region 3 shows that the OSD can be outside the active
video area.

No display line can be included in more than one active OSD region, so only one OSD region can be active on a line. If
two areas of OSD are required which include the same display line then one region must be defined which includes
both areas. For example, Figure 109 shows two areas, marked A and B, with some display lines used in both areas. If
these areas are to be active at the same time then one region, marked C, must be defined, which includes both areas.
The area of C outside A and B can be defined as transparent.

18.4.3 OSD specification

An OSD specification is two lists of blocks of 64-bit words, stored in SDRAM. One list is for the top field and one for the
bottom. Generally the lists are linked lists, as shown in Figure 110 . The order of the blocks in the list is the order of the
regions from top to bottom of the display. The last block in an OSD specification must point to an invalid header, which

Figure 108 OSD regions

Figure 109

Boundary of displayable area

Active video area
(X0, Y0)

(X1, Y1)

Region 1

Region 2 Transparent

Region 3

A

B

C

Areas of OSD

OSD region

Display lines
in both areas
 7170179 D 171/294

L18 Display planes STi5518
CONFIDENTIA
gives a starting line beyond the displayable area (example OxFFFFFFFFFFFFFFFF). This invalid header will end the
OSD.

The only case in which linked lists are not used is when the palette mode is 2 bits for 2 pels, i.e. the palette mode flags
are set to M=1, Q=1, E=0, as described in Section 18.4.5. In this case the blocks must be contiguous in memory, so the
start of each block must immediately follow in memory the end of the previous block, as shown in Figure 111 . No linked
list is allowed after a 2 bits for 2 pels zone.

Figure 110 Linked list structure for OSD data

Figure 111 Block structure for OSD data in 2 bits per 2 pixels mode

OSD1 top field block

OSD2 top field block

OSD3 top field block

OSD3

OSD2

OSD1

Decoded image

OSD1 bottom field block

OSD2 bottom field block

OSD3 bottom field block

Linked list of Linked list of

VID_OTP VID_OBP

 bottom field blockstop field blocks

Invalid header Invalid header

OSD1 top field block

OSD2 top field block

OSD3 top field block

OSD3

OSD2

OSD1

Decoded image

OSD1 bottom field block

OSD2 bottom field block

OSD3 bottom field block

Linked list of Linked list of

VID_OTP VID_OBP

 bottom field blockstop field blocks

Invalid header
Invalid header
172/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
Each block defines one field of one region and includes a header, an optional palette and a bit-map. Each block must
be aligned on a 64-bit boundary and the first block of each field must be aligned on a 256-bit boundary. Figure 112
shows a linked list of two OSD blocks.

Each region has associated with it a palette defining 4, 16 or 256 colors, used by the bit-map. If required, one of these
colors can be “transparent”, allowing the background to show through. Each region may have its own palette, or if a
sequence of regions uses the same palette then the palette need only be defined in the first region of the sequence.

The header of each block contains a definition of the boundaries of the region, a pointer to the next region and other
control information. The format of the palette depends on the palette mode, as described in Section 18.4.5. The formats
are given in Section 18.4.7.

18.4.4 OSD region position

The position of each region of the OSD is defined in the header of the specification block. The positions of the left and
right edge samples of an OSD region are defined as follows, in units of PIXCLK cycles from the falling edge of HSYNC:

left edge position = (2 × X_left) + 8

right edge position = (2 × X_right) + 9

Figure 112 OSD specification

Header

Palette

Bit-map data

Region 1

Header

Palette

Bit-map data

Region 2

Null header line
 7170179 D 173/294

L18 Display planes STi5518
CONFIDENTIA
where X_left and X_right are the values defined in the header of the OSD region specification. This is illustrated in
Figure 113 and Figure 114 . The first sample output in an OSD region is always a CB value.

The top and bottom of the region are defined by the values Y_top and Y_bottom, which are also in the block header.
These values are specified in units of display lines. The top line specified in the first word of an OSD region
specification must be greater than or equal to 3.

18.4.5 Color palette

Each specification block after the first can either define a new palette or use the same palette as the preceding region.
If a new palette is defined then it is held in SDRAM immediately after the header and before the bit-map. The P flag in
the header defines whether the palette follows the header, as shown in Table 77

Palette modes

The palette mode defines the bits per pel in the bit-map and the pixel resolution. The palette mode can be different for
each OSD region, and is defined by the M, Q and E flags in the OSD region specification header. Q defines the pixel

Figure 113 OSD region horizontal positioning in 4:4:4 output

Figure 114 OSD region horizontal positioning in 4:2:2 output

P Palette

0 The palette for the region is immediately after header.

1 The palette is the same as for the preceding region.

Table 77 Palette as before flag

Y Y Y Y Y Y

2 (X_right - X_left) + 2 chroma samples

or (X_right - X_left) + 1 pels

2X_left + 7
chroma samples

HSYNC

CB CR CB CR CB CR CB CR CB CR CB CR

Chroma sample number 2X_left + 8 Chroma sample number 2X_right + 10

CB Y CR Y CB Y CR Y CB Y CR Y

2 (X_right - X_left) + 2 samples

or (X_right - X_left) + 1 pels

Sample number 2X_left + 8 Sample number 2X_right + 9

2X_left + 7
samples

HSYNC
174/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
resolution, allowing half resolution modes to save memory while retaining the color resolution. The meaning of each
combination of these flags is given in the table below

To reduce the size of the bit maps while retaining the color resolution, a half resolution mode is provided, as shown in
In half resolution, each pel in the bit-map defines the color of two adjacent pixels in the same line in the display.

Color modes

The pixel color mode defines the format of the output from the palette. Three pixel color modes are supported, as listed
in in the table below. This table shows how many bits are used for each color element and how many bits for the mixing
factor MixWeight, which determines the effect of overlaying the picture. Anti-aliasing is supported only with 24-bit color.

24-bit or 14-bit color for the region field is selected by the bit Tc in the header of the specification block. Anti-aliasing is
selected by the bit AA in the header.

The format of each line of the palette depends on the color mode. The table below gives the format of the palette lines
for each color mode.

M Q E Bits per pixel No. of colors Resolution

0 0 0 2 4 1 pel

1 1 0 2 4 2 pels

1 0 0 4 16 1 pel

0 1 0 4 16 2 pels

0 0 1 8 256 1 pel

1 1 1 8 256 2 pels

1 0 1 Reserved

0 1 1 Reserved

Table 78 M, Q and E palette mode header flags

Mode Color resolution Mixing Reference

24-bit color with anti-aliasing Y[7:0], Cb[7:0], Cr[7:0] MixWeight[5:0] defined for each color. Table 80

24-bit color Y[7:0], Cb[7:0], Cr[7:0] MixWeight[3:0] defined for the region. Table 80

14-bit color Y[5:0], Cb[3:0], Cr[3:0] MixWeight[3:0] defined for the region. Table 81

Table 79 OSD color modes

Field Bits Description

Cr[7:0] 7:0 Cr chroma value

Cb[7:0] 15:8 Cb chroma value

Y[7:0] 23:16 Y luma value

W[5:0] 29:24 Mix weight. See Section 18.4.9.

Reserved 31:30 Reserved. Write 0.

Table 80 Palette line format in 24-bit color with anti-aliasing

Field Bits Description

Cr[7:0] 7:0 Cr chroma value

Cb[7:0] 15:8 Cb chroma value

Y[7:0] 23:16 Y luma value

Table 81 Palette line format in 24-bit color without anti-aliasing
 7170179 D 175/294

L18 Display planes STi5518
CONFIDENTIA

Standard colors

The table below shows the 14-bit Y, CR and CB values nearest to the standard color bar colors.

The table below shows the 24-bit Y, CR and CB values nearest to the standard color bar colors.

T 24 Transparency

0 Do NOT blend video with OSD for this color.

1 Blend video with OSD for this color using the mix weight.

Reserved 31:25 Reserved. Write 0

Field Bits Description

Cr[3:0] 3:0 Cr chroma value

Cb[3:0] 7:4 Cb chroma value

T 8 Transparency:

0 Do NOT blend video with OSD for this color.

1 Blend video with OSD for his color using the mix weight.

Reserved 9 Reserved. Write 0.

Y[5:0] 15:10 Y luma value

Table 82 Palette line format in 14-bit color mode

Standard color Y CR CB

White 0x3B 0x8 0x8

Black 0x04 0x8 0x8

Red 0x10 0xD 0x6

Green 0x1C 0x4 0x4

Blue 0x9 0x7 0xD

Yellow 0x28 0x9 0x3

Cyan 0x22 0x3 0xA

Magenta 0x15 0xC 0xD

Table 83 Standard colors in 14-bit color

Standard color Y CR CB

White 0xEC 0x80 0x80

Black 0x10 0x80 0x80

Red 0x40 0xD4 0x64

Green 0x70 0x40 0x48

Blue 0x24 0x74 0xD4

Yellow 0xA0 0x8C 0x2C

Cyan 0x88 0x2C 0x9C

Magenta 0x54 0xC8 0xB8

Table 84 Standard colors in 24-bit color

Field Bits Description

Table 81 Palette line format in 24-bit color without anti-aliasing
176/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
18.4.6 OSD bit-map

The bit-map for an OSD region follows the palette if defined or the header if no palette is defined.

The bit-map defines the OSD pixels in left to right order within lines, and the lines in top to bottom order. The number of
bits per pixel may be 2, 4 or 8 depending on the palette mode. The value for each pixel gives the line of the palette
which defines the color for the pixel.

As all the different sources are mixed in 4:4:4 format, there is no risk of mis-colored boundary between OSD, video and
sub-picture. An homogeneous decimation is applied to avoid the problem on the 4:2:2 format.

18.4.7 OSD block header format

Table 81 shows the layout of the header, which occupies one 64-bit word. Table 85 shows the layout in graphical form,
with each line representing a quarter of a 64-bit word.

The header contains the pointer OSDp[18:0]. This pointer defines the address of the next block in the linked list to load
from memory, as described in Section 18.4.3. The blocks can be anywhere in SDRAM and the pointer is given in units
of 64-bit words. The block must be 16-word aligned, so the pointer OSDp[18:0] must be a multiple of 16. Thus the least
significant 4 bits of OSDp are always zero, and are not included in the header.

The location of the first OSD specification block of a field is defined by the VID_OBP or VID_OTP registers in units of
256 bytes. This means the full address of the first block must be a multiple of 64.

Field Size Bits Meaning Ref.

M 1 63 Palette mode. Table 78

Q 1 62

E 1 61

Tc 1 60 0: Select 14-bit color mode
1: Select 24-bit color mode

Table 79

P 1 59 0: A new palette follows the header.
1: The palette is the same as the previous region.

Table 77

AA 1 58 Select anti-aliasing. Anti-aliasing can only be used with 24-bit
color.

Section 18.4.5

S 1 57 OSD region not included in CVBS output in dual output mode. Below

Y_top 9 56:48 Position of the top of the OSD region. Section 18.4.4.

MixWeight 4 47:44 Mixing weight α2 with planes behind when anti-aliasing is dis-
abled. When anti-aliasing is enabled, write 0.

Section 18.4.9

OSDp[6:4] 3 43:41 Pointer to the next region specification. Below

Y_bottom 9 40:32 Position of the bottom of the OSD region. Section 18.4.4.

OSDp[12:7] 6 31:26 Pointer to the next region specification. Below

X_left 10 25:16 Position of the left of the OSD region. Section 18.4.4.

OSDp[18:13] 6 15:10 Pointer to the next region specification. Below

X_right 10 9:0 Position of the right of the OSD region. Section 18.4.4.

Table 85 OSD block header format

M Q E Tc P AA S Y_top

MixWeight OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

Table 86 OSD region specification header
 7170179 D 177/294

L18 Display planes STi5518
CONFIDENTIA
The bit S in Table 87 on page 178 controls the presence of the OSD on a region basis for the 4:2:2 path to the Digital
Encoder, from which YC and CVBS signals are generated. If this bit is 1, the OSD region will not be present; if it is set
to 0, the OSD region will be present provided the OSD is included in the 4:2:2 output, as defined by VID_OUT. This is
to allow selective recording of OSD regions. This bit does not affect the 4:4:4 path to the Digital Encoder from which the
RGB and YCbCr signals are generated.

18.4.8 OSD specification block examples

This section shows the format for some complete specification blocks.

The table below shows a specification using 2 bits per pixel in the bit-map with 1 pel resolution and 14-bit color. Only the
first 8 pixels of the bit-map are shown. The palette occupies one 64-bit word, and the bit-map occupies one 64-bit word
for every 32 pixels.

Bits within a 16-bit quarter-word
Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M=0 Q=0 E=0 Tc=0 P=0 A=0 S Y_top Word 0

MixWeight OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

Palette0 Y 0 T0 Palette0 Cb Palette0 Cr Word 1

Palette1 Y 0 T1 Palette1 Cb Palette1 Cr

Palette2 Y 0 T2 Palette2 Cb Palette2 Cr

Palette3 Y 0 T3 Palette3 Cb Palette3 Cr

Bit-map for 8 OSD pixels Bit-map word

Table 87 2 bits per pixel, 14-bit color OSD region specification
178/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
The table below shows a specification using 4 bits per pixel in the bit-map with 2 pel resolution and 14-bit color. Only the
first 4 pixels of the bit-map are shown. Each entry in the bit-map uses 4 bits, but defines two display pels of the same
color. The palette occupies four 64-bit words, and the bit-map occupies one 64-bit word for every 16 bit-map pixels.

Bits within a 16-bit quarter-word
Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M=1 Q=1 E=0 Tc=0 P=0 AA=0 S Y_top Word 0

MixWeight OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

Palette0 Y 0 T0 Palette0 Cb Palette0 Cr Word 1

Palette1 Y 0 T1 Palette1 Cb Palette1 Cr

Palette2 Y 0 T2 Palette2 Cb Palette2 Cr

Palette3 Y 0 T3 Palette3 Cb Palette3 Cr

Palette4 Y 0 T4 Palette4 Cb Palette4 Cr Word 3

Palette5 Y 0 T5 Palette5 Cb Palette5 Cr

Palette6 Y 0 T6 Palette6 Cb Palette6 Cr

Palette7 Y 0 T7 Palette7 Cb Palette7 Cr

Palette8 Y 0 T8 Palette8 Cb Palette8 Cr Word 4

Palette9 Y 0 T9 Palette9 Cb Palette9 Cr

Palette10 Y 0 T10 Palette10 Cb Palette10 Cr

Palette11 Y 0 T11 Palette11 Cb Palette11 Cr

Palette12 Y 0 T12 Palette12 Cb Palette12 Cr Word 5

Palette13 Y 0 T13 Palette13 Cb Palette13 Cr

Palette14 Y 0 T14 Palette14 Cb Palette14 Cr

Palette15 Y 0 T15 Palette15 Cb Palette15 Cr

Bit-map for 4 OSD pixels Bit-map word

Table 88 4 bits per pixel, 2-pel resolution 14-bit color OSD region specification
 7170179 D 179/294

L18 Display planes STi5518
CONFIDENTIA
The table below shows a specification using 8 bits per pixel in the bit-map with full resolution and 14-bit color. Only the
first 2 pixels of the bit-map are shown. Each pixel in the bit-map uses 8 bits. The palette occupies 64 64-bit words (i.e.
512 bytes), and the bit-map occupies one 64-bit word for every 8 bit-map pixels.

The table below shows a specification using 2 bits per pixel in the bit-map with full resolution and 24-bit color, without
anti-aliasing. Only the first 8 pixels of the bit-map are shown. Each entry in the bit-map uses 2 bits. The palette occupies
two 64-bit words, and the bit-map occupies one 64-bit word for every 32 bit-map pixels. The palette for 4-bit and 8-bit
colors would be similar, but with 16 or 256 color lines in the palette instead of 4.

Bits within a 16-bit quarter-word
Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M=0 Q=0 E=1 Tc=0 P=0 AA=0 S Y_top Word 0

MixWeight OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

Palette0 Y 0 T0 Palette0 Cb Palette0 Cr Word 1

Palette1 Y 0 T1 Palette1 Cb Palette1 Cr

Palette2 Y 0 T2 Palette2 Cb Palette2 Cr

Palette3 Y 0 T3 Palette3 Cb Palette3 Cr

Palette4 Y 0 T4 Palette4 Cb Palette4 Cr Word 2

...

Palette252 Y 0 T12 Palette252 Cb Palette252 Cr Word 64

Palette253 Y 0 T13 Palette253 Cb Palette253 Cr

Palette254 Y 0 T14 Palette254 Cb Palette254 Cr

Palette255 Y 0 T15 Palette255 Cb Palette255 Cr

Bit-map for 2 OSD pixels with 8 bits per pel or 8 bits per 2 pel Bit-map Word

Table 89 8 bits per pixel, 14-bit color OSD region specification

Bits within a 16-bit quarter-word
Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M=0 Q=0 E=0 Tc=1 P=0 AA=0 S Y_top Word 0

MixWeight OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

0 (reserved) T0 Palette0 Y Word 1

Palette0 Cb Palette0 Cr

0 (reserved) T1 Palette1 Y

Palette1 Cb Palette1 Cr

0 (reserved) T2 Palette2 Y Word 2

Palette2 Cb Palette2 Cr

0 (reserved) T3 Palette3 Y

Palette3 Cb Palette3 Cr

Bit-map for 8 OSD pixels Bit-map word

Table 90 2 bits per pixel 24-bit color without anti-aliasing OSD region specification
180/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
Table 91 shows a specification using 2 bits per pixel in the bit-map with full resolution and 24-bit color with anti-aliasing.
Only the first 8 pixels of the bit-map are shown. Each entry in the bit-map uses 2 bits. The palette and bit-map occupy
the same memory as without anti-aliasing. The palette for 4-bit and 8-bit colors would be similar, but with 16 or 256
color lines in the palette instead of 4.

18.4.9 Mixing OSD with video

The mixing function allows each OSD pixel to be blended with the corresponding pixel generated by the planes behind
the OSD. This is shown as α2 in Figure 117 and Figure 118. The mix weight is a programmable parameter and can be
set for each OSD region, or for each color when anti-aliasing is enabled.

When anti-aliasing is disabled, the mix weight is set for each region in the region header. The mix weight is a 4-bit
number allowing mixing ratios from 0 to 1 with a resolution of 1/15. The resulting pixel can be completely transparent
(weighting of 0/15) or can completely cover the video (15/15). Each individual color in the palette can be specified to be
used with or without mixing by setting the transparency (T) bit of the palette. A T bit equal to 0 means no mixing for the
particular color, and a T of 1 means that mixing should be used.

When anti-aliasing is enabled, a mix weight is defined for each color in each region in the LUT. The mix weight is a 6-
bit number allowing mixing ratios from 0 to 1 with a resolution of 1/63. The resulting pixel can be completely transparent
(weighting of 0/63) or can completely cover the video (63/63).

Palette color zero can also be set to be transparent by setting the Y, Cb and Cr values to zero. Only palette color zero
can be used in this way.

18.4.10 Anti-flicker and anti-flutter filters

Flicker and flutter effects are visual problems due to interlaced television displays. Flutter effects can occur if the same
OSD image is displayed in both fields within one frame. Anti-flicker and anti-flutter filtering are provided as part of the
display unit.

Bits within a 16-bit quarter-word
Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M=0 Q=0 E=0 Tc=1 P=0 AA=1 S Y_top Word 0

0 (reserved) OSDp[6:4] Y_bottom

OSDp[12:7] X_left

OSDp[18:13] X_right

0 MixWeight0 Palette0 Y Word 1

Palette0 Cb Palette0 Cr

0 MixWeight1 Palette1 Y

Palette1 Cb Palette1 Cr

0 MixWeight2 Palette2 Y Word 2

Palette2 Cb Palette2 Cr

0 MixWeight3 Palette3 Y

Palette3 Cb Palette3 Cr

Bit-map for 8 OSD pixels Bit-map word

Table 91 2 bits per pixel 24-bit color with anti-aliasing OSD region specification
 7170179 D 181/294

L18 Display planes STi5518
CONFIDENTIA
At every VSYNC pulse the values in the register OSD_CFG are taken in account. The table below shows the register
configurations for anti-flitter/ anti-flutter filtering.

For flicker or flutter filtering the OSD boundary weight can be specified in the register OSD_BDW. This weight will be
taken into account at OSD top and bottom borders in filter modes.

The anti-flicker filter can be described by the following expressions, where T is a top-field pixel, B is a bottom field pixel
and n is the line number:

The OSD Boundary Weight register (OSD_BDW) represents the value of mix_weight at the horizontal border of an
OSD region or at a horizontal border of a transparent region within an OSD region. The OSD_BDW value can be used
if flicker problems occur at OSD-video borders.

The anti-flutter filter can be described by the following expression, where T is a top-field pixel, B is a bottom field pixel
and n is the line number:

18.4.11 OSD active signal

The OSD active signal can be used in two modes. The mode is controlled using OSD_ACT.OAM. In the first mode the
OSD active signal is configured as an output. In this mode the OSD active signal denotes when an active OSD pixel
(non transparent) is on the YC output bus, as in Table 93 . The signal, in this mode, has a programmable delay
controlled by OSD_ACT.OAD. This delay can be set such that the OSD active signal is set as much as two clocks
before or 1 to 64 clocks after the actual pixel.

OSD_CFG.NOR OSD_CFG.FIL Filtering

0 0 or 1 none (normal mode)

1 0 anti-flicker filter applied

1 1 anti-flutter filter applied

Table 92 Register configurations for anti-flitter/ anti-flutter filtering

Figure 115 OSD active timing when OSD_ACT.OAM = 1

T
B n 1–[] 2T n[] B n[]+ +()

4
--= B

T n[] 2B n[] T n 1+[]+ +()
4

--=

T T n[]= B
T n[] T n 1+[]+()

2
---=

PIXCLK

YC[7:0]
with VID_DCF.PXD = 0

YC[7:0]
with VID_DCF.PXD = 1

OSD active signal
(input)

OSD active signal
delay

3 2
3

1
2

0
1

0

Enable OSD pixels

Enable OSD pixels

YCrYCb

YCrYCb
182/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA
In the second mode of operation, the OSD active signal is configured as an input and is used to disable the OSD. When
the signal goes high, the OSD will be placed on the YC bus if the OSD is enabled. When this signal is low then no OSD
will be placed on the bus even if OSD is enabled. The programmable delay is used in the same way as for the input
signal.

18.5 Sub-picture or cursor plane

The sub-picture or cursor plane displays the output from the sub-picture decoder, described in Sub-picture decoder on
page 150. The sub-picture can be either in front of or behind the OSD, depending on whether the bit VID_OUT.SPO is
1 or 0 respectively.

The sub-picture decoder can also be used as a hardware cursor unit. The sub-picture should be configured to be in
front of the OSD. A cursor can be defined using an optionally compressed (run-length encoded) bitmap stored in
external SDRAM. The bitmap can be any size up to a full screen. Per-pixel alpha-blending factors can be defined for
each cursor to provide anti-aliasing with the background. The cursor is then moved around using register writes into X
and Y coordinate registers.

18.6 Mixing display planes

The blending of the elements of the final picture is performed by a mixing unit, which is shown in Table 94 and
Figure 117 . The mixing of the display planes is controlled by five mix weights, α1 to α5.

OSD active mode OSD active signal Meaning

0 0 Signal is an output. Video Pixels only on display bus.

0 1 Signal is an output. OSD Pixels on the display bus.

1 0 Signal is an input. Disable the OSD output.

1 1 Signal is an input. Enable OSD output if available.

Table 93 OSD active signal operation

Figure 116 OSD active timing when OSD_ACT.OAM = 0

PIXCLK

YC[7:0]

OSD active signal
(output)

OSD active signal
delay

0 1 2 3

OSD pixels

YCrYCbYCrYCb
 7170179 D 183/294

L18 Display planes STi5518
CONFIDENTIA
The mix weights value (α1) controls the mixing of the the background color plane and the video plane. It is an 8-bit
values held in the VID_MWV register, as shown in Table 94 . The two back planes are generated and mixed in 4:2:2
format and then converted to 4:4:4 for mixing with the sub-picture and OSD.

The resultant of mixing the back three planes can be blended in turn with the sub-picture and OSD. The mixing formula
is: display=(1-α) x source1 + α x source2.
The mixing order depends on whether the sub-picture is in front of or behind the OSD.

The OSD mix weight is α2 and is defined in the OSD palette. If anti-aliasing is disabled, then the mix weight is a 4-bit
value, defined for each OSD region, and mixing can be enabled or disabled for each color. If anti-aliasing is enabled,
then the mix weight is a 6-bit value defined for each color. Blending the OSD is described in Section 18.4.9.

The sub-picture mix weight is α3, which is a 4-bit value defined per pixel type. These values can be controlled by the
sub-picture bit stream except in the highlight area which is controlled by SPD_HCN.

Factor Register Mixed planes
Plane displayed when
mix weight is 0

Plane displayed when
mix weight is 0xFF

α1 VID_MWV Background color and MPEG video MPEG video Background color

Table 94 Control of mixing factor α1

Figure 117 Mixing with the sub-picture in front

Background
color

Video
plane

OSD

Sub-
picture

Color
palette
(LUT)

α1 Chroma
filter

α2

α3

CVBS

YC

YUV

RGB
YUV

to
RGB

4:2:2

4:2:2

4:4:4

4:4:4

α2 value for whole region (16 levels)
or blend per LUT entry (64 levels)

4:4:4

User selectable
AND by region

OSD bit

Chroma
deci-
mate

Full 4:4:4 graphics
format supported for

RGB/YUV outputs

α1 value

4:4:4

4:4:4

SP mix (16 levels)

4:2:2

Selection of video overlays
for 4:2:2 output

PAL/
NTSC/
SECAM
encoder
184/294 7170179 D

LSTi5518 18 Display planes
CONFIDENTIA

18.6.1 4:2:2 Output control

The 4:2:2 output is used by the DENC to generate CVBS and YC output, and is generally used for recording by VCR.
The OSD and sub-picture can be omitted from this output, as controlled by the register VID_OUT and by the S bits in
the OSD region headers. The combined actions of these fields depend on whether the OSD is behind or in front of the
sub-picture. The 4:4:4 output is unaffected.

VID_OUT.LAY defines the number of planes in front of the video which are initially included. VID_OUT.NOS turns on or
off the OSD, as shown in Table 95 . If VID_OUT.NOS=0 (OSD present) then the S bit in an OSD region header can
alternatively be used to turn off that OSD region. When the OSD and Sub-picture planes are present,VID_OUT.SPO
defines which plane is in front. The comibation of bit functions is given in the table below.

Figure 118 Mixing with the OSD in front

LAY NOS Sub-picture in front (SP0=1) OSD in front (SP0=0)

00-01 Any Video only Video only

10 0 Video + OSD Video + sub-picture

1 Video only Video + sub-picture

11 0 Video + OSD + sub-picture Video + sub-picture + OSD

1 Video + sub-picture Video + sub-picture

Table 95 Encoding of LAY and NOS fields of VID_OUT

Background
color

Video
plane

Sub-
picture

Color
palette
(LUT)

α1 Chroma
filter

α3

α2

CVBS

YC

YUV

RGB
YUV

to
RGB

4:2:2

4:4:4

4:4:4

α2 value for whole region (16 levels)

SP mix

or blend per LUT entry (64 levels)

4:4:4

User selectable
AND by region

OSD bit

Selection of video overlays
for 4:2:2 output

Chroma
deci-
mate

Full 4:4:4 graphics
format supported for

RGB/YUV outputs

α1 value

4:4:4

4:4:4

OSD

(16 levels)

4:2:2

4:2:2 PAL/
NTSC/
SECAM
encoder
 7170179 D 185/294

CONFIDENTIAL19 SDRAM block move STi5518

186/294 7170179 D

19 SDRAM block move
This SDRAM Block Move module, copies blocks of data from one byte address within the SDRAM to another. The
source address, destination address and the number of bytes to be transferred are specified by the SDRAM block
move registers listed in Table 96.The registers are all serial read/write registers in the peripheral address space.

To perform a SDRAM block move from one SDRAM memory buffer to another, the block move size, destination
address and read address must be set by the registers listed in the table below. Registers USD_BMS and USD_BWP
must be written before USD_BRP, as the third write to USD_BRP initiates the block move. While a block move is in
progress, all other accesses to the SDRAM are disabled. The progress of the block move can be monitored using
register bit VID_STA.BMI. This bit is set while a block move is in progress, and reset when the block move engine is
idle. When the block move is finished, an interrupt is generated if the mask bit VID_ITM.BMI is set.

Register Bits Name

USD_BMS 15:0 Block move size

USD_BWP 19:0 Memory write pointer

USD_BRP 19:0 Memory read pointer

Table 96 SDRAM block move registers

LSTi5518 20 Digital encoder
CONFIDENTIA
20 Digital encoder

20.1 Introduction

This the final stage of the video pipeline of the device is a high performance PAL/SECAM/NTSC digital encoder
referred to as the DENC. The DENC converts a 4:2:2 digital video stream into a standard analog baseband PAL/
SECAM/NTSC signal and into RGB and YUV analog components.

The DENC can perform closed-captions, CGMS, WSS, Teletext and VPS encoding and allows MacrovisionTM 7.01/ 6.1
copy protection. Six analog output pins are available, on which it is possible to output either (S-VHS(Y/C) + CVBS +
RGB) or (S-VHS(Y/C)+ CVBS + V + Y + U) or (Y1 + C1 + CVBS1 + C2 + Y2 + CVBS2).

The encoder can operate in master mode or in one of several slave modes, where it locks onto incoming sync signals.
An auto-test mode is also provided.

The main functions are controlled using an 8-bit register interface with the CPU. The registers are described in the
STi5518 Register Manual.

20.2 Video timing

The burst sequences are internally generated, subcarrier generation being performed numerically with CKREF as
reference. 4-frame bursts are generated for PAL or 2-frame bursts for NTSC. Rise and fall times of synchronization tips
and burst envelope are internally controlled according to the relevant ITU-R and SMPTE recommendations. The 6-
frame subcarrier phase sequence is generated in SECAM (see Subcarrier insertion (SECAM) on page 200).

Figure 121, Figure 122 and Figure 123 depict typical VBI (vertical blanking interval) waveforms.

It is possible to encode incoming YCrCb data on those lines of the VBI that do not bear line sync pulses or pre/post-
equalization pulses (see Figures 121, 122 and 123). This mode of operation is referred to as partial blanking and is the
default set-up. It allows the encoded waveform to keep any VBI data present in digitized form in the incoming YCrCb
stream (e.g. supplementary closed-caption lines or StarSight data, etc.). In SECAM mode, only Y data are encoded, Cr
and Cb are ignored. Alternatively, the complete VBI may be fully blanked, so no incoming YCrCb data is encoded on
these lines. Full or partial blanking is set by register bit DEN_CFG1.blkli.

For 525/60 systems, with the SMPTE line numbering convention:

• complete VBI consists of lines 1 to 19 and the second half of lines 263 to 282;

• partial VBI consists of lines 1 to 9 and the second half of lines 263 to 272;

• line 282 is either fully blanked or fully active.

For 625/50 systems, with the CCIR line numbering convention:

• complete VBI consists of the second half of lines 623 to 22 and lines 311 to 335;

• partial VBI consists of the second half of lines 623 to 5 and lines 311 to 318;

• line 23 is always fully active.

In an ITU-R656-compliant digital TV line, the active portion of the digital line is the portion included between the SAV
(Start of Active Video) and EAV (End of Active Video) words. However, this digital active line starts somewhat earlier
and may end slightly later than the active line usually defined by analog standards.

The DENC allows two approaches:

• Encodes the full digital line (720 pixels / 1440 clock cycles). In this case, the output waveform will reflect the full
YCrCb stream included between SAV and EAV.

 7170179 D 187/294

L20 Digital encoder STi5518
CONFIDENTIA
• Drops some YCrCb samples at the extremities of the digital line so that the encoded analog line fits within the

analog ITU-R/SMPTE specifications.

In all cases, the transitions between horizontal blanking and active video are shaped to avoid too steep edges within the
active video. Figure 124 gives typical timings concerning the horizontal blanking interval and the active video interval.

Note The burst envelope shown here indicates the location from which the first subcarrier positive zero crossing is
sought (with respect to the 0H reference). The normal burst always starts with such a positive zero crossing.

Figure 119 Input data format (ITU-R656 /D1 4:2:2)

Digital active line

1440T

1716TNTSC, PAL M

Square pixel
525 / 60 system

Square pixel
625 / 50 system

4T

E S E
A
V

A
V

A
V

4T

128T

137T

146T (PAL M)

Digital active line

1440T

1728T

128T

Digital active line

1280T

1560T

115T

131T

Digital active line

1536T

1888T

139T

169T

0H

PAL B, G, H, I, N
SECAM

T = clock period
PAL, NTSC and SECAM: 37.037 ns
Square pixel PAL: 33.898 ns
Square pixel NTSC: 40.75 ns

151T (145T in SECAM)
188/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA

Note 1. These diagrams are valid with contents of “delay” and “synchro-delay” register fields equal to the default
values.
2. If on-the-fly format changing is required, clock switching must be synchronized onto the start of frame as
shown in the above waveform. Internally, sqpix bit update is taken into account on the beginning of a new
frame.

Figure 120 Square pixel mode switch

Master mode

Slave mode by ODDEVEN and HSYNC

Slave mode by ODDEVEN only

ODDEVEN
(output)

CKREF

HSYNC
(output)

ODDEVEN
(input)

CKREF

HSYNC
(input)

ODDEVEN
(input)

CKREF

Field2 Field1

Field1

Field1

Clock period change
if square pixel mode switch

Update of sqpix bit

Clock period change
if square pixel mode switch

Update of sqpix bit

Clock period change
if square pixel mode switch

Update of sqpix bit
 7170179 D 189/294

L20 Digital encoder STi5518
CONFIDENTIA

Figure 121 PAL-BDGHI, PAL-N typical VBI waveform, interlaced mode (ITU-R625 line numbering)

Figure 122 NTSC-M typical VBI waveforms, interlaced mode (SMPTE-525 line numbering)

A

311 312 313 314 315 316 317 318 317 336308 309 310

A B

624 625 1 2 3 4 5 6 7 8621 622 623

III

I

II

III

IV

II

C

0V :
I, II, III, IV :
A :
B :
C :

Frame synchronization reference
1st and 5th, 2nd and 6th, 3rd and 7th, 4th and 8th fields
Burst phase : nominal value +135°
Burst phase : nominal value -135°
Burst suppression internal

308 309 310 311 312 313 314 315 316 317 318 319 320

A B
0V

IV

A

624 625 1 2 3 4 5 6 7 23621 622 623

I

Partial VBI1
Full VBI1

Partial VBI2
Full VBI2

22

335

1

Full VBI1

2 3

Partial VBI1

4 5 6 7 8 9 10 18 19

H0.5HHH

282273272271270269268267266265264263262

HH0.5H

Full VBI2

VBI3

1 2 3 4 5 6 7 8 9 10 18 19525

282273272271270269268267266265264263

VBI4

Partial VBI2
190/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA

Figure 123 PAL-M typical VBI waveforms, interlaced mode (ITU-R/CCIR-525 line numbering)

Figure 124 Horizontal blanking interval and active video timings

NTSC-M PAL-BDGHI PAL-N PAL-M SECAM

a1 5.38 µs (even lines)
5.52 µs (odd lines)

5.54 µs (A-type)
5.66 µs (B-type)

5.54 µs (A-type)
5.66 µs (B-type)

5.73 µs (A-type)
5.87 µs (B-type)

5.60 µs

b1 1.56 µs 1.3 µs 1.3 µs 1.56 µs 1.0 µs

b2 1.56 µs 1.52 µs 1.52 µs 1.56 µs 1.52 µs

c1 8.8 µs 9.6 µs 9.6 µs 8.8 µs 9.9 µs

Table 97 Typical timing values for Figure 124

F'

519

F

520

F'

521

F

522 523 524 525 1 2 3 4 5 6 7 8 9

A B

A B

A B

261 262 263 264 265 266 267 268 269 270 271 280

523 524 525 1 2 3 4 5 6 7 8 9

F

519

F'

520

F

521 522

F

257

F'

258

F

259 260

A B

261 262 263 264 265 266 267 268 269 270 271 272

F'

257

F

258 259 260

0V

IV

I

II

III

IV

III

II

I

C

0V :
I, II, III, IV :
A :
B :
C :

Frame synchronization reference
1st and 5th, 2nd and 6th, 3rd and 7th, 4th and 8th fields
Burst phase : nominal value +135°
Burst phase : nominal value -135°
Burst suppression internal

Partial VBI1
Full VBI1

16 17

Partial VBI2
Full VBI2

279

0H

Active video
Horizontal blanking interval

a

b1 (bit aline = 0)

c1 (bit aline = 0)

c2 (bit aline = 1)

d

Full digital line encoding

‘Analog’ line encoding

(720 pixels - 1440 T)

b2 (bit aline = 1)
 7170179 D 191/294

L20 Digital encoder STi5518
CONFIDENTIA

20.3 Reset procedure

A hardware reset sets the DENC in HSYNC+ODDEVEN (line-locked) slave mode, for NTSC-M, interlaced ITU-R601
encoding closed-captioning, WSS, VPS, Teletext and CGMS encoding are all disabled.

The configuration can then be customized by writing into the appropriate registers. A few registers are never reset, their
contents are unknown until the first loading (see the STi5518 Register Manual).

It is also possible to perform a software reset by setting the 7th bit in the DEN_CFG6 register. The device responds in
a similar way as after a hardware reset except that the configuration registers and a few other registers are not altered.

20.4 Master mode

In this mode, the encoder supplies HSYNC and ODDEV sync signals (with independently programmable polarities) to
drive other blocks. Refer to the following figures for timings and waveforms.

The encoder starts encoding and counting clock cycles as soon as the master mode has been loaded into the control
register DEN_CFG0.

Configuration bits syncout_ad[1:0] (register DEN_CFG4) shift the relative position of the sync signals by up to 3 clock
cycles to cope with any YCrCb phasing.

Note 1. When ODDEV is a sync input, only one edge (“the active edge”) of the incoming ODDEV is taken into
account for synchronization. The “non-active” edge (2nd edge on this drawing) is not critical and its position
may differ by ±H/2 from the location shown.

Note 2. The HSYNC pulse width indicated is valid when the DENC supplies HSYNC. In those slave modes where it
receives HSYNC, only the edge defined as active is relevant, and the width of the HSYNC pulse it receives is
not critical.

c2 9.41 µs 10.48 µs 10.48 µs 9.41 µs 10.48 µs

d 9 cycles of 3.58 MHz 10 cycles of 4.43 MHz 9 cycles of 3.58 MHz 9 cycles of 3.58 MHz -

1. These are typical values, actual values will depend of the static offset programmed for subcarrier generation.

Figure 125 ODDEVEN, VSYNC and HSYNC waveforms

NTSC-M PAL-BDGHI PAL-N PAL-M SECAM

Table 97 Typical timing values for Figure 124

Active edge (programmable polarity)

Active edge (programmable polarity)

Active edge (programmable polarity)

128 Tckref = 4.74� s

ODDEVEN
(see Note 1)

VSYNC

HSYNC
(see Note 2)

Line Numbers :
SMPTE-525

CCIR-625
4
1

5
2

6
3

266
313

267
314

268
315

269
316
192/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA

Note This figure is valid for bits “syncout_ad[1:0]”= default

20.5 Slave modes

20.5.1 Introduction

The following slave modes are available:

• ODDEVEN(VSYNC) + HSYNC based (line-based sync),

• ODDEVEN(VSYNC)-only based (frame-based sync),

• sync-in-data based (line locked or frame locked).

ODDEVEN refers to an odd/even field flag, also known as BottomTop. HSYNC is a line sync signal and VSYNC is a
vertical sync signal. Their waveforms are depicted in Figure 127 . The polarities of HSYNC and ODDEVEN(VSYNC)
are independently programmable in all slave modes. In all slave modes, ODDEVEN(VSYNC) and/or HSYNC signals
must be related to CKREF, the principal DENC clock. In other words, there is NO genlocking performed by the DENC.

20.5.2 Line-based synchronization

ODDEVEN+HSYNC based synchronization

Synchronization is performed on a line-by-line basis by locking onto incoming ODDEVEN and HSYNC signals. Refer to
Figure 127 for waveforms and timings. The polarities of the active edges of HSYNC and ODDEVEN are programmable
and independent. The first active edge of ODDEVEN initializes the internal line counter but encoding of the first line
does not start until an HSYNC active edge is detected (at the earliest, an HSYNC transition may be at the same time as
ODDEVEN). At that point, the internal sample counter is initialized and encoding of the first line starts. Then, encoding
of each subsequent line is individually triggered by HSYNC active edges. The phase relationship between HSYNC and
the incoming YCrCb data is normally such that the first clock rising edge following the HSYNC active edge samples Cb
(i.e. a blue chroma sample within the YCrCb stream). It is however possible to internally delay the incoming sync
signals (HSYNC+ODDEVEN) by up to 3 clock cycles to cope with different data/sync phases, using configuration bits
syncin_ad in DEN_CFG4. The DENC is thus fully slaved to the HSYNC signal, which means that lines may contain
more or less samples than usual.

• If the digital line is shorter than its nominal value, the sample counter is re-initialized when the “early” HSYNC
arrives and all internal synchronization signals are re-initialized.

Figure 126 Master mode sync signals

HSYNC
(out)

ODDEVEN
(out)

CKREF

YCRCB Cb Y Cr Y'

Active Edge
(programmable polarity)

Active Edge
(programmable polarity)

1TCKREF

Duration of HSYNC Pulse : 128 TCKREF

Cr Y'
 7170179 D 193/294

L20 Digital encoder STi5518
CONFIDENTIA
• If the digital line is longer than its nominal value, the sample counter is stopped when it reaches its nominal end-of-

line value and waits for the “late” HSYNC before re-initializing.

Note This figure is valid for bits syncin_ad[1:0] = default

HSYNC+VSYNC based synchronization

Synchronization is performed on a line-by-line basis by locking onto incoming VSYNC and HSYNC signals. Refer to
Figure 128 for waveforms and timings. The polarities of HSYNC and VSYNC are programmable and independent.

The incoming VSYNC signal is immediately transformed into a waveform identical to the odd/even waveform of an
ODDEVEN signal, therefore, the behavior with this synchronization is identical to that described above for
ODDEVEN+HSYNC based synchronization. Again, the phase relationship between HSYNC and the incoming YCrCb
data is normally such that the first clock rising edge following the HSYNC active edge samples “Cb” (i.e. a 'blue' chroma
sample within the YCrCb stream). It is however possible to internally delay the incoming sync signals
(HSYNC+VSYNC) by up to 3 clock cycles to cope with different data/sync phasing, using configuration bits syncin_ad
(DEN_CFG4).

20.5.3 Frame-based synchronization

ODDEVEN-only based synchronization

Synchronization is performed on a frame-by-frame basis by locking onto an incoming ODDEVEN signal. A line sync
signal is derived internally and is also issued to the outside as HSYNC. Refer to Figure 129 for waveforms and timings.
The phase relationship between ODDEVEN and the incoming YCrCb data is normally such that the first clock rising
edge following the ODDEVEN active edge samples “Cb” (i.e. a “blue” chroma sample within the YCrCb stream). It is

Figure 127 HSYNC + ODDEVEN based slave mode sync signals

Cb Y Cr Y¢ Cb

CKREF

ODDEVEN (in)

YCrCb

HSYNC (in)

Active edge (programmable polarity)

Active edge (programmable polarity)
194/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
however possible to internally delay the incoming ODDEVEN signal by up to 3 clock cycles to cope with different data/
sync phasing, using configuration bits syncin_ad in DEN_CFG4.

Note 1. This figure is valid for bits “syncin_ad[1:0]” = default.
2. The active edges of HSYNC and VSYNC should normally be simultaneous. It is permissible that HSYNC
transitions before VSYNC, but VSYNC must not transition before HSYNC.

Note This figure is valid for bits syncin_ad[1:0] = default

The first active edge of ODDEVEN triggers generation of the analog sync signals and encoding of the incoming video
data. Frames being supposed to be of constant duration, the next ODDEVEN active transition is expected at a precise
time after the last ODDEVEN detected.

So, once an active ODDEVEN edge has been detected, checks that the following ODDEVEN are present at the
expected instants are performed.

Encoding and analog sync generation carry on unless three successive fails of these checks occur.

In that case, three behaviors are possible, according to the configuration programmed in registers DEN_CFG1-2:

• If freerun is enabled, the DENC carries on outputting the digital line sync HSYNC and generating analog video just
as though the expected ODDEVEN edge had been present. However, it will re-synchronize onto the next
ODDEVEN active edge detected, whatever its location.

• If freerun is disabled but bit syncok is set in the configuration registers, the DENC sets the active portion of the TV
line to black level but carries on outputting the analog sync tips (on Ys and CVBS) and the digital line sync signal

HSYNC. When programmed, MacrovisionTM pseudo-sync pulses and AGC pulses are also present in the analog
sync waveform.

Figure 128 HSYNC + VSYNC based slave mode sync signals

Figure 129 ODDEVEN based slave mode sync signals

Cb Y Cr Y¢ Cb

CKREF

VSYNC (in)

YCrCb

HSYNC (in)

Active edge (programmable polarity)

Active edge (programmable polarity)

Cb Y Cr Y¢ Cb

CKREF

ODDEVEN (in)

YCrCb
 7170179 D 195/294

L20 Digital encoder STi5518
CONFIDENTIA
• If freerun is disabled and bit syncok is not set, all analog video is at black level and neither analog sync tips nor

digital line sync are output.

This mode is a frame-based sync mode, as opposed to a field-based sync mode. This means that only one type of edge
(rising or falling, according to programming) is of interest to the DENC; the other one is ignored.

VSYNC-only based synchronization

Synchronization is performed on a frame-by-frame basis by locking onto an incoming VSYNC signal.

An auxiliary line sync signal HSYNC must also be fed to the DENC, which uses it to reconstruct from VSYNC and
HSYNC information an internal odd/ even waveform identical to that of an ODDEV signal. Therefore, the behavior with
this synchronization is identical to that described above for ODDEV-only based synchronization (except that nothing is
output on HSYNC pin since it is an input port in this mode).

Note that HSYNC is an input but has no other use than allowing the DENC to decide whether an incoming VSYNC
pulse flags an odd or an even field. In other words, the DENC does not lock onto HSYNC in this mode since this is NOT
a line-locked mode.

The phase relationship between VSYNC and the incoming YCrCb data is normally such that the first clock rising edge
following the VSYNC active edge samples “Cb” (i.e. a 'blue' chroma sample within the YCrCb stream). It is however
possible to internally delay the incoming sync signals (VSYNC+HSYNC) by up to 3 clock cycles to cope with different
data/sync phasing, using configuration bits Syncin_ad (DEN_CFG4).

20.5.4 Sync-in-data based synchronization

“End-of-frame” word-based synchronization

Synchronization is performed by extracting the 1-to-0 transitions of the ’F’ flag (end-of-frame) from the ’EAV’ (End-of-
Active Video) sequence embedded within ITU-R656 / D1 compliant digital video streams. Both a frame sync signal and
a line sync signal are derived and are made available externally as ODDEV and HSYNC. Refer to Figure 130 for
waveforms and timings.

The first successful detection of the ’F’ flag triggers generation of the analog sync signals and encoding of the incoming
video data. Frames being supposed to be of constant duration, the next EAV word containing the ’F’ flag is expected at
a precise time after the latest detection.

So, once an active ’F’ flag has been detected, checks that the following flags are present within the incoming video
stream at the expected times are performed.

Encoding and analog sync generation carry on unless there are three successive fails of these checks. Then,
depending on the programmed configuration, one of the following three events occurs:

Figure 130 Data (EAV) based slave mode sync signals

HSYNC duration = 128 Tclkref

CKREF

ODDEV

YCrCb

HSYNC

00 B6 Cb Y

EAV

00FF

46Tclkref

1Tclkref

(out)

(out)
196/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
• If free-run is enabled, the DENC carries on generating the digital frame and line syncs (ODDEV and HSYNC) and

generating analog video just as though the expected F flag had been present. However, it will re-synchronize onto
the next F flag detected within the incoming ITU-R656/ D1 video stream.

• If free-run is disabled but the bit syncok is set in the configuration registers, the DENC sets the active portion of the
TV line to black level but carries on outputting the analog sync tips (on Ys and CVBS) and the digital frame and line
sync signals ODDEV and HSYNC. (When programmed, MacrovisionTM pseudo-sync pulses and AGC pulses are
also present in the analog sync waveform).

• If free-run is disabled and the bit syncok is not set, all analog video is at black level and neither analog sync tips nor
digital frame/line sync are output.

The SAV and EAV words are Hamming-decoded.

After detection of two successive errors, a bit is set in the status register to inform the micro-controller of the poor
transmission quality.

’End-of-line’ word-based synchronization

Synchronization is performed by extracting the F and ’H’ flags from the SAV (Start of Active Video) and EAV (End of
Active Video) words embedded within ITU-R656/D1 compliant digital video streams. A line sync signal and a frame
sync signal are derived from these flags and are issued to the outside on the HSYNC and ODDEVEN/VSYNC pins in
output mode. These signals are also used by the DENC, which treats them as incoming ODDEVEN and HSYNC
signals in HSYNC+ODDEVEN based synchronization.

Auto-test mode

An auto-test mode is available, which causes the DENC to produce a color bar pattern, in the appropriate standard,
independently from the video input.

The auto-test mode is started by setting to 7 the 3-bit field sync in the register DEN_CFG0. As this mode sets the DENC
in master mode, VSYNC/ODDEVEN and HSYNC signals are in output mode. In table below, the decimal values of Y, Cr
and Cb are shown corresponding to the auto-test color bar.

Y Cr Cb

Black 16 128 128

Blue 36 116 212

Red 64 212 100

Magenta 84 200 184

Green 112 56 72

Cyan 136 44 156

Yellow 160 140 44

White 236 128 128

Table 98 Auto-test colors
 7170179 D 197/294

L20 Digital encoder STi5518
CONFIDENTIA
The corresponding decimal output values just before the DACs are shown graphically in Figure 132 and Figure 133 .
Both figures show the static values corresponding to the input values in Table 98 .

20.6 Input demultiplexor

The incoming YCrCb data, as well as Y4 and CrCb in 4:4:4 mode, is demultiplexed into a “blue-difference” chroma
information stream, a “red-difference” chroma information stream and a luma information stream. Incoming data bits
are treated as blue, red or luma samples according to their relative position with respect to the sync signals in use and
the contents of configuration bits syncin_ad (slave modes) or syncout_ad (master mode). Brightness, saturation and
contrast are then performed on demultiplexed data, refer to the Register Manual registers DEN_REG_69,
DEN_REG_70 and DEN_REG_71.

The ITU-R601 recommendation defines the black luma level as Y=16 and the maximum white luma level as Y = 235.
Similarly, it defines 225 quantification levels for the color difference components (Cr, Cb), centered around 128. After

Figure 131 Luminance output levels in auto-test for NTSC without set-up

Figure 132 Luminance output levels in auto-test for PAL (BGHI) and SECAM

Sync level

240

16
W

hi
te

Ye
llo

w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

eBlank level

Black

240

Black

800

608

546

486

414

362

290

Sync level

256

16

W
hi

te

Ye
llo

w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

eBlank level

Black

256

Black

816

624

562

502

430

378

306
198/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
the saturation, brightness and contrast stage, the incoming YCrCB samples can be saturated in the input multiplexer
with the following rules:

This avoids having to heavily saturate the composite video codes before digital-to-analog conversion in case erroneous
or unrealistic YCrCb samples are input to the encoder (there may otherwise be overflow errors in the codes driving the
DACs), and therefore avoids generating a distorted output waveform.

However, in some applications, it may be desirable to let extreme YCrCb codes pass through the demultiplexor. This is
controlled using bit maxdyn in register DEN_CFG6. In this case, only codes 0x00 and 0xFF are overridden; if such
codes are found in the active video samples, they are forced to 0x01 and 0xFE.

In any case, the YCrCb codes are not overridden for EAV/SAV decoder.

20.7 Subcarrier generation

A Direct Digital Frequency Synthesizer (DDFS) generates the required color subcarrier frequency using a 24-bit phase
accumulator. This oscillator feeds a quadrature modulator which modulates the base-band chrominance components.

The subcarrier frequency is obtained from the following equation:

where Increment _Word is a 24-bit value.

Hard-wired Increment_Word values are available for each standard and can be automatically selected. Alternatively
(according to bit selrst_inc in DEN_CFG5), the frequency can be fully customized by programming other values into a
dedicated Increment_Word register, DEN_IDFS. This allows, for instance, the encoding of NTSC-4.43 or PAL-M-4.43.

This is done with the following procedure:

• Program the required increment in DEN_IDFS.

• Set bit selrst_inc to 1 in register DEN_CFG5.

• Perform a software reset using register DEN_CFG6. This sets all bits in all DENC registers except DEN_CFGn to
their default value.
Alternatively, set DEN_CFG8 bits ph_rst_mode[1:0] to 01. Then the frequency (and phase) update is done on the
beginning of the next video line.

Warning: if a standard change occurs after the software reset, the increment value is automatically re-initialized with
the hard wired or loaded value according to bit selrst

The reset phase of the color subcarrier can also be software-controlled by register DEN_PDFS.

The subcarrier phase can be periodically reset to its nominal value to compensate for any drift introduced by the finite
accuracy of the calculations. In PAL and NTSC subcarrier phase adjustment can be performed every line, every eight
fields, every four fields, or every two fields (DEN_CFG2 bits valrst[1:0]). If SECAM is performed, the subcarrier phase
is reset every line.

• For Cr or Cb samples: Cr,Cb > 240 => Cr,Cb saturated at 240

Cr,Cb < 16 => Cr,Cb saturated at 16

• For Y samples: Y > 235 => Y saturated at 235

Y < 16 => Y saturated at 16

Fsc = (Increment_Word / 224) x CKREF
 7170179 D 199/294

L20 Digital encoder STi5518
CONFIDENTIA
20.8 Burst insertion (PAL and NTSC)

The color reference burst is inserted so as to always start with a positive zero crossing of the subcarrier sine wave. The
first and last half-cycles have a reduced amplitude so that the burst envelope starts and ends smoothly.

The burst contains 9 or 10 sine cycles of 4.43361875 MHZ or 3.579545 MHz (depending on the standard programmed
in the register DEN_CFG0) as follows:

The burst can be turned off (no burst insertion) by setting DEN_CFG2 configuration bit bursten to 0.

Burst insertion is performed by always starting the burst with a positive-going zero crossing. This guarantees a smooth
start and end of burst with a maximum of undistorted burst cycles and can only be beneficial to chroma decoders.

This avoids an uncontrolled initial burst phase, and guarantees a start on a positive-going zero crossing with the
consequence that two burst start locations are visible over successive lines, according to the line parity. This is normal
and explained below.

In NTSC, the relation between subcarrier frequency and line length creates a 180o subcarrier phase difference (with
respect to the horizontal sync) from one line to the next according to the line parity. So if the burst always starts with the
same phase (positive-going zero crossing), this means the burst will be inserted at time X or at time X+TNTSC/2 after
the horizontal sync tip according to the line parity, where TNTSC is the duration of one cycle of the NTSC burst.

With PAL, a similar rationale holds, and again there will be two possible burst start locations. The subcarrier phase
difference (with respect to the horizontal sync) from one line to the next in that case is either 0 or 180o with the following
series: A-A-B-B-A-A-...-etc. where A denotes “A-type” bursts and B denotes “B-type” bursts, A-type and B-type being
180o out of phase with respect to the horizontal sync. So two locations are possible, one for A-type, the other for B-type.

This assumes a periodic reset of the subcarrier is automatically performed (see bits valrst[1:0] in DEN_CFG2).
Otherwise, over several frames, the start of burst will drift within an interval of half a subcarrier’s cycle. THIS IS
NORMAL and means the burst is correctly locked to the colors encoded. The equivalent effect with a gated burst
approach would be the following: the start location would be fixed but the phase with which the burst starts (with respect
to the horizontal sync) would be drifting.

20.9 Subcarrier insertion (SECAM)

subcarrier frequency in SECAM mode depends on Cr and Cb values (frequency modulation). The color subcarrier
frequency is 4,250,000 Hz for Cb=128 (on blue lines) and 4,406,249 Hz for Cr=128 (on red lines). Frequency clipping
values are 3,900,000 Hz and 4,756,250 Hz.

NTSC-M 9 cycles of 3.579545 MHz

PAL-BDGHI 10 cycles of 4.43361875 MHz

PAL-M 9 cycles of 3.579545 MHz

PAL-N 9 cycles of 3.579545 MHz
200/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
The insertion point of the non-modulated subcarrier is shown in the figure below.

In odd fields the phase of subcarrier follows the sequence: 0, 0, π, 0, 0, π, 0, 0, π, ... comparing to a sine wave starting
at the same point - 5.6 µs after horizontal synch pulse (inverted on one line out of every three and also at each frame).
This sequence begins from line 1 or line 23 of the first field (see gen_secam bit of register DEN_CFG7). DEN_CFG7 bit
inv_phi_secam allows the inversion of this sequence (π, π, 0, π, π, 0,... instead of 0, 0, π, 0, 0, π,...), in odd fields. In
even fields the sequence of subcarrier is always inverted with respect to the odd field one.

To enable SECAM mode, program a 1 in DEN_CFG7.7 (MSB) and then perform a soft-reset or loading of DEN_CFG0.

20.10 Luminance encoding

The demultiplexed Y samples are band-limited and interpolated at CKREF clock rate. The resulting luminance signal is
properly scaled before insertion of any closed-captions, CGMS, VPS, Teletext or WSS data and synchronization
pulses.

The interpolation filter compensates for the sin(x)/ x attenuation inherent in D/A conversion and greatly simplifies the
output stage filter. See Figures 134, 135 and 136 for characteristic curves.

In addition, the luminance that is added to the chrominance to create the composite CVBS signal can be trap-filtered at
3.58 MHz (NTSC) or 4.43 MHz (PAL). This supports applications oriented towards low-end TV sets which are subject to
cross-color if the digital source has a wide luminance bandwidth (e.g. some DVD sources). Note that the trap filter does
not affect the S-VHS luminance output nor the RGB outputs. If SECAM is performed, enable the trap filter with
4.43 MHz cut-off frequency on the luma part of the CVBS signal (see DEN_CFG3 bits entrap and trap_4.43).

Figure 133 SECAM color bar pattern (blue line)

2.1 2.11 2.12 2.13 2.14 2.15

x 10
6

50

100

150

200

250

300

350

400

cvbs

5.6 µs
 7170179 D 201/294

L20 Digital encoder STi5518
CONFIDENTIA
A 7.5 IRE pedestal can be programmed if needed with all standards (see registers DEN_CFG1 and DEN_CFG7). This
allows in particular to encode Argentinian and non-Argentinian PAL-N, or Japanese NTSC (NTSC with no set-up).

The luma processing as well as line and field timings in SECAM mode are identical to PAL BDGHI ones.

Figure 134 Luma filtering including DAC attenuation

Figure 135 Luma filtering with 3.58 MHz trap, including DAC attenuation

Figure 136 Luma filtering with 4.43 MHz trap, including DAC attenuation

A
m

pl
itu

de
 (

dB
)

1 2 3 4 5 6 7 8 9 10 11 12 13

Frequency (MHz)

-40

-35

-30

-25

-20

-15

-10

-5

0

A
m

pl
itu

de
 (

dB
)

1 2 3 4 5 6 7 8 9 10 11 12 13

Frequency (MHz)

-40

-35

-30

-25

-20

-15

-10

-5

0

A
m

pl
itu

d
e

(d
B

)

1 2 3 4 5 6 7 8 9 10 11 12 13

Frequency (MHz)

-40

-35

-30

-25

-20

-15

-10

-5

0

202/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
20.11 Chrominance encoding

U, V (PAL and NTSC) and Dr, Db (SECAM) chroma components are computed from demultiplexed Cb, Cr samples.
Before modulating the subcarrier, these are band-limited and interpolated at CKREF clock rate. This processing eases
the filtering following D/A conversion and allows more accurate encoding.

A set of 4 different filters is available in PAL and NTSC for chroma filtering to fit a wide variety of applications in the
different standards and include filters recommended by ITU-R 624-4 and SMPTE170-M.

The available 3-dB bandwidths are 1.1, 1.3, 1.6 or 1.9 MHz. See Figures 139, 140, 141, 142 and 143 for the various
frequency responses and register DEN_CFG1 for programming. The narrower bandwidths are useful against cross-
luminance artifacts, the wider bandwidths allow higher chroma contents.

In SECAM, 1.3 MHz low-pass and pre-emphasis filtering are performed on Dr and Db chroma components, before the
frequency modulation, according to ITU-R Rec624-4.

Refer to Figure 137 for frequency response of these filters. Bell filtering is performed at the end of frequency
modulation stage.

Peak to peak amplitude of modulated chrominance signal at the central frequency (4 279.7 kHz) is 22,88% of the black-
white interval (22.88 IRE).

Refer to Figure 138 for frequency response of bell filter with subcarrier frequencies and clipping values.

Figure 137 SECAM chroma filtering (pre-emphasis and 1.3 MHz low pass filtering)

A
m

pl
itu

de
 (

dB
)

10-1 100

Frequency (MHz)

-15

-10

-5

0

5

10
 7170179 D 203/294

L20 Digital encoder STi5518
CONFIDENTIA

20.12 Composite video signal generation

The composite video signal is created by adding the luminance (after trap filtering - optional in PAL and NTSC, see
register DEN_CFG3) and the chrominance components. A saturation function is included in the adder to avoid overflow
errors should extreme luminance levels be modulated with highly saturated colors. This does not occur with natural
colors but may be generated by computers or graphics engines.

Figure 138 SECAM high-frequency subcarrier pre-emphasis (Bell filtering), including DAC attenuation

Figure 139 Various chroma filters available and RGB filter

G
ai

n
(d

B
)

Frequency (MHz)

3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

0

2

4

6

8

10

12

Frequence (MHz)

G
ai

n
en

 d
B

Filtrage anti−cloche du SECAM (avec les DACs)

A
m

pl
itu

de
 (

dB
)

Frequency (MHz)
0 0.5 1 1.5 2 2.5 3 3.5

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

RGB

f-3=1.9
f-3=1.6

f-3=1.3

f-3=1.1
204/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
A “color killing” function is available, whereby the composite signal contains no chrominance, i.e. replicates the trap-
filtered luminance. This function does not suppress the chrominance on the S/VHS outputs, but suppressing the S-VHS
chrominance is possible using bit bkdacn in DEN_CFG5, where the chrominance signal is outputted on DAC n.

Figure 140 1.1 MHz chroma filter

Figure 141 1.3 MHz chroma filter

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

p
lit

ud
e

(d
B

)

Frequency (MHz)

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

p
lit

u
de

 (
dB

)

Frequency (MHz)
 7170179 D 205/294

L20 Digital encoder STi5518
CONFIDENTIA

20.13 RGB and UV encoding

After demultiplexing, the Cr and Cb samples feed a 4 times interpolation filter. The resulting base-band chroma signal
has a 2.45 MHz bandwidth (Figure 144) and is combined with the filtered luma component to generate R,G,B or U,V
samples at 27 MHz.

Figure 142 1.6 MHz chroma filter

Figure 143 1.9 MHz chroma filter

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

p
lit

ud
e

(d
B

)

Frequency (MHz)

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

pl
itu

de
 (

dB
)

Frequency (MHz)
206/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
If Y4 and CrCb inputs are used, the filtering identical to luma filtering (see Figure 134) is performed on all components
(Y4, Cr and Cb). In this case DAC5 output data encoded from Y4 input if YUV configuration is used (see DEN_CFG8
bits conf_out1 and conf_out0).

20.14 Closed-captioning

Closed-captions (or data from an Extended Data Service as defined by the closed-captions specification) can be
encoded by the circuit. The closed-caption data is delivered to the circuit through the register interface. Two dedicated
pairs of bytes (two bytes per field), each pair preceded by a clock run-in and a start bit can be encoded and inserted on
the luminance path on a selected TV line. The Clock Run-In and Start code are generated by the DENC.

Closed-caption data registers are double-buffered so that loading can be performed anytime, even during line 21/284 or
any other selected line.

User register DEN_CCF1 and DEN_CCF2 each contain the first and second byte to send (LSB first) after the start bit
on the appropriate TV line, where DEN_CCF1 refers to field 1 and DEN_CCF2 to field 2. The TV line number where
data is to be encoded is programmable using registers DEN_CLF1 and DEN_CLF2. Lines that may be selected include
those used by the StarSight data broadcast system. Closed-caption data has priority over any CGMS signals
programmed for the same line.

The internal Clock Run-In generator is based on a Direct Digital Frequency Synthesizer. The nominal instantaneous
data rate is 503,496 kHz (i.e. 32 times the NTSC line rate). Data LOW corresponds nominally to 0 IRE, data HIGH
corresponds to 50 IRE at the DAC outputs.

When closed-captioning is on (bits cc1 and cc2 in DEN_CFG1), the CPU should load the relevant registers
(DEN_CCF1 or DEN_CCF2) once every frame at most (although there is in fact some margin due to the double-

Figure 144 RGB - chroma filtering

0 2 4 6 8 10 12 14

0

-5

-10

-15

-20

-25

-30

-35

-40

A
m

pl
itu

de
 (

dB
)

Frequency (MHz)
 7170179 D 207/294

L20 Digital encoder STi5518
CONFIDENTIA
buffering). Two bits are set in the DEN_STA register in case of attempts to load the closed-caption data registers too
frequently; these can be used to regulate the loading rate.

The closed-caption encoder considers that closed-caption data has been loaded and is valid on completion of the write
operation into DEN_CCF1 for field1, or DEN_CCF2 for field 2. If closed-caption encoding has been enabled and no
new data bytes have been written into the closed-caption data registers when the closed-caption window starts on the
appropriate TV line, then the circuit outputs two US-ASCII NULL characters with odd parity after the start bit.

20.15 CGMS encoding

CGMS stands for Copy Generation Management System, and is also known as VBID and described by standard CPX-
1204 of EIAJ. CGMS data can be encoded by the digital encoder.

Three bytes, containing 20 significant bits, are delivered to the chip via the register interface. Two reference bits (1 then
0) are encoded first, followed by 20 bits of CGMS data. This includes a Cyclic Redundancy Check sequence, which is
not computed by the device but is supplied to it as part of the 20 data bits. The reference bits are generated locally by
the DENC. Figure 146 shows a typical CGMS waveform.

CGMS encoding is enabled by setting bit encgms in register DEN_CFG3. When enabled, the CGMS waveform is
present once in each field, on lines 20 and 283 (SMPTE-525 line numbering).

The CGMS data register is double-buffered, which means that it can be loaded at any time (even during line 20/283)
without any risk of corrupting CGMS data that could be in the process of being encoded. The CGMS encoder considers
that new CGMS data has been loaded and is valid on completion of the write operation into register DEN_CGMS.

Figure 145 Example of closed-caption waveform

Figure 146 Example of CGMS waveform

0

50

100

150

200

250

300

t

LS
B

61µs

27.35µs

13.9µs

10µs

Transition
Time : 220ns

7 cycles
of 504kHz

0

50

100

150

200

250

300

t

LS
B 11µs

48.7µs

Word 1
4 bits

Word 2
4 bits

Word 0
6 bits

CRCC
6 bits

Bit 1 Bit 20
208/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
20.16 WSS encoding

The digital encoder allows WSS (Wide Screen Signalling) in 625-line format, complying with the ETS 300 294 standard.
Two bytes are delivered to the circuit through the register interface into two dedicated registers (see register
DEN_WSS).

WSS encoding is enabled using bit enwss in register DEN_CFG3. When WSS encoding is enabled, a waveform is
present on the first half of line 23 of each frame. Data is preceded by a run-in sequence and a start code generated
locally by the DENC.

20.17 VPS encoding

VPS data encoding is defined by ETS 300 231 communication, June 1993. VPS data can be encoded by the DENC on
line 16 (CCIR) for 625-line PAL and SECAM television systems. The VPS data is delivered to the circuit using registers
DEN_VPS. The data transmission is preceded by a clock run-in and a start code generated by the DENC. The clock
frequency is 5 MHz. This feature is enabled by setting the envps bit of register DEN_CFG7. Figure 147 shows an
example of VPS waveform.

20.18 Teletext encoding

The DENC can encode Teletext according to the “CCIR/ITU-R Broadcast Teletext System B” specification (also known
as World System Teletext), and NABTS (North American Basic Teletext Specification) EIA-516.

In DVB applications, Teletext data is embedded within DVB streams as MPEG data packets. The Transport Layer
Processing IC (ST20) sorts incoming data packets and stores Teletext packets in a buffer. It then passes them to the
DENC on request.

Signal exchange

The DENC and the Teletext buffer exchange 2 signals: TTXS (Teletext Synchronization) going from the DENC to the
Teletext Buffer and TTXD (Teletext Data) going from the Teletext Buffer to the DENC.

The TTXS signal is a request signal generated on selected lines. In response to this signal, the Teletext buffer is
expected to send Teletext bits to the DENC for insertion of a Teletext line into the analog video signal. The number of
Teletext bits sent, depends on the Teletext system being used (selected by register bit DEN_REG_64.ttxt_abcd) 360
bits are sent for Teletext B - WST in PAL and SECAM, or 288 for Teletext C - NABTS in NTSC.

The duration of the TTXS window corresponds to the number of bits being sent (see Transmission Protocol below).

Figure 147 Example of VPS waveform

LS
B

s

Run-In Start Data-Code
 7170179 D 209/294

L20 Digital encoder STi5518
CONFIDENTIA
• For Teletext B and 625 line systems, the TTXS window duration is 1402 reference clock periods (corresponding to

360 bits).

• For Teletext C and 525 line systems (NABTS), this duration is 1121 master clock periods.

Following the TTXS rising edge, the encoder expects data from the Teletext buffer after a programmable number (2 to

9) of 27 MHz master clock periods. Data is transmitted synchronously with the master clock at an average rate of

6.9375 Mbit/s according to the protocol described below. In order of transmission, it consists of: 16 Clock Run-In bits, 8

Framing Code bits and one Teletext packet of 336 or 228 bits (depending on the Teletext system being used). If more

than one packet of bits (336 or 228) are transmitted, they are ignored by the DENC. By default, register bit

DEN_REG_65.ttx_mask_off masks the two bits of Teletext framing code, allowing the code to be set by the DENC

according to the selected Teletext standard.

Transmission protocol

In order to transmit the Teletext data bits at an average rate of 6.9375 Mbit/s, which is about 1 / 3.89 times the master
clock frequency, the following scheme is adopted:

The 360-bit packet is regarded as nine 37-bit sequences plus one 27-bit sequence. In every sequence, each Teletext
data bit is transmitted as a succession of four identical samples at 27 Msample/s, except for the 10th, 19th, 28th and
37th bits of the sequence which are transmitted as a succession of three identical samples.

Programming “TTXS rising” to “first valid sample”

The encoder expects the Teletext buffer to clock-out the first Teletext data sample on the (2+N)th rising edge of the
master clock following the rising edge of TTXS. Figure 148 depicts this graphically for N=0.

N is programmable from 0 to 7 by register bits DEN_TTX1.ttxdel[2:0]. The value written in txdl[2:0] is 2 less than the
overall delay in CKREF cycles, so a value of 0 for txdl[2:0] corresponds to an overall delay of 2 cycles, and a value of 7
corresponds to a delay of 9 cycles.

Programming teletext line selection

Five dedicated registers, DEN_TTX1-5, program Teletext encoding in various lines in the Vertical Blanking Interval
(VBI) of each field. In this way, each line in VBI can be selected independently.

Full-page teletext encoding is set by register bit DEN_TTX1.fp_ttxt. Teletext is encoded on lines 24 to 311 and 336 to
623 (ITU-R line numbering). This is in addition to the lines already programmed in the VBI. When full page teletext is
performed, no video data is encoded (YCrCb, Y4 and CrCb input streams are ignored).

Figure 148 TTXT Rising to First Valid Sample delay for txdl[2:0] = 0

Not Valid Bit 1 Bit 2

CKREF

TTXS

TTXD

(txdl[2:0]+2) Tckref
210/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
Teletext pulse shape

The shape and amplitude of a single Teletext pulse is shown in Figure 149 . Its relative power spectral density is shown
in Figure 150 and Figure 151 It is zero at frequencies above 5 MHz, as required by the World System Teletext
specification.

Figure 149 Shape and amplitude of a single teletext symbol

Figure 150 Linear PSD scale

Figure 151 Logarithmic PSD scale

70

60

50

40

30

20

10

0
-100 -50 0 50 100

-144 ns +144 ns

IR
E

0.9

0.8

0.7
0.6

0.5

0.4

0.3
0.2

0.1

0

1

10 2 3 4 5 6 7 8
Frequency (MHz)

P
S

D
 (

dB
)

-10

0

-20

-30

-40

-50

-60

-70

-80
10 2 3 4 5 6 7 8

Frequency (MHz)

P
S

D
 (

d
B

)

Normalized power spectral density (PSD)
of a single Teletext pulse
 7170179 D 211/294

L20 Digital encoder STi5518
CONFIDENTIA
20.19 Line skip and line insert capability

This patented feature of the DENC offers the possibility to cut the cost of the application by suppressing the need for a
VCXO.

Ideally, the master clock used on the application board and fed to the MPEG decoding IC would have exactly same
frequency as the clock that was used when the MPEG data was encoded. Obviously this is not realistic; up to now a
solution commonly used was to dynamically adjust the clock on the board as close to the “ideal” clock as possible with
the help of time stamps embedded within the MPEG stream. Such a kind of tracking often involves the use of a VCXO:
when the MPEG data buffer fills up to more than some threshold the clock frequency is increased, when it empties
down to some other threshold the clock frequency is lowered.

The DENC offers an alternative, cost-saving solution: by programming two bits in register DEN_CFG6, the DENC is
able to reduce or increase the length of some frames in a way that will not introduce visible artifacts (even if comb-
filtering is used). These bits should be set according to the level of the MPEG data buffer.

Operation with the DENC as sync master is as follows:

• If the MPEG data buffers fills up too much, set bit jump to 1 and bit dec_ninc to 1. The DENC will reduce the length
of the current frame. Bit jump will then automatically reset to 0.

• If the MPEG data buffers empties too much, set bit jump to 1 and bit dec_ninc to 0. The DENC will increase the
length of the current frame. Bit jump will then automatically reset to 0.

These operations can be repeated until the MPEG data buffer is inside its fixed limits.

Line skip and line insert can be used in slave mode; the sync signals supplied to the DENC must be in accordance with
the programmed frame lengths.

20.20 CVBS, S-VHS, RGB and UV outputs

Six out of eight video signals can be directed to six analog output pins through a 10-bit D/A converters operating at the
reference clock frequency. The available combinations are:

S-VHS (Y/C) + CVBS + RGB, or S-VHS (Y/C) + CVBS + U + Y2 + V, or Y1 + C1 + CVBS1 + C2 + Y2 + CVBS2.

These combinations are controlled by bits conf_out1 and conf_out0 in register DEN_CFG8, as shown in the table
below;

The C to Y peak to peak amplitude ratio can be modified in both CVBS and VHS (Y/C) outputs (see mult_rgb_c).

Default peak to peak amplitude of UV and RGB outputs is set to 70% of Y or CVBS peak to peak amplitude, for 100/0/
100/0 color bar pattern, and can be modified using the multiplying factors in registers DEN_DAC45 and DEN_DAC6C.

If DEN_CFG7[2] bit uv_lev is 0 (default value) U and V outputs have 0.7V peak to peak amplitude if 100/0/100/0 color
bar pattern is inputted. If this bit is 1 U and V outputs are those defined by ITU-R 624-4 for PAL and NTSC standards
(Vpp/Upp = 1.4). In that case U peak to peak amplitude is 0.61V (0.57V if DEN_CFG7 bit setupYUV is set) and V peak
to peak amplitude is 0.86 V (0.80 V if register DEN_CFG7 bit setupYUV is set). In all these cases UV outputs can be
multiplied by 0.75 to 1.22 factor according to register bits DEN_DAC45.dac4_mult and DEN_DAC6C.dac6_mult.

A single external analog power supply pair is used for all DACs, but two independent pairs of current and voltage
references are needed. A resistor must be connected between each I_REF and V_REF pins.

conf_out1 conf_out0 dac1 dac2 dac3 dac4 dac5 dac6 Notes

0 0 Y C CVBS C Y CVBS

0 1 Y C CVBS V Y U

1 x Y C CVBS R G B Default

Table 99 Encoding of conf_out
212/294 7170179 D

LSTi5518 20 Digital encoder
CONFIDENTIA
The internal current sources are independent from the positive supply, and the consumption of the DACs is constant
whatever the codes converted.

Any unused DAC may be independently disabled by software, in which case its output is at neutral level (blanking for
luma and composite outputs, no color for chroma output, black for RGB and UV outputs). For applications where a
single CVBS output is required, the RGB/CVBS+S-VHS/UV Triple DAC should be disabled, pin I_REF_DAC_RGB
should be tied to analog power supply and pin V_REF_DAC_RGB should be left unconnected.

Due to the 2.5V power supply used, the output swing of the DACs is about 1Vp-p. Therefore some external gain may
be required, which, combined with the recommended output filtering stage, means active filtering. For this active
filtering stage to be very simple, it is possible to “invert” the DAC outputs by programming a bit of DEN_CFG5. Code N
becomes code 1024-N, i.e. the resulting waveform undergoes a symmetry around the mid-swing code.
 7170179 D 213/294

L21 Teletext DMA STi5518
CONFIDENTIA
21 Teletext DMA

21.1 Introduction

Teletext data is retrieved from memory, serialized and transferred to the DENC by a dedicated teletext DMA. The DENC
encodes Teletext data according to the “CCIR/ITU-R Broadcast Teletext System B” specification (also known as “World
System Teletext”).

21.2 Teletext packet format

One teletext packet (otherwise called a teletext line) is a stream of 360 bits, transferred at an average frequency of
6.9375 MHz. The data format is the same as the contents of the PES data packet as defined in the ETSI specification.
The DMA reads-in multiples of 46 bytes and transfers lines of 45 bytes to the DENC.

Each teletext packet is composed of the clock run-in and the data-field, as illustrated in Figure 152.

• The clock run-in is composed of two bytes, each with the hexadecimal value #AA (binary value ‘10101010’).

• The data-field consists of three fields: framing code, magazine and packet address, and data block fields. These
three fields provide the block of teletext data.

The framing code is a single byte of hexadecimal value #E41. The data is transmitted in order, from the LSB to the MSB
of each byte in memory.

21.3 Data transfer sequence

The DENC issues a teletext request signal to the teletext DMA, this is shown by the rising edge of signal TtxtRequest
in Figure 153. After a delay, programmable from 2 to 9 master-clock periods, the teletext DMA transmits the first valid
teletext data bit of the teletext packet.

1. Specification for conveying ITU-R Systems B Teletext in Digital Video Broadcasting (DVB) bit-streams.

Figure 152 Teletext packet format

Data field

(43 bytes, 344 bits)

8 bits 16 bits 320 bits

Framing code Magazine & packet address Data block

1010101010101010

Clock run-in

Teletext line
(45 bytes, 360 bits)

214/294 7170179 D

LSTi5518 21 Teletext DMA
CONFIDENTIA
The 360 bits of output data are defined as nine 37-bit sequences, ending with one 27-bit sequence. Within each
sequence, each bit is transmitted in four 27 MHz cycles, except bits 10, 19, 28 and 37, which are transmitted in three
27 MHz cycles. This is illustrated in the figure below for bits 0 to 10.

The duration of the TTXS window is 1402 reference clock periods (51.926 µs), which corresponds to the duration of 360
Teletext bits (see Transmission Protocol below).

The delay between signal TtxtRequest becoming high and the transfer of the first bit of the teletext packet is between 2
and 9, 27 MHz clock cycles. This delay is programmed by register bits DEN_TTX1.ttxdel[2:0]. The value written to this
register is increased by two 27 MHz clock cycles, so the value 0 corresponds to an overall delay of 2x27 MHz clock
cycles, and the value 7 corresponds to a delay of 9x27 MHz clock cycles.

21.4 Interrupt control

Teletext interrupts can be programmed by the Ttxt_IntEnable register to interrupt the CPU whenever one of the
following occurs:

• A teletext data transfer is complete;

• the current video frame toggles odd-to-even or even-to-odd.

The interrupt status is given by the Ttxt_IntStatus register and masked by the Ttxt_IntEnable register. The interrupt bits
are reset when the CPU writes to the acknowledge register, or when a DMA operation is completed.

21.5 Teletext registers

Five dedicated DENC registers program the teletext encoding in various areas of the Vertical Blanking Interval (VBI) of
each field. Four of these areas (i.e. blocks of contiguous Teletext lines) can independently be defined within the two
VBIs of one frame (e.g. 2 blocks in each VBI, or 3 blocks in field1 VBI and one in field2 VBI, etc.). In certain
circumstances it is possible to define up to 4 areas in each VBI.

Full-page teletext encoding is enabled by register bit DEN_TTX1.fp_ttxt. In this case, teletext is encoded on lines 7 to
311 and 320 to 623 (ITU-R line numbering). If bit fp_ttxt_all is set, teletext encoding is also enabled on lines 6, 318 and
319. When full page teletext is performed, no video data is encoded (YCrCb, Y4 and CrCb input streams are ignored).

Figure 153 Teletext data transfer sequence

Clock in, 27 MHz

TtxtRequest

Teletext data Invalid Bit 1 Bit 2 Bit 10
 7170179 D 215/294

L22 Double triple video DAC STi5518
CONFIDENTIA
22 Double triple video DAC

22.1 Description

There are two on-chip 3x10-bit digital-to-analog converters (triple DACs) used for video output. One provides output
signals in CVBS, Y, C, and the other in RGB. The figure below shows the DAC schematic.

An external reference resistor is associated with the bandgap voltage to generate a reference current. This resistor is
connected between the V_REF pin of the bandgap and a dedicated I_REF pin to achieve a higher noise immunity.

The global segmented architecture is presented in the figure below. Current-sources provide an output range of
1.45V maximum with good linearity. Sampled data are available on video outputs after 1 clock period (on the next rising
clock edge).

The triple video DAC has its own 2.5V power and ground supplies for noise reduction. To guarantee good frequency
response at high frequencies, these power and ground supplies are not connected to digital power supplies inside the
chip.

Figure 154 Double triple video DAC schematic

Bandgap

DAC1

DAC2

DAC3

Rref

Clock

D1<9:0>

D2<9:0>

D3<9:0>

From DENC

1st triple DAC

Y

C

CVBS

Bandgap

DAC4

DAC5

DAC6

Rref

2nd triple DAC

Red

Green

Blue

D4<9:0>

D5<9:0>

D6<9:0>
216/294 7170179 D

LSTi5518 22 Double triple video DAC
CONFIDENTIA
22.2 Input codes for video application

The table below lists the reference input codes generated by the DENC depending on the configuration for the DACS
and the standard.

Note that CVBS = Y+C, so chrominance component has no effect on CVBS signal (C is null)

22.3 Video output voltage level

The resistor Rref connected to the bandgap has a direct effect on the output current which flows from the DAC’s
outputs. For the maximum code (1023 in decimal):

For example, with a typical value of Rref = 20kohms, Iout (max) = 4.04mA for each DAC.

The value of Rref must be carefully chosen: Iout should always be lower than 5mA, otherwise, DAC linearity is not
guaranteed.

Because of the sensitive relationship between the DAC and Rref, the tolerance on the Rref value must be small.
Typically, the Rref resistor must be a 1% resistor.

The output voltage on the RGB output pins depends on the external load resistor Rload (connected between the DAC
output and ground):

For example, with a typical load value Rload = 274ohms and Iout(max) = 4.04mA, Vout (max) = 1.11V.

For any given digital input code, the output voltage of the DAC will be given by the following formula:

For example, with Rload = 274ohms, Rref = 20kohms and Din = 526, Vout = 0.57V

Y-PAL/SECAM Y-NTSC RGB

WHITE(235) 816.00 802.00 602.00

BLACK(16) 256.00 240.00 41.00

SYNC TIP 16.00 16.00 n.a.

Table 100 Reference input codes

Iout (max) = 80.704 / Rref

Vout (max) = Rload * Iout (max)

Vout = Din / 1023 * Vout (max) = (Din * Rload * 80.704) / (Rref * 1023)

Vout = Din * Rload * 0.079 / Rref
 7170179 D 217/294

L22 Double triple video DAC STi5518
CONFIDENTIA
22.4 Video specifications and DAC setup

In Y-PAL/SECAM, the output video range between code 16 (synchronization level) and code 816 (white level) should
be: Vout (816) - Vout (16) = 1V. The output video range between code 256 (black level) and code 816 (white level)
should be 700mV. This must be respected for all applications.

The value of the Rref resistor must be chosen according to the value of Rload and the previous formula, to achieve the
standard output video range. The minimum value for Rref is 18kohms.

According to video specifications ITU-R BT 601, the nominal sampling frequency is 27 MHz. The clock for the DACs is
the same as the one for the DENC but buffered. This clock is usually generated externally by a VCXO. It must be as
clean as possible to achieve a good signal-to-noise ratio.

22.5 Output-stage adaptation and amplification

A schematic of the output stage is shown below. The purpose of the output stage depends on the application and the
required price-to-performance ratio. The output stage is connected directly to a scart connector or to other components
(in which case the level and output impedance of the output signal may be different).

The amplifier gain must be in accordance with the one of the tri-DACs (defined by Rload and Rref). If the amplifier gain
cannot be set to the standard output video range by Rref and Rload, it can be tuned. In common applications (with
Rref=20Kohms and Rload=274ohms), a video amplifier should be adequate. The ideal input impedance of the output
stage should be greater than Rload.

The tri-dacs have no cut-off frequency, therefore, a low-pass filter (around 10 MHz) must be applied to remove
harmonics (of mainly 27 MHz). If additional attenuation is applied by the filter due to imperfection of the amplifier
(generally degrading the C/L ratio), correction must be applied to preserve a good performance. Also, to guarantee a
good frequency behavior at high frequency, the analog power supply must be separate from the digital power supply. If
this is not the case, an additional correction may be required.

Figure 155 Output stage schematic

Tri-DAC

Tri-DAC

R
G
B

CVBS
Y
C

Rref

Rref

Triple DACs

Rload

Output stage

Amplifier

G=X

Low pass filter
The output stage can be applied
to any of the 6 tri-DAC outputs

Scart

STi5518
218/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA
23 Audio decoder

23.1 Features

Input formats

The audio decoder accepts: Dolby Digital, MPEG-1 layers I and II, MPEG-2 layer II 6-channel, PCM, CDDA data
formats; MPEG2 PES streams for MPEG-2, MPEG-1, Dolby Digital, MP3, and Linear PCM (LPCM).

SPDIF input data (IEC-60958 or IEC-61937 standards) is accepted if an external circuitry extracts the PCM clock from
the stream.

Audio/video synchronization

Skip frame, repeat blocks and soft mute frame features can be used to synchronize audio and video data. PTS audio
extraction is also supported.

Output formats

The device outputs up to 6 channels of PCM data and appropriate clocks for external digital-to-analog converters.

• 6 PCM data on three outputs: left/right, centre/subwoofer and left surround/right surround: DAC_PCMOUT2-0;

• three clocks for the external DACs: DAC_PCMCLK, DAC_SCLK and DAC_LRCLK;

Programmable downmix enables 1, 2, 3 or 4 channel outputs. Data can be output in either I²S format or Sony format.
The decoder can format output data according to IEC-60958 standard (for non compressed data: L/R channels, 16, 18,
20 and 24-bits) or IEC-61937 standard (for compressed data), for FS = 96 kHz, 48 kHz, 44.1 kHz or 32 kHz.

Sampling frequencies

Sampling frequencies (set by register AUD_SFREQ) of 96 kHz, 48 kHz, 44.1 kHz, 32 kHz and half sampling
frequencies are supported. A down-sampling filter (96 kHz/48 kHz) is available.

Special modes

The decoder supports dual mode for MPEG and Dolby Digital. It includes a Dolby surround compatible downmix and a
ProLogic decoder.

A pink noise generator enables the accurate positioning of speakers for optimal surround sound setup.

PCM beep tone is a special mode used for set-top box. It generates a triangular signal, of variable frequency and
amplitude, on the left and right channels.

In global mute mode, the decoder decodes the incoming bitstream normally but the PCM and SPDIF outputs are
softmuted. This mode is used to prepare a period of decoding mode, to synchronize audio and video data without
hearing the audio.

Virtual Surround

The 24-bit audio DSP cell supports TruSurround, SRS Labs’ virtual technology for two-speaker playback of multi-
channel audio. This reduces 6 channels of either Dolby Digital (AC-3) or MPEG Multichannel audio to two channels
only, providing to the user virtual multichannel sound effect. Information on how to use this feature is sent to SRS Labs
Licensees only.

Trick modes

Slow-forward and fast-forward trick modes are available for compressed and non-compressed data.
 7170179 D 219/294

L23 Audio decoder STi5518
CONFIDENTIA
Control interface

The control interface of the decoder is activated via memory mapped registers in the ST20 address space.

23.2 Architecture overview

Data flow

The audio decoder has a programmable core, which is optimized for audio decoding algorithms. Dedicated hardware
performs bitstream depacking and IEC data formatting.

The figure below illustrates the audio decoder data flow. The compressed bitstream is transferred from the audio bit
buffer (which is mapped into external (SDRAM) memory) to the audio decoder, via the MPEG DMA, which filters a 64-
byte FIFO. When the FIFO is filled, data are transmitted from the FIFO to the audio decoder.

• The input processor (composed of a packet parser and an audio parser) unpacks the bitstream (packet parser) and
verifies the syntax of the incoming stream (audio parser).

• The compressed audio frames with their associated information (PTS) are stored into the circular frame buffer.

• While a second frame is stored in the circular frame buffer, the first frame is extracted by the audio core decoder
and decoded into audio samples.

• The PCM-unit converts the samples to PCM format, and controls the channel delay buffer so that each channel can
be delayed independently.

• Simultaneously, the IEC unit transmits non-compressed data or compressed data.

• In compressed mode, data is extracted directly from the circular buffer and formatted according to the IEC-
61937 standard.

• In non-compressed mode, the left and right PCM channels formatted by the PCM unit are output by the IEC unit,
according to the IEC-60958 standard.

Figure 156 Architecture and data flow

1
DATA_IN

INPUT DATA
INTERFACE

HOST
INTERFACE
CONTROL,

STATUS
CLOCKS

2 FIFO
256 x 8

INPUT
PROCESSOR

CIRCULAR FRAME BUFFER

3

4

CORE AUDIO

IEC60958
FORMATTER

PCM UNIT

CHANNEL DELAY
BUFFER (35ms)

DECODER
67

8

IEC-60958
(61937)
OUT

PCMOUT5
220/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA

Figure 157 Audio decoder block-diagram

L

R

C

Lfe

Ls

Rs

PROGRAMMABLE

SWITCH

R

C

Lfe

Ls

Rs

L

R

C

Lfe

Ls

Rs

L

R

L

R

S
W

IT
C

H

PACKET

FORMATTER

PTS

IEC958

FORMATTER

Mute

PCM

Encoded

PLL AND

CLOCKS

PINK NOISE

GENERATOR

PCM

D
O

LB
Y

 D
IG

IT
A

L

D
O

W
N

M
IX

L

M
P

E
G

 1
M

P
E

G
 2

D
O

W
N

M
IX

B
A

S
S

 R
E

D
IR

E
C

T
IO

N

S
W

IT
C

H

DOWN-

SAMPLING

96/48kHz

PES

PARSER

PARALLEL

SERIAL

CONTROL

Microprocessor

Interface

1
2

3

4

FIFO

FIFO

64bytes
DELAY

DELAY

DELAY

DELAY

DELAY

DELAY

52

54

53

DAC_PCMOUT

DAC_PCMOUT1

DAC_PCMOUT2

DAC_SCLK51

56

55

DAC_LRCLK

DAC_PCMCLK

SPDIF_OUT57

The switch has the following connections:

1-2: IEC60958 not active

1-3: IEC60958 (non-compressed data)

1-4: IEC61937 (compressed data)

Data fromSDRAM
bit buffer

P
R

O
LO

G
IC

D
E

C
O

D
E

R

LTRT
4

6 S
R

S
/T

ru
S

ur
ro

un
d

V
O

LU
M

E

P
C

M
 F

O
R

M
A

T
T

E
R

M
P

3

 7170179 D 221/294

L23 Audio decoder STi5518
CONFIDENTIA
23.3 Decoding process

The decoding is performed in the following stages. Each stage can be activated or bypassed by the configuration
registers:

23.4 Operation

Reset

The audio decoder can be reset by software with the following two commands:

• SOFTRESET: to reset the audio decoder, ’1’ must be written in the register AUD_SOFTRESET (0x10). The interrupt
related registers (AUD_INTE, AUD_INT, AUD_ERROR) and command registers (AUD_SOFTRESET, AUD_RUN,
AUD_PLAY, AUD_MUTE, AUD_SKIP_MUTE_CMD, AUD_SKIP_MUTE_VALUE) are reset to zero. The volume
registers are reset to 0, no other decoding configurations are changed. The DSP returns to idle mode.

• REBOOT: a 1 must be written to bit REB of the AUD_SKIP_MUTE_CMD register to reboot the audio decoder.
Registers AUD_RUN, AUD_PLAY, AUD_MUTE and AUD_SKIP_MUTE_CMD are reset to 0. The DSP returns to
idle mode. The decoding configurations are unchanged but 2 frames have to be sent to the decoder in order to
perform the reboot.

Clocks

The following clocks are used by the audio decoder:

Parsing Bitstream parsing (performed by the input processor) discards all of the non audio information so
that only the audio elementary stream (Dolby Digital, MPEG1/2, LPCM, PCM, DTS, MP3) is
transmitted to the next stage (the circular frame buffer).The parsing stage operates in two phases:
the packet parser unpacks the stream, the audio parser checks the syntax of the bitstream.

Main decoding An elementary stream is input and decoded samples are output from this stage. The number of
output channels is defined by the AUD_DOWNMIX register (1 channel up to 6channels).
Dolby Digital, MPEG1 layers I and II, MPEG2 layer II, LPCM, CDDA, MP3 decoding formats are
supported. The appropriate stream format must be set by registers AUD_STREAMSEL and
AUD_DECODSEL before running the decoder.

Post decoding Post decoding includes specific PCM processing: DC filter, de-emphasis filter, downsampling filter.
These filters can be independently enabled or disabled by the AUD_DWSMODE register.
Post decoding also provides a ProLogic decoder, described in ProLogic decoding modes on page
226. The decoder output can also be processed according to SRS Labs TruSurround algorithm.

Bass
redirection

This stage redirects low-frequency signals to the subwoofer. The subwoofer is extracted from the
channels L, R, C, Ls, Rs, LFe. There are six configurations for subwoofer channel extraction, these
are set by the AUD_OCFG register. This is discussed in Output configurations on page 229.

Volume control The volume is controlled in steps of 1dB, independently for each channel by the AUD_CHAN_IDx,
AUD_VOLUME0 and AUD_VOLUME1 registers.

Table 101 Audio decoding stages

• The PCM clock (DAC_PCMCLK signal) used by the external DACs to convert DAC_PCMOUT0, 1, 2. It is
usually generated by an embedded PLL from the 27 MHz clock input. If necessary, it can be
also be generated by an external PLL. The internal frequency synthesizer can generate
256*fs or 384*fs where fs= 12, 16, 22.05, 24, 32, 44.1, 48, 96 or 192 kHz.

• Audio system PLL The system PLL creates the audio system clock from the 27 MHz input clock
222/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA

23.5 Decoding states

There are two decoder states: idle state and decode state (see the figure below). The register AUD_RUN changes the
state.

Idle mode

Idle mode is entered after a hardware or software reset. In this mode, the embedded DSP does not decode, i.e. no data
are processed, the chip is waiting for the RUN command. During this mode all configuration registers must be
initialized. In idle mode, even if the chip is not processing data, the DACs clocks can be output, enabling the set-up of
the external DACs. Once the DAC_PCMCLK, DAC_SCLK and DAC_LRCLK clocks are configured, they can be output
by setting the AUD_MUTE register.

Note The PLAY command has no effect in this state, as the decoder is not running. It can, however, be sent and it will
be taken into account as soon as the decoder enters the decode state.

• Bit clock
DAC_SCLK

The PCM serial clock is the bit clock. It provides clocks for each time slot (16 cycles for each
channel in 16-bit mode, 32 cycles for each channel in 18-, 20-, 24-bit modes). The frequency
of DAC_SCLK is, therefore, fixed to 2 x Nb time slots x Fs, where Fs is the sample frequency.

The clock is derived from DAC_PCMCLK. The register AUD_PCMDIVIDER must be
configured according to the selected output precision and the frequency of DAC_PCMCLK, so
that the device can construct DAC_SCLK:Fsclk = Fpcmclk / (2 x (AUD_PCMDIVIDER+1))
giving: AUD_PCMDIVIDER = (Fpcmclk / (2xFsclk)) -1.

• Word Clock
DAC_LRCLK

The frequency of DAC_LRCLK is given by:

• Flrclk = Fsclk/32; for 16 bit PCM output,

• Flrclk = Fsclk/64; for 18, 20 or 24 bits PCM output.

No special configuration is required. The polarity can be changed by the AUD_PCMCONF
register bit INV (see PCM output on page 229).

Figure 158 Decoding states

Play Mute Clock (DAC_SCLK, DAC_ LRCLK) state PCM output

X 0 Not running if PLAY is set to 0 after reset. 0

X 1 Running 0

Table 102 Idle mode, play and mute command effects

Idle mode Init mode Decode mode

Time

Run command Decoder ready to play sampleSoftware reset, reboot
or hardware reset
 7170179 D 223/294

L23 Audio decoder STi5518
CONFIDENTIA
Decode mode

This state is entered after the RUN command has been sent (i.e. AUD_RUN register = 1). In this mode, data is
processed; the decoder can play sound, or mute the outputs by using the AUD_PLAY and AUD_MUTE registers:

To decode and output streams, the AUD_PLAY register must be set. If the AUD_MUTE register is reset, the sound is
sent to outputs; if the AUD_MUTE register is set, the outputs are muted.

Note It is not possible to change configuration registers in this state, the chip must be soft reset beforehand. Only the
following registers can be changed “on-the-fly”: AUD_CHAN_IDX, AUD_VOLUME0, AUD_VOLUME1,
AUD_OCFG, AUD_DOWNMIX registers.

23.6 Stream parsers

The synchronization status of both parsers is provided in the register AUD_SYNC_STATUS. Each time the
synchronization status of one of the two parsers changes, the interrupt SYN is generated (if enabled) and the status
can be read in AUD_SYNC_STATUS.

Packet parser

The packet parser unpacks stream, sorts packets and transmits data to the audio parser. Before unpacking packets
and transmitting data, the packet parser must detect the packet-start by recognizing the packet synchronization word.

The parser can be set to search for two packet synchronization words before starting to unpack and transmit, by setting
the register AUD_PACKET_LOCK to 1. Otherwise, the packet parser will start handling the stream once it has detected
information matching the packet synchronization word.

The packet parser is also able to perform selective decoding, it can decode audio packets that match a specified ID.
This ID is specified in AUD_ID and AUD_ID_EXT registers, the function is enabled by setting the AUD_ID_EN register.

Audio parser

The audio parser verifies the stream syntax, extracts non audio data and sends audio data to the frame buffer. The
audio parser must detect the audio synchronization word corresponding to the type of stream to be decoded.

The audio parser can be set to detect more than one synchronization word before parsing, by setting the
AUD_SYNC_LOCK register to a value between 1 and 3. This number represents the number of supplementary sync
words to detect before considering to be synchronized.

23.7 Decoding modes

Dolby Digital decoding modes

The decoder must be programmed to specify the stream format as Dolby Digital encoded (in register
AUD_DECODSEL=0).

Reg. AUD_PLAY Reg. AUD_MUTE Clock state PCM output Decoding

0 0 Not running 0 No

0 1 Running 0 No

1 0 Running Decoded Samples Yes

1 1 Running 0 Yes

Table 103 Decode mode. play and mute commands effects
224/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA
The following modes refer to different implementations of the dialog normalization and dynamic range control features.
The mode is selected by programming the register AUD_AC3_COMP_MOD.

MPEG decoding modes

MPEG-1 layer1 and layer2 encoded data are decoded, as well as MPEG-2 layer2 data with or without extension (i.e. 6-
channel streams). The MPEG input format must be specified in the AUD_DECODSEL register: where
AUD_DECODSEL=1 for MPEG1 and AUD_DECODSEL=2 for MPEG2. The dataflow is show in the figure below.

Dual-mode decoding modes

In dual-mode, two completely independent mono program channels (e.g. bilingual) are encoded in the bitstream,
referred to as channel 1 and channel 2. The left/right output is set to the following options by the
AUD_MP_DUALMODE register in MPEG format, and by the AUD_AC3_DUALMODE register in Dolby Digital format:

• output channel 1 on both L/R outputs;

• Line Mode: In Line Mode (AUD_AC3_COMP_MOD = 2), the dialog normalization is always enabled. It is
done by the decoder itself and the dialog is reproduced at a constant level.

The dynamic range control variable encoded in the bitstream is used and can be scaled by the
two scaling registers AUD_AC3_HDR (for high-level cut compression) and AUD_AC3_LDR (for
low-level boost compression). For 2/0 downmix, the high-level cut compression is not scalable.

• RF Mode: In RF Mode (AUD_AC3_COMP_MOD=3), the dialog normalization is always performed by the
decoder. The dialog is reproduced at a constant level.

The dynamic range control and heavy compression variables encoded in the bitstream are used,
but compression scaling is not allowed. This means that the AUD_AC3_HDR and
AUD_AC3_LDR registers can not be used in this mode. An eleven dB gain shift is applied on the
output channels.

• Custom 0 Mode: In Custom 0 mode (AUD_AC3_COMP_MOD=0), the dialog normalization is not performed by
the decoder and must be done by another circuit, externally.

The dynamic range control variable encoded in the bitstream is used and can be scaled by the
two scaling registers AUD_AC3_HDR (for high-level cut compression) and AUD_AC3_LDR (for
low-level boost compression).

• Custom 1 Mode: In Custom1 mode (AUD_AC3_COMP_MOD=1), the dialog normalization is performed by the
decoder. The dynamic range control variable encoded in the bitstream is used and can be scaled
by the two scaling registers AUD_AC3_HDR (for high-level cut compression) and
AUD_AC3_LDR (for low-level boost compression).

Figure 159 6-channel compressed data decoding flow

D
at

a
In

pu
t I

nt
er

fa
ce

F
ifo

 2
56

 B
yt

es

P
ac

ke
t P

ar
se

r

F
ra

m
e

P
ar

se
r

F
ra

m
e

B
uf

fe
r

D
ol

by
 D

ig
ita

l
or

 M
P

E
G

 d
ec

od
er

D
ow

nm
ix

B
as

s
R

ed
ire

ct
io

n

V
ol

um
e

L

R

C

LFe

Ls

Rs

P
C

M
_O

U
T

0

P
C

M
_O

U
T

1

P
C

M
_O

U
T

2

6-
C

ha
nn

el
 c

om
pr

es
se

d
da

ta

L

R

C

LFe

Ls

Rs

L

R

C

Sub

Ls

Rs

L

R

C

Sub

Ls

Rs

Delay

Delay

Delay

Delay

Delay

Delay
 7170179 D 225/294

L23 Audio decoder STi5518
CONFIDENTIA
• output channel 2 on both L/R outputs;

• mix channels 1 and 2 to monophonic and output on both L/R;

• output channel 1 on Left output, and channel 2 on right output.

PCM/LPCM decoding modes

The decoder supports PCM and LPCM multi-channel streams, set by the register AUD_DECODSEL=3.

When decoding PCM/LPCM streams encoded at 96 kHz, register AUD_DWSMODE configures the filter that
downsamples the stream from 96 kHz to 48 kHz.

Note The device decodes the 6 channels of the DVD-LPCM stream, however, no downmix is possible.

Note For an 8-channel DVD-LPCM input file, only the 6 first channels are handled by the chip. The information
contained in the 2 last channels is lost.

ProLogic decoding modes

ProLogic Compatible Downmix: A multichannel bitstream can be decoded and downmixed to provide a 2-channel
ProLogic compatible output (Lt, Rt). This downmix is selected by the register AUD_DOWNMIX. The 2 channels can be
used as the input of a ProLogic decoder and player (e.g. home theatre).

ProLogic Decoding: A 2-channel ProLogic bitstream can be decoded. The 2 channels could come from a Dolby Digital
2-channel bitstream, a LPCM or an MPEG1 bitstream. The 2-channel bitstream can be converted into a 4-channel
output (L, R, C, S). The surround (S) is simultaneously sent on Ls and Rs channels. A ProLogic downmix enables to
configure which channels to output on PCM data. This is done through the register AUD_PL_DWN.

An auto-balance feature is available and activated through AUD_PL_AB register. The delay on surround channel is
configurable with the AUD_LSDLY register (while resetting the AUD_RSDLY register).

The bass redirection is performed after the ProLogic decode. The same bass redirection configuration than those
available in non-ProLogic modes can be used except that the surround channels will not be added to the bass

Figure 160 PCM/LPCM decoding flow

D
at

a
In

pu
t I

nt
er

fa
ce

F
ifo

 2
56

 B
yt

es

P
ac

ke
t P

ar
se

r

F
ra

m
e

P
ar

se
r

F
ra

m
e

B
uf

fe
r

2-
C

ha
nn

el
 P

C
M

/L
P

C
M

 D
at

a

D
ow

ns
am

pl
in

g
F

ilt
er

96
kH

z
->

 4
8

kH
z

L

R

V
ol

um
e,

 B
al

an
ce

L

R
Delay

Delay P
C

M
_O

U
T

0

P
C

M
_O

U
T

1

P
C

M
_O

U
T

2

Z
er

os

B
as

s
R

ed
ire

ct
io

n

L

R

Sub Sub
Delay

Z
er

os
226/294 7170179 D

C
O

N
FID

E
N

TIA
L

S
T

i5518
23 A

u
d

io
 d

eco
d

er

re
direction. In the case of D

olby D
igital or M

P
E

G
, the D

olby D
igital or M

P
E

G
 strea

m
 can b

e d
ecoded before the

P
roLo

gic d
ecode.

P
in

k-n

T
he p

Data Input Interface

Fifo 256 Bytes

Packet Parser

Frame Parser

Frame Buffer

2-Ch Dolby Digital Data, Prologic Encoded

Dolby Digital Decoder

LtR
t

Downmix

Bass Redirection

LtR
t

ProLogic Decoder

ProLogic Downmix

LRCS

LRCS

Volume, Balance

PCM_OUT0
PCM_OUT1

PCM_OUT2

LRC

S
ubS

LRC

S
ubS

D
elay

D
elay

D
elay

D
elay

D
elay

D
elay

2-Ch MPEG1/2 Data, Prologic Encoded2-Ch PCM/LPCM Data, Prologic Encoded
 7170179 D

227/294

o
ise d

eco
d

in
g

 m
o

d
es

ink noise genera
tor is used

 to position the speakers in the listenin
g roo

m
 fo

r optim
um

 soun
d qu

ality.

F
ig

u
re

161
D

o
lby D

ig
ital &

 P
roL

o
g

ic d
eco

d
in

g
 flo

w

F
ig

u
re

162
M

P
E

G
 &

 P
ro

L
o

g
ic d

eco
d

in
g

 flo
w

F
ig

u
re

163
P

C
M

/L
P

C
M

 &
 P

ro
L

o
gic d

ecod
in

g
 flo

w

Data Input Interface

Fifo 256 Bytes

Packet Parser

Frame Parser

Frame Buffer

MPEG1/2 Decoder

Lt

R
t

Downmix

LtR
t

ProLogic Decoder

ProLogic Downmix
LRCS

LRCS
Bass Redirection

Volume, Balance

PCM_OUT0
PCM_OUT1

PCM_OUT2

LRC

S
ubS

LRC

S
ubS

D
elay

D
elay

D
elay

D
elay

D
elay

D
elay

Data Input Interface

Fifo 256 Bytes

Packet Parser

Frame Parser

Frame Buffer

Downsampling Filter

LtR
t

ProLogic Decoder

ProLogic Downmix

LRCS

LRCS

96 kHz -> 48 kHz

Bass Redirection

Volume, Balance

PCM_OUT0
PCM_OUT1

PCM_OUT2
LRC

S
ubS

LRC

S
ubS

D
elay

D
elay

D
elay

D
elay

D
elay

D
elay

L23 Audio decoder STi5518
CONFIDENTIA
The decoder is programmed to generate pink noise by writing the value 4 in the AUD_DECODSEL register. The
AUD_DOWNMIX register selects the pink noise output channels.

For pink noise generation, the register configuration should be: AUD_OCFG=0 and AUD_PCM_SCALE=0.

Note The appropriate pink noise level is obtained by attenuating all the outputs by 10dB through volume registers.

MP3 decoding mode

MP3 supports the following frequencies in kHz: 12,16, 22.05, 24, 32, 44.1 and 48.

Downmix, PostProcessing, PCM delay and audio trick modes are not supported in MP3 mode.

Register AUD_SKIP_MUTE_CMD cannot be used in MP3 mode.

Volume control is possible in this mode if register AUD_OCFG is set to zero.

Figure 164 Pink noise decoding flow

Figure 165 MP3 decoding flow

Pink
P

in
k

N
oi

se
 G

en
er

at
or

Noise D
ow

nm
ix

L

R

C

LFe

Ls

Rs

P
C

M
_O

U
T

0

P
C

M
_O

U
T

1

P
C

M
_O

U
T

2

N
o

B
as

s
R

ed
ire

ct
io

n:

oc
fg

 =
 0

L

R

C

LFe

Ls

Rs

D
at

a
In

pu
t I

nt
er

fa
ce

F
ifo

 2
56

 B
yt

es

P
ac

ke
t P

ar
se

r

F
ra

m
e

P
ar

se
r

F
ra

m
e

B
uf

fe
r

M
P

3
D

at
a

M
P

3
D

ec
od

er

L

R

C

S

B
as

s
R

ed
ire

ct
io

n

V
ol

um
e,

 B
al

an
ce

P
C

M
_O

U
T

0
P

C
M

_O
U

T
1

P
C

M
_O

U
T

2

L

R

C

Sub

S

L

R

C

Sub

S

P
C

M

228/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA
23.8 PCM output

Output configurations

Figure 166 shows the different configurations supported by the PCM output stage. The configuration is set by the
AUD_OCFG register.

• In configuration 0, outputs are only scaled and rounded (see PCM scaling on page 230).

• In configuration 1, the main channels are attenuated by 15dB, and the LFE by 5dB before summing.
After digital/analog conversion, the subwoofer pre-amplifier has to compensate for the different gains of the main
channels and subwoofer.

• In configuration 2, the sub-woofer is optionally output. The signal for the sub-woofer is the processed sum of the
centre and the surround channels (attenuated by 15dB) and the LFE (attenuated by 5dB). If it is not output, it is
summed to the left and right channels. The left and right channels must be boosted by 12dB either internally
(register bit AUD_OCFG.6) or externally (external amplifier).

Figure 166 PCM output configurations

LS LS

L L

C C

R R

LS LS

Configuration 0 Configuration 1

Configuration 2

Not used with Prologic

L L

C C

R R

LS LS

RS RS

LFE SUB-5dB

-15dBRS RS

LFE SUB

L L

Not used with Prologic

-12dB

C C

RS RS

LFE -5dB -1.5dB

R R-12dB

L -8dB/-4dB

C

Ls

LFE

R

+ L

+

-8dB/-4dB

-4.5dB

C

-8dB/-4dB
R

+-8dB/-4dB Ls

Rs +-8dB/-4dB Rs

-8dB/-4dB

SUB

OFF (normal)

ON (SUB out)

Configuration 3

-15dB

ON
SUB

OFF
 7170179 D 229/294

L23 Audio decoder STi5518
CONFIDENTIA
• In configuration 3, the subwoofer is optionally output. If it is not output, all of the six input channels are attenuated

by 8dB. If the subwoofer is output, the attenuation is reduced to 4dB. The outputs must then be boosted, by the
amount of attenuation, either internally (register bit AUD_OCFG.6) or externally (external amplifier).

The same configurations are used for a decoded ProLogic program, with the exception that the surround channels are
not added to the bass redirection (the surround channels of a ProLogic program are band limited and bass is
considered as leakage).

PCM scaling

PCM scaling is required for every decoding mode. It is applied at the end of the filtering steps, before PCM output,
allowing maximum effective word width for most of the signal processing before.

Independent volume for each channel is implemented for PCM scaling (registers AUD_CHAN_IDX, AUD_VOLUME0,
AUD_VOLUME1).

Output quantization

For 16/18/20-bit DACs, a quantization with rounding is applied together with the PCM scaling. The sample value is
multiplied by a rounding factor and rounded to 24 bits. The result is then left-shifted (4/6/8) for PCM output. The output
precision is selectable from the 16bits/word to 24 bits/word by configuring register AUD_PCMCONF[1:0].

Interface and output formats

The decoded audio data are output in serial PCM format. The interface consists of the following signals:

Output precision and format selection

The PCM output is set in the AUD_PCMCONF register.

• Output precision is set from 16 bits/word to 24 bits/word by register bit AUD_PCMCONF.PREC.

• In 16-bit mode, data can be output either with the MSB or LSB first, by setting register bit AUD_PCMCONF.ORD.

• When AUD_PCMCONF.PREC is set for more than 16 bits, 32 bits are output for each channel.

• In this configuration, register bit AUD_PCMCONF.FOR selects either Sony or I²S compatible format, and register bit
AUD_PCMCONF.DIF positions the 18, 20 or 24 bits either at the beginning or at the end of each 32-bit frame.

DAC_PCMOUT0, 1, 2 PCM data - output

DAC_SCLK Bit clock (or serial clock) - output

DAC_LRCLK Word clock (or Left/Right channel select clock) - output

DAC_PCMCLK PCM clock - input or output
230/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA
The following figure and table describe the different output formats, and then 2 configuration examples are given:

Figure 167 Output formats

AUD_PCMCONF register settings
DATA IN SAMPLE

MEMORY DATA [23:0]1

1. The internal 24-bit decoded, scaled and rounded audio samples are listed as they are stored in memory. These 24 bits
are referred to as d23, d22,..., d0, where MSB=d23, LSB=d0.

DATA SENT ON THE
PCM SERIAL OUTPUT
(LEFT BIT FIRST)

AUD_PCMCONF.
PREC

AUD_PCMCONF.
ORD

AUD_PCMCONF.
FOR

AUD_PCMCONF.
DIF

0:16-bit mode 1 NA NA {d23-d8}-{8*0} {d8-d23}: 16 bits

0:16-bit mode 0 NA NA {d23-d8}-{8*0} {d23-d8}: 16 bits

1:18-bit mode NA 0 0 {d23-d6}-{6*0} {13*0}{0}{d23-d6}: 32 bits

1:18-bit mode NA 0 1 {d23-d6}-{6*0} {0}{d23-d6}{13*0}: 32 bits

1:18-bit mode NA 1 0 {d23-d6}-{6*0} {14*d23}{d26*d6}: 32 bits

1:18-bit mode NA 1 1 {d23-d6}-{6*0} {d23-d6}{14*0}: 32 bits

2:20-bit mode NA 0 0 {d23-d4}-{4*0} {11*0}{0}{d23-d4}: 32 bits

2:20-bit mode NA 0 1 {d23-d4}-{4*0} {0}{d23-d4}{11*0}: 32 bits

2:20-bit mode NA 1 0 {d23-d4}-{4*0} {12*d23}{d23-d4}: 32 bits

2:20-bit mode NA 1 1 {d23-d4}-{4*0} {d23-d4}{12*0}: 32 bits

3:24-bit mode NA 0 0 {d23-d0} {6*0}{0}{d23-d0}: 32 bits

3:24-bit mode NA 0 1 {d23-d0} {0}{d23-d0}{7*0}: 32 bits

3:24-bit mode NA 1 0 {d23-d0} {8*d23}{d23-d0}: 32 bits

3:24-bit mode NA 1 1 {d23-d0} {d23-d0}{8*0}: 32 bits

Table 104 PCM output formats

DAC_LRCLK

DAC_PCMOUT[2:0]

DAC_PCMOUT[2:0]

DAC_LRCLK

DAC_PCMOUT[2:0]

DAC_PCMOUT[2:0]

DAC_PCMOUT[2:0]

DAC_PCMOUT[2:0]

16 DAC_SCLK cycles

16 DAC_SCLK cycles

32 DAC_SCLK cycles

32 DAC_SCLK cycles

M
S

L
S

M
S

L
S

L
S

M
S

L
S

M
S

AUD_PCMCONF.ORD = 0, PCMCONF.PREC is 16 bits mode

AUD_PCMCONF.ORD = 1, PCMCONF.PREC is 16 bits mode

M
S

L
S

M
S

L
S0 0

M
S

L
S

M
S

L
S

0 0

0 0 0 0
M
S

L
S

M
S

L
S

M
S

L
S

M
S

L
S

18, 20 or 24 bits 18, 20 or 24 bits

18, 20 or 24 bits 18, 20 or 24 bits

18, 20 or 24 bits 18, 20 or 24 bits

18, 20 or 24 bits 18, 20 or 24 bitsMSB MSB

AUD_PCMCONF.FOR = 1
AUD_PCMCONF.DIF = 1

AUD_PCMCONF.FOR = 0
AUD_PCMCONF.DIF = 0

AUD_PCMCONF.FOR = 0
AUD_PCMCONF.DIF = 1

AUD_PCMCONF.FOR = 1
AUD_PCMCONF.DIF = 0
 7170179 D 231/294

L23 Audio decoder STi5518
CONFIDENTIA
Configuration example 1: in 16-bit mode, with AUD_PCMCONF.ORD=1: In memory, 24 bits are stored, where only the
16 MSB bits (d23, d22,... to d8) are significant and the 8 remaining bits are 0. This is noted: {d23-d8} {8*0}. The data are
sent LSB first, i.e. d8 is sent first and d23 is sent last. This is noted {d8-d23}. 16 bits only are transmitted per channel.

Configuration example 2: in 20-bit mode (AUD_PCMCONF.ORD field is meaningless in this mode), with
AUD_PCMCONF.FOR=1 and AUD_PCMCONF.DIF=0: In memory, 24 bits are stored, where only the 20 MSB (d23 to
d4) are significant and the remaining 4 LSB are 0.This is noted: {d23-d4} {4*0}. 32 bits are transmitted per channel on
the PCM outputs: the 12 first transmitted bits are d23, the last bits are d23 to d4, where d23 is transmitted first. This is
noted: {12*d23} {d23-d4}.

Clock polarity

The polarity of the PCM serial output clock (DAC_SCLK) and the PCM word clock (DAC_LRCLK) are selected by the
fields SCL and INV respectively, of the AUD_PCMCONF register.

Figure 168 shows the polarities of DAC_SCLK and DAC_LRCKL. The DAC samples DAC_LRCLK and DAC_PCMOUT
on the rising edge of DAC_SCLK when AUD_PCMCONF.SCL=0, and on the falling edge of DAC_SCLK when
AUD_PCMCONF.SCL=1.

Figure 168 DAC_SCLK and DAC_LRCLK polarity selection

Register configuration I²S format compatible outputs Sony format compatible outputs

AUD_PCMCONF.DIF 1: not right padded

AUD_PCMCONF.FOR 0: I²S format 1: Sony format

AUD_PCMCONF.INV 0: do not invert DAC_LRCLK 1: Invert DAC_LRCLK

AUD_PCMCONF.SCL 0: do not invert DAC_SCLK 0: do not invert DAC_SCLK

Table 105 PCM configuration for I2S and Sony compatible outputs

DAC_SCLK

DAC_LRCLK

DAC_PCMOUT0, 1, 2

SCL = 0

DAC_SCLK

DAC_LRCLK

DAC_PCMOUT0, 1, 2

SCL = 1

DAC_LRCLK
Left

Right Left

Right

INV = 1 INV = 0
232/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA
23.9 SPDIF output

Overview

The SPDIF output pad is a TTL output pad with slew rate control. The output DC capability is 4 mA and the voltage drop
is 3V. This output must be connected to a TTL driver before being connected to a transformer.

The SPDIF output supports IEC-60958 and IEC-61937 standards. The following registers must be initialized to
configure the SPDIF output:

• The category code must be entered in the AUD_SPDIF_CAT register. It is related to the type of application. The
category code is specified in the Digital Output Interface standard.

• The status bits that will be transmitted on the SPDIF output, must be programmed in the AUD_SPDIF_STATUS
register.

• IEC clock setting must be specified in the AUD_SPDIF_CONF register.

• The data type dependent information can be specified in the AUD_SPDIF_DTDI register.

• The SPDIF type is selected through the AUD_SPDIF_CMD register: the IEC unit can output decoded data (PCM
mode), encoded data, null data or pause bursts.

When configured in IEC-60958 mode, the SPDIF output is used to transmit the decoded left and right channels. The
selection is done by choosing the PCM mode in the register AUD_SPDIF_CMD and resetting the COM status bit in
AUD_SPDIF_STATUS register. If register bit AUD_PCMCONF[7] is set to ’1’, 16 bits of data are sent, and if set to ’0’,
24 bits are sent.

When configured in IEC-61937 mode, the SPDIF output is used to transmit encoded data taken directly from the frame
buffer. The selection is done by choosing the encoded mode (ENC mode) in the register AUD_SPDIF_CMD and setting
the bit COM in AUD_SPDIF_STATUS register. The decompressed data are output simultaneously on the PCM_OUT
outputs except in DTS format for which only encoded data are transmitted.

When choosing to output encoded SPDIF data, a latency is automatically inserted between SPDIF output and PCM
outputs. The PCM outputs are delayed compared to the SPDIF output. The latency value is defined by standards and
applied when the auto-latency mode is selected.

When configured in muted mode (in the AUD_SPDIF_CMD register), the outputs are PCM null data. This can be used
to synchronize the external IEC receiver. Register AUD_SKIP_MUTE_CMD bit MUT is used to transmit bursts of pause
frames in IEC-61937 format.

Subcode into IEC60958 user data

User Data bits are specified in the IEC60958 specification. Each IEC60958 sub-frame contains 1 user-bit which can be
used for subcode insertion in CD-DA mode. A CD-DA frame audio is 2352 bytes (PCM data) = 98 subframes of 24
pcm_data bytes associated with 98 subcode bytes.

A subcode byte is defined by P,Q,R,S,T,U,V,W bits with P bit always set to 1. Alternatively P,Q,R,S,T,U,V,W is included
in IEC60958 user data.
 7170179 D 233/294

L23 Audio decoder STi5518
CONFIDENTIA
The input rate on IEC60958 is one bit of user-data for 20 bits of PCM data, as illustrated in the figure below.

The inclusion format of the subcodes into the user data is shown in the figure below.

There are 8 bits of subcode for 12 bits of user data. That corresponds to 24 bytes of pcm-data if only 16 bits out of the
20 available bits are used. In VCD mode, subcodes are stored in the memory but not included on SPDIF output.

Data flow

When the sector processor is used, it provides 96 subcodes bytes which are collected into a 128x16 bits word buffer. 16
bits of subcodes can be read through the FEI_SUB register.

At the end one sector transfer (signalled with IT EOS), 96 bytes of subcodes can be accessed by reading the subcodes
register address 48 times. These 48 values of 16-bits can be stored in the memory-subcode-buffer.

The register FEI_SFF detects the filling level of the FIFO (in the number of 16 bits word).

Note To prevent ST20 hang-up, verify that the subcode buffer is not empty by using FEI_SFF before reading the
subcodes with register FEI_SUB.

After processing one sector, the track buffer contains linear PCM samples (DMA transferred) and the memory subcode
buffer contains related subcodes (micro transferred).

To synchronize the PCM and subcode, the ST20 reads PCM data from track buffer, and subcode from the memory
subcode buffer. It then interleaves 98 bytes of subcode and 2352 PCM bytes into the audio bit buffer.

Figure 169 IEC60958 sub-frame format

Figure 170 Subcode insertion in IEC6958

Figure 171 Audio bit buffer content

SYNC_Preamble
L
S
B

Aux.
L
S
B

Audio Sample Word
M
S
B

V U C P

0 3 4 7 8 27 28 31

Validity flag
User Data

Channel States

Parity Bit

0 0 1 Q R S T U V W 0 0

1 2 3 4 5 6 7 8 9 10 11 12

Subcode inclusion format

From the specific stream

4 zeros automatically
inserted by the audio cell.

32 bits
Word

DSC 24 words
of

subcodes

588 words
of

pcm data
DSC ...

sc(i) is
a subcode

byte

96 bytes
of subcodes

2352 bytes
of pcm_data

KEY
234/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA

A dummy start code (DSC) of 24 + 8 bits is inserted (by the ST20) into the audio bit buffer to secure the input in audio
macrocell. In this case the first word which follows this DSC is guaranteed to be a subcode word.

• Assumption1: The first PCM sample is supposed to be always a left sample.

• Assumption2: A CD-DA PCM sample is 16 bit.

PCM_data in DVD: a normal mode without subcodes insertion is available to input pcm_data into the macrocell (for
pcm_data in DVD mode). This is the global mechanism to input subcodes into the macro-cell (see figure below)

23.10 Interrupts

Interrupt register

The audio decoder contains a 16 bit interrupt register AUD_INT associated with a 16 bit “enable” register AUD_INTE.
A bit set in register AUD_INTE enables the corresponding interrupt. The interrupt associated with each bit is given in
the register AUD_INT description.

According to the type of interrupt, other information such as stream header, type of error detected, PTS value, can be
obtained by reading associated registers

Error concealment

Errors are signaled as interrupts by the audio core. Most of the errors are automatically handled by the core, but some
require that software change. Error categories are defined in the AUD_ERROR register description in the device
Register Manual.

Figure 172 Specific audio input stream

Figure 173 CD_DA and subcode data flow

Without Subcode

0xCC 0xCD 0xDA

2352 bytes

0x00

1 byte3 bytes

Key

Dummy Start Code (DSC)

PCM Data

With Subcode

0xCC 0xCD 0xDA

2352 Bytes

0xFF

1 byte 96 bytes3 bytes

Key

Dummy Start Code (DSC)

Subcodes PCM Data

E
X

T
E

R
N

A
L S

D
R

A
M

sin

Audio
macrocell

Track
buffer

MEMORY
SUBCODE
BUFFER

Audio bit buffer

ST20
16 bits register

DMA

PCM data

32 bits

2X128
FIFO

Subcode

Sector
processor
 7170179 D 235/294

L23 Audio decoder STi5518
CONFIDENTIA
Dolby Digital decoding errors are signaled in the AUD_ERROR register but handled directly by the core. These errors
cannot be changed by software. Dolby Digital decoding errors signal that something went wrong during decoding. The
core soft-mutes the frame and continues to decode.

MPEG decoding errors are signaled in the ERROR register but are handled directly by the core. Nothing can be done
by the software. They signal that something wrong happened during the decoding. The core soft-mutes the frame and
continues to decode. Only one error in this category indicates a programing error: if triggering the
MPEG_EXT_CRC_ERROR, the bit MC_OFF must be set. This indicates that the decoder tries to decode more than 2
channels whereas the incoming stream contains only 2 channels.

Packet and audio synchronization errors are handled internally and usually indicate that the incoming bitstream is
incorrect or that it has been incorrectly input to the chip. In these cases, the decoder resets the corresponding parsing
stage (packet or audio parser) then searches for the next correct frame.

Miscellaneous errors such as the LATENCY_TOO_BIG error indicate a problem of latency programming which is
superior to the maximum authorized value. The latency value should be changed or a switch made to auto-latency
mode. Other miscellaneous errors are handled internally.

23.11 Audio/video synchronization

Presentation time stamp detection

When enabled through the INTE register, the interrupt PTS is generated when a PTS is present in the frame that is
being output on DAC_PCMOUT (the interrupt is fired when the first decoded samples of the first block of the frame is
output).

Pause frames capability

The number of audio blocks for the audio decoder to pause must be programmed in register
AUD_SKIP_MUTE_VALUE. Then bit BLK of the AUD_SKIP_MUTE_CMD register must be set. The audio decoder will
finish decoding the current frame, softmute the next frame, and pause for the number of blocks specified in
AUD_SKIP_MUTE_VALUE. When the pause is finished, decoding continues.

Skip frames capability

The number of frames to skip must be programmed in register AUD_SKIP_MUTE_VALUE. Then bit SKP of the
AUD_SKIP_MUTE_CMD register must be set. The audio decoder will finish decoding the current frame, softmute the
next frame, and skip the number of frames specified in AUD_SKIP_MUTE_VALUE. After skipping, it resumes decoding
from the next incoming frame.
236/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA
Pause burst capability

To synchronize video and audio outputs, the audio cell must be able to insert a pause on the output when required. This
means that the audio decoder has to stop before decoding a new frame and the output of the audio has to be muted for
a period of time as illustrated below.

A pause is initiated by register AUD_SKIP_MUTE_CMD:

• If bit SKIP_MUTE_CMD.PAU is set, a pause is inserted until bit PAU is reset.

• If register bit AUD_SKIP_MUTE_CMD.BLK is set, a pause burst is inserted for a duration set by the value in
register AUD_SKP_MUTE_VALUE.

The granularity of the gap defined by this mechanism is:

• 256 sampling periods for AC-3 (5.3ms at 48 KHz - 5.8ms at 44.1 KHz)

• 96 sampling periods for MPEG (2ms at 48 KHz)

23.12 PCM beep tone

Description

PCM beep tone is a special mode used for Set Top Box. It generates a triangular signal of variable frequency and
amplitude on the left and right channels.

Activating PCM beep tone mode

To active this mode:

• Reset the DSP

• Set-up the registers AUD_DECODESEL (0x4D) = 7 and AUD_STREAMSEL (0x4C) = 3

• Restart the DSP by asserting register AUD_RUN and AUD_PLAY

Figure 174 Pause burst capability illustration

Video angle 1

Video Frame v11 v12 v13 v14 v15

Audio

Frame a1 a2 a3 a4 a5 a6 a7

Video angle 2

Video Frame v22 v22 v23 v24 v25

Video input with change of angle

Video Frame v11 v12 v13 v24 v25

Audio

Frame a1 a5 a6 a7

Gap of n ms

a2 a3 a4

Change of angle for instance
 7170179 D 237/294

L23 Audio decoder STi5518
CONFIDENTIA
Changing the frequency

Set register AUD_PCM_BTONE (0x68) according to the equation below:

Changing the amplitude

The amplitude of the PCM beep-tone is 0dB by default, to change the amplitude set the registers below:

• AUD_OCFG (0x66) = 0

• AUD_CHAN_IDX (0x67) = 0 (to select the channel pair (left and right)

• AUD_VOLUME0 (0x4E) = Attenuation value (step of -1dB) on left channel

• AUD_VOLUME1 (0x63) = Attenuation value (step of -1dB) on right channel

The PCM beep-tone can be sent to the SPDIF output when the SPDIF output is configured in PCM mode.

23.13 Audio trick modes

23.13.1 Description

Audio trick modes accelerate or slow-down the audio in analogue audio systems. Slow and fast forward are described
in this section.

23.13.2 Slow forward

Audio play-back is slowed-down by copying the same sample two or three times into the RAM of the PCM output block.

This method is managed by the embedded software and is independent of the DSP speed. However, it is dependent on
RAM size and, as shown in Figure 175, only the left and right channels can be processed for slow forward.

To obtain all of the audio information on the left and right channels, a Dolby Surround compatible downmix must be
done before the trick mode is carried out (configuration 2/0 Dolby Surround of the downmix).

Beep_tone frequency = (Fs/2) / (register_value + 1)

Figure 175 Expanding audio samples for the trick-mode “slow forward”

RAM

256 samples

256 samples

256 samples

256 samples

256 samples

RightSurr

LeftSurr

LFE

Center

Right

Left256 samples

Before expand audio samples

RAM

512 samples

Left512 samples

After expand x2 audio samples

Right PCM

block

Hardware

PCM_out0

only
238/294 7170179 D

LSTi5518 23 Audio decoder
CONFIDENTIA
Due to the change of PCM block size, Prologic decoding and SRS process must be disabled in slow-forward mode.
Volume control and bass redirection are allowed. The AUD_TM_SPEED register can be configured in the following
ways:

• AUD_TM_SPEED = 0: normal speed,

• AUD_TM_SPEED = 1: slow forward (twice slower),

• AUD_TM_SPEED = 2: very slow forward (three times slower).

23.13.3 Fast forward

This mode is implemented differently for compressed and non-compressed data. The fast-forward register
configuration is identical for non-compressed and compressed algorithms.

Fast forward on compressed algorithms (AC3, MPEG1&2 and DTS)

For compressed algorithms, the audio cell receives data in units of frames which correspond to a duration of
approximately 30ms on the PCM output after decoding. The data flow is illustrated below:

In normal mode (non fast-forward mode), the Audio Parser sends all of the complete frames to the Frame Buffer. In
fast-forward mode, the Audio Parser can be configured to send alternate frames (1 in 2) or every third frame (1 in 3) to
the Frame Buffer to be decoded. Fast-forward mode creates discontinuity between each PCM block of samples
because the decoder looses the dependency of the missing frames. Post-processing is used to harmonize consecutive
frames.

Fast forward on non-compressed algorithms (LPCM, PCM & CDDA)

For these formats, whole frames are handled but samples are skipped at the output. To play 2x faster, 1 sample out to
2 is played; to play 3x faster, 1 sample out of 3 is played.

Register configurations

The speed is set by the AUD_TM_SPEED register configurations below:

• AUD_TM_SPEED = 0: normal speed,

• AUD_TM_SPEED = 0x80: fast forward (two times faster),

• AUD_TM_SPEED = 0x40: very fast forward (three times faster).

To update this mode in the DSP, write the value 2 in the AUD_UPDATE register.

Figure 176 Data flow fast-forward mode on compressed audio algorithms

Packet-parser Audio-parser Frame buffer

DSP core RAM

PCM_output

Data_in
 7170179 D 239/294

L23 Audio decoder STi5518
CONFIDENTIA
23.13.4 SPDIF output for audio trick modes

The table below summarizes the SPDIF output for audio trick modes:

SPDIF output mode Non-compressed data Compressed data

AC3, MPEG1&2, DTS in Slow mode Ok Does not work

AC3, MPEG1&2, DTS in Fast mode Ok Ok

LPCM, PCM, CDDA in Slow mode Ok NA

LPCM, PCM, CDDA in Fast mode Ok NA

Table 106 SPDIF output for audio trick modes
240/294 7170179 D

CONFIDENTIALSTi5518 24 External audio decoder interface

 7170179 D 241/294

24 External audio decoder interface
The STi5518 can be connected to an external audio decoder development platform via the external audio decoder
interface.

The interface to an external audio decoder is composed of two buses:

• a synchronous serial interface for compressed data transfer;

• a control interface through the I2C and Programmable CPU Interface.

This chapter describes the synchronous serial interface. Its four signals are described in the table below, and a
schematic of the external audio decoder interface is shown in the figure below..

EXT_AUD_REQ is active when the external audio decoder is capable of accepting data and EXT_AUD_CLK is used to
strobe the data into the audio decoder on the rising edge. The signal EXT_AUD_WCLK is the EXT_AUD_CLK signal
divided by 32. It is phased so that the transition coincides with a byte boundary. This signal can be used as a framing
signal for certain external audio decoders. When the external audio decoder interface is crossed, there is no internal
limitation on the format of the data that is transferred from the audio bit-buffer to the external decoder.

The EXT_AUD_CLK frequency can be either internal clock CLOCK2 or internal clock CLOCK3 (equal to CLOCK2/2).
This is set by register VID_CFG_GCF bit SCK.

External audio decoder interface
signal name

Signal name Pin no Type Description

EXT_AUD_DATA DAC_PCMOUT0 52 Out Packet data

EXT_AUD_CLK DAC_SCLK 51 Out Packet strobe

EXT_AUD_REQ DAC_PCMOUT1 53 In Data request

EXT_AUD_WCLK DAC_LRCLK 56 Out Word clock

Table 107 External audio decoder interface signals

Figure 177 External audio decoder interface schematic

Audio read
FIFO

Data

64

AUD_REQ

DAC_PCMOUT0

DAC_SCLK

DAC_LRCLK

/32

Si
gn

al
 m

ux

S
ig

na
l m

ux

AUD_WCLK

AUD_DATA

AUD_CLK

DAC_PCMOUT0/

STi5518 audio
decoder

EXT_AUD_DATA

DAC_SCLK/
EXT_AUD_CKL

DAC_LRCLK/
EXT_AUD_WCLK

DAC_PCMOUT1/
EXT_AUD_REQ

Audio bit buffer

Shared memory
SDRAM

DAC_PCMOUT1

Internal to the device External to the device

L25 Clock generator STi5518
CONFIDENTIA
25 Clock generator

25.1 Introduction

All of the clocks are generated in this clock generator block, and can be defined in the following groups:

• System clocks based on a single PLL. The system PLL multiplies the 27 MHz input clock to generate a common
multiple frequency for the ST20 processor, DVD I/F block (Link and FEI), MMDSP audio block and the video block
(including the SDRAM clock).

• PCM clock, generated by a digital frequency synthesizer. This is part of the clock generator block, although situated
in the audio block for optimum performance.

• SmartCard clock, based on a digital frequency synthesizer included in the Clock Generator.

• Auxiliary clock, provided by a digital frequency synthesizer included in the Clock Generator.

• Low-power, watchdog and power-down.

The system clock frequencies given in this chapter are the default frequencies. For selecting other operating
frequencies see the applications note "STi5518 clock management and over-clocking".
242/294 7170179 D

LSTi5518 25 Clock generator
CONFIDENTIA
The figure below illustrates PLL and Frequencies synthesizer configurations and the device clock distribution.

25.2 System clocks

All of the system clocks are generated from the system PLL and integer dividers, with no need for external dividers and
PLL circuitry. The reference input frequency is the 27 MHz clock. This reference is multiplied by an integrated PLL, and
the PLL output is steered to a bank of 5 dividers. The table below summarizes the system clocks.

Figure 178 STi5518 PLL and frequency synthesizer configuration

Clock
Default value
(MHz)

Common value
(MHz)

Comment

Input clock 27 27 x 9 by internal PLL = 243 MHz

Video 27 60.75 Generate internal Clk2 and Clk3

SDRAM 27 121.5 Programmable between 100 and 125 MHz to improved Band Width

TPMAC 60.75 60.75 Programmable between 60 and 81 MHz.

Table 108 System clocks summary

ST20 CPUDVD Interface

÷ 2

÷ 4

60.75 MHz60.75 MHz

27 MHz
DACS

DACS

SMC
Clock

AUX
Clock

Clock
Generator

VIDEO DECODER

AUDIO DECODER

P
A

L/N
T

S
C

/S
E

C
A

M

E
N

C
O

D
E

R

PLL

PCM Clock

121.5 MHz
PIX_CLK

(pin 120)

B_BCLK

(pin 17)

SMI_CLKIN
(pin82)

SMI_CLKOUT
(pin95)

DAC_PCMCLK
(pin 55)

÷ 2

121.5 MHz

60.75 MHz
 7170179 D 243/294

L25 Clock generator STi5518
CONFIDENTIA

Each system clock can be bypassed (output clock = bypass clock), enabled (the output clock is turned off), and divided
by 2, separately. This is determined by the value programmed in the respective control registers; the table below gives
the recommended divider values.

The PLL lock state is readable, and the PLL reset is programmable.

The system PLL multiplies the 27 MHz input clock, the output frequency is calculated as below, where N=162, M=18,
P=1 for Fpll = 243 MHz:

Where the values of M, N and P must satisfy the following constraints:

25.3 PCM clock

The PCM clock frequency synthesizer generates the DAC clocks for the audio decoder. After hard reset, the PCM clock
pins are inputs to the device. When the AUD_PLLPCM register is set, the PCMCLK clock becomes an output.

The table below shows the values which must be written by the ST20 to obtain the PCMCLK.

FEI 60.75 60.75 Same reference as TPMAC clock

Link core 60.75 60.75 Same reference as TPMAC clock

DENC 27 27 From input clock

UART 27 60.75 Normally derived from CPU Clock (ST20 internal divider).

Audio (MMDSP) 27 60.75

Low power clock 212 kHz 212 kHz 27 MHz divided

Clock (PLL frequency, F(clockout) = 243 MHz) Reset value Frequency Divider register value

SDRAM Clock (CKG_DIV_MCK) 27 121.5 0x01

ST20(CKG_CNT_ST20, CKG_DIV_ST20), FEI & LINK 60.75 60.75 0x02

MMDSP (CKG_DIV_AUD) 27 121.5 0x01

Table 109 Recommended divider values

Clock
Default value
(MHz)

Common value
(MHz)

Comment

Table 108 System clocks summary

F clockout()
2 N×

M 2
P×

----------------- F clockin()×=

1 M 255 1 N 255 0 P 5≤ ≤,≤ ≤,≤ ≤

1MHz
F clockin()

M
---------------------- 2MHz≤ ≤

200MHz
2 N×

M

 F clockin()× 622MHz≤ ≤

F clockin() 200MHz≤
244/294 7170179 D

LSTi5518 25 Clock generator
CONFIDENTIA
The audio clock frequency synthesizer uses the registers CKG_SFREQAUD_SDIV, CKG_SFREQAUD_PE and
CKG_SFREQAUD_MD and AUD_PLLMASK to program the frequency. Table 110 lists the register settings versus
audio frequency values. Register CKG_SFREQAUD_CNT selects which controller is used.

25.4 SmartCard clocks

The DIRECTV SmartCard frequency is 18.436 MHz, the register values given in the table below must be used to
achieve this frequency.

25.5 Auxiliary clock

The auxiliary clock operates over the frequency range 1-216 kHz, in 1 kHz steps. The table below gives example
values for programing the auxiliary clock.

Frequency

Register values in HEX
AUD_PLLMASK
bit HALF_FSCKG_SFREQAUD_SDI

V (0x1E4)
CKG_SFREQAUD_MD
(0x1E7)

CKG_SFREQAUD_PE
(0x1E5, 0x1E6)

384 x 32 kHz 80 88 3600 0

384 x 44.1 kHz 60 C8 3EB2 0

384 x 48 kHz 60 B8 4800 0

256 x 32 kHz 80 D0 5100 0

256 x 44.1 kHz 80 98 6F05 0

256 x 48 kHz 80 88 3600 0

256 x 96 kHz 60 88 3600 0

384 x 96 kHz 40 B8 4800 0

256 x 12 kHz C0 88 3600 0

384 x 12 kHz A0 B8 4800 0

384 x 16 kHz 80 88 3600 1

384 x 22.05 kHz 60 C8 3EB2 1

384 x 24 kHz 60 B8 4800 1

256 x 16 kHz 80 D0 5100 1

256 x 22.05 kHz 80 98 6F05 1

256 x 24 kHz 80 88 3600 1

Table 110 PCM frequency values and register settings

Frequency (MHz) CKG_SFREQSMC_SDIV (hex) CKG_SFREQSMC_MD (hex) CKG_SFREQSMC_PE (hex)

18.436 3 17 48A7

Frequency (MHz) CKG_SFREQAUX_SDIV (hex) CKG_SFREQAUX_MD (hex) CKG_SFREQAUX_PE (hex)

1 7 1A 0

2 6 1A 0

3 6 12 8000

4 5 1A 0

Table 111 Auxiliary clock programming values
 7170179 D 245/294

L25 Clock generator STi5518
CONFIDENTIA

25.6 Low-power, watchdog and power-down

Low-power

The low-power timer is a 64bit counter which is always clocked, even when the other internal clocks are stopped. The
low-power clock is generated from the 27 MHz input and is divided by the value (2 multiplied by the value programmed
into register CKG_DIV_LPC). The LPM_TimerStart register, starts the low-power timer controller.

Watchdog counter

The low-power alarm counter can be used as a watchdog timer if register LPM_WDENABLE bit 0 is set. This makes it
impossible to enter low-power mode when starting the low-power alarm counter.

To trigger the watchdog, the low-power alarm is programmed and started as normal. When the low-power alarm counts
down to the value #1, the circuit resets.The LPM_WDFLAG register is set when a watchdog reset occurs.

Power-down

In power-down mode the internal clocks are turned off, the processor and ll of the peripherals, including the external
memory controller and optionally the PLL, are stopped. Effectively, the internal clock is stopped and functional
operation is stalled. On restart, the clock is restarted and the chip resumes normal operation. The PLL is turned on and
off using the LPM_SysPLL register

Provided that there are no active external interrupts, power-down is entered when low-power alarm counter
LPM_AlarmStart is programmed and started.

Power-down is exited when an enabled external interrupt becomes active, or when the low-power alarm counter
reaches zero.

The low-power alarm counter is a 40-bit counter which triggers power-down mode. A write to the LPM_AlarmStart
register starts the low-power alarm counter and the device enters low-power mode. When the counter has counted
down to zero, and assuming no other valid wake-up sources occur first, the device exits low-power mode and the global
clocks are turned back on.

In power-down mode the ST20 PLL can be left running, it can be partially turned off (power and reference still on) or it
can be completely turned off. This is determined by the value in the LPM_SYSPLL register. The MPEG PLL can be
turned off if required during power-down mode.

5 5 15 3333

10 4 15 3333

15 3 1C 199A

20 3 15 3333

25 3 11 5C29

30 2 1C 199A

35 2 18 283B

40 2 15 3333

45 2 13 6666

50 2 11 5C29

55 1 1F 4A79

60 1 1C 199A

Frequency (MHz) CKG_SFREQAUX_SDIV (hex) CKG_SFREQAUX_MD (hex) CKG_SFREQAUX_PE (hex)

Table 111 Auxiliary clock programming values
246/294 7170179 D

CONFIDENTIALSTi5518 26 MPEGDMA controller

 7170179 D 247/294

26 MPEGDMA controller
The MPEGDMA copies blocks of data from one memory address to an internal or external MPEG device. The source
address, destination address and the number of bytes must be specified in the MPEGDMA registers. There are two
groups of MPEGDMA registers used for video, audio and subpicture data transfers, MPEGDMA0 and MPEGDMA1.

An MPEGDMA data transfer is initiated by placing source address and destination device values into the
MPEGDMAn_SRCADD, MPEGDMAn_BURSTSIZE and MPEGDMAn_WHICHDEC registers respectively, and then
writing a byte count value into MPEGDMAn_BLSIZE register to start the data transfer process.

When the data transfer is complete an interrupt is generated, its value can be observed in the MPEG_STATUS register.
This interrupt can be enabled onto the external per_interrupt bristle for transmission to an interrupt controller, etc. by
setting bit 0 in MPEGDMAn_CNTRL register. No further data transfers can be started until the interrupt has been
cleared by writing to the MPEGDMAn_INTACK register.

While a data transfer is in progress, the MPEGDMAn_CNTRL and MPEGDMAn_STATUS registers can be accessed,
and no further operations can be started by writing to MPEGDMAn_BLSIZE.

At any time during a data transfer operation the process can be stopped by writing to the MPEGDMAn_ABORT
register. This stops the data transfer and resets the DMA engine. The Busy flag in the MPEGDMAn_STATUS register
can be polled to determine whether the DMA engine is ready for further instructions.

The MPEGDMA registers are accessed by bits 2 to 5 of the dmacnt_and_peraddr (peripheral address) inclusively. The
table below summarizes the MPEGDMA registers, these are described in detail in the STi5518 Register Manual.

Register Address Width Access Notes

MPEGDMAn_BURSTSIZE BASE + 0x00 5 W The number of bytes to be transferred in one burst

MPEGDMAn_HOLDOFF BASE + 0x04 5 W Holdoff for MPEG decoder:
range 0 to 31, where 0=0 delay cycles

MPEGDMAn_ABORT BASE + 0x08 1 W Abort all operation

MPEGDMAn_WHICHDEC BASE+ 0x0C 2 W DMA destination pointer

MPEGDMAn_STATUS BASE + 0x10 2 R Interrupt status register

MPEGDMAn_INTACK BASE + 0x14 1 W Interrupt acknowledge register

MPEGDMAn_SRCADD BASE + 0x18 32 W DMA source pointer

MPEGDMAn_CNTRL BASE + 0x1C 2 R/W Interrupt control register

MPEGDMAn_BLSIZE BASE + 0x20 16 W Data block dimension to be transferred

Table 112 MPEGDMA registers

CONFIDENTIAL27 Block move DMA STi5518

248/294 7170179 D

27 Block move DMA
This module copies blocks of data from one byte address in memory to another. The module can only access memory.
A source address, a destination address and a count of the number of bytes to be transferred must be specified.

The interface between the CPU and the block move module is provided using a set of registers and an interrupt. The
interrupt signals when a DMA transfer has completed.

To perform a DMA block move from one memory buffer to another, the block move module must first be initialized with
the source and destination addresses and then a byte count written to the BMDMA_COUNT register, to specify the
amount of data to transfer and start the DMA operation.

The source and destination addresses are the bases of the source and destination areas and can be any byte
addresses. The transfer size can be any value in the range of 1 to 65535 bytes. If the source area overlaps with the
destination area, then the result is undefined.

At the end of the block move operation the BMDMA_STATUS register will signal that an interrupt is pending. If the
interrupt enable bit of the BMDMA_INTEN register is set to 1, this will cause an interrupt. The interrupt pending bit must
be reset by software which writes to the BMDMA_INTACK register, before any further block move operations can be
performed.

A DMA block move can be aborted by writing to the BMDMA_ABORT register.

LSTi5518 28 PWM and counter module
CONFIDENTIA
28 PWM and counter module
This module provides three PWM encoder outputs, three PWM decoder (capture) inputs and four programmable
timers. Each capture input can be programmed to detect rising edge, falling edge, both edges or niether edge
(disabled). These facilities are clocked by two independent clocks, one for PWM outputs and one for capture inputs/
timers.

The module generates a single interrupt signal. The exact event which caused an interrupt can be determined by
reading status bits in a register, which can then be cleared.

For PWM0 and PWM2 to act as outputs the DENC must operate in master mode. To set the Denc to master mode, set
register DEN_CFG0=xx11 0xxx.

28.1 External interface

28.2 PWM outputs

There are four PWM outputs which share a common counter. The relative width (in counts) of the output pulse on pin
PWMn is set between 1 and 256 by loading a value from 0 to 255 into the register PWM_nVal. The width cannot be less
than 1, and if it is 256 the pin is continuously high. Pulses occur every 256 counts.

The counter is clocked by the 27 MHz clock ClockIn divided by a prescaler. The prescaling factor, and therefore the
period represented by one count, is determined by the value of register PWM_CONTROLFIELD.PWMClkValue. The
factor can be from 1 to 16.

The counter (in register PWM_Count) is enabled by setting the register PWM_CONTROLFIELD.PWMEnable to 1.
When it is disabled (PWMEnable is 0), the PWM output is forced low. Register PWM_COUNT can be written to at any
time, but can have a synchronization latency.

When the PWM counter overflows, an interrupt is generated if register bit PWM_INTENABLE.IntEn is set to 1. Register
bit PWM_INTSTATUS.Int becomes 1, and can be reset by writing 1 to register bit PWMINTACK.IntAck.

28.3 Capture inputs

There are four capture inputs which share a common counter with four compare facilities.

What constitutes an event on input CaptureInN is defined by the code in register PWM_nCaptureEdge. Possible events
are rising edge, falling edge, both or neither (in other words, disabled).

When an input event occurs on input PWM_nCAPTUREEDGE, the value of the counter (in register
PWM_nCAPTURECOUNT) is captured in register PWM_nCAPTUREVAL. The value can be 0x00000000 to
0xFFFFFFFF.

When an input event occurs, an interrupt is generated, provided that the register bit PWM_INTENABLE.IntEn is set to
1. Register bit PWM_INTSTATUS.IntN becomes 1, and can be reset by writing 1 to register bit PWM_INTACK.AckN.

The counter is not stopped nor reset by any of these events. See Capture/compare counter, prescaling and clocking on
page 250 for details.

Name In/out Function

PWM0, PWM1, PWM2 out PWM outputs

Capture_In0,Capture_In1, Capture_In2 in Capture trigger inputs

Comp_Out0, Comp_Out1 out Compare output

Table 113 PWM and counter pins
 7170179 D 249/294

L28 PWM and counter module STi5518
CONFIDENTIA
28.4 Compare (programmable timer) facilities

There are four programmable timer facilities which share a common counter with four capture inputs.Each of four
compare registers PWM_nCompareVal in the module can be set to a value 0x00000000 to 0xFFFFFFFF.

When the counter in register PWM_CaptureCount reaches the value of register PWM_nCOMPAREVAL, two things
happen:

• An interrupt is generated if register bit PWM_INTENABLE.IntEn is set to 1. Register bit PWM_INTSTATUS.IntN
becomes 1, and can be reset by writing 1 to register bit PWM_INTACK.AckN.

• Pin PWM_nCompareOut takes on the value set in register PWM_nCOMPAREOUTVAL.

The counter is niether stopped nor reset by any of these events. See Capture/compare counter, prescaling and
clocking on page 250 below for details of the counter.

28.5 Capture/compare counter, prescaling and clocking

The capture/compare counter is clocked by the prescaled system clock, and is common to all capture and compare
functions. The prescaling factor, and therefore the period represented by one count, is determined by the value of
register bit PWM_CONTROL.CaptureClkValue. The factor can be from 1 to 32.

The counter (in register PWM_CAPTURECOUNT) is enabled by setting register bit PWM_CONTROL.CaptureEnable
to 1. When it is disabled (PWM_CONTROL.CaptureEnable=0), none of the capture or compare functions work.
PWM_CaptureCount, like PWM_COUNT, can be read or written to at any time.

When the capture/compare counter reaches its maximum count of 0xFFFFFFFF, it wraps round to count up from zero
again.
250/294 7170179 D

LSTi5518 29 Smartcard interface
CONFIDENTIA
29 Smartcard interface
The SmartCard interface supports asynchronous protocol SmartCards as defined in the ISO7816-3 standard. Limited
support for synchronous SmartCards can be provided in software by using the PIO bits to provide the clock, reset, and
I/O functions on the interface to the card. Two SmartCard interfaces are supported on the STi5518.

The UART function of the SmartCard interface is provided by a UART (ASC). UART ASC0 can be used by SmartCard0
and ASC2 can be used by SmartCard1.

Each ASC used by a SmartCard interface must be configured as eight data bits plus parity, 0.5 or 1.5 stop bits, with
SmartCard mode enabled. A 16-bit counter, the SmartCard clock generator, divides down either the CPU clock, or an
external clock connected to a pin shared with a PIO bit, to provide the clock to the SmartCard. PIO bits in conjunction
with software are used to provide the rest of the functions required to interface to the SmartCard. The inverse signalling
convention, as defined in ISO7816-3, is handled in software, inverted data and most significant bit first. See
Asynchronous serial controller on page 253 for details of the ASC and Parallel input/output port on page 272 for details
of the PIO ports.

29.1 External interface

The SmartCard pin functions are described in the table below

The SCn_RST, SCn_CMD_VCC, and SCn_DETECT signals are provided by alternate functions of the PIO pins. The
UARTn_TXD data signal is connected to the SCn_DATA pin with the correct driver type and the clock generator is
connected to the SCn_CLK pin.

The ISO standard defines the bit times for the asynchronous protocol in ETUs, which are related to the clock frequency
received by the card. One bit time = one ETU.

The ASC transmitter output and receiver input must be connected together externally. For the transmission of data from
the STi5518 to the SmartCard, the ASC must be set up in SmartCard mode.

Pin In/Out Function

SCn_CLK Out, open drain for 5V cards Clock for SmartCard

SC External Clock In External clock input to SmartCard clock divider

SCn_DATA Out, open drain driver Serial data output. Open drain drive

SCn_DATA In Serial data input

SCn_RST Out, open drain Reset to card

SCn_CMD_VCC Out Supply voltage enable/disable

SCn_DETECT In SmartCard detection

SCn_DATA_DIR Out Indicates if the SmartCard is operating in Serial data output (open
drain drive) mode or Serial data input mode.

Table 114 SmartCard interface pins

Figure 179 ISO 7816-3 asynchronous protocol

Line is pulled low by the
receiver during stop bits if
there is a parity error

S a b c d e f g h P

Start
bit

8 data bits Parity
bit

11 ETU
 7170179 D 251/294

L29 Smartcard interface STi5518
CONFIDENTIA
29.2 SmartCard clock generator

The SmartCard clock generator provides a clock signal to the SmartCard. The SmartCard uses this clock to derive the
baud-rate clock for the serial I/O between the SmartCard and another UART. The clock is also used for the CPU in the
card, if there is one present.

Operation of the SmartCard interface requires that the clock rate to the card is adjusted while the CPU in the card is
running code, so that the baud rate can be changed or the performance of the card can be increased. The protocols
that govern the negotiation of these clock rates and the altering of the clock rate are detailed in the ISO7816-3
standard. The clock is used as the CPU clock for the SmartCard, so updates to the clock rate must be synchronized
with the clock to the SmartCard. This means the clock high or low pulse widths must not be shorter than either the old
or new programmed value.

The clock generator clock source can be set to the system clock or an external pin. Two following two registers control
the period of the clock and the running of the clock.

• The SCI_n_CLKVAL determines the SmartCard clock frequency. The value given in the register is multiplied by 2 to
give the division factor of the input clock frequency. The divider is updated with the new value for the divider ratio on
the next rising or falling edge of the output clock.

The desired, non zero, value must be programmed into register SCI_n_CLKVAL before the clocks are enabled (by
setting the enable bit in register SCI_n_CLKCON.)

• The SCI_n_CLKCON controls the source of the clock and determines whether the SmartCard clock output is
enabled. The programmable divider and the output are reset when the enable bit is set to 0.

Figure 180 SmartCard clock generation schematic

SmCard Clock
Freq Synthesizer

PIO1[2]
external pad

SmCard_controller

5 5

SCn_Clock signal

SCI_n_CLKCON[1]

SCI_n_CLKCON
SCI_n_CLKVAL[4:0]

External
clock signal

ST20 clock

SCI_n_CLKCON[0]
TPMACClock generator

SmartCard clock source domain

Enable divider
DivRatio[4:0]

C E
D Q

Sync
D Q
252/294 7170179 D

LSTi5518 30 Asynchronous serial controller
CONFIDENTIA
30 Asynchronous serial controller
The Asynchronous Serial Controller (ASC), also referred to as the UART interface, provides serial communication
between the STi5518 and other microcontrollers, microprocessors or external peripherals. The STi5518 provides four
ASCs, two of which are generally used by the SmartCard controllers.

Eight or nine bit data transfer, parity generation, and the number of stop bits are programmable. Parity, framing, and
overrun error detection is provided to increase the reliability of data transfers. Transmission and reception of data can
simply be double-buffered, or 16-deep FIFOs may be used. Handshaking is supported on both transmission and
reception. For multiprocessor communication, a mechanism to distinguish the address from the data bytes is included.
Testing is supported by a loop-back option. A dual mode 16-bit baud rate generator provides the ASC with a separate
serial clock signal.

Two ASCs support full-duplex and 2 half-duplex asynchronous communication, where both the transmitter and the
receiver use the same data frame format and the same baud rate. For the full-duplex ASCs, data is transmitted on the
transmit data output pin TxD and received on the receive data input pin RxD.

Each ASC can be set to operate in SmartCard mode for use when interfacing to a SmartCard.

The registers for each ASC are grouped in a 4 Kbyte block, with the base of the block for ASC number n at the address
ASCnBaseAddress. The value of each ASCnBaseAddress is given in the STi5518 Register Manual.

30.1 Control

The ASC_n_CONTROL register controls the operating mode of the ASC. It contains control and enable bits, error
check selection bits, and status flags for error identification.

Serial data transmission or reception is only possible when the baud rate generator run bit (Run) is set to 1. When the
Run bit is set to 0, TxD will be 1. Setting the Run bit to 0 will immediately freeze the state of the transmitter and receiver
and should only be done when the ASC is idle.

Note: Programming the mode control field (Mode) to one of the reserved combinations may result in unpredictable
behavior.

The ASC can be set to use either double-buffering or a 16-deep FIFO on transmission and reception.

30.1.1 Resetting the FIFOs

The ‘registers’ ASC_n_TXRESET and ASC_n_RXRESET have no actual storage associated with them. A write of any
value to one of these registers resets the corresponding FIFO.

30.1.2 Transmission and reception

Serial data transmission or reception is only possible when the baud rate generator run bit (Run) is set to 1. A
handshaking protocol is supported on both transmission and reception, using CTS and RTS signals.

A transmission is started by writing to the transmit buffer register ASC_n_TXBUFFER. Because data transmission is
double-buffered or uses a FIFO (selectable in the ASC_n_CONTROL register), a new character may be written to the
transmit buffer register before the transmission of the previous character is complete. This allows characters to be sent
back-to-back without gaps.

Data reception is enabled by the receiver enable bit (RxEnable) in the control register. After reception of a character
has been completed, the received data and, if provided by the selected operating mode, the parity error bit, can be read
from the receive buffer register ASC_n_RxBuffer.

Reception of a second character may begin before the received character has been read out of the receive buffer
register. The overrun error status flag (OverrunError) in the status register ASC_n_STATUS will be set when the receive
buffer register has not been read by the time reception of a second character is complete. The previously received
 7170179 D 253/294

L30 Asynchronous serial controller STi5518
CONFIDENTIA
character in the receive buffer is overwritten, and the ASC_n_STATUS register is updated to reflect the reception of the
new character.

The loop-back option (selected by the LoopBack bit) internally connects the output of the transmitter shift register to the
input of the receiver shift register. This may be used to test serial communication routines at an early stage without
having to provide an external network.

30.2 Data frames

Data frames may be 8-bit or 9-bit, with or without parity and with or without a wake-up bit. The data frame type is
selected by the setting of the Mode bit field in the control register.

The transmitted data frame consists of three basic elements:

• The start bit;

• The data field (8 or 9 bits, least significant bit (LSB) first, including a parity bit or wake-up bit, if selected);

• The stop bits (0.5, 1, 1.5 or 2 stop bits).

30.2.1 8-bit data frames

Figure 181 illustrates a 8-bit transmitted data frame. 8-bit frames may use of one of the following formats:

• Eight data bits D0-7 (Mode set to 001);

• Seven data bits D0-6 plus an automatically generated parity bit (Mode set to 011).

Parity may be odd or even, depending on the ParityOdd bit in the ASC_n_CONTROL register. If the modulo 2 sum of
the seven data bits is 1, then the even parity bit will be set and the odd parity bit will be cleared.

In receive mode the parity error flag (ParityError) will be set if a wrong parity bit is received. The parity error flag is
stored in the 8th bit (D7) of the ASC_n_RXBUFFER register.The parity error bit is set high if there is a parity error.

30.2.2 9-bit data frames

Figure 182 illustrates a 9-bit transmitted data frame. 9-bit data frames use of one of the following formats:

• Nine data bits D0-8 (Mode set to 100);

• Eight data bits D0-7 plus an automatically generated parity bit (Mode set to 111);

• Eight data bits D0-7 plus a wake-up bit (Mode set to 101)

Figure 181 8-bit Tx data frame format

start

bit
D0

D1 D2 D3 D4 D5 D6
8th

bit(LSB)

1st

stop

bit

2nd

stop

bit

• Data bit (D7)

• Parity bit
254/294 7170179 D

LSTi5518 30 Asynchronous serial controller
CONFIDENTIA
.

Figure 182 9-bit Tx data frame format

Parity may be odd or even, depending on the ParityOdd bit in the ASC_n_CONTROL register. If the modulo 2 sum of
the eight data bits is 1, then the even parity bit will be set and the odd parity bit will be cleared. The parity error flag
(ParityError) will be set if a wrong parity bit is received. The parity error flag is stored in the 9th bit (D8) of the
ASC_n_RXBUFFER register. The parity error bit is set high if there is a parity error.

In wake-up mode, received frames are only transferred to the receive buffer register if the ninth bit (the wake-up bit) is
1. If this bit is 0, no receive interrupt request will be activated and no data will be transferred.

This feature may be used to control communication in multi-processor systems. When the master processor wants to
transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An
address byte differs from a data byte in that the additional ninth bit is a 1 for an address byte and a 0 for a data byte, so
no slave will be interrupted by a data byte. An address byte will interrupt all slaves (operating in 8-bit data plus wake-up
bit mode), so each slave can examine the 8 least significant bits (LSBs) of the received character, which is the address.
The addressed slave will switch to 9-bit data mode, which enables it to receive the data bytes that will be coming (with
the wake-up bit cleared). The slaves that are not being addressed remain in 8-bit data plus wake-up bit mode, ignoring
the data bytes which follow.

30.3 Transmission

Transmission begins at the next baud rate clock tick, provided that the Run bit is set and data has been loaded into the
ASC_n_TXBUFFER. If the CTSEnable bit is set in the ASC_n_CONTROL register then transmission only occurs when
CTS is high.

The transmitter empty flag (TxEmpty) indicates whether the output shift register is empty. It will be set at the beginning
of the last data frame bit that is transmitted, i.e. during the first system clock cycle of the first stop bit shifted out of the
transmit shift register.

The loop-back option (selected by the LoopBack bit of the ASC_n_CONTROL register) internally connects the output of
the transmitter shift register to the input of the receiver shift register. This may be used to test serial communication
routines at an early stage without having to provide an external network.

30.3.1 Transmission with FIFOs enabled

The FIFOs are enabled by setting the FifoEnable bit of the ASC_n_CONTROL register. The output FIFO is
implemented as a 16-deep array of 9-bit vectors. Values to be transmitted are written to the output FIFO by writing to
ASC_n_TXBUFFER.

The TxFull bit of the ASC_n_STATUS register is set when the transmit FIFO is considered full, i.e. when it contains 16
characters. Further writes to ASC_n_TXBUFFER will fail to overwrite the most recent entry in the output FIFO. The
TxHalfEmpty bit of the ASC_n_STATUS register is set when the output FIFO contains 8 or fewer characters.

Values are shifted out of the bottom of the output FIFO into a 9-bit output shift register in order to be transmitted. If the
transmitter is idle (i.e. the output shift register is empty) and something is written to the ASC_n_TXBUFFER so that the

start

bit
D0

D1 D2 D3 D4 D5 D6
9th

bit(LSB)

1st

stop

bit

2nd

stop

bit

• Data bit (D8)

• Parity bit

D7

• Wake-up bit
 7170179 D 255/294

L30 Asynchronous serial controller STi5518
CONFIDENTIA
output FIFO becomes non-empty, the output shift register is immediately loaded from the output FIFO and transmission
of the data in the output shift register begins at the next baud rate tick.

When the transmitter is just about to transmit the stop bits, and if the output FIFO is non-empty, the output shift register
will be immediately loaded from the output FIFO, and the transmission of this new data will begin as soon as the current
stop bit period is over (i.e. the next start bit will be transmitted immediately following the current stop bit period). If the
output FIFO is empty at this point, the output shift register will become empty. Thus back-to-back transmission of data
can take place. If the output FIFO is empty at this point, the output shift register will become empty. Writing anything to
ASC_n_TXRESET empties the output FIFO.

After changing the FifoEnable bit, it is important to reset the FIFO to empty (by writing to the ASC_n_TXRESET
register), or garbage may be transmitted.

30.3.2 Double-buffered transmission

Double buffering is enabled and the FIFOs disabled by writing 0 to the FifoEnable bit of the ASC_n_CONTROL register.
When the transmitter is idle, the transmit data written into the transmit buffer ASC_n_TXBUFFER is immediately moved
to the transmit shift register, thus freeing the transmit buffer for the next data to be sent. This is indicated by the transmit
buffer empty flag (TxHalfEmpty) being set. The transmit buffer can be loaded with the next data while transmission of
the previous data is still going on.

When the FIFOs are disabled, the TxFull bit is set when the buffer contains 1 character, and a write to
ASC_n_TXBUFFER in this situation will overwrite the contents. The TxHalfEmpty bit of the ASC_n_STATUS register is
set when the output buffer is empty.

30.4 Reception

Reception is initiated by a falling edge on the data input pin RxD, provided that the Run and RxEnable bits of the
ASC_n_CONTROL register are set.

Controlled data transfer can be achieved using the RTS handshaking signal provided by the UART. The sender checks
the RTS to ensure the UART is ready to receive data. In double-buffered reception RTS goes high when
ASC_n_RXBUFFER is empty, in FIFO-controlled operation it goes high when RxHalfFull is zero.

The RxD pin is sampled at 16 times the rate of the selected baud rate. A majority decision of the first, second and third
samples of the start bit determines the effective bit value. This avoids erroneous results that may be caused by noise.

If the detected value of the first bit of a frame is not a 0, then the receive circuit is reset and waits for the next falling
edge transition at the RxD pin. If the start bit is valid, i.e. is 0, the receive circuit continues sampling and shifts the
incoming data frame into the receive shift register. For subsequent data and parity bits, the majority decision of the
seventh, eighth and ninth samples in each bit time is used to determine the effective bit value. The effective values
received on RxD are shifted into a 10-bit input shift register.

For 0.5 stop bits, the majority decision of the third, fourth, and fifth samples during the stop bit is used to determine the
effective stop bit value. For 1 and 2 stop bits, the majority decision of the seventh, eighth, and ninth samples during the
stop bits is used to determine the effective stop bit values. For 1.5 stop bits, the majority decision of the fifteenth,
sixteenth, and seventeenth samples during the stop bits is used to determine the effective stop bit value.

Reception is stopped by clearing the RxEnable bit of ASC_n_CONTROL. Any currently received frame is completed
including the generation of the receive status flags. Start bits that follow this frame will not be recognized.

30.4.1 Hardware error detection

To improve the safety of serial data exchange, the ASC provides three error status flags in the ASC_n_STATUS register
which indicate if an error has been detected during reception of the last data frame and associated stop bits.

• The parity error bit (ParityError) in the ASC_n_STATUS register is set when the parity check on the received data is
incorrect. In FIFO operation parity errors on the buffers are OR-ed to yield a single parity error bit.
256/294 7170179 D

LSTi5518 30 Asynchronous serial controller
CONFIDENTIA
• The framing error bit (FrameError) in the ASC_n_STATUS register is set when the RxD pin is not a 1 during the

programmed number of stop bit times (see section 30.4). In FIFO operation the bit remains set while at least one of
the entries has a frame error.

• The overrun error bit (OverrunError) in the ASC_n_STATUS register is set when the input buffer is full and a
character has not been read out of the ASC_n_RXBUFFER register before reception of a new frame is complete.

These flags are updated simultaneously with the transfer of data to the receive input buffer.

30.4.1.1 Frame and parity errors

The most significant bit (bit 9 of 0-9) of each input entry records whether or not there was a frame error when that entry
was received (i.e. one of the effective stop bit values was ‘0’). The FrameError bit of the ASC_n_STATUS register is set
when the input buffer (double-buffered operation), or at least one of the valid entries in the input buffering (FIFO-
controlled operation), has its most significant bit set.

If the mode is one where a parity bit is expected, then the next bit (bit 8 of 0-9) records whether there was a parity error
when that entry was received. It does not contain the parity bit that was received. For 7-bit+parity data frames the parity
error bit is set in both the eighth (bit 7 of 0-9) and the ninth (bit 8 of 0-9) bits. The ParityError bit of ASC_n_STATUS is
set when the input buffer (double-buffered operation), or at least one of the valid entries in the input buffering (FIFO-
controlled operation), has bit 8 set.

When receiving 8-bit data frames without parity (see section 30.2.1), the ninth bit of each input entry (bit 8 of 0-9) is
undefined.

30.4.2 Input buffering modes

30.4.2.1 FIFO enabled reception

The FIFOs are enabled by setting the FifoEnable bit of the ASC_n_Control register. The input FIFO is implemented as
a 16-deep array of 10-bit vectors (each 9 down to 0). If the input FIFO is empty i.e. no entries are present, the RxBufFull
bit of the ASC_n_STATUS register is set to ‘0’. If one or more FIFO entries are present, the RxBufFull bit of the
ASC_n_STATUS register is set to 1. If the input FIFO is not empty, a read from ASC_n_RXBUFFER will get the oldest
entry in the input FIFO.

The RxHalfFull bit of the ASC_n_STATUS register is set when the input FIFO contains more than 8 characters. Writing
anything to ASC_n_RXRESET empties the input FIFO. As soon as the effective value of the last stop bit has been
determined, the content of the input shift register is transferred to the input FIFO (except during wake-up mode, in
which case this happens only if the wake-up bit, bit 8, is a ‘1’). The receive circuit then waits for the next falling edge
transition at the RxD pin.

The OverrunError bit of the ASC_n_STATUS register is set when the input FIFO is full and a character is loaded from
the input shift register into the input FIFO. It is cleared when the ASC_n_RXBUFFER register is read.

After changing the FifoEnable bit, it is important to reset the FIFO to empty by writing to the ASC_n_RXRESET register;
otherwise the state of the FIFO pointers may be garbage.

30.4.2.2 Double buffered reception

Double buffered operation is enabled and the FIFOs disabled by writing 0 to the FifoEnable bit of the
ASC_n_CONTROL register. This mode can be seen as equivalent to a FIFO-controlled operation with a FIFO of length
1 (the first FIFO vector is in fact used as the buffer). When the last stop bit has been received (at the end of the last
programmed stop bit period) the content of the receive shift register is transferred to the receive data buffer register
(ASC_n_RXBUFFER). The receive buffer full flag (RxBufFull) is set, and the parity (ParityError) and framing error
(FrameError) flags are updated at the same time, after the last stop bit has been received, i.e. at the end of the last stop
bit programmed period. The flags are updated even if no valid stop bits have been received. The receive circuit then
waits for the next falling edge transition at the RxD pin.
 7170179 D 257/294

L30 Asynchronous serial controller STi5518
CONFIDENTIA
30.4.3 Time-out mechanism

The ASC contains an 8-bit time-out counter. This reloads from ASC_n_TIMEOUT whenever one or more of the
following is true:

• ASC_n_RXBUFFER is read;

• the ASC is in the middle of receiving a character;

• ASC_n_TIMEOUT is written to.

If none of these conditions hold the counter decrements towards 0 at every baud rate tick.

The TimeoutNotEmpty bit of the ASC_n_STATUS register is ‘1’ when the input FIFO is not empty and the time-out
counter is zero.

The TimeoutIdle bit of the ASC_n_STATUS register is ‘1’ when the input FIFO is empty and the time-out counter is zero.

The effect of this is that whenever the input FIFO has got something in it, the time-out counter will decrement until
something happens to the input FIFO. If nothing happens, and the time-out counter reaches zero, the
TimeoutNotEmpty bit of the ASC_n_STATUS register will be set.

When the software has emptied the input FIFO, the time-out counter will reset and start decrementing. If no more
characters arrive, when the counter reaches zero the TimeoutIdle bit of the ASC_n_STATUS register will be set.

30.5 Baud rate generation

Each ASC has its own dedicated 16-bit baud rate generator with 16-bit reload capability. The baud rate generator has
two possible modes of operation.

The ASC_n_BAUDRATE register is the dual-function baud rate generator and reload value register. A read from this
register returns the content of the counter or accumulator (depending on the mode of operation); writing to it updates
the reload register.

If the Run bit of the control register is 1, then any value written in the ASC_n_BAUDRATE register is immediately
copied to the counter/accumulator. However, if the Run bit is 0 when the register is written, then the counter/
accumulator will not be reloaded until the first CPU clock cycle after the Run bit is 1.

The baud rate generator supports two modes of operation, offering a wide range of possible values. The mode is set via
the BaudMode bit in the ASC_n_CONTROL register. Mode 0 is a simple counter driven by the CPU clock whereas
Mode 1 uses a loop-back accumulator. Mode 0 is recommended for low baud rates (below 19.2K baud), where its error
deviation is low, and Mode 1 is recommended for baud rates above 19.2 K.

30.5.1 Baud rates

The baud rate generator provides an internal oversampling clock at 16 times the external baud rate. This clock only
ticks if the Run bit of the ASC_n_CONTROL register is set to 1. Setting this bit to 0 will immediately freeze the state of
the ASCs transmitter and receiver.
258/294 7170179 D

LSTi5518 30 Asynchronous serial controller
CONFIDENTIA
30.5.1.1 Mode 0

When the BaudMode bit in the ASC_n_CONTROL register is set to 0, the baud rate and the required reload value for
a given baud rate can be determined by the following formulae:

where: ASCBaudRate represents the content of the ASC_n_BAUDRATE reload value register, taken as an unsigned
16-bit integer and fCPU is the frequency of the CPU.

The baud rate counter is clocked by the CPU clock. It counts downwards and can be started or stopped by the Run bit
in the ASC_n_CONTROL register. Each underflow of the timer provides one oversampling baud rate clock pulse. The
counter is reloaded with the value stored in its 16-bit reload register each time it underflows.

Writes to the ASC_n_BAUDRATE register update the reload register value. Reads from the ASC_n_BAUDRATE
register return the current value of the counter.

30.5.1.2 Mode 1

When the BaudMode bit in the ASC_n_CONTROL register is set to 1, the baud rate is controlled by the following circuit.

Writes to ASC_n_BAUDRATE go to the reload register. Reads from ASC_n_BAUDRATE return the value in the
accumulator register. Both registers are 16 bit wide and are clocked by the CPU clock.

If the system clock frequency is fCPU, writing a value of ASCBaudRate to the ASC_n_BAUDRATE register results in an
average oversampling clock frequency of:

so the baud rate is given by:

This gives good granularity, and hence low baud rate deviation errors, at high baud rate frequencies.

Figure 183 Mode1

BaudRate =
16 x ASCBaudRate

ASCBaudRate =
16 x BaudRate

fCPU

fCPU

ASCBaudRate
carry-out

oversampling clock

(Reload)

ASCBaudRate
(accumulator)

fCPU

216

ASCBaudRate x fCPU

BaudRate =
16 x 216

ASCBaudRate x fCPU
 7170179 D 259/294

L30 Asynchronous serial controller STi5518
CONFIDENTIA
30.6 Interrupt control

Each ASC contains two registers that are used to control interrupts, the status register (ASC_n_STATUS) and the
interrupt enable register (ASC_n_INTENABLE). The status bits in the ASC_n_STATUS register show the cause of any
interrupt. The interrupt enable register allows certain interrupt causes to be masked. Interrupts will occur when a status
bit is 1 (high) and the corresponding bit in the ASC_n_INTENABLE register is 1.

The ASC interrupt signal is generated from the OR of all interrupt status bits after they have been ANDed with the
corresponding enable bits in the ASC_n_INTENABLE register, as shown in Figure 184.

The status bits cannot be reset by software because the ASC_n_STATUS register cannot be written to directly. Status
bits are reset by operations performed by the interrupt handler:

• Transmitter interrupt status bits (TxEmpty, TxHalfEmpty) are reset when a character is written to the transmitter
buffer.

• Receiver interrupt status bit (RxBufFull) is reset when a character is read from the receive buffer.

• ParityError and FrameError status bits are reset when all characters containing errors have been read from the
receive input buffer.

• The OverrunError status bit is reset when a character is read from ASC_n_RXBUFFER.

30.6.1 Using the ASC interrupts when FIFOs are disabled (double-buffered operation)

The transmitter generates two interrupts; this provides advantages for the servicing software. For normal operation (i.e.
other than the error interrupt) when FIFOs are disabled the ASC provides three interrupt requests to control data
exchange via the serial channel:

• TxHalfEmpty is activated when data is moved from ASC_n_TXBUFFER to the transmit shift register;

• TxEmpty is activated before the last bit of a frame is transmitted;
260/294 7170179 D

LSTi5518 30 Asynchronous serial controller
CONFIDENTIA
• RxBufFull is activated when the received frame is moved to ASC_n_RXBUFFER.

As shown in Figure 185,TxHalfEmpty is an early trigger for the reload routine, while TxEmpty indicates the completed
transmission of the data field of the frame. Therefore, software using handshake should rely on TxEmpty at the end of
a data block to make sure that all data has really been transmitted.

For single transfers it is sufficient to use the transmitter interrupt (TxEmpty), which indicates that the previously loaded
data has been transmitted, except for the last bit of a frame.

For multiple back-to-back transfers it is necessary to load the next data before the last bit of the previous frame has
been transmitted. The use of TxEmpty alone would leave just one stop bit time for the handler to respond to the
interrupt and initiate another transmission. Using the output buffer interrupt (TxHalfEmpty) to signal for more data
allows the service routine to load a complete frame, as ASC_n_TXBUFFER may be reloaded while the previous data is
still being transmitted.

30.6.2 Using the ASC interrupts when FIFOs are enabled

To transmit a large number of characters back to back, the driver routine would initially write 16 characters to
ASC_n_TXBUFFER. Then every time a TxHalfEmpty interrupt fired, it would write 8 more. When there is nothing more
to send, a TxEmpty interrupt would tell the driver that everything has been transmitted.

When receiving, the driver could use RxBufFull to interrupt every time a character arrived. Alternatively, if data is
coming in back-to-back, it could use RxHalfFull to interrupt it when there was more than 8 characters in the input FIFO
to read. It would have as long as it takes to receive 8 characters to respond to this interrupt before data could overrun.

Figure 184 ASC status and interrupt registers

AND
RxBufFullIE

TxEmptyIE

ParityErrorIE

FrameErrorIE

OverrunErrorIE

RxBufFull

ParityError

FrameError

OverrunError

OR
ASC interrupt

AND

AND

AND

AND

AND

TimeoutnotEmpty

TimeoutIdle

RxHalfFull

TxFull

AND

AND

AND

TimeoutnotEmptyIE

TimeoutIdleIE

RxHalfFullIE

Nacked

TxEmpty

TxHalfEmpty TxHalfEmptyIE
 7170179 D 261/294

L30 Asynchronous serial controller STi5518
CONFIDENTIA
If less than 8 characters streamed in, and no more were received for at least a time-out period, the driver could be
woken up by one of the two time-out interrupts, TimeoutNotEmpty or TimeoutIdle.

30.7 SmartCard operation

SmartCard mode is selected by setting the SCEnable bit in the ASC_n_CONTROL register to 1. In SmartCard mode
the RxD and TxD ports of the UART are both connected externally via a single bidirectional line to a smart card IO port.
Characters are transferred to and from the smart card as 8-bit data frames with parity (see Section 30.2). Handshaking
between the UART and the SmartCard ensures secure data transfer.

When the SCEnable bit in the ASC_n_CONTROL register is set to 0, normal UART operation occurs.

SmartCard operation complies win the ISO SmartCard specification except where noted (see Section 30.7.4).

30.7.1 Control registers

ASC_n_GUARDTIME

A programmable 8-bit register ASC_n_GUARDTIME controls the time between transmitting the parity bit of a character
and the start bit of any further bytes, or transmitting a ‘nack’ (‘no acknowledge’ signal, see Section 30.7.2.1). During the
guardtime period the UART receiver is insensitive to possible start bits and the smart card is free to send ‘nacks’.

Figure 185 ASC transmission

Figure 186 ASC reception

Idle IdleS
ta

rt

S
ta

rt

S
ta

rt

S
to

p

S
to

p

S
to

p

TxEmpty interrupt

Output shift register

Transmission

ASCTxBuffer register char 2

char 1 char 2

char 3

char 3

char 1 char 2 char 3

Write char1 Write char2 Write char3

TxHalfEmpty interrupt

Idle IdleS
ta

rt

S
ta

rt

S
ta

rt

S
to

p

S
to

p

S
to

p
RxBufFull

Input shift register

Receive

ASCRxBuffer register char1 char 2

char 1 char 2

char 3

char 3

char 1 char 2 char 3
262/294 7170179 D

LSTi5518 30 Asynchronous serial controller
CONFIDENTIA
Guardtime should always be set to at least 2.

ASC_n_RETRIES

A programmable 8-bit register ASC_n_RETRIES defines the number of times the UART will automatically try to send a
‘nacked’ character before giving up.

30.7.2 Transmission

In SmartCard mode FIFOs can be either enabled or disabled. If FIFOs are disabled, the UART transmission behaves
according to NDC requirements.

30.7.2.1 Handshaking

When the UART is transmitting data to the smart card, the smart card can ‘nack’ (‘not acknowledge’) the transmission
by pulling the line low 0.5 baud clock period into the Guardtime period and holding it low for at least 1 baud clock
period. The UART should also be programmed in 1.5 stop bit mode, and since it receives what it transmits, nacks will
be detected as receive framing errors.

30.7.2.2 Behavior with FIFOs enabled

At about 1 baud clock period into the Guardtime period, the UART knows whether or not the transmitted character has
been ‘nacked’. If no nack has been received and the Tx FIFO is not empty, the next character is transmitted after the
guardtime period.

If a transmitted character is nacked by the receiving UART, the character is retransmitted as soon as the Guardtime
period expires (or if Guardtime is 2, an extra baud clock period later), and retransmission is attempted up to the
number of retries set in the ASC_n_RETRIES register. If the last retry is also ‘nacked’ the Tx FIFO is emptied, putting
the transmitter into an idle state, and the Nacked bit is set in the ASC_n_STATUS register.

Emptying of the FIFO causes an interrupt, which can be handled by software. The Nacked bit in the ASC_n_STATUS
register can be reset by writing to the ASC_n_TXRESET register.

All ‘un-nacked’ (successfully transmitted) data is looped-back into the receive FIFO. This FIFO can be read by software
to determine the status of the data transmission.

30.7.2.3 Behavior with FIFOs disabled

When the SmartCard mode bit is set to 1, the following operation occurs.

• Transmission of data from the transmit shift register is guaranteed to be delayed by a minimum of 1/2 baud clock. In
normal operation a full transmit shift register will start shifting on the next baud clock edge. In SmartCard mode this
transmission is further delayed by a guaranteed 1/2 baud clock.

• If a parity error is detected during reception of a frame programmed with a 1/2 stop bit period, the transmit line is
pulled low for a baud clock period after the completion of the receive frame, i.e. at the end of the 1/2 stop bit period.
This is to indicate to the SmartCard that the data transmitted to the UART has not been correctly received.

• The assertion of the TxEmpty interrupt can be delayed by programming the ASC_n_GUARDTIME register. In
normal operation, TxEmpty is asserted when the transmit shift register is empty and no further transmit requests
are outstanding.

• The receiver enable bit in the control register is automatically reset after a character has been transmitted. This
avoids the receiver detecting a ‘nack’ from the SmartCard as a start bit.

In SmartCard mode an empty transmit shift register triggers the guardtime counter to count up to the programmed
value in the ASC_n_GUARDTIME register. TxEmpty is forced low during this time. When the guard time counter
reaches the programmed value TxEmpty is asserted high.
 7170179 D 263/294

L30 Asynchronous serial controller STi5518
CONFIDENTIA
The de-assertion of TxEmpty is unaffected by SmartCard mode.

30.7.3 Reception

Reception can be done with FIFOs either enabled or disabled. The behavior is the same as in normal (non-smartcard)
mode except that if a parity error occurs, then providing the transmitter is idle, the UART will transmit a nack on the
TxD for 1 ETU from the end of the received stop bit. RxD is masked when transmitting a nack, since TxD is tied to RxD
and a nack must not be seen as a start bit.

30.7.4 Divergence from ISO SmartCard specification

This UART does not support guardtimes of 0 or 1, and does not have any special behavior for a guardtime of 255.
264/294 7170179 D

LSTi5518 31 Synchronous serial controller
CONFIDENTIA
31 Synchronous serial controller

31.1 Introduction

The high-speed Synchronous Serial Controller (SSC) interfaces to a wide variety of serial memories, remote control
receivers, and other microcontrollers. Several interface standards can be used including the I2C bus in the set-top box
application. The figure below shows how the SSC is interfaced to an I2C bus as the bus master. Software or hardware
handles the I2C bus protocol such as byte acknowledgment, see Section 31.9: I2C hardware configuration on page
271.

The SSC provides flexible high-speed serial communication between the STi5518 and other microprocessors or
external peripherals, using the I2C bus protocol, as a master or slave.

The SSC supports half-duplex synchronous communication. The serial clock signal can be generated by the SSC itself
in master mode, and data width is programmable. Transmission and reception of data is double-buffered. A 16-bit baud
rate generator provides the SSC with a separate serial clock signal.

The high-speed synchronous serial controller can be used to communicate with shift registers (I/O expansion),
peripherals (e.g. EEPROMs) or other controllers (networking). The SSC supports half-duplex communication.

Figure 187 SSC interface to I2C bus

MTSR / MRST

SClk

VDD

A0

VSS(GND)

A1

A2

SDA

SCL

VDD

GND

10nF

2.7k2.7k

ST24C02
slave

STi5518 master
 7170179 D 265/294

L31 Synchronous serial controller STi5518
CONFIDENTIA
31.2 Synchronous serial channel operation

The SSC shift register is connected to both the transmit pin and the receive pin via the pin control logic. This is
illustrated in the block diagram above. Transmission and reception of serial data is synchronized and the same number
of bits are transmitted as received. Transmit data is written into the Transmit Buffer (SSC_n_TXBUF) register, and
moved to the shift register as soon as the shift register is empty. Then it is transmitted via the SSC. When the data has
transferred to the shift register, the transmit buffer empty (TxBufEmpty) flag is set to indicate that the transmit buffer
may be reloaded. When the programmed number of bits (from 2 to 16) has been transferred, the contents of the shift
register are moved to the Receive Buffer (SSC_n_RBUF) register and the receive buffer full (RxBufFull) flag is set. If no
further transfer is to take place, i.e. the transmit buffer is empty, the SSC reverts back to an idle state, waiting for a load
of the transmit register.

Note Only one SSC can be master at a given time.

The serial data bits can be transferred with data width from 2 to 16 bits (set by register bit SSC_n_CON.BM) and for a
wide range of baud rates (set by register SSC_n_BRG).

Unused bits of registers SSC_n_TBUF and SSC_n_RBUF must be ignored.

Figure 188 Synchronous serial channel block diagram

Receiver buffer

Transmitter empty

Receive error

OR gate

full interrupt

interrupt

interrupt

Phase error
interrupt

CPU
clock

Baud rate
generator

Clock
control

Slave clock

Master clock

Shift clock

SSC control block

SSC interrupt

Status Control

16-bit shift register

Pin
control

Transmit buffer
reg (SSC_n_TBUF)

Receive buffer
reg (SSC_n_RBUF)

Internal bus

SClk

MTSR

MRST
266/294 7170179 D

LSTi5518 31 Synchronous serial controller
CONFIDENTIA
31.3 SSC clocking

When SSC_n_CON register bits ClkPhase=0 and ClkPolarity=0, then the clock and data relationship are I2C
compatible. The data is stable during the high level of the clock, and I2C setup and hold times are met. This is illustrated
in the figure below.

Figure 189 Clock and data relationships

ClkPolarity ClkPhase

0 0

Transmit data
Last

bit

Latch data

Shift data

First

bit

Serial clock SClk

Pins MTSR/MRST
 7170179 D 267/294

L31 Synchronous serial controller STi5518
CONFIDENTIA
31.4 Half-duplex operation

In a half duplex configuration, only one data line is necessary for both the reception and transmission of data. The data
exchange line is connected to both pins MTSR and MRST of each device, the clock line is connected to the SClk pin.

The master device controls data transfer by generating the shift clock, while the slave devices receive it. Due to the fact
that all transmit and receive pins are connected to the one data exchange line, serial data may be moved between
arbitrary stations.

Similar to full duplex mode, there are two ways to avoid collisions on the data exchange line:

• only the transmitting device may enable its transmit pin driver

• the non-transmitting devices use open drain output and only send ones.

Since the data inputs and outputs are connected together, a transmitting device clocks its own data at the input pin
(MRST for a master device). This allows detection of any corruptions on the common data exchange line, where the
received data is not equal to the transmitted data.

31.5 Continuous transfers

When the register bit SSC_n_STAT.TIR=1, the transmit buffer SSC_n_TBUF is empty and ready to be loaded with the
next transmit data. If SSC_n_TBUF has been reloaded by the time the current transmission is finished, the data is
immediately transferred to the shift register and the next transmission starts without any delay. On the data line there is
no gap between the two successive frames. For example, two byte transfers would look the same as one word transfer.
This feature can be used to interface with devices which can operate with, or require more than, 16 data bits per
transfer. Software determines how long a total data frame length can be. This option can also be used to interface to

Figure 190 Half-duplex configuration

Master Device #1 SlaveDevice #2

SlaveDevice #3

Clock

MTSR

MRST

SClk Clock

Shift register

MTSR

MRST

SClk Clock

Shift register
Common
transmit /
receive

line
MTSR

MRST

SClk

Shift register

Clock
268/294 7170179 D

LSTi5518 31 Synchronous serial controller
CONFIDENTIA
byte-wide and word-wide devices on the same serial bus. Note that this can only happen in multiples of the selected
basic data width, since it would require disabling/enabling of the SSC to reprogram the basic data width on-the-fly.

31.6 Baud rates

The SSC has its own dedicated 16-bit baud rate generator with 16-bit reload capability. The resultant baud rate for
transmission and reception is half the value in the SSC_n_BRG register.

The formulae below calculate either the resulting baud rate for a given reload value, or the required reload value for a
given baud rate:

Where, <SSCBaudRate> represents the content of the reload register as an unsigned 16-bit integer, and fCPU
represents the CPU clock frequency.

The maximum baud rate that can be achieved with a CPU clock of 40 MHz is 5 MBaud. The table below lists some
possible baud rates, together with the required reload values and the resulting bit times, assuming a CPU clock of
40 MHz.

31.7 Hardware error detection capabilities

The SSC can detect two different error conditions.

• Receive Error

• Phase Error

When an error is detected, the respective error flag is set in the SCC_n_Status register. The error interrupt handler can
then check the error flags to determine the cause of the error interrupt.

• A Receive Error is detected, when a new data frame is completely received, but the previous data was not read out
of the receive buffer register SSC_n_RBUF. This condition sets the error (RxError) flag and, when enabled via
RxErrorIE, the error interrupt request flag (ErrorInterrupt). The old data in the receive buffer SSC_n_RBUF will be
overwritten with the new value and is irretrievably lost.

Baud rate Bit time Reload value

Reserved. Use a reload value > 0 - #0000

5 MBaud 200 ns #0004

3.3 MBaud 300 ns #0006

2.5 MBaud 400 ns #0008

2.0 MBaud 500 ns #000A

1.0 MBaud 1 µs #0014

100 KBaud 10 µs #00C8

10 KBaud 100 µs #07D0

1.0 KBaud 1 ms #4E20

Table 115 Baud rates and bit times for different SSC_n_BRG reload values

Baudrate
2 x <SSCBaudRate>

<SSCBaudRate> = (
 2 x Baudrate

)=
fCPU fCPU
 7170179 D 269/294

L31 Synchronous serial controller STi5518
CONFIDENTIA
• A Phase Error is detected, when the incoming data on the MRST pin, sampled at the same frequency as the CPU

clock, changes between one sample before and two samples after the latching edge of the clock signal. This
condition sets the error flag PhaseError and, when enabled via PhaseErrorIE, the error interrupt request flag
(ErrorInterrupt).

31.8 Interrupt control

The SSC has two registers to control interrupts, a status (SSC_n_Status) register and an interrupt enable (SSC_n_IEn)
register. The status bits in the SSC_n_Status register determine the cause of the interrupt. Interrupts occur when a
status bit =1 and the corresponding bit in the SSC_n_IEn register=1.

The error interrupt signal (ErrorInterrupt) is generated by the SSC from the OR of the receive error and phase error
status bits after they have been ANDed with the corresponding enable bits in the SSC_n_IEn register.

An overall interrupt request signal (SSCinterrupt) is generated from the OR of the receive interrupt request (RxBufFull),
transmit interrupt request (TxBufEmpty) and error interrupt request (ErrorInterrupt) signals.

The status register cannot be written to directly by software. The set and reset mechanism for the status register is
described below.

• The receiver interrupt status bit (RxBufFull) is set when a character is loaded from the shift register into the receive
buffer (SSCRxBuffer). The RxBufFull bit is reset when a character is read from the receive buffer (SSCRxBuffer).

• The transmitter interrupt status bit (TxBufEmpty) is set when a character is loaded from the transmitter buffer
(SSCTxBuffer) into the shift register. The TxBufEmpty bit is reset when a character is written into the transmitter
buffer (SSCTxBuffer).

• The status bits (RxError, PhaseError) are reset when a character is read from the receive buffer (SSCRxBuffer).

An interrupt handler for the SSC must read the SCC_n_STATUS register before writing the SCC_n_TBUF or reading
the SCC_n_RBUF, as there might have been an error. The error flags are cleared by these read or write operations.

Figure 191 SSC status and interrupt registers

&

&

&

&

SSC_n_STATUS
register register

SSC_n_IEN

RxBufFullIE

TxBufEmptyIE

RxErrorIE

PhaseErrorIE

RxBufFull

TxBufEmpty

RxError

PhaseError

Receiver buffer
full interrupt

Transmitter buffer
empty interrupt

Reserved
read 0, write 0

Reserved
read 0, write 0

Reserved
read 0, write 0

Reserved
read 0, write 0

Receive error
interrupt

Phase error
interrupt
270/294 7170179 D

LSTi5518 31 Synchronous serial controller
CONFIDENTIA
31.9 I2C hardware configuration

In order to reduce the load on the CPU, the hardware configuration of the I2C interface can be used. This is selected by
setting register.bit SSC_n_I2C.I2CM=1. In this configuration, start, stop and acknowledge are handled automatically by
the hardware. When bit I2CM=1, register SSC_n_I2C is used in the following way:

• To generate a start condition set bit STRTG=1 and then load register SSC_n_TBUF with the data to be transmitted;
transmission begins automatically when this register is loaded. You must reset STRTG after the device address is
sent

• To generate a stop condition in order to terminate the transmission, set bit STOPG=1. Reset STOPG after the stop
condition is sent.

• To generate an acknowledge set ACKG=1.
 7170179 D 271/294

CONFIDENTIAL32 Parallel input/output port STi5518

272/294 7170179 D

32 Parallel input/output port
44 bits of parallel I/O are configured in 6 ports, and each bit is programmable as output or input. The output can be
configured as a totem-pole or open-drain driver. The input compare logic can generate an interrupt on any change of
any input bit. Many parallel IO have alternate functions and can be connected to an internal peripheral signal such as a
UART or SSC.

The PIO ports can be controlled by registers, mapped into the device address space. The registers for each port are
grouped in a 4 Kbyte block, with the base of the block for port n at the address PIOnBaseAddress. During reset all of
the registers are reset to zero.

Each eight-bit PIO port has a set of eight-bit registers. Each of the eight bits of each register refers to the corresponding
pin in the corresponding port. These registers hold:

• The output data for the port (PIO_PnOut).

• The input data read from the pin (PIO_PnIn).

• PIO bit configuration registers (PIO_PnC0-2).

• The two input compare function registers (PIO_PnComp and PIO_PnMask).

Each of the registers, except PIO_PnIn, is mapped onto two additional addresses so that bits can be set or cleared
individually.

• PIO_Set_ registers set bits individually; writing a ‘1’ in these registers sets a corresponding bit in an associated
register, a ‘0’ leaves the bit unchanged.

• PIO_Clear_ registers clear bits individually; writing a ‘1’ in these registers resets a corresponding bit in an
associated register, a ‘0’ leaves the bit unchanged.

The PIO5[3] input is inversed for the PIO and UHF input functions, but not inverted for the SDAV functions.

LSTi5518 33 Modem analog front-end interface
CONFIDENTIA
33 Modem analog front-end interface

33.1 Overview

Modem Analog Front-end Interface (MAFEIF) is an integrated interface to a Modem Analog Front End (AFE) such as
the STLC7550.

In this chapter, the term “sample” is a 16-bit data-object that is transferred to or from the modem through the MAFEIF,
and the term “sample period” is the time from the start of one sample to the start of the next.

The MAFEIF simultaneously transmits samples into and out of the AFE. It typically operates at a rate of 9600 samples/
second, giving a typical sample period of 100µs. That is, every 100µs, one sample is transmitted and another received
through the MAFEIF.

The MAFEIF receives its system clock signal (SClk) from the AFE. The SClk frequency is typically 256 ticks/sample
period, or 2.56 MHz. The first 16 ticks of the 256 tick sample period are used to exchange a 16-bit sample pair (1 bit per
tick).

The MAFEIF uses one DMA to transfer samples from a transmit memory buffer to the AFE, and simultaneously uses a
second DMA to receive samples from the AFE and write them into the receive memory buffer. The software driver is
“woken-up” every time a simultaneous transfer is completed - that is, every time a transmit memory buffer has been
emptied and a receive memory buffer has been filled. For example, if each memory buffer contains 100 samples, the
software is “woken up” every (100 x 100µs) 10ms. This is more stringent for handshake signals where the buffer-size
could be as low as a few samples, e.g. 4.

The software modem has two pairs of pointers (i.e. four pointers) that point to two pairs of transmit/receive buffers. The
modem and the MAFEIF alternately switch between the two pairs of pointers. While the MAFEIF transmits and receives
using one pair of buffers, the software modem processes the information in the other pair. Using the above example for
a buffer containing 100 samples, the software has 10ms to wake-up and then process one pair of transmit/receive
buffers before they are required again by the MAFEIF.

33.2 Using the MAFEIF to connect to a modem

The following table lists the pins that are by the MAFEIF to connect a modem:

Name Pin # Type MAFEIF function name (alt) MAFEIF function description

PIO2[1] 205 O MAFEIF_DOUT/PARA_REQ Line for serially transmitting samples to the AFE.

PIO2[2] 206 O MAFEIF_HC1 Indicates to the AFE that a control/status exchange will take
place.

PIO3[0] 6 I MAFEIF_SCLK/
PARA_DATA{0]

Modem system clock. The frequency should be less than half of
the device system clock

PIO3[1] 7 I MAFEIF_DIN/PARA_DATA[1] Line for serially receiving samples from the AFE.

PIO3[2] 8 I MAFEIF_FSI/PARA_DATA[2] Signal from the AFE indicating the start of a sampling period. This
is latched on falling edges of Sclk. For normal operation it should
not remain high for more than 16 Sclk cycles, and there should be
at least 20 Sclk ticks between consecutive rising edges of Fs.

Table 116 MAFEIF pins
 7170179 D 273/294

L33 Modem analog front-end interface STi5518
CONFIDENTIA
33.3 Software

The MAFEIF software manages the data exchange between the software modem and MAFEIF, and handles the
control/status exchange.

33.3.1 Data exchange

When the MAFEIF exchanges data, the software:

1 disables all interrupts;

2 sets the buffer size, e.g. 100 samples;
(For handshake response times, the buffer-size could be as low as a few samples, e.g. 4.)

3 sets-up both pairs of memory pointers in the MAFEIF (this will probably not be changed again);

4 enables status (complete) interrupt;

5 sets the control (run) bit;

6 deschedules.

The MAFEIF then processes a buffer-load of samples (that is, it transmits 100 samples and receives 100 samples).
When this is complete, the MAFEIF sets the status (complete) bit, causing the software to be “woken-up”. The software
then continues as follows:

7 processes the receive memory buffer and fills the next transmit memory;

8 confirms that there has been no overflow (i.e. failure to finish the software processing of a buffer before that buffer
has started to be overwritten again);

9 confirms that there have been no memory latency problems during the exchange of the previous buffer, by reading
the status(missed) bit;

10 if everything is OK, SW writes to the acknowledge register and deschedules.

33.3.2 Control/status exchange

For a control/status exchange, the software writes to the MOD_CONTROL register to enable the status interrupt
(ctrl_empty), and then deschedules.

When the software “wakes-up”, it reads the modem status and disables the status interrupt (ctrl_empty) again.
274/294 7170179 D

LSTi5518 34 Infrared transmitter/receiver
CONFIDENTIA
34 Infrared transmitter/receiver

34.1 Introduction

The IR transmitter/receiver is an ST20 peripheral. For each symbol transmitted, the SW driver determines the symbol
period and the symbol on-time of the IR pulse, and transfers these parameters into a 4-word deep FIFO. The IR
transmitter/receiver then generates coded symbols using an internally generated subcarrier clock.

The parameters symbol period and symbol on-time are illustrated in the figure below.

The incoming signal must be detected, and the subcarrier must be suppressed, externally. Only the symbol envelope
can be used by the IR and UHF processors. It is sampled at 10 MHz and the sample values are transferred into the
input buffer in microseconds.

34.2 Functional description

Overview

The IR transmitter/receiver transmits infrared(IR)-data and receives both IR- and UHF-data. The IR and UHF receivers
are independent and identical, except that the IR receiver does not use the noise filter. Both receivers are
simultaneously active. The IR transmitter/receiver supports RC (remote control) codes only.

Figure 193 shows the IR transmitter/receiver block diagram in a typical circuit configuration with input demodulating
and output buffering (open drain).

In the transmitter there are two programmable dividers to generate the prescaled clock and the subcarrier clock. The
subcarrier clock sets the resolution for the transmitted data. Both receivers contain a sampling-rate clock, which
samples the incoming data, and is programmed to 10 MHz.

FIFOs buffer both the transmitter output and the receivers’ inputs to avoid timing problems with the CPU. Interrupts can
be set on the FIFOs’ levels to prevent input data overrun and output data under-run.

The two receivers each have one input pin, and the transmitter has two output pins (one driven directly and the other
inverted as open drain).

There are two 4-word FIFOs in the RC transmitter and two in each RC receiver. The fourth element in each 4-word
FIFOs is used internally and is not accessible to the ST-20 bus. Therefore, the 4-word FIFO is empty when there are
three empty words and full when it contains three words. At all times, the fullness level of the 4-word FIFO is given in
the corresponding status register, as described later.

The FIFO pair, “symbol period” and “symbol on-time”, in each sub-module must be treated as a set and must be
consecutively accessed for read or for write. They share a common pointer which is incremented only when they have

Figure 192 IR transmitter/receiver symbol

symbol on-time

symbol period
 7170179 D 275/294

L34 Infrared transmitter/receiver STi5518
CONFIDENTIA
been accessed correctly. Repeated reads on one FIFO will always give the same data, and repeated writes will always
over-write the previous data.

RC transmit code processor

RC codes are generated by programming the transmit frequency and writing the symbol information into a FIFO. The
FIFO is then read internally and the data processed to provide a serial PWM data stream. The transmit interrupt is set
on a pre-selected FIFO level. An interrupt and a flag in the status register indicate an under-run condition (i.e. an empty
FIFO). RC data transmission is disabled by setting bit 0 of register ‘IRB_TX_EN_IR to “0”.

The transmit interrupt is set by register IRB_TX_INT_EN_IR, on one of three FIFO levels:

• when three words are empty (buffer is empty);

• when two or more words are empty (buffer is half full);

• when at least one word is empty.

The transmit interrupt is cleared automatically when new data is written to the registers IRB_TX_SYM_PERIOD_IR and
IRB_TX_ON_TIME_IR. Register bits IRB_TX_INT_STATUS_IR[5:4] give the FIFO’s fullness status.

The frequency of the sub-carrier is set by programming the registers ‘IRB_TX_PRE_SCALER_IR and
‘IRB_TX_SUB_CARRIER_IR‘.

The symbol period, in sub-carrier cycles, is programmed in the register IRB_TX_SYM_PERIOD_IR and the on-time of
the IR pulse is written to the register ‘IRB_TX_ON_TIME_IR. These two registers are four-word FIFOs. They must be
programmed sequentially as a pair to increment the write-pointer and be ready for the next data. Transmission is
enabled by setting register ‘IRB_TX_EN_IR bit 0 to “1”. If new data is not written before the last symbol in the buffer is
transmitted, no RC codes are generated. The output is driven to logic “0” and the register IRB_TX_INT_STATUS_IR bit
1 is set.

Before data can be transmitted, the under-run condition must be cleared as follows:

• Disable the transmission by writing “0” to register IRB_TX_EN_IR.

Figure 193 IR transmitter/receiver block diagram and implementation

RC receive

code processor

UHF Processor

IR data out

IR data in

ST20 BUS
PIO5[3]

PIO5[4]

PIO5[5]

PIO5[2]

RC transmit

processor

RC receive

code processor

IR Processor

code

Note: PIO5[5] must be programmed in open drain mode

IR module

Demod and
carrier suppress

UHF data in Demod and
carrier suppress

input
signal

input
signal
276/294 7170179 D

LSTi5518 34 Infrared transmitter/receiver
CONFIDENTIA
• Load at least one block of data into IRB_TX_SYM_PERIOD_IR and IRB_TX_ON_TIME_IR.

• Clear the “Tx_UnderRun” status bit by writing “1” to register IRB_TX_CLR_UNDERRUN_IR

Transmission is resumed by writing “1” to register IRB_TX_EN_IR.

RC receive code processor

This section describes the UHF-data and the IR-data receivers. They are independent and identical except that the
noise suppression filter is programmable in the UHF receiver, and is not used in the IR receiver. The 10 MHz sampling
clock is common to both receivers and is set by register IRB_RX_SAMPLING_RATE_COMMON. This register is
programmed with the value 5 for a 50 MHz IRB system clock, or with the value 6 for a 60 MHz clock.

Each receiver processes the incoming RC code symbol envelope and stores the values “symbol period” and “symbol
on-time” (in microseconds) in a four-word FIFO buffer, until the data can be read by the microcontroller.

The receive interrupt is set by register IRB_RX_INT_EN to one of the following three FIFO levels:

• at least one word is available to be read;

• two or more words or more are available to be read (FIFO half full);

• three words are available to be read (FIFO full).

The interrupt is cleared automatically when the registers IRB_RX_SYM_PERIOD and IRB_RX_ON_TIME have been
read. They must be read consecutively, as a pair, to increment the FIFO read pointer. The register
IRB_RX_INT_STATUS bits 4 and 5 give the fullness level of the FIFO.

If the FIFO is full and has not been read before the arrival of new data, then this data is lost and a receive overrun flag
is set in the status register IRB_RX_INT_STATUS. No new data is written to the FIFO while this condition exists. To
reset the overrun flag the following operations must be performed:

• Read at least one word from each of the receive FIFO registers, IRB_RX_SYM_PERIOD and IRB_RX_ON_TIME.

• Clear the RxOverRunStatus bit by writing 0x01 to register IRB_RX_CLR_OVERRUN.

The last symbol is detected using a time-out condition whose value is stored in microseconds in register
IRB_RX_MAX_SYM_PERIOD. If no pulse has been received during this time then the last word in the FIFO
IRB_RX_SYM_PERIOD has a value 0xFFFF. If the value of register IRB_RX_INT_EN bit 1 (LastSymbolIrqEnable bit),
is “1”, then an interrupt is triggered and the status register IRB_RX_INT_STATUS bit 1 is set. The interrupt and its
status bit are cleared automatically when the last value in the FIFO has been read.

When register IRB_RX_INT_EN bit 0 is set to “0” then both the FIFO level interrupt and the last symbol interrupt are
inhibited.

RC data reception can be disabled by setting register IRB_RX_EN bit 0 to “0”. However, both receivers are normally
always enabled.

Noise suppression filter

This filter is turned off in the IR receiver and is programmable in the UHF receiver using register
IRB_RX_NOISE_SUPPRESS_WIDTH_UHF. Any pulses, either high or low, having a value in microseconds of less
than the programmed width, are assumed to be noise and, therefore, suppressed.

The noise suppression filter can be disabled by writing “0x00” to register IRB_RX_NOISE_SUPPRESS_WIDTH_UHF.
 7170179 D 277/294

L35 Electrical specifications STi5518
CONFIDENTIA
35 Electrical specifications

35.1 Absolute maximum ratings

Maximum limits indicate where permanent device damage occurs. Continuous operation at these limits is not intended
and should be limited to those conditions specified in DC electrical characteristics.

35.2 DC electrical characteristics

35.2.1 Static

Operating conditions: VDD3_3 = 3.3V !0.3V, VDD2_5 = 2.5V !0.25V, Tamb = 0 to 70ºC unless otherwise specified.

Symbol Parameter Min. Max. Units

VDD3_3 Power Supply (pads) -0.5 4 V

VDD2_5 Power Supply (core) -0.5 3 V

VDD_RGB, VDD_YCC, VDD_PLL, VDD_PCM Power Supply -0.5 4 V

VI, VO Voltage on input and output pins -0.5 4 V

Tstg Storage Temperature -65 +150 ºC

Toper Ambient Operating Temperature 0 +70 ºC

Table 117 Absolute maximum ratings

Symbol Parameter Test Conditions Min. Typ. Max. Units Notes

VDD3_3 Operating voltage 3.0 3.3 3.6 V

VDD2_5 Operating voltage 2.25 2.5 2.75 V

VIL Input Logic Low Voltage -0.3 +0.8 V

VIH Input Logic High Voltage 2.0 3.6 V

II
IOZ

Input leakage Current
Inputs
Outputs

-10
-10

+10
+10

µA
µA

VOL Output Logic Low Voltage 0.4 V

VOH Output Logic High Voltage 2.4 V

CIN Input Capacitance 10 pF

IDDA Analog Current Consumption
RI_REF = 16.9KΩ, RL = 200Ω

20 50 mA

10-bits D/A converter

RI_REF Resistance for reference Current
Source for 3 D/A Converters

I_REF = VI_REF/RI_REF 16.9 kΩ

VO Output Voltage Dyn RI_REF = 16.9 KΩ, RL = 274Ω,
VDD2_5 = 2.5V

1.21 1.31 1.41 VPP

DAC to DAC VO max code
(tri-DAC only)

RI_REF = 16.9 KΩ, RL = 274Ω,
VDD2_5 = 2.5V

 -5 +5 %

Iout DAC output current 5.0 mA

Vout DAC output voltage 1.45 V

Table 118 DC electrical characteristics
278/294 7170179 D

LSTi5518 35 Electrical specifications
CONFIDENTIA

35.2.2 ST20 running at 60.75 MHz

35.2.3 ST20 running at 81.0 MHz

ILE LF Integral Non-linearity RI_REF = 16.9 KΩ, RL = 274Ω,
VDD2_5 = 2.5V

 -2 +2 LSBs

DLE LF Differential Non-linearity RI_REF = 16.9 KΩ, RL = 274Ω,
VDD2_5 = 2.5V

 -1 +1 LSBs

Symbol Parameter Test Conditions Min. Typ. Max. Units Notes

VDD3_3 Operating voltage 3.0 3.3 3.6 V

VDD2_5 Operating voltage 2.25 2.5 2.75 V

IDD3_3 Average power supply current ST20 operating frequency 60.75 MHz 60 150 mA

IDD2_5 Average power supply current ST20 operating frequency 60.75 MHz 650 750 mA 1

1. This figure includes the analogue current consumption.

Table 119 Current consumption with ST20 running at 60.75 MHz

Symbol Parameter Test Conditions Min. Typ. Max. Units Notes

VDD3_3 Operating voltage 3.15 3.3 3.45 V

VDD2_5 Operating voltage 2.35 2.5 2.65 V

IDD3_3 Average power supply current ST20 operating frequency 81.0 MHz,
VDD3_3 = 3.3V !0.15V,
VDD2_5 = 2.5V !0.15V

60 150 mA

IDD2_5 Average power supply current ST20 operating frequency 81.0 MHz,
VDD3_3 = 3.3V !0.15V,
VDD2_5 = 2.5V !0.15V

710 800 mA 1

1. This figure includes the analogue current consumption.

Table 120 Current consumption with ST20 running at 81.0 MHz

Symbol Parameter Test Conditions Min. Typ. Max. Units Notes

Table 118 DC electrical characteristics
 7170179 D 279/294

L35 Electrical specifications STi5518
CONFIDENTIA
35.3 AC test conditions

Test Conditions: VDD3_3 = 3.3V ! 0.3V, Tamb = 0 to 70ºC, unless otherwise specified.

35.4 Operating conditions

Figure 194 AC test conditions

Symbol Parameter Min. Typ. Max. Units Notes

CLD Load Capacitance per SMI pin (address, data and control) 15 pF

CLA Load Capacitance per EMI pin (address, data and control) 30 pF

CLP Load Capacitance per PIO Pin 30 pF

Table 121 Operating conditions

1.4V

50

10pF
Output

AC Test Conditions (50Ω adapted)

Z = 50
280/294 7170179 D

LSTi5518 35 Electrical specifications
CONFIDENTIA
35.5 Timing diagrams for IO interfaces

Timings, other than rise and fall times, are specified with respect to a threshold of 1.5V.

35.5.1 Input clock

Figure 195 Input clock timing definitions

Symbol Parameter Min. Typ. Max. Unit Notes

T PIX_CLK clock period (typically 27 MHz) 37.0 ns

THIGH Clock high time 16.5 18.5 20.5 ns

TLOW Clock low time 16.5 18.5 20.5 ns

TR/TF Clock rise/fall time 1.0 5.0 ns

Table 122 Input clock timing values

tR t
F

2.0V

0.8V

2.0V

0.8V

t
HIGH

t
LOW

T

PIX_CLK
 7170179 D 281/294

L35 Electrical specifications STi5518
CONFIDENTIA
35.5.2 SMI interface

When the SMI interface is reading, the reference clock is SMI_CLKIN (rising edge), and when it is writing, the reference
is SMI_CLKOUT (falling edge).

Figure 196 AC parameters of read & write (synchronous DRAM) timing definitions

Symbol Parameter Min. Typ. Max. Units Notes

tR_SMI SMI_CLKOUT rise time 2 ns 1

tF_SMI SMI_CLKOUT fall time 2 ns 1

tCK Clock cycle time 7 ns

tS Data input setup time 2 ns

tH Data input hold time 2 ns

tAC Output data access time 2.1 ns 2

tOH Output data hold time -3.1 ns 2

tSA Address output delay time 2.1 ns 2

tHA Address output hold time -3.1 ns 2

tCMS Command (CS, RAS, CAS, WE, DQM) delay time 2.1 ns 2

tCMH Command (CS, RAS, CAS, WE, DQM) hold time -3.1 ns 2

tRCD Delay time ACTIVE to READ/WRITE command 4 T

tRC REF to REF / ACTIVE Command Period 8 T

Table 123 SMI interface timing values

SMI_CLKOUT

tOH

tAC

Output Data

Address

tHA

tSA

Commands

tCMH

tCMS

SMI_CLKIN

tS tH

Input Data

delay

tF_SMI

tR_SMI

(read)

(write)

(to SDRAM)

(from SDRAM)
282/294 7170179 D

LSTi5518 35 Electrical specifications
CONFIDENTIA
tRP ACTIVE to PRE Command Period 3 T

tRRD ACTIVE(A) to ACTIVE(B) command period 4 T

tDAL Data out to ACTIVE command period 5 T

tDPL Data out to PRECHARGE command period 2 T

tRAS ACTIVE to PRECHARGE command period 9 T

1. Test conditions: Cload = 10pF, 50Ω adapted mode at 1.4V, edge measured at 20%-80%.

2. Negative values indicate that the timing is "before" the falling edge of SMI_CLKOUT.

The output parameter definitions in Figure 196, are relative to the falling edge of SMI_CLKOUT. Care must, therefore,
be taken when interpreting the SDRAM data sheet which might have timings relative to the clock rising edge.

Figure 197 Synchronous DRAM power-on sequence timing definitions

Symbol Parameter Min. Typ. Max. Units Notes

Table 123 SMI interface timing values

4 cycles min. 4 cycles min.

SMI_WE

HI-Z

Mode register data

tRC tRCtRP
All banks
precharge
command

Mode
register
Write
command

CBR
refresh

CBR
refresh

Activate
command

x32

SMI_CLKIN/OUT

SMI_CS[0,1]

SMI_RAS

SMI_CAS

SMI_ADR [11]

SMI_ADR [10]

SMI_ADR [0:9]

SMI_DQML, SMI_DQML

SMI_DQ [0:15]

Note, the number of refreshes required varies for different suppliers.
 7170179 D 283/294

L35 Electrical specifications STi5518
CONFIDENTIA

Figure 198 Synchronous DRAM write burst (Burst Length = 4 CAS Latency = 3) timing definitions

Figure 199 Synchronous DRAM read (burst length = 4 CAS latency = 3) timing definitions

Write AActive B Precharge all

tRRD tRP

Write B

tDAL

tDPL

tCMHtCMS

Active A Active B

tRCD

tRC

SMI_CLKIN/OUT

SMI_WE

SMI_CS[0,1]

SMI_RAS

SMI_CAS

SMI_ADR [11]

SMI_ADR [10]

SMI_ADR [0:9]

SMI_DQML, SMI_DQML

SMI_DQ [0:15]

Read BRead A Precharge all

tRP

tCMHtCMS

Active A Active A

tRCD
tRAS

tRC

SMI_CLKIN/OUT

SMI_WE

SMI_CS[0,1]

SMI_RAS

SMI_CAS

SMI_ADR [11]

SMI_ADR [10]

SMI_ADR [0:9]

SMI_DQML, SMI_DQML

SMI_DQ [0:15]
284/294 7170179 D

LSTi5518 35 Electrical specifications
CONFIDENTIA
35.5.3 Video interface

The video timings given in the table below are referenced to the rising edge (unless otherwise indicated) of the external
clock PIX_CLK.

Symbol Parameter Min. Typ. Max. Units Notes

tSYCKenot0 ODDEVEN setup time 4.0 ns

tSYCKsync HSYNC setup time 4.0 ns

tCKSYenot0 ODDEVEN hold time 4.0 ns

tCKSYsync HSYNC hold time 4.0 ns

tCKPV YC7-YC0 output delay time 15 ns

Table 124 Video interface timing values

Figure 200 Video interface timing definitions

tCKPV

YC7-YC0
(outputs)

PIX_CLK

tCKSY

HSYNC
ODDEVEN
(inputs)

tSYCK
 7170179 D 285/294

L35 Electrical specifications STi5518
CONFIDENTIA
35.5.4 EMI interface

There are 2 EMI modes:

• mode no SDRAM (register bit EMI_CONFIGPADLOGIC[11]=0):

the reference is clock CPU_PROCLK rising edge;

• mode SDRAM (register bit EMI_CONFIGPADLOGIC[11]=1):

outputs (CPU_ADR, CPU_DATA, CPU_RW and commands) are driven by clock CPU_PROCLK falling edge and
inputs (memory read data) are latched with clock CPU_PROCLK rising edge;

Symbol Parameter Min. Typ. Max. Units Notes

tCHAV CPU_ADDR access time -4.0 4.0 ns

tCLSV Strobe output delay time (from CPU_PROCLK falling) -4.0 4.0 ns

tCHSV Strobe output delay time -4.0 4.0 ns

tRDVCH Read CPU_DATA setup time 5.0 ns

tCHRDX Read CPU_DATA hold time 0 ns

tCHWDV Write CPU_DATA output delay time 0.0 4.0 ns

tCHRSV "Remaining strobes" output delay time -1.0 4.0 ns

tWVCH CPU_WAIT setup time 5.0 ns

tCHWX CPU_WAIT hold time 0.0 ns

Table 125 EMI interface timing values

Figure 201 EMI interface timing definitions for mode no SDRAM

tCHAV

tCLSVtCHSV

tCHRDXtRDVCH

tCHWDV

tCHRSV

tWVCH tCHWX

CPU_ADR[20:0]

CPU_RAS1, CPU_CAS[1:0],
CPU_BE[1:0], CPU_CE[3:0]
and CPU_OE

CPU_DATA[15:0]
(write)

CPU_WAIT

CPU_PROCLK

CPU_DATA[15:0]
(read)

CPU_RW
286/294 7170179 D

LSTi5518 35 Electrical specifications
CONFIDENTIA

35.5.5 TAP interface

Figure 202 EMI interface timing definitions for mode SDRAM

Symbol Parameter (default reference is TCK rising edge) Min. Typ. Max. Units Notes

tTIVTCH Input setup time 4 ns

tTCHTIX Input hold time 4 ns

tTCHTOV Output delay time (reference TCK falling edge) 15 ns

Table 126 Tap timing values

Figure 203 TAP timing definitions

tWVCH tCHWX

tCHAV

tCHWDV

tCHRSV

CPU_ADR[20:0]

CPU_RAS1, CPU_CAS[1:0],
CPU_BE[1:0], CPU_CE[3:0]
and CPU_OE

CPU_DATA[15:0]
(write)

CPU_WAIT

CPU_PROCLK

CPU_RW

tCHRDXtRDVCH

CPU_DATA[15:0]
(read)

tCHSV

tCHTIX

tTIVTCH

tTCHTOV

TCK

TDI,
TMS

TDO
 7170179 D 287/294

L35 Electrical specifications STi5518
CONFIDENTIA
35.5.6 Link interface

35.5.7 I2S interface

Symbol Parameter (default reference is B_BCLK falling edge) Min. Typ. Max. Units Notes

tLDVLCH Input setup time 2 ns

tLCHLDX Input hold time 2 ns

Table 127 Link interface timing values

Figure 204 Link interface timing definitions

Symbol Parameter Min. Typ. Max. Units Notes

tI2SSETUP Input setup time 4.5 ns

tI2SHOLD Input hold time 1 ns

Table 128 I2S interface timing values

Figure 205 I2S interface timing definitions

tLDVLCH tLCHLDX

B_BCLK

B_DATA,
B_FLAG

B_BCLK

B_DATA, B_FLAG,
B_WCLK, B_SYNC

tI2SSETUP tI2SHOLD
288/294 7170179 D

LSTi5518 35 Electrical specifications
CONFIDENTIA
35.5.8 Parallel interface

35.5.9 Audio interface

Symbol Parameter Min. Typ. Max. Units Notes

Tsetup Input data setup time 3 ns

Thold Input data hold time 8 ns

Treq_to_str Request to rising input strobe time 0 ns

Tstr_to_req Rising input strobe to request inactive time 5 35 ns

Table 129 Parallel interface timing values

Figure 206 Parallel interface timing definitions

Symbol Parameter Min. Typ. Max. Units Notes

tSCLPD SCLK falling edge to data valid 10 ns

tSCLLR SCLK falling edge to LRCLK hold time 10 ns

Table 130 Audio timing values

Figure 207 Audio timing definitions

PARA_STR

PARA_DATA[7:0]

PARA_REQ

Tperiod

Tstr_to_req
Treq_to_str

Thold

Data 1 Data 2 Data 3 Data 4 Data 2048

Tsetup

(input)

(input)

(output)

tSCLPD

PCM data
(out)

SCLK

tSCLLR

LRCLK
(input)
 7170179 D 289/294

L35 Electrical specifications STi5518
CONFIDENTIA
35.5.10 ATAPI interface

Symbol Parameter (default reference is DIO rising edge) Min. Typ. Max. Units Notes

tAD_TO_DIOW Address setup time (reference is DIOW falling edge) 30 240 ns

tAD_TO_DIOR Address setup time (reference is DIOR falling edge) 30 240 ns

tDIO_TO_AD Address hold time 10 220 ns

tD_SETUP Data in setup time 15 ns

tD_HOLD Data in hold time 5 ns

tD_VALID Data output delay time 15 ns

Table 131 ATAPI interface timing values

Figure 208 ATAPI interface timing definitions

tD_VALID

data in
(read ATAPI)

DIOR (read)
DIOW (write)

address
(input)

tAD_TO_DIO

data out
(write ATAPI)

tD_HOLD

tD_SETUP

tDIO_TO_AD
290/294 7170179 D

CONFIDENTIALSTi5518 36 Package mechanical data

 7170179 D 291/294

36 Package mechanical data
TheSTi5518 is packaged in a 208-pin Plastic Quad Flat Pack

Figure 209 PQFP208 schematic

Dimensions
Millimeters Inches

minimum typical maximum minimum typical maximum

A 4.10 0.0161

A1 0.25 0.010

A2 3.20 3.40 3.60 0.126 0.134 0.142

B 0.17 0.27 0.007 0.011

C 0.09 0.20 0.004 0.008

D 30.60 1.205

D1 28.00 1.102

D3 25.50 1.004

e 0.50 0.020

E 30.60 1.205

E1 28.00 1.102

E3 25.50 1.004

L 0.45 0.60 0.75 0.018 0.024 0.030

L1 1.30 0.051

K 0° (Min.), 7° (Max.)

Table 132 PQFP208 dimensions

PIN 1
IDENTIFICATION

E3

E1

E

D
3

D
1 D

B

e

A1

A2

L

K

C

L1

0.
00

4
0.

10
m

m

S
ea

tin
g

pl
an

e

208 157

156

10453

52

1

105

L37 Revision history STi5518
CONFIDENTIA
37 Revision history

37.1 Changes for rev D
The corrections made to STi5518 datasheet rev B to create rev D are given in the table below. Rev C was an internal
revision control, and no changes were made to the document

37.2 Changes for rev C

Internal revision control, no changes to document.

37.3 Changes for rev B
The corrections made to STi5518 datasheet rev A to create rev B are given in the table below.

Change Description

Chapter 2: Pin data on page 15 Pin (118) name CPU_RAM_CLK is replaced by CPU_PROCLK
(previously, both these names were used for pin 118).Section 35.5.4: EMI interface on page 286

Table 37: List of strobes used for all EMI configurations on
page 68

Clarified peripheral/DRAM combinations in bank configuration
column.

Chapter 11: Test access port on page 88 Added register for silicon cut identification.

Section 13.3: DVB-CI mode (optional) on page 94 New section (optional) for set-top box applications.

Section 13.5: ATAPI interface on page 97 Clarification of ATAPI drive speed.

Chapter 20: Digital encoder on page 187 Removed references containing "non-interlaced" (no longer
required) and deleted register bit name nintrl.

Chapter 22: Double triple video DAC on page 216 Updated sentence (in para 3): Current-sources provide

Chapter 31: Synchronous serial controller on page 265 SSC can be master or slave;
Added Section 31.9: I2C hardware configuration on page 271.

Chapter 35: Electrical specifications on page 278 New characterizations.

Table 133 Rev B to rev D changes

Change Description

Cover page Revised text and modified features: CPU frequency 80 MHz,
Macrovision (optional).

Section 1.4: Audio decoder on page 11 Dolby Digital, MPEG-1: added layer III to description.

Table 1: Pins sorted by function on page 16 and Table 2: Pins
sorted by number on page 20

Pin numbers 114 and 116 changed to I/O type.
Added main and alternate functions to pins 1, 2, 3, 187, 188.

Table 1: Pins sorted by function on page 16 and Table 2: Pins
sorted by number on page 20

Alternate functions YC[7:0] are outputs.

Table 1: Pins sorted by function on page 16 and Table 2: Pins
sorted by number on page 20

Alternate functions for pins 16 - 19 updated.

Section 3.5: Timers on page 30 Erroneous name ProcClockOut replaced by
CPU_PROCLK

Chapter 5: Interrupt system on page 45 corrected interrupt numbers in Table 34: STi5518 Interrupt
assignments on page 50

Table 35: STi5518 memory map on page 52 Removed unused variable MPEGDMA2BaseAddress

Section 7.1: External memory on page 56 Updated shared SDRAM memory size.

Table 134 Rev A to rev B changes
292/294 7170179 D

LSTi5518 37 Revision history
CONFIDENTIA
Section 7.3: Caching on page 56 Updated complete section.

Sub-Section 8.3.2: SDRAM on page 75 Erroneous name ProcClockOut replaced by
CPU_PROCLK

Table 41: Default configuration on page 80 EMI default device type changed to ’000’ (peripheral).

Chapter 10: Diagnostic controller on page 83 Erroneous names TriggerIn replaced by TRIGGER_IN, and
TriggerOut by TRIGGER_OUT.

Chapter 11: Test access port on page 88 Removed text concerning "... for cut A0, the value is 0x20 ...".

Section 13.2: Serial interface on page 93 Updated signal names referring to serial bus.

Section 13.4: Parallel interface on page 95 Modified text and Figure 38 and Figure 39 on page 96.

Section 13.5: ATAPI interface on page 97 Added 5th. paragraph: ...accessed through bank 1 of CPU

Section 14.4: Detailed description on page 109 sub-Section 14.4.1: Input interface: serial bus names updated.

Section 14.4: Detailed description on page 109 sub-Section 14.4.2: NRSS interface: serial bus names updated.

Section 14.4, sub-section Not equal filtering on page 119 Added first paragraph: ...used only in DVB, not in DSS.

Section 14.6: Hard disk drive buffer control on page 132 Added this new section.

Chapter 19: SDRAM block move on page 186 Removed register USD_BSK from Table 96: SDRAM block
move registers on page 186.

Section 20.4: Master mode on page 192 Added section.

Section 20.7: Subcarrier generation on page 199 Modified section.

Figure 154: Double triple video DAC schematic on page 216 Updated signal and block names.

Section 22.5: Output-stage adaptation and amplification on
page 218

Modified section.

Figure 157: Audio decoder block-diagram on page 221 Added MP3 block to diagram.

Section 23.7, sub-section MP3 decoding mode on page 228 Removed references to 8 kHz and 11.025 kHz.

Figure 165: MP3 decoding flow on page 228 New diagram for MP3 flow.

Section 23.8: PCM output on page 229 Modified text in sub-section Output configurations on page
229concerning configuration 2 & 3 and associated diagram in
Figure 166.

Section 23.9: SPDIF output on page 233: Overview Added text regarding register AUD_PCMCONF.

Chapter 25: Clock generator on page 242 Deleted section "Audio clock frequency synthesizer".

Section 25.3: PCM clock on page 244 Updated text and table values.

Section 29.2: SmartCard clock generator on page 252 Clarified programming of register SCI_n_CLKVAL.

Figure 189: Clock and data relationships on page 267 Changed value of ClkPhase to 0 in figure and in text.

Chapter 35: Electrical specifications on page 278 New characterizations.

Table 118: DC electrical characteristics on page 278 Re-formatted (tables 117 & 118)and updated current consump-
tion and VIH max. value.

Table 120: Current consumption with ST20 running at
81.0 MHz on page 279

Added table.

Figure 200: EMI interface timing definitions on page 284 Updated signal names.

Figure 206: Parallel interface timing definitions on page 289 Corrected definition of TSTR_REQ (see also Figure 38).

Change Description

Table 134 Rev A to rev B changes
 7170179 D 293/294

CONFIDENTIAL STi5518

294/294 7170179 D

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of
such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication
or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice.

This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical
components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco

The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

	1 Architecture overview
	1.1 Introduction
	Figure�1� Functional block diagram

	1.2 Central processor
	1.3 MPEG video decoder
	Figure�2� Display planes

	1.4 Audio decoder
	1.5 IR transmitter/receiver
	1.6 Modem analog front-end interface
	1.7 Memory subsystem
	On-chip
	Off-chip

	1.8 Serial communication
	Asynchronous serial controllers

	1.9 Front-end interface
	1.10 On-chip PLL
	1.11 Diagnostic controller (DCU)
	1.12 Interrupt subsystem
	1.13 PAL/NTSC/SECAM encoder
	1.14 SmartCard interfaces
	1.15 PWM and counter module
	1.16 Parallel I/O module

	2 Pin data
	2.1 Pin out
	2.2 Pin list sorted by function
	Table�1� Pins sorted by function

	2.3 Pins sorted by pin number
	Table�2� Pins sorted by number

	3 Central processing unit
	3.1 Registers
	Figure�3� Registers used in sequential integer processes

	3.2 Processes and concurrency
	Figure�4� Linked process list
	Table�3� Priority queue control registers

	3.3 Priority
	3.4 Process communications
	3.5 Timers
	Table�4� Timer registers
	Figure�5� Timer registers

	3.6 Traps and exceptions
	3.6.1 Trap groups
	Figure�6� Trap arrangement
	Table�5� Trap group codes

	3.6.2 Events that can cause traps
	Table�6� Trap causes and status/enable codes

	3.6.3 Trap handlers
	Table�7� Trap handler structure
	Table�8� Trapped process structure
	Trap instructions
	Table�9� Instructions which may be used when dealing with traps

	3.6.4 Restrictions on trap handlers

	4 Instruction set
	Figure�7� Instruction format
	4.1 Instruction cycles
	4.2 Instruction characteristics
	Table�10� Prefix coding
	Table�11� Instruction features

	4.3 Instruction-set tables
	Table�12� Primary functions
	Table�13� Processor initialization operation codes
	Table�14� Arithmetic/logical operation codes
	Table�15� Long arithmetic operation codes
	Table�16� General operation codes
	Table�17� Indexing/array operation codes
	Table�18� Timer handling operation codes
	Table�19� Input and output operation codes
	Table�20� Control operation codes
	Table�21� Scheduling operation codes
	Table�22� Error handling operation codes
	Table�23� 2D block move operation codes
	Table�24� CRC and bit operation codes
	Table�25� Floating point support operation codes
	Table�26� Range checking and conversion instructions
	Table�27� ndexing/array instructions
	Table�28� Device access instructions
	Table�29� Semaphore instructions
	Table�30� Scheduling support instructions
	Table�31� Trap handler instructions
	Table�32� Processor initialization and no operation instructions
	Table�33� Clock instructions

	5 Interrupt system
	5.1 Introduction
	Figure�8� STi5518 Interrupt system

	5.2 Interrupt controller
	Figure�9� Interrupt priority

	5.3 Interrupt vector table
	5.4 Interrupt handlers
	Figure�10� State of interrupted process

	5.5 Interrupt latency
	5.6 Pre-emption and interrupt priority
	5.7 Restrictions on interrupt handlers
	5.8 Interrupt level controller
	5.9 Interrupt assignments
	Table�34� STi5518 Interrupt assignments

	6 Memory map
	6.1 Overview
	Figure�11� Memory map

	6.2 Mapping
	Table�35� STi5518 memory map

	6.3 System memory use
	Subsystem channels memory
	Memory for trap handlers
	Boot ROM

	7 Memory
	7.1 External memory
	Programmable CPU interface memory
	Shared SDRAM memory

	7.2 On-chip SRAM memory
	7.3 Caching
	7.3.1 Outline of operation
	Figure�12� Kbyte data or instruction cache2
	Figure�13� Address fields when using cache

	7.3.2 Cache initialization
	7.3.3 Cache subsystem control
	7.3.4 Data cache
	7.3.5 Instruction cache
	7.3.6 Cacheable and non-cacheable memory locations
	Figure�14� Memory cacheability map
	Region 0
	Region 1
	Figure�15� Region1 cacheable area with block sizes of 64K byte and 512Kbyte.

	Region 2
	Region 3
	Figure�16� Region 3

	8 Programmable CPU memory interface
	Figure�17� Memory allocation
	8.1 Pin functions
	Table�36� Programmable CPU interface pin descriptions

	8.2 Configuration list
	Table�37� List of strobes used for all EMI configurations

	8.3 External bus cycles
	8.3.1 DRAM
	Figure�18� DRAM memory cycle
	Page mode
	Figure�19� Read followed by page mode write
	Table�38� Address decoding

	Refresh
	Figure�20� Generic refresh access for one DRAM bank
	Figure�21� Generic refresh access for two DRAM banks
	Table�39� Refresh parameters

	8.3.2 SDRAM
	8.3.2.1 Typical access
	Figure�22� SDRAM write accesses
	Figure�23� SDRAM read accesses with CAS latency = 2 cycles
	Figure�24� SDRAM read accesses with CAS latency = 3 cycles

	8.3.3 SRAM or peripheral access cycles
	Figure�25� Generic peripheral access

	8.3.4 Wait
	Figure�26� Strobe activity without CPU_WAIT
	Figure�27� Strobe activity with CPU_WAIT

	8.3.5 Bank-width based address shifting
	Table�40� SRAM address shifting

	8.4 EMI configuration
	8.5 Default configuration
	Table�41� Default configuration
	Figure�28� Default configuration for SDRAMModeReg0/1 registers
	Table�42� Default configuration for SDRAMModeReg0/1 registers

	9 System services
	9.1 Power-on hard reset
	9.2 Bootstrap
	Booting from the DCU
	Booting from ROM

	10 Diagnostic controller
	10.1 Diagnostic hardware
	Figure�29� Debugging hardware

	10.2 Access features
	Access to target memory and peripheral registers from host
	Access from target CPU process
	Access to host memory from target

	10.3 Software debugging features
	Control of the target CPU including boot
	Non-intrusive IPTR profiling
	Events
	Table�43� Software debugging events

	Hardware single instruction step
	Jump trace
	Logic state analyzer (LSA) support
	Trigger combinations and sequences

	10.4 Controlling the diagnostic controller
	Table�44� Diagnostic controller message types
	Figure�30� Message formats

	10.5 Peeking and poking the host from the target

	11 Test access port
	Table�45� STi5518 TAP pins
	Table�46� Instruction codes
	Identification code.
	Table�47� Identification code

	12 Data flow
	12.1 On-chip modules
	Figure�31� Compressed data modules
	Figure�32� Decoded data modules

	12.2 Video data flow
	Figure�33� Video data flow

	12.3 Audio data flow
	Figure�34� Audio data flow

	13 Front-end interface
	13.1 Introduction
	Figure�35� Link architecture

	13.2 Serial interface
	Table�48� Serial mode signal names
	Figure�36� DVD serial interface

	13.3 DVB-CI mode (optional)
	Table�49� Pin functions for the DVB-CI mode
	Figure�37� : Satellite set-top box transport flow diagram using the DVB-CI

	13.4 Parallel interface
	Table�50� Parallel interface pins
	Figure�38� Generic parallel interface waveforms (PARA_DVALID not used)
	Figure�39� Generic parallel interface waveforms (PARA_DVALID activated)

	13.5 ATAPI interface
	Introduction
	Connecting to the ATAPI drive
	Figure�40� Connection of an ATAPI drive to the STi5518

	Operating the ATAPI interface
	Figure�41� ATAPI interface block diagram

	Authentication
	PIO data transfer

	13.6 I2S interface
	Introduction
	Sector processor
	Figure�42� DVD data sector structure
	Figure�43� DVD data sector identifier
	Figure�44� VCD sector format (mode 2 form 1)
	Figure�45� VCD sector format (mode 2 form 2)
	Figure�46� VCD header and sub header format
	Figure�47� VCD submode byte format
	Figure�48� CD-DA sector format
	Figure�49� CD-DA subcode format

	V4 interface
	Figure�50� Subcode format and timing at b_v4 pin

	Signals
	Table�51� I2S interface pins
	Figure�51� I2S bus data format (16-bit word length)
	Figure�52� I2S bus data format (24-bit word length)
	Figure�53� I2S bus data format (32-bit word length)
	Figure�54� I2S bus data format (variable word length)

	13.7 Decryption cell

	14 Link
	14.1 Introduction
	Figure�55� Link architecture

	14.2 MPEG-2 & DSS systems layers
	Table�52�

	14.3 Overview
	Figure�56� Link block diagram
	Input interface (acquisition RAM + NRSS)
	Descrambling
	SDAV/P1394 interface
	PID filtering
	Section filtering
	Adaptation field filtering
	Processor units and DMA

	14.4 Detailed description
	14.4.1 Input interface
	Table�53� Link interface data rates

	14.4.2 NRSS interface
	Figure�57� NRSS interface block diagram
	Figure�58� Serial input I/F from channel IC or link IC
	Acquisition RAM size
	Figure�59� Acquisition RAM

	14.4.3 Descrambler
	Figure�60� TP & PES Headers
	Table�54�
	PES-level scrambling
	Figure�61� PES data format

	14.4.4 SDAV/P1394 interface
	SDAV bus format
	Table�55� SDAV bus format on the SDAV/P1394 interface
	Figure�62� Format for DSS and DVB in SDAV Mode
	Figure�63� DATA_STROBE NRZ Encoding (inside STi5518)
	Figure�64� DATA_STROBE NRZ Decoding (inside STi5518)

	P1394 bus format
	Table�56� SDAV bus format on the SDAV/P1394 interface
	Figure�65� Format for DSS and DVB in 1394 Mode
	Figure�66� Timings in P1394 Mode
	Table�57�

	Data path
	Tape-in
	Table�58�

	Tape-out
	CPU generated packets

	14.4.5 FRAM
	Introduction
	Filtering
	Figure�67� First and last bytes for DMA transfer to the SDAV interface
	Figure�68� FRAM organization
	Table�59� Error filtering examples

	Error procedures
	Table�60� Error mechanisms
	Table�61� CC error code
	Table�62� CC processing for DVB

	Not equal filtering
	Figure�69� Basic principle of filter mechanism
	Figure�70� Section filtering example
	Table�63� Equal and not-equal filtering

	14.4.6 DMA
	DMA configuration
	Table�64� DMA address
	Table�65� DMA configuration registers

	DMA description
	Circular buffer (incremental mode)
	Figure�71� Buffer_size definition
	Figure�72� Circular buffer diagram

	DVD buffer (linear mode)
	Non-incremental buffer
	Table�66� Non-incremental buffer

	14.4.7 Clock recovery
	Figure�73� Clock recovery

	14.4.8 Interrupts
	Table�67� Interrupt sources

	14.5 DVD/link data analyzer
	Processing a new sector
	Sector data structure
	Table�68� Sector data structure

	Identifying a packet
	Table�69� Packet types and start codes

	Processing a video packet
	Table�70� Identity for start-codes located inside a sector
	Table�71� Identity for cross-sector start-codes

	Reporting start codes
	FRAM address
	FRAM data

	14.6 Hard disk drive buffer control

	15 MPEG video decoder
	15.1 Decoder operation
	Start code search
	Bandwidth reduction mode

	15.2 Reset
	15.3 Bit buffer and start-code detection (video)
	15.3.1 Bit buffer
	15.3.2 Start code detection
	Figure�74� States of VID_HDF after detection of a start code

	15.3.3 Handling time-stamps
	Figure�75� Handling time-stamps with VID_CDCount and VID_SDCount

	15.4 Video decoding pipeline control
	15.5 Quantization table loading
	15.6 Memory mapping of data
	15.6.1 Mapping 1 or 2 x 16-Mbit SDRAM
	Video decoder memory SDRAM addressing (for 1 or 2 x 16-Mbit SDRAM)
	Figure�76� Standard addressing in a SDRAM (16-bit words) for 1 or 2 x 16-Mbit SDRAM

	32-bit word addressing for the CPU (for 1 or 2 x 16-Mbit SDRAM)
	Figure�77� 32-bit word addressing, as seen by the CPU for 1 or 2 x 16-Mbit SDRAM

	64-bit word addressing for FIFO processes (for 1 or 2 x 16-Mbit SDRAM)
	Figure�78� 64-bit word addressing for FIFO processes for 1 or 2 x 16-Mbit SDRAM

	15.6.2 Mapping 1 x 64-Mbit SDRAM
	Video decoder memory SDRAM addressing (for 1 x 64-Mbit SDRAM)
	Figure�79� Standard addressing in a SDRAM (16-bit words) for 1 x 64-Mbit SDRAM

	32-bit word addressing for the CPU (for 1 x 64-Mbit SDRAM)
	Figure�80� 32-bit word addressing, as seen by the CPU for 1 x 64-Mbit SDRAM

	64-bit word addressing for FIFO processes (for 1 x 64-Mbit SDRAM)
	Figure�81� 64-bit word addressing for FIFO processes for 1 x 64-Mbit SDRAM

	15.6.3 Memory segments
	Figure�82� SDRAM segments as seen by the user

	15.6.4 Arrangement of pixel-pairs inside a luma SDRAM row
	Figure�83� Arrangement of pixel pairs in a luma SDRAM row

	15.6.5 Arrangement of pixel-pairs inside a chroma SDRAM row
	Figure�84� Arrangement of pixel pairs in a chroma SDRAM row

	15.7 Using picture pointers
	15.8 Video pipeline
	15.8.1 Decoding task
	Figure�85� Instruction buffering
	Figure�86� Task control state diagram
	Table�72� State transition abbreviations

	15.8.2 Error recovery and missing macroblock concealment
	Syntax error detection and concealment
	Table�73� Rules for fetching concealment macroblocks

	Overflow or underflow error

	15.9 PES parser
	Description
	Figure�87� System parser internal architecture

	Functional modes

	15.10 Enhanced trick-modes
	Figure�88� Enhanced trick-mode support
	Programming a video CD FIFO pointer

	16 Sub-picture decoder
	16.1 Introduction
	Figure�89� Display planes
	Figure�90� Sub-picture unit architecture

	16.2 Buffer management and pointers
	Figure�91� Buffer management

	16.3 Operation
	Figure�92� Sub-picture unit structure
	Figure�93� Sub-picture region declaration

	16.4 Sub-picture display
	16.4.1 Look-up tables
	16.4.2 Sub-picture areas
	Figure�94� Sub-picture areas

	17 Overlay graphics and texts
	17.1 Introduction
	Figure�95� OGT display model

	17.2 Buffer management
	17.3 Operation
	17.4 Display

	18 Display planes
	18.1 Overview
	Figure�96� Display planes
	Figure�97� Graphics and display subsystem

	18.2 Background color plane
	18.3 MPEG video plane
	18.3.1 Setting-up the display
	Figure�98� Display window positioning

	18.3.2 Sample rate converter
	Figure�99� 8-tap interpolation filter
	Operation of the SRC
	Figure�100�

	Upsampling example
	Figure�101� SRC example for 8:7 upsampling
	Table�74� Accumulator register sequence for upsampling example

	Downsampling example
	Figure�102� SRC example for 9:8 downsampling
	Table�75� Accumulator register sequence for downsampling example
	Figure�103� Downsampling example

	18.3.3 Block-to-row converter
	Pan/scan vectors
	Figure�104� Pan/scan vector
	Figure�105� Components of the pan/scan vector

	Vertical filter
	Horizontal compression
	Filter modes
	Table�76� Vertical filter modes
	Figure�106� Filter mode examples

	18.3.4 Degradation mode

	18.4 On-screen display (OSD)
	18.4.1 Using the OSD
	Figure�107� Internal line numbering

	18.4.2 OSD regions
	Figure�108� OSD regions
	Figure�109�

	18.4.3 OSD specification
	Figure�110� Linked list structure for OSD data
	Figure�111� Block structure for OSD data in 2 bits per 2 pixels mode
	Figure�112� OSD specification

	18.4.4 OSD region position
	Figure�113� OSD region horizontal positioning in 4:4:4 output
	Figure�114� OSD region horizontal positioning in 4:2:2 output

	18.4.5 Color palette
	Table�77� Palette as before flag
	Palette modes
	Table�78� M, Q and E palette mode header flags

	Color modes
	Table�79� OSD color modes
	Table�80� Palette line format in 24-bit color with anti-aliasing
	Table�81� Palette line format in 24-bit color without anti-aliasing
	Table�82� Palette line format in 14-bit color mode

	Standard colors
	Table�83� Standard colors in 14-bit color
	Table�84� Standard colors in 24-bit color

	18.4.6 OSD bit-map
	18.4.7 OSD block header format
	Table�85� OSD block header format
	Table�86� OSD region specification header

	18.4.8 OSD specification block examples
	Table�87� 2 bits per pixel, 14-bit color OSD region specification
	Table�88� 4 bits per pixel, 2-pel resolution 14-bit color OSD region specification
	Table�89� 8 bits per pixel, 14-bit color OSD region specification
	Table�90� 2 bits per pixel 24-bit color without anti-aliasing OSD region specification
	Table�91� 2 bits per pixel 24-bit color with anti-aliasing OSD region specification

	18.4.9 Mixing OSD with video
	18.4.10 Anti-flicker and anti-flutter filters
	Table�92� Register configurations for anti-flitter/ anti-flutter filtering

	18.4.11 OSD active signal
	Figure�115� OSD active timing when OSD_ACT.OAM = 1
	Table�93� OSD active signal operation
	Figure�116� OSD active timing when OSD_ACT.OAM = 0

	18.5 Sub-picture or cursor plane
	18.6 Mixing display planes
	Table�94� Control of mixing factor a1
	Figure�117� Mixing with the sub-picture in front
	Figure�118� Mixing with the OSD in front
	18.6.1 4:2:2 Output control
	Table�95� Encoding of LAY and NOS fields of VID_OUT

	19 SDRAM block move
	Table�96� SDRAM block move registers

	20 Digital encoder
	20.1 Introduction
	20.2 Video timing
	Figure�119� Input data format (ITU-R656 /D1 4:2:2)
	Figure�120� Square pixel mode switch
	Figure�121� PAL-BDGHI, PAL-N typical VBI waveform, interlaced mode (ITU-R625 line numbering)
	Figure�122� NTSC-M typical VBI waveforms, interlaced mode (SMPTE-525 line numbering)
	Figure�123� PAL-M typical VBI waveforms, interlaced mode (ITU-R/CCIR-525 line numbering)
	Figure�124� Horizontal blanking interval and active video timings
	Table�97� Typical timing values for Figure 124

	20.3 Reset procedure
	20.4 Master mode
	Figure�125� ODDEVEN, VSYNC and HSYNC waveforms
	Figure�126� Master mode sync signals

	20.5 Slave modes
	20.5.1 Introduction
	20.5.2 Line-based synchronization
	ODDEVEN+HSYNC based synchronization
	Figure�127� HSYNC + ODDEVEN based slave mode sync signals

	HSYNC+VSYNC based synchronization

	20.5.3 Frame-based synchronization
	ODDEVEN-only based synchronization
	Figure�128� HSYNC + VSYNC based slave mode sync signals
	Figure�129� ODDEVEN based slave mode sync signals

	VSYNC-only based synchronization
	Figure�130� Data (EAV) based slave mode sync signals

	20.5.4 Sync-in-data based synchronization
	“End-of-frame” word-based synchronization
	'End-of-line' word-based synchronization
	Auto-test mode
	Table�98� Auto-test colors
	Figure�131� Luminance output levels in auto-test for NTSC without set-up
	Figure�132� Luminance output levels in auto-test for PAL (BGHI) and SECAM

	20.6 Input demultiplexor
	20.7 Subcarrier generation
	20.8 Burst insertion (PAL and NTSC)
	20.9 Subcarrier insertion (SECAM)
	Figure�133� SECAM color bar pattern (blue line)

	20.10 Luminance encoding
	Figure�134� Luma filtering including DAC attenuation
	Figure�135� Luma filtering with 3.58�MHz trap, including DAC attenuation
	Figure�136� Luma filtering with 4.43�MHz trap, including DAC attenuation

	20.11 Chrominance encoding
	Figure�137� SECAM chroma filtering (pre-emphasis and 1.3 MHz low pass filtering)
	Figure�138� SECAM high-frequency subcarrier pre-emphasis (Bell filtering), including DAC attenuation
	Figure�139� Various chroma filters available and RGB filter

	20.12 Composite video signal generation
	Figure�140� 1.1 MHz chroma filter
	Figure�141� 1.3 MHz chroma filter
	Figure�142� 1.6 MHz chroma filter
	Figure�143� 1.9 MHz chroma filter

	20.13 RGB and UV encoding
	Figure�144� RGB - chroma filtering

	20.14 Closed-captioning
	Figure�145� Example of closed-caption waveform

	20.15 CGMS encoding
	Figure�146� Example of CGMS waveform

	20.16 WSS encoding
	20.17 VPS encoding
	Figure�147� Example of VPS waveform

	20.18 Teletext encoding
	Signal exchange
	Transmission protocol
	Programming “TTXS rising” to “first valid sample”
	Figure�148� TTXT Rising to First Valid Sample delay for txdl[2:0] = 0

	Programming teletext line selection
	Teletext pulse shape
	Figure�149� Shape and amplitude of a single teletext symbol
	Figure�150� Linear PSD scale
	Figure�151� Logarithmic PSD scale

	20.19 Line skip and line insert capability
	20.20 CVBS, S-VHS, RGB and UV outputs
	Table�99� Encoding of conf_out

	21 Teletext DMA
	21.1 Introduction
	21.2 Teletext packet format
	Figure�152� Teletext packet format

	21.3 Data transfer sequence
	Figure�153� Teletext data transfer sequence

	21.4 Interrupt control
	21.5 Teletext registers

	22 Double triple video DAC
	22.1 Description
	Figure�154� Double triple video DAC schematic

	22.2 Input codes for video application
	Table�100� Reference input codes

	22.3 Video output voltage level
	22.4 Video specifications and DAC setup
	22.5 Output-stage adaptation and amplification
	Figure�155� Output stage schematic

	23 Audio decoder
	23.1 Features
	Audio/video synchronization
	Output formats
	Sampling frequencies
	Special modes
	Virtual Surround
	Trick modes
	Control interface

	23.2 Architecture overview
	Data flow
	Figure�156� Architecture and data flow
	Figure�157� Audio decoder block-diagram

	23.3 Decoding process
	Table�101� Audio decoding stages

	23.4 Operation
	Reset
	Clocks

	23.5 Decoding states
	Figure�158� Decoding states
	Idle mode
	Table�102� Idle mode, play and mute command effects

	Decode mode
	Table�103� Decode mode. play and mute commands effects

	23.6 Stream parsers
	Packet parser
	Audio parser

	23.7 Decoding modes
	Dolby Digital decoding modes
	MPEG decoding modes
	Figure�159� 6-channel compressed data decoding flow

	Dual-mode decoding modes
	PCM/LPCM decoding modes
	Figure�160� PCM/LPCM decoding flow

	ProLogic decoding modes
	Figure�161� Dolby Digital & ProLogic decoding flow
	Figure�162� MPEG & ProLogic decoding flow
	Figure�163� PCM/LPCM & ProLogic decoding flow

	Pink-noise decoding modes
	Figure�164� Pink noise decoding flow

	MP3 decoding mode
	Figure�165� MP3 decoding flow

	23.8 PCM output
	Output configurations
	Figure�166� PCM output configurations

	PCM scaling
	Output quantization
	Interface and output formats
	Output precision and format selection
	Figure�167� Output formats
	Table�104� PCM output formats

	Clock polarity
	Figure�168� DAC_SCLK and DAC_LRCLK polarity selection
	Table�105� PCM configuration for I2S and Sony compatible outputs

	23.9 SPDIF output
	Overview
	Subcode into IEC60958 user data
	Figure�169� IEC60958 sub-frame format
	Figure�170� Subcode insertion in IEC6958

	Data flow
	Figure�171� Audio bit buffer content
	Figure�172� Specific audio input stream
	Figure�173� CD_DA and subcode data flow

	23.10 Interrupts
	Interrupt register
	Error concealment

	23.11 Audio/video synchronization
	Presentation time stamp detection
	Pause frames capability
	Skip frames capability
	Pause burst capability
	Figure�174� Pause burst capability illustration

	23.12 PCM beep tone
	Description
	Activating PCM beep tone mode
	Changing the frequency
	Changing the amplitude

	23.13 Audio trick modes
	23.13.1 Description
	23.13.2 Slow forward
	Figure�175� Expanding audio samples for the trick-mode “slow forward”

	23.13.3 Fast forward
	Fast forward on compressed algorithms (AC3, MPEG1&2 and DTS)
	Figure�176� Data flow fast-forward mode on compressed audio algorithms

	Register configurations

	23.13.4 SPDIF output for audio trick modes
	Table�106� SPDIF output for audio trick modes

	24 External audio decoder interface
	Table�107� External audio decoder interface signals
	Figure�177� External audio decoder interface schematic

	25 Clock generator
	25.1 Introduction
	Figure�178� STi5518 PLL and frequency synthesizer configuration

	25.2 System clocks
	Table�108� System clocks summary
	Table�109� Recommended divider values

	25.3 PCM clock
	Table�110� PCM frequency values and register settings

	25.4 SmartCard clocks
	25.5 Auxiliary clock
	Table�111� Auxiliary clock programming values

	25.6 Low-power, watchdog and power-down
	Low-power
	Watchdog counter
	Power-down

	26 MPEGDMA controller
	Table�112� MPEGDMA registers

	27 Block move DMA
	28 PWM and counter module
	28.1 External interface
	Table�113� PWM and counter pins

	28.2 PWM outputs
	28.3 Capture inputs
	28.4 Compare (programmable timer) facilities
	28.5 Capture/compare counter, prescaling and clocking

	29 Smartcard interface
	29.1 External interface
	Table�114� SmartCard interface pins
	Figure�179� ISO 7816-3 asynchronous protocol

	29.2 SmartCard clock generator
	Figure�180� SmartCard clock generation schematic

	30 Asynchronous serial controller
	30.1 Control
	30.1.1 Resetting the FIFOs
	30.1.2 Transmission and reception

	30.2 Data frames
	30.2.1 8-bit data frames
	Figure�181� 8-bit Tx data frame format

	30.2.2 9-bit data frames
	Figure�182� 9-bit Tx data frame format

	30.3 Transmission
	30.3.1 Transmission with FIFOs enabled
	30.3.2 Double-buffered transmission

	30.4 Reception
	30.4.1 Hardware error detection
	30.4.1.1 Frame and parity errors

	30.4.2 Input buffering modes
	30.4.2.1 FIFO enabled reception
	30.4.2.2 Double buffered reception

	30.4.3 Time-out mechanism

	30.5 Baud rate generation
	30.5.1 Baud rates
	30.5.1.1 Mode 0
	30.5.1.2 Mode 1
	Figure�183� Mode1

	30.6 Interrupt control
	30.6.1 Using the ASC interrupts when FIFOs are disabled (double-buffered operation)
	Figure�184� ASC status and interrupt registers

	30.6.2 Using the ASC interrupts when FIFOs are enabled
	Figure�185� ASC transmission
	Figure�186� ASC reception

	30.7 SmartCard operation
	30.7.1 Control registers
	ASC_n_GUARDTIME
	ASC_n_RETRIES

	30.7.2 Transmission
	30.7.2.1 Handshaking
	30.7.2.2 Behavior with FIFOs enabled
	30.7.2.3 Behavior with FIFOs disabled

	30.7.3 Reception
	30.7.4 Divergence from ISO SmartCard specification

	31 Synchronous serial controller
	31.1 Introduction
	Figure�187� SSC interface to I2C bus

	31.2 Synchronous serial channel operation
	Figure�188� Synchronous serial channel block diagram

	31.3 SSC clocking
	Figure�189� Clock and data relationships

	31.4 Half-duplex operation
	Figure�190� Half-duplex configuration

	31.5 Continuous transfers
	31.6 Baud rates
	Table�115� Baud rates and bit times for different SSC_n_BRG reload values

	31.7 Hardware error detection capabilities
	31.8 Interrupt control
	Figure�191� SSC status and interrupt registers

	31.9 I2C hardware configuration

	32 Parallel input/output port
	33 Modem analog front-end interface
	33.1 Overview
	33.2 Using the MAFEIF to connect to a modem
	Table�116� MAFEIF pins

	33.3 Software
	33.3.1 Data exchange
	33.3.2 Control/status exchange

	34 Infrared transmitter/receiver
	34.1 Introduction
	Figure�192� IR transmitter/receiver symbol

	34.2 Functional description
	Overview
	Figure�193� IR transmitter/receiver block diagram and implementation

	RC transmit code processor
	RC receive code processor
	Noise suppression filter

	35 Electrical specifications
	35.1 Absolute maximum ratings
	Table�117� Absolute maximum ratings

	35.2 DC electrical characteristics
	35.2.1 Static
	Table�118� DC electrical characteristics

	35.2.2 ST20 running at 60.75�MHz
	Table�119� Current consumption with ST20 running at 60.75�MHz

	35.2.3 ST20 running at 81.0�MHz
	Table�120� Current consumption with ST20 running at 81.0�MHz

	35.3 AC test conditions
	Figure�194� AC test conditions

	35.4 Operating conditions
	Table�121� Operating conditions

	35.5 Timing diagrams for IO interfaces
	35.5.1 Input clock
	Figure�195� Input clock timing definitions
	Table�122� Input clock timing values

	35.5.2 SMI interface
	Figure�196� AC parameters of read & write (synchronous DRAM) timing definitions
	Table�123� SMI interface timing values
	Figure�197� Synchronous DRAM power-on sequence timing definitions
	Figure�198� Synchronous DRAM write burst (Burst Length = 4 CAS Latency = 3) timing definitions
	Figure�199� Synchronous DRAM read (burst length = 4 CAS latency = 3) timing definitions

	35.5.3 Video interface
	Table�124� Video interface timing values
	Figure�200� Video interface timing definitions

	35.5.4 EMI interface
	Table�125� EMI interface timing values
	Figure�201� EMI interface timing definitions for mode no SDRAM
	Figure�202� EMI interface timing definitions for mode SDRAM

	35.5.5 TAP interface
	Table�126� Tap timing values
	Figure�203� TAP timing definitions

	35.5.6 Link interface
	Table�127� Link interface timing values
	Figure�204� Link interface timing definitions

	35.5.7 I2S interface
	Table�128� I2S interface timing values
	Figure�205� I2S interface timing definitions

	35.5.8 Parallel interface
	Table�129� Parallel interface timing values
	Figure�206� Parallel interface timing definitions

	35.5.9 Audio interface
	Table�130� Audio timing values
	Figure�207� Audio timing definitions

	35.5.10 ATAPI interface
	Table�131� ATAPI interface timing values
	Figure�208� ATAPI interface timing definitions

	36 Package mechanical data
	Figure�209� PQFP208 schematic
	Table�132� PQFP208 dimensions

	37 Revision history
	37.1 Changes for rev D
	Table�133� Rev B to rev D changes

	37.2 Changes for rev C
	37.3 Changes for rev B
	Table�134� Rev A to rev B changes

