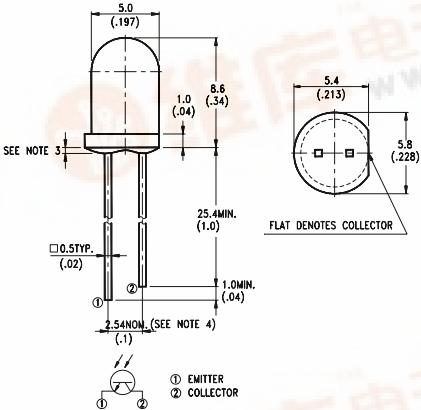


查询LTR-3208E供应商

LITEON

捷多邦，专业PCB打样工厂，24小时加急
NPN T-1 3/4 Standard 5 φ Phototransistor
LTR-3208/LTR-3208E


Features

- Wide range of collector currents.
- Lens for high sensitivity.
- Low cost plastic package.

Description

The LTR-3208 series consist of a NPN silicon phototransistor mounted in a lensed, clear plastic, end looking package. The lensing effect of the package allows an acceptance half angle of 10° measured from the optical axis to the half power point. This series is mechanically and spectrally matched to the LTE-3271T/LTE-3371T series of infrared emitting diodes. The LTR-3208E is a special dark plastic package that cut the visible light and suitable for the detectors of infrared application.

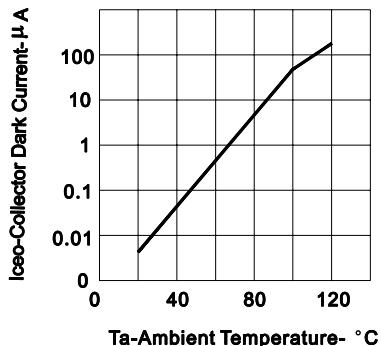
Package Dimensions

Notes:

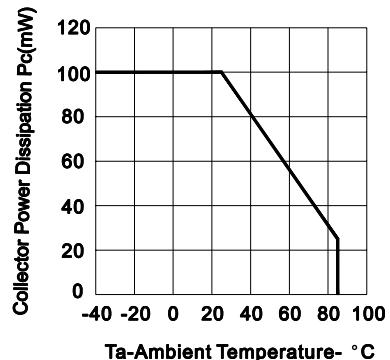
- All dimensions are in millimeters (inches).
- Tolerance is $\pm 0.25\text{mm}$ (.010") unless otherwise noted.
- Protruded resin under flange is 1.5mm (.059") max.
- Lead spacing is measured where the leads emerge from the package.
- Specifications are subject to change without notice.

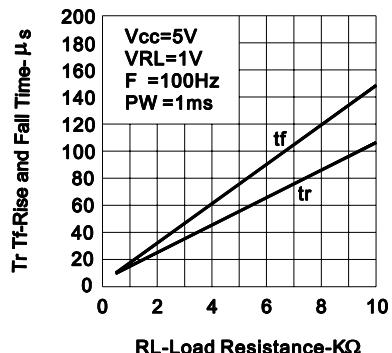
Absolute Maximum Ratings at $T_a=25^\circ\text{C}$

Parameter	Maximum Rating	Unit
Power Dissipation	100	mW
Collector-Emitter Voltage	30	V
Emitter-Collector Voltage	5	V
Operating Temperature Range	-40°C to +85°C	
Storage Temperature Range	-55°C to +100°C	
Lead Soldering Temperature [1.6mm (.063 in.) from body]	260°C for 5 Seconds	


Electrical Optical Characteristics at $T_a=25^\circ\text{C}$

Parameter	Symbol	Part No.	Min.	Typ.	Max.	Unit	Test Condition
Collector-Emitter Breakdown Voltage	$V_{(\text{BR})\text{CEO}}$		30			V	$I_c=1\text{mA}$ $E_e=0\text{mW/cm}^2$
Emitter-Collector Breakdown Voltage	$V_{(\text{BR})\text{ECO}}$		5			V	$I_e=100 \mu\text{A}$ $E_e=0\text{mW/cm}^2$
Collector Emitter Saturation Voltage	$V_{\text{CE}(\text{SAT})}$				0.4	V	$I_c=100 \mu\text{A}$ $E_e=1\text{mW/cm}^2$
Rise Time	T_r			10		μS	$V_{\text{CC}}=5\text{V}$ $I_c=1\text{mA}$ $R_L=1\text{K}\Omega$
Fall Time	T_f			15		μS	
Collector Dark Current	I_{CEO}				100	nA	$V_{\text{CE}}=10\text{V}$ $E_e=0\text{mW/cm}^2$
	I_{CEN}	LTR-3208	1	4		mA	$V_{\text{CE}}=5\text{V}$ $E_e=1\text{mW/cm}^2$


**INFRARED
PRODUCTS**


**Typical Electrical/Optical Characteristic Curves
(25°C Ambient Temperature Unless Otherwise Noted)**

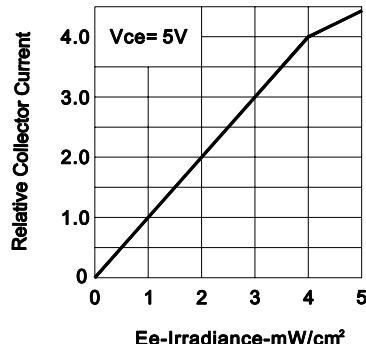

FIG.1 COLLECTOR DARK CURRENT VS AMBIENT TEMPERATURE

FIG.2 COLLECTOR POWER DISSIPATION VS AMBIENT TEMPERATURE

FIG.3 RISE AND FALL TIME VS LOAD RESISTANCE

FIG.4 RELATIVE COLLECTOR CURRENT VS IRRADIANCE

FIG.5 SENSITIVITY DIAGRAM

