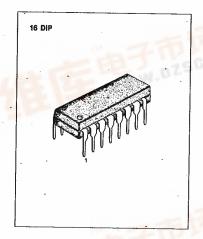
5 DOT DUAL LED LEVEL METER DRIVER

The KA2283 is a monolithic integrated circuit consisting of 2 channel LED level meter driver which was designed for use in stereo radio cassette tape recorder and home stereo.


FEATURES

- Suitable for AC level meter driver.
 Comparator level (-8, -6, -4, -2, 0dB)x2.
 Capable of driving red/green/yellow LEDs.
- Externally adjustable gain of input amp.
- Wide operating supply voltage range (5V ~ 14V).

 10 dot dual output combinated with KA2281.

 Applicable to 10 dot mono output.

- High input inpedance.
- Minimum number of external parts required.

BLOCK DIAGRAM

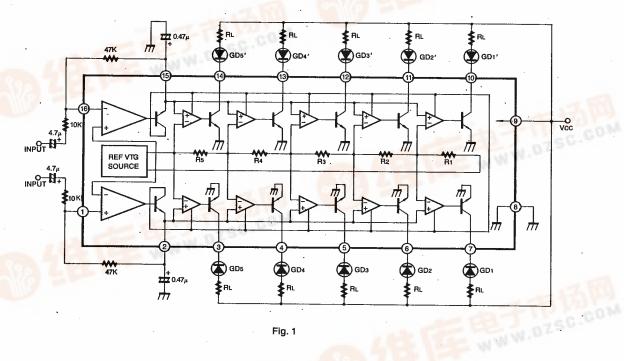


Fig. 1

287

Ţ

KA2283

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit	
Supply Voltage	Vcc	16	v	
D Terminal Output Current	ا ما	. 30	mA.	
Power Dissipation	Pd	600	mW	
Operating Temperature	Topr	-20~+70	°C	
Storage Temperature	Tstg	-40~+125	. •€	

ELECTRICAL CHARACTERISTICS

(T_a =25°C, V_{CC} =12V, f=1KHz, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Circuit Current	lcc	V ₁ =0		4		mA
D Terminal ON Voltage	Vol	lo=20mA		1.5		٧
D Terminal Leakage Current	lo (off)	V _i =0			50	μА
Voltage Gain (Closed Loop)	Av			13.4		dB
Comparator ON Level	GD₅ GD₅'	A _V =13.4dB	-1	0	1	dB
	GD ₄ GD ₄ '		-3	-2	-1	
	GD ₃ GD ₃ '		-5	-4	-3	
	GD₂ GD₂'	·	-7	-6	-5	
	GD ₁ GD ₁ '		9	-8	-7	
LED ON Level Difference	∆GD₁.₅	GD ₁₋₅ -GD' ₁₋₅ A _V = 13.4dB	-1	0	1	dB
Input Impedance of Amp	Ri	-		200		ΚΩ

^{*} Definition of 0dB; when the value of Input voltage is 218mVrms

T-52-13-07

KA2283

LINEAR INTEGRATED CIRCUIT

APPLICATION CIRCUIT

1. 5 dot dual application

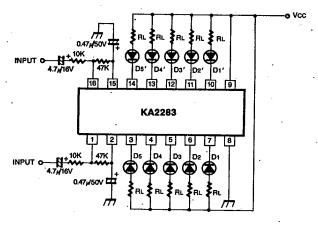
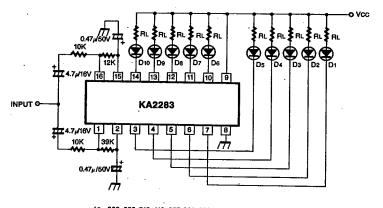
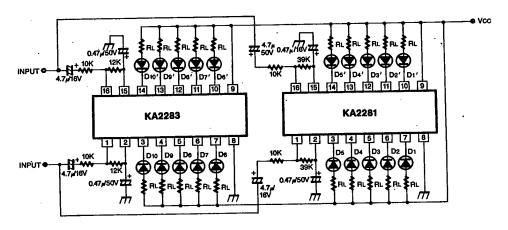



Fig. 2

2. 10 dot mono application

Vi =822, 653, 519, 412, 327, 260, 206, 163, 129, 102mVrms +6, +4, +2, 0. -2, -4, -6, -8, -10, -12dB

Fig. 3



KA2283

LINEAR INTEGRATED CIRCUIT

3. 10 dot dual application with KA2281

VI =830, 660, 524, 417, 331, 263, 164, 130, 73, 41mVrms +6, +4, +2, 0, -2, -4, -7, -10, -15, -20dB

Fig. 4