捷多邦,专业PCB打样工Prehiminary

HD153110 Color Palette with Triple 8-bit DA Converter

The HD153110FS is a color palette with built-in triple 8-bit DA converter. Manufactured with Hitachi's Hi-BiCMOS process, this LSI realizes high speed, high density, low power consumption and minimizes the need for externally connected parts. Also, in addition to applications for existing CRTs, the provision of digital R, G and B outputs for color LCD ensure that the HD153110FS can easily accomodate future systems using full-color LCD. With color palette, advanced functions, small size and low cost, the HD153110FS is an essential component for advanced graphics systems.

Ordering Information

Туре №.	Max. Operating Freq.	Package
HD153110FS	50 MHz	80 pin plastic
HD153110FS-65	65 MHz	QFP (FP-80B)

Features

- Displays 256 colors simultaneously from a total of 16,777,216 possible colors.
- Three 8-bit DA converters for RGB video ouput on a single chip
- Read mask function for display control
- Compatible with VGA* graphics standard
- For each pixel, dynamic switching between 16,777,216-color simultaneous display mode and normal mode
- In addition to existing CRT applications, direct digital RGB outputs from the color lookup table (CLT) are provided for color LCD applications.
- Variable BLACK level (0 or 7.5 IRE)
- Switchable between 8-bit/6-bit mode; supports both 8-bit and 6-bit software.
- Dot rate maximum of 50/65 MHz
- TTL compatible I/O levels
- 28-pin DIP package

Note: VGA is a registered trademark of IBM.

Pin Arrangement

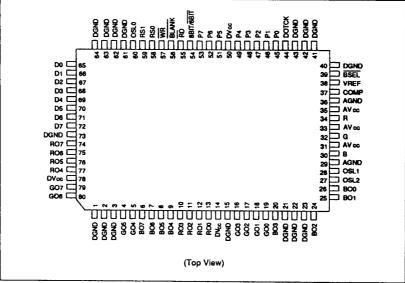
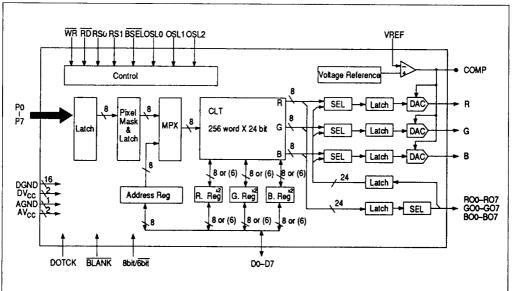



Figure 1

Block Diagram

Figure 2 Block Diagram

Pin Name	Pin Number	Description
P0 to P7	45 to 49, 51 to 53	CLT address inputs. P7 is MSB, P0 is LSB.
D0 to D7	65 to 72	Data port for reading/writing CLT or address, pixel mask, R, G and B registers. D7 is MSB, D0 is LSB.
RD	55	Read clock input. Strobes data from CLT or address, pixel mask, R, G or B registers during read operation.
WR	57	Write clock input. Strobes data to CLT or address, pixel mask, R, G or B registers during write operation.
RS0, RS1	58, 59	Select inputs for CLT, address register or pixel mask register
RO0 to RO7 GO0 to GO BO0 to BO7	13 to 10, 77 to 74 7 19 to 16, 4, 5, 79, 80 26 to 24, 20 9 to 6	Palette (CLT) digital signal outputs. RO7, GO7 and BO7 are the MSBs and RO0, GO0, and BO0 are the LSBs.
VREF	38	Terminal for connecting reference resistor to set DAC analog output level
СОМР	37	Terminal for connecting a phase-compensation capacitor
OSL0, OSL1, OSL2	60, 28, 27	Select inputs for digital signal outputs
R, G, B	34, 32, 30	DAC analog signal outputs
BLANK	56	Video blank input for activating blank signal levels at DAC analog outputs
8BIT/6BIT	54	Inputs for setting color palette resolution. 'H' for an 8-bit palette, 'L' for a 6-bit palette
BSEL	39	Input for selecting DAC BLANK level (0 or 7.5 IRE)
DOTCK	44	Reference clock input for digital and analog sections. On the rise of this signal, CLT and BLANK operations are processed and analog signal outputs become active.
DVcc	14, 50, 78	Digital power supply
DGND	1 to 3, 15, 21 to 23, 40 to 43, 61 to 64, 73	Digital GND
AV _{CC}	31, 33, 35	Analog power supply
AGND	29, 36	Analog GND

aobi

477

Functions

Accessing the CLT and Registers

The CLT and registers are selected with inputs RS0 and RS1 (see Table 2).

Registers

Address Register: To perform read/write operations on the CLT, the CLT address must be set in the address register through D7 to D0 (D7 is the MSB and D0 is the LSB).

For a CLT write operation, write the CLT address via D7 to D0 with RS0 = '0' and RS1 = '0' (in order to select the address register, write mode).

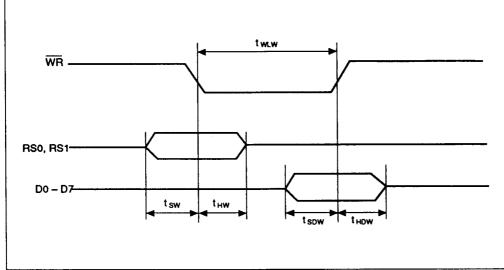
To set up the address register for a CLT read operation, write the CLT address via D7 to D0 with RS0 = '1' and RS1 = '1' (in order to select the address register, read mode).

Also, the address register contents can be read as shown in figure 10 and figure 11.

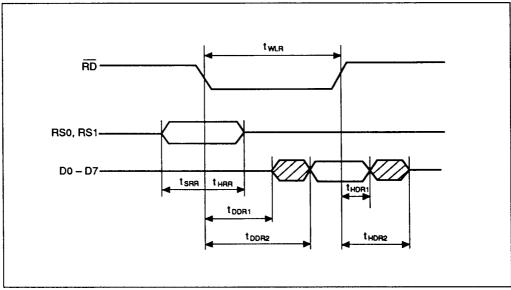
Pixel Mask Register: The pixel mask register is used when displayed colors to be modified by altering the value input from video memory and the contents of the CLT. The pixel mask register is set by writing a pixel mask value to D7 (MSB) to D0(LSB) with RS0 = '0' and RS1 = '1' (in order to select the pixel mask register for a data write) as shown in figure 13. During color palette operations, the value input from video memory at P7 (MSB) to P0(LSB) is ANDed with the pixel mask register value, and the resulting value is applied as an address to the CLT. Consequently, pixel mask '0' bits will cancel corresponding video memory value '1' bits. The following table shows the CLT address that is generated for a particular pixel mask register value and video memory value.

RGB Registers: There are two RGB register types: one for writing color information to the CLT and one for reading color information from the CLT. Each register type is organized as an 24-bit word.

To read or write data to the CLT, set RS0 = '1' and RS1 = '0' to select the appropriate RGB register while performing the read or write via data port D7 (MSB) to D0 (LSB). Write or read the data in the order of R, G, B as shown in figure 7 and figure 8.


Table	2	Register	Selection
-------	---	----------	-----------

RS1	RS0	Selection				
0	0	Address register (write mode)				
1	1	Address register (read mode)				
0	1	CLT				
1	0	Pixel mask register				


Table 3 Pixel Mask Example

	MSB							LSB
Pixel mask register	1	0	1	0	1	1	0	1
Address input (P7 to P0)	Pd7	Pd6	Pd5	Pd4	Pd3	Pd2	Pd1	Pd0
CLT address value	Pd7	0	Pd5	0	Pd3	Pd2	0	Pd0

OHITACHI Chi Plaza • 2000 Sierra Point Pkwy • Brishane CA 94005-1819 • (415) 589-8300 479

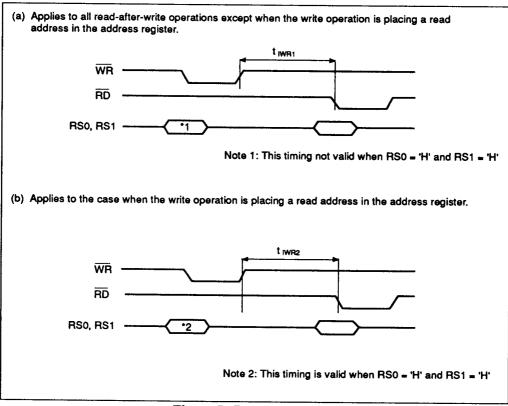
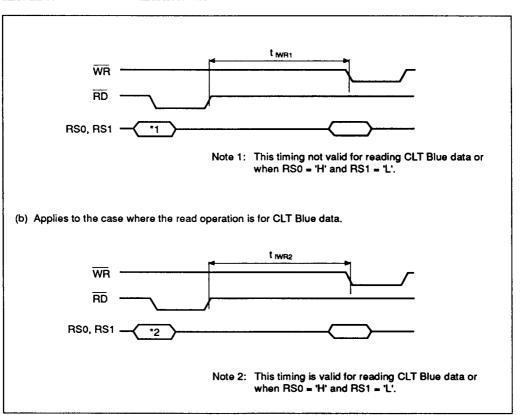



Figure 5 Read after Write

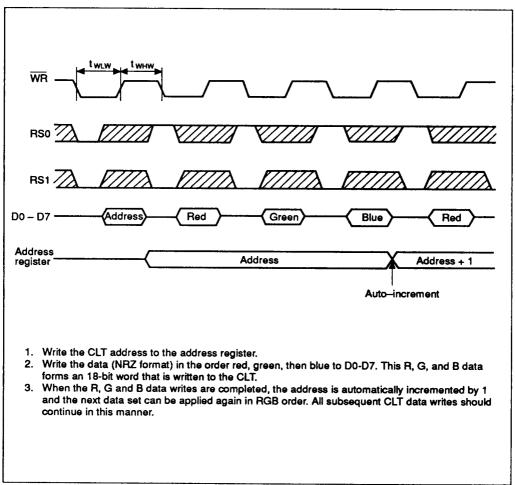


Figure 7 CLT Write

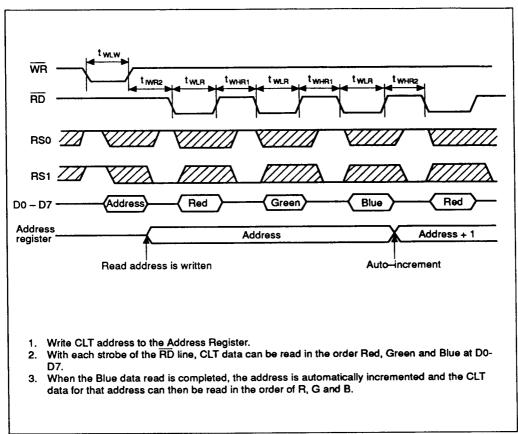


Figure 8 CLT Read

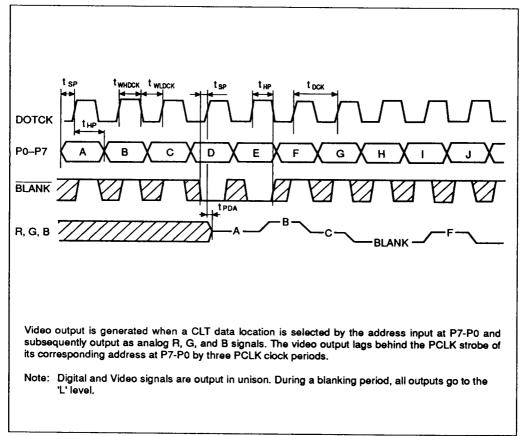


Figure 9 Video Output

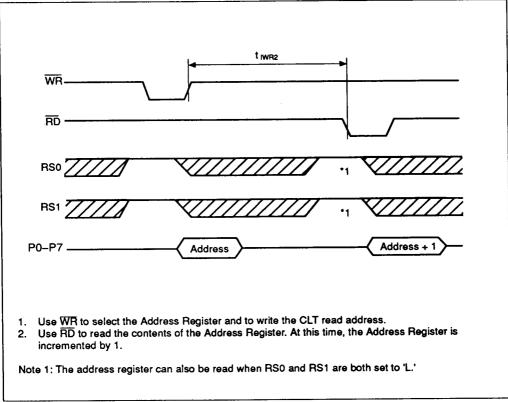
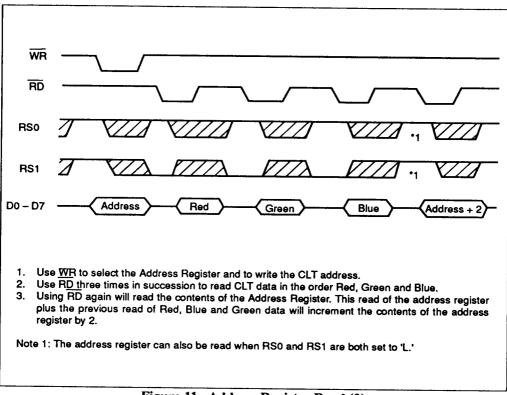
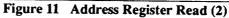
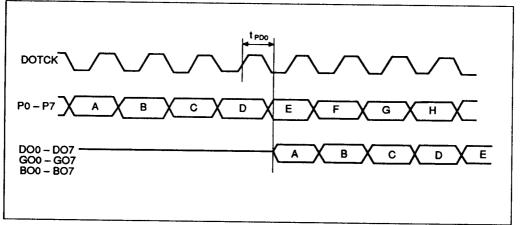





Figure 10 Address Register Read (1)

Figure 12 Digital Output

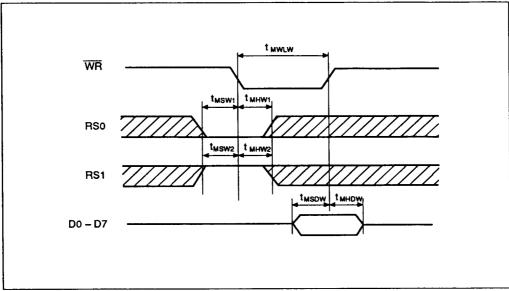


Figure 13 Pixel Mask Register Write

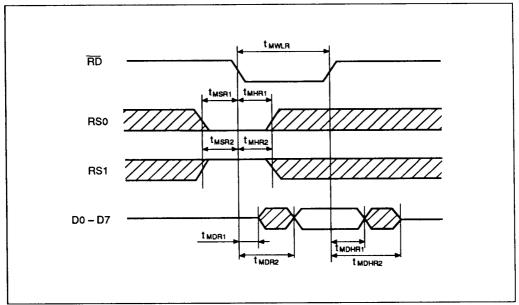
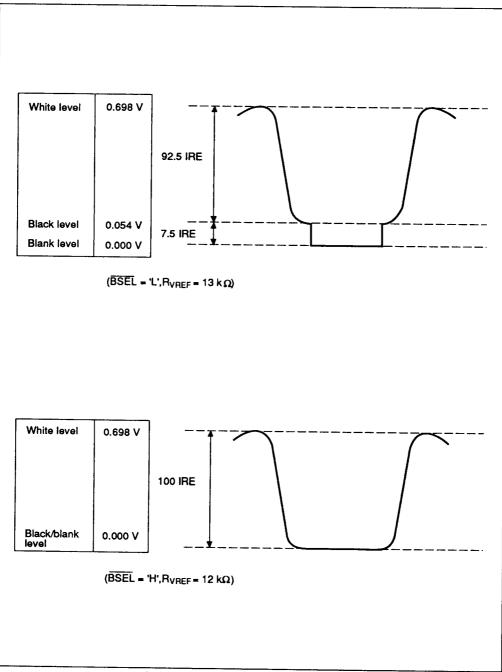



Figure 14 Pixel Mask Register Read

(415) (415) (415) (415) (415)

Figure 15 Video Output Waveforms

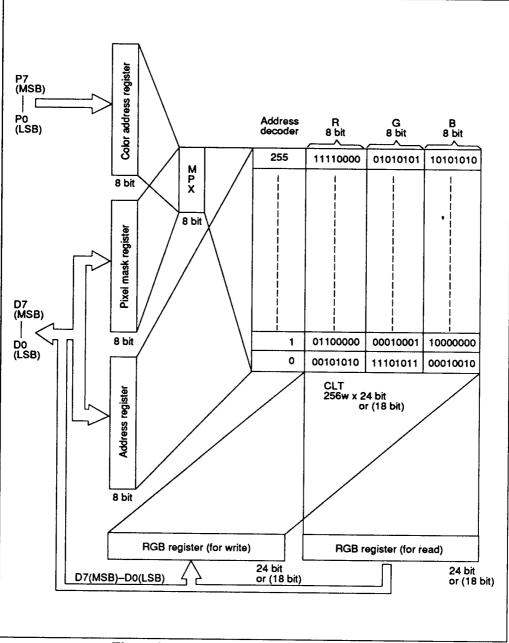
C HITACHI itachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

Mode Switching

HD153110 operating mode is switched as shown below. (8 bit/6bit='H') When the 8 bit/6bit terminal is 'L' a 6-bit color palette can be used; when in 24-bit digital output mode, the digital outputs will be on the upper six bits of each 8-bit word and the lower two bits will be set 'L.'

Table 4	Mode	Switching
---------	------	-----------

OSL2	OSL1	OSL0	Operating Mode	Notes
L	L	L	DAC output mode	1
L	L	Н	DAC direct Input (16,777,216-color simultaneous display mode)	1
L	н	L	Digital output 12-bit mode (R, G and B are output on upper 4 bits)	2
L	н	Н	Prohibited (Digital output 24-bit mode)	3
Н	L	L	Digital output 6-bit mode (Green output only)	2
Н	L	н	Prohibited	
Н	н	L	Digital output 24-bit mode	2
н	н	н	Prohibited	


Notes: 1. Digital output is Hi-Z.

2. DAC outputs are off.

3. Both Digital and DAC outputs are active.

Register Correspondence with CLT

Figure 16 Register Correspondence with CLT

Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

2

System Configuration Example

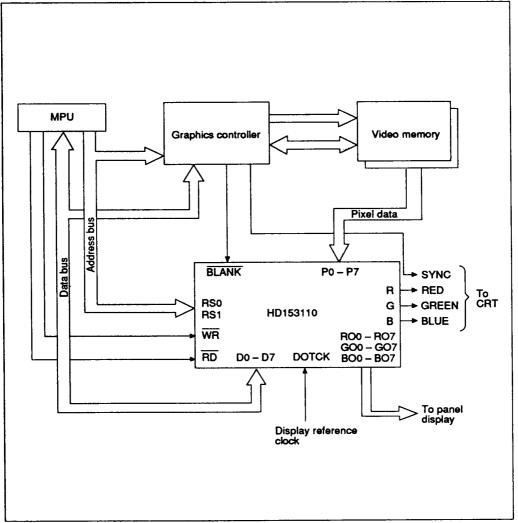


Figure 17 System Configuration Example

Table 5 Absolute Maximum Ratings

Symbol	Rating	Unit
V _{CC}	7.0	v
V _{IN}	0 to VCC	v
T _{opr}	0 to +70	°C
T _{stg}	- 55 to +150	°C
	V _{CC} V _{IN} T _{opr}	V _{CC} 7.0 V _{IN} 0 to VCC T _{opr} 0 to +70

Electrical Characteristics

Table 6 DAC Section Electrical Characteristics ($V_{cc} = 5 V$, $Ta = 25 °C$
--

ltem	Symbol	Min	Тур	Мах	Unit	Test Conditions
Resolution		8 (6)	8 (6)	8 (6)	bits	
Maximum operating frequency	fCLK			50/65	MHz	
Analog output voltage	V _A (Full)	-15	_	15	% of FSR	
$(R_{VREF} = 12 k\Omega)$	V _A (Zero)	2	_	2	% of FSR	
Differential linearity	DLE	-1		+1	LSB	
Integral linearity	ILE	-1		+1	LSB	
Output rise time (20 – 80%)	t _r		_	10	ns	C _L = 15 pF
Output fall time (80 – 20%)	t _f	_		10	ns	C _L = 15 pF
Settling time	ts			30	ns	C ₁ = 15 pF
Glitch energy	EG	_	90		PVS	

() indicates 6-bit mode.

Table 7 Digital Section DC Characteristics

(unless otherwise specified	V _{CC} = 5 V ±	5 %: Ta = 0 to +70 °C)
-----------------------------	-------------------------	------------------------

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
Input "High" level voltage	VIH	2.0		V _{CC}	V		
Input "Low" level voltage	VIL	-0.3	_	0.8	V		
Input clamp voltage	VI	_		1.5	V	V _{CC} = 4.75 V I _{IN} = -18 mA	

4

Digital Section DC Characteristics

(unless otherwise specified $V_{CC} = 5 V \pm 5 \%$: Ta = 0 to +70 °C) (cont)

	00						
tem	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
Output "High" level voltage	VOH	2.7	_	_	V	V _{CC} = 4.75 V I _{OH} =400 μA	
Output "Low" level voltage	VOL		-	0.5	V	V _{CC} = 4.75 V I _{OL} = 8 mA	
Input current	η			1	mA	V _{CC} = 5.25 V V _I = 5.5 V	
"High" level input current	lιΗ	_		20	μA	V _{CC} = 5.25 V V ₁ = 2.7 V	
"Low" level input current	μ	_		-400	μA	V _{CC} = 5.25 V V _I = 0.4 V	
Supply current (1)	Icc (1)	-	130	190	mA	V _{CC} = 5.25 V	1
Supply current (2)	I _{CC} (2)	_	110	160	mA	V _{CC} = 5.25	2

Notes: 1. OSL0 = 'L', OSL1 ='L', OSL2 ='L'

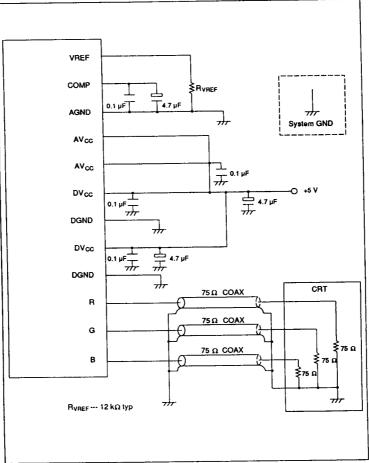
2. OSL0 ='L', OSL1 = 'H', OSL2 = 'H'

Table 8 Digital Section AC Characteristics ($V_{CC} = 5 V$, Ta = 25 °C)

Item	Symbol	50 MHz		65 MHz				Reference
		Min	Max	Min	Max	Unit	Remarks	Figure
DOTCK cycle time	tDCK	20	-	15.3	_	ns		9
DOTCK low level time	^t WLDCK	8		6		ns		9
DOTCK high level time	^t WHDCK	8	_	6	_	ns		9
Data setup time	t _{sp}	6		5	_	ns		9
Data hold time	ţНЬ	6		5	_	ns		9
Data output delay time	t _{PDA}	_	30	_	30	ns	C _L =15 pF	9
WR low level time	twLw	50		50		ns		3, 7, 8
WR high level time	twnw	3×t _{DCK}	_	3×t _{DCK}		ns		7
RD low level time	^t WLR	50		50	_	ΠS		8
RD high level time (1)	twHR1	3×tDCK	_	3×t _{DCK}		ns		8
RD high level time (2)	twhr2	6×t _{DCK}	_	6×t _{DCK}	_	ns		8
WR/RD interval time (1)	tiwn1	3×t _{DCK}		3×t _{DCK}	_	ns		5, 6
WR/RD interval time (2)	tiwr2	6×tDCK		6×t _{DCK}	_	ns		5, 6, 8, 9

O HITACHI

Item		50 MHz		65 MHz				Reference
	Symbol	Min	Max	Min	Max	Unit	Remarks	Figure
WR/RS0, RS1 setup time	tsw	10		10		ns		3
WR/RS0, RS1 hold time	4HW	10	_	10	_	ns		3
RD/RS0, RS1 setup time	t _{SRR}	10	_	10	_	ns		4
RD/RS0, RS1 hold time	HRR	10		10	_	ns		4
WR data setup time	tsow	10	-	10	_	ns		3
WR data hold time	thow.	10		10	_	ns		3
RD data output delay time (1)	t _{DDR1}	5	_	5		ns	C _L = 15 pF	4
RD data output delay time (2)	tDDR2		40		40	ns	C _L	4
RD data output hold time (1)	HDR1	5		5	_	ns	C _L =15 pF	4
RD data output hold time (2)	^t HDR2	—	20	_	20	ns	C _L =15 pF	4
Digital output delay time	^t PDO	_	19	-	19	ns	C _L = 15 pF	12
WR low level time	^t MWLW	50		50	_	ns		13
RD low level time	^t MWLR	50	_	50		ns		14
WR/RS0, RS1 setup time	t _{MSW1}	10		10		ns		13
	4MSW2	10	_	10		ns		13
WR/RS0, RS1 hold time		10		10	-	ns		13
	tMHW2	10	_	10		ns		13
RD/RS0, RS1 setup time	tMSR1	10		10		ns		14
	tMSR2	10	_	10	_	ns		14
RD/RS0, RS1 hold time		10	-	10	-	ns		14
	tMHR2	10		10	_	ns		14
WR data setup time	^t MSDW	10	_	10	_	ns		13
WR data hold time	^t MHDW	10	-	10	_	ns		13


Digital Section AC Characteristics (V_{CC} = 5 V, Ta = 25 °C) (cont)

item	Symbol	50 MHz		65 MHz				Reference
		Min	Max	Min	Max	Unit	Remarks	Figure
RD data output delay time	IMDR1	5		5		ns	C _L = 15 pF	14
	tMDR2		40		40	ns	C _L = 15 pF	14
RD data output hold time	tMDHR1	5	_	5	-	ns	C _L = 15 pF	14
	t _{MDHR2}	_	20		20	ns	C _L = 15 pF	14

Digital Section AC Characteristics (V_{CC} = 5 V, Ta = 25 °C) (cont)

Figure 18 Connection Example

