74HC/HCT4353

MSI

TRIPLE 2-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER WITH LATCH

FEATURES

- Wide analog input voltage range: ± 5 V
- Low "ON" resistance: 80 Ω (typ.) at V_{CC} - V_{EE} = 4.5 V 70 Ω (typ.) at V_{CC} - V_{EE} = 6.0 V 60 Ω (typ.) at V_{CC} - V_{EE} = 9.0 V
- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- Address latches provided
- Output capability: non-standard
- ICC category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4353 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4353 are triple 2-channel analog multiplexers/demultiplexers with two common enable inputs (E_1 and E_2) and a latch enable input (LE). Each multiplexer has two independent inputs/outputs (nY_0 and nY_1), a common input/output (nZ) and select inputs (S_1 to S_3).

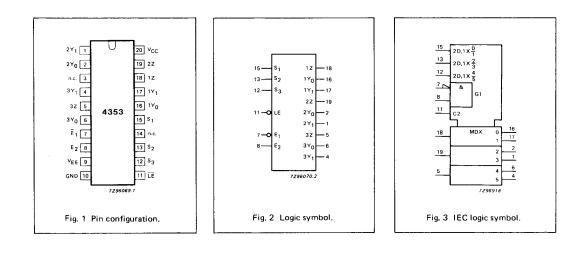
(continued on next page)

		001101710110	TYF			
SYMBOL	PARAMETER	CONDITIONS	нс	нс нст		
^t PZH [/] ^t PZL	turn "ON" time \overline{E}_1 , E_2 or S_n to V_{os}	CL = 50 pF	29	21	ns	
^t PHZ [/] ^t PLZ	turn "OFF" time Ē ₁ , E ₂ or S _n to V _{os}	$R_{L} = 1 k\Omega$ V _{CC} = 5 V	20	22	ns	
cl	input capacitance		3.5	3.5	pF	
CPD	power dissipation capacitance per switch	notes 1 and 2	23	23	pF	
cs	max. switch capacitance independent (Y) common (Z)		5 8	5 8	pF pF	

 $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

Notes

1. CPD is used to determine the dynamic power dissipation (PD in μ W):


- $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma \{(C_L + C_S) \times V_{CC}^2 \times f_o \} \text{ where:}$
- f_i = input frequency in MHz
- $\begin{array}{ll} f_{0} = \text{ output frequency in MHz} & C_{\overline{S}} = \text{ max. switch capacit} \\ \Sigma \left\{ (C_{L} + C_{S}) \times V_{CC}^{2} \times f_{0} \right\} = \text{ sum of outputs} & V_{CC} = \text{ supply voltage in V} \end{array}$

 C_L = output load capacitance in pF C_S = max. switch capacitance in pF V_{CC} = supply voltage in V

2. For HC the condition is VI = GND to V_{CC} For HCT the condition is VI = GND to V_{CC} - 1.5 V

PACKAGE OUTLINES

20-lead DIL; plastic (SOT146). 20-lead mini-pack; plastic (SO20; SOT163A).

December 1990 1013

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer WWW.DataSheet4U.com

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2, 1	2Y ₀ , 2Y ₁	independent inputs/outputs
5	3Z	common input/output
6, 4	3Y0, 3Y1	independent inputs/outputs
3, 14	n.c.	not connected
7	Ē1	enable input (active LOW)
8	E2	enable input (active HIGH)
9	VEE	negative supply voltage
10	GND	ground (0 V)
11	LE	latch enable input (active LOW)
15, 13, 12	S ₁ to S ₃	select inputs
16, 17	1Y0, 1Y1	independent inputs/outputs
18	1Z	common input/output
19	2Z	common input/output
20	Vcc	positive supply voltage

FUNCTION TABLE

	INP	CHANNEL		
Ē1	E2	LE	Sn	ON
н Х	хL	x x	X X	none none
L	H H	H H	L H	$nY_0 - nZ nY_1 - nZ$
L X	H X	L ↓	X X	* **

H = HIGH voltage level

* Last selected channel "ON".

L = LOW voltage level X = don't care

↓ = HIGH-to-LOW LE transition

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing

March 1988

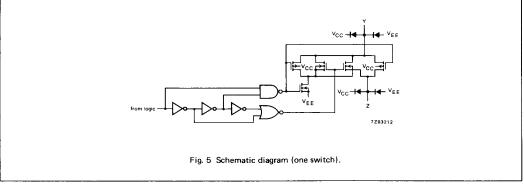
Signal gating

1014

GENERAL DESCRIPTION

Each multiplexer/demultiplexer contains two bidirectional analog switches, each with one side connected to an independent input/output (nYo and nY1) and the other side connected to a common input/output (nZ).


With E1 LOW and E2 HIGH, one of the two switches is selected (low impedance ON-state) by S1 to S3.


The data at the select inputs may be latched by using the active LOW latch enable input (\overline{LE}). When \overline{LE} is HIGH, the latch is transparent. When either of the two enable inputs, \overline{E}_1 (active LOW) and E2 (active HIGH), is inactive, all analog switches are turned off.

V_{CC} and GND are the supply voltage pins for the digital control inputs (S1 to S3, \overline{LE} , \overline{E}_1 and E_2). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY0 and nY1, and nZ) can swing between VCC as a positive limit and VEE as a negative limit. V_{CC} - V_{EE} may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, VEE is connected to GND (typically ground).

Selected channels latched.

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer 1015

RATINGS

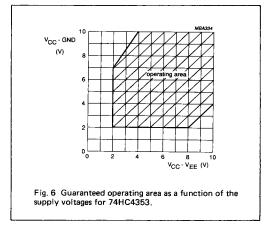
Limiting values in accordance with the Absolute Maximum System (IEC 134)

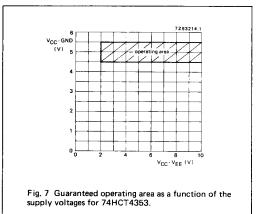
Voltages are referenced to $V_{EE} = GND$ (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
Vcc	DC supply voltage	-0.5	+11.0	v	
^{±!} IK	DC digital input diode current		20	mA	for V $_{\rm I} < -0.5$ V or V $_{\rm I} >$ V $_{\rm CC}$ + 0.5 V
^{± I} SK	DC switch diode current		20	mA	for V_S < -0.5 V or V_S > V_{CC} + 0.5 V
±1S	DC switch current		25	mA	for –0.5 V $<$ V _S $<$ V _{CC} + 0.5 V
±¦EE	DC V _{EE} current		20	mA	
±ICC; ±IGND	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
PS	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE}.


RECOMMENDED OPERATING CONDITIONS


SYMBOL	PARAMETER		74HC			74HC1	r			
		min.	typ.	max.	min.	typ.	max.		CONDITIONS	
Vcc	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	v	see Figs 6 and 7	
Vcc	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	v	see Figs 6 and 7	
V _I	DC input voltage range	GND		Vcc	GND		Vcc	v		
٧s	DC switch voltage range	VEE		vcc	VEE		Vcc	v		
Tamb	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC	
Tamb	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS	
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$ $V_{CC} = 10.0 V$	

1016

March 1988

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

DC CHARACTERISTICS FOR 74HC/HCT

					T _{amb} (°C)					TEST	COND	ITION	NS
SYMBOL	PARAMETER		74HC/HCT								V			<u>.</u>
STMBOL	FARAMETER	+25			-40	to +8 5	-40 t	-40 to +125		Vcc V	VEE V	ls µA	Vis	VI
		min.	typ.	max.	min.	max.	min.	max.	1					
R _{ON}	ON resistance (peak)		 100 90 70	_ 180 160 130		- 225 200 165		_ 270 240 195	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 - 4 .5	100 1000 1000 1000	V _{CC} to V _{EE}	VIN or VIL
R _{ON}	ON resistance (rail)		150 80 70 60	 140 120 105		- 175 150 130		- 210 180 160	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	VEE	V _{IH} or V _{IL}
R _{ON}	ON resistance		150 90 80 65	 160 140 120		 200 175 150		 240 210 180	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	vcc	V _{IH} or V _{IL}
∆R _{ON}	maximum ∆ON resistance between any two channels		986						ດ ດ ດ	2.0 4.5 6.0 4.5	0 0 0 4.5		V _{CC} to V _{EE}	V _{IH} or V _{IL}

Notes to DC characteristics

1. At supply voltages (V_{CC} - V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

2. For test circuit measuring RON see Fig. 8.

December 1990

1017

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

				-	T _{amb} (°C)					TEST	COND	TIONS
SYMBOL	PARAMETER		74HC								V		OTUER
	FARAMETER	+25			-40 to +85		-40 to +125		UNIT	VCC V	V _{EE} V	YI	OTHER
		min.	typ.	max.	min.	max.	min.	max.					
VIH	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		v	2.0 4.5 6.0 9.0			
VIL	LOW level input voltage		0,8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	v	2.0 4.5 6.0 9.0			
±lı	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μA	6.0 10.0	0 0	V _{CC} or GND	
±IS	analog switch OFF-state current per channel			0.1		1.0		1.0	μA	10.0	0	VIH or VIL	VS = V _{CC} − V _{EE} (see Fig. 10)
±IS	analog switch OFF-state current all channels			0.1		1.0		1.0	μA	10.0	o	V _{1H} or V _{1L}	V _S = V _{CC} − V _{EE} (see Fig. 10)
±IS	analog switch ON-state current			0.1		1.0		1.0	μA	10.0	0	ViH or Vi∟	IVSI = V _{CC} − VEE (see Fig. 11)
^I CC	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μA	6.0 10.0	0 0	V _{CC} or GND	V _{is} = V _{EE} or V _{CC} ; V _{os} = V _{CC} or V _{EE}

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				•	T _{amb} (°C)				TEST CONDITIONS			
SYMBOL	PARAMETER				74H	C						071150	
STABOL	FARAMETER	+25			40	-40 to +85		-40 to +125		∨cc ∨	VEE V	OTHER	
		min.	typ.	max.	min.	max.	min.	max.]				
^t PHL/ ^t PLH	propagation delay V _{is} to V _{os}		14 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	RL = ∞; CL = 50 pF (see Fig. 18)	
^t PZH [/] tPZL	turn "ON" time Ē ₁ ; E ₂ to V _{os}		61 22 18 18	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_{L} = 1 k\Omega;$ $C_{L} = 50 pF$ (see Fig. 19)	
^t PZH [/] ^t PZL	turn "ON" time LE to V _{os}		55 20 16 17	200 40 34 40		250 50 43 50		300 60 51 60	ns	2.0 4.5 6.0 4.5	0 0 0 4.5	RL = 1 kΩ; CL = 50 pF (see Fig. 19)	
^t PZH [/] ^t PZL _/	turn "ON" time S _N to V _{OS}		61 22 18 17	225 45 38 40		280 56 48 50		340 68 58 60	ns	2.0 4.5 6.0 4.5	0 0 0 4.5	RL = 1 kΩ; CL = 50 pF (see Fig. 19)	
^t PHZ [/] ^t PLZ	turn "OFF" time E ₁ ; E ₂ to V _{os}		66 24 19 19	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	R _L = 1 kΩ; C _L = 50 pF (see Fig. 19)	
^{tp} нZ [/] ^{tp} LZ	turn "OFF" time S _n to V _{os} ; LE to V _{os}		55 20 16 19	200 40 34 40		250 50 43 50		300 60 51 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	RL = 1 kΩ; CL = 50 pF (see Fig. 19)	
t _{su}	set-up time S _n to LE	60 12 10 18	17 6 5 8		75 15 13 23		90 18 15 27		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	RL = 1 kΩ; CL = 50 pF (see Fig. 20)	
th	hold time S _n to LE	5 5 5 5	6 2 3		5 5 5 5		5 5 5 5		ns	2.0 4.5 6.0 4.5	0 0 0 4 .5	RL = 1 kΩ; C _L = 50 pF (see Fig. 20)	
tw	LE minimum pulse width HIGH	80 16 14 16	11 4 3 6		100 20 17 20		120 24 20 24		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	RL = 1 kΩ; CL = 50 pF (see Fig. 20)	

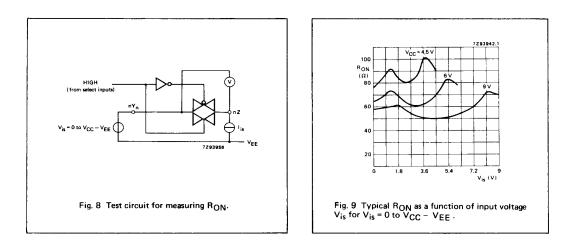
Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer 1019

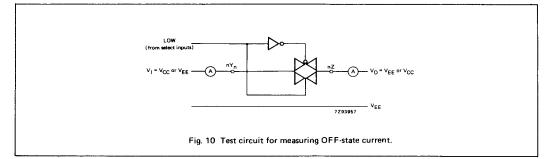
DC CHARACTERISTICS FOR 74HCT

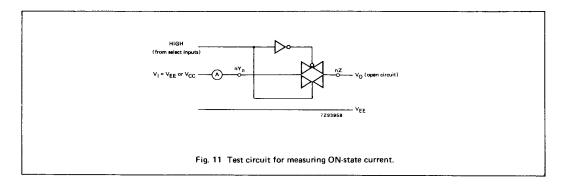
Voltages are referenced to GND (ground = 0 V)

				٦	amb (°C)					TEST	CONDI	TIONS
					74HC	т			UNIT			.	OTHER
SYMBOL	PARAMETER	+25			40 to +85		-40 to +125				VEE V	VI	OTHER
		min.	typ.	max.	min.	max.	min.	max.					
VIH	HIGH level input voltage	2.0	1.6		2.0		2.0		v	4.5 to 5.5			
VIL	LOW level input voltage		1.2	0.8		0.8		0.8	v	4.5 to 5.5			
±I	input leakage current			0.1		1.0		1.0	μA	5.5	0	V _{CC} or GND	
±IS	analog switch OFF-state current per channe!			0.1		1.0		1.0	μA	10.0	0	VIH or VIL	IVSI = V _{CC} − VEE (see Fig. 10)
±is	analog switch OFF-state current all channels			0.1		1.0		1.0	μA	10.0	0	VIH or V _{IL}	IVS1= V _{CC} - V _{EE} (see Fig. 10)
±۱s	analog switch ON-state current			0.1		1.0		1.0	μA	10.0	0	V _{IH} or VIL	^V S = V _{CC} - VEE (see Fig. 11)
ICC	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μA	5.5 5.0	0 -5.0	V _{CC} or GND	V _{is} = VEE or V _{CC} ; V _{os} = V _{CC} or V _{EE}
∆ICC	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μA	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND

Note to HCT types


The value of additional quiescent supply current (△I_{CC}) for a unit load of 1 is given here. To determine △I_{CC} per input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
Ē ₁ , E ₂	0.50
Sn	0.50
LE	1.5


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				-	T _{amb} (°C)				TEST CONDITIONS			
SYMBOL	PARAMETER				74HC	т					V	OTHER	
STINDUL		+25			-40	-40 to +85		-40 to +125		Vcc V	VEE V	OTHER	
		min.	typ.	max.	min.	max.	min.	max.					
^t РНL/ ^t РLН	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	RL = ∞;CL = 50 pF (see Fig. 18)	
^t PZH [/] ^t PZL	turn "ON" time Ē ₁ to V _{os}		26 22	55 45		69 56		83 68	ns	4.5 4.5	0 -4.5	R _L = 1 kΩ; C _L = 50 pF (see Fig. 19)	
^t PZH [/] ^t PZL	turn "ON" time E ₂ to V _{os}		22 18	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig. 19)	
^t PZH [/] ^t PZL	turn "ON" time LE to V _{os}		21 17	45 40		56 50		68 60	ns	4.5 4.5	0 -4.5	R _L = 1 kΩ; C _L = 50 pF (see Fig. 19)	
^t PZH [/] ^t PZL	turn "ON" time S _n to V _{os}		25 19	50 45		63 56		75 68	ns	4.5 4.5	0 -4.5	R _L = 1 kΩ; C _L = 50 pF (see Fig. 19)	
^t PHZ [/] ^t PLZ	turn "OFF" time Ē ₁ to V _{os}		23 19	50 40		63 50		75 60	ns	4.5 4.5	0 _4.5	$R_{L} = 1 k\Omega;$ $C_{L} = 50 pF$ (see Fig. 19)	
^t PHZ [/] ^t PLZ	turn "OFF" time E ₂ to V _{OS}		27 23	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	R _L = 1 kΩ; C _L = 50 pF (see Fig. 19)	
tphz/ tplz	turn "OFF" time LE to V _{os}		19 19	40 40		50 50		60 60	ns	4.5 4.5	0 -4.5	$R_{L} = 1 k\Omega;$ $C_{L} = 50 pF$ (see Fig. 19)	
^t PHZ [/] ^t PLZ	turn "OFF" time S _n to V _{os}		22 22	45 45		56 56		68 68	ns	4.5 4.5	0 -4.5	R _L = 1 kΩ; C _L = 50 pF (see Fig. 19)	
t _{su}	set-up time S _n to LE	12 15	7 9		15 19		18 22		ns	4.5 4.5	0 -4.5	$R_{L} = 1 k\Omega;$ $C_{L} = 50 pF$ (see Fig. 20)	
t _h	hold time S _n to LE	5 5	0 _2		5 5		5 5		ns	4.5 4.5	0 4.5	$R_{L} = 1 k\Omega;$ $C_{L} = 50 pF$ (see Fig. 20)	
tw	LE minimum pulse width HIGH	16 16	3 5		20 20		24 24		ns	4.5 4.5	0 -4.5	$R_{L} = 1 k\Omega;$ $C_{L} = 50 pF$ (see Fig. 20)	

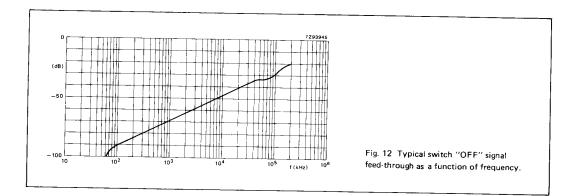
ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C

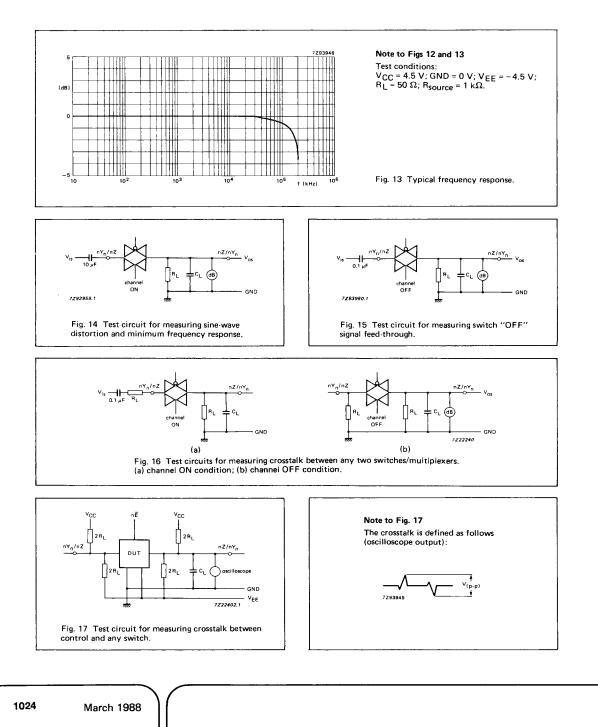
SYMBOL	PARAMETER	typ.	UNIT	V _{CC} V	V _{EE} V	V _{is(p-p)} V	CONDITIONS
	sine-wave distortion f =1 kHz	0.04 0.02	%	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 k\Omega; C_L = 50 pF$ (see Fig. 14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	R _L = 10 kΩ; C _L = 50 pF (see Fig. 14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega$; $C_L = 50 pF$ f = 1 MHz (see Figs 12 and 15)
	crosstalk between any two switches/ multiplexers	60 60	dB dB	2.25 4.5	-2.25 -4.5	note 1	R _L = 600 Ω; C _L = 50 pF; f = 1 MHz (see Fig. 16)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 4 .5		$ \begin{array}{l} R_L = 600 \ \Omega; \ C_L = 50 \ pF; \\ f = 1 \ MHz \ (E_1, E_2 \ or \ S_n, \\ square-wave \ between \ V_{CC} \\ and \ GND, \ t_r = t_f = 6 \ ns) \\ (see \ Fig. 17) \end{array} $
f _{max}	minimum frequency response (—3dB)	160 170	MHz MHz	2.25 4.5	2.25 4.5	note 2	$R_L = 50 \Omega; C_L = 10 pF$ (see Figs 13 and 14)
C _S	maximum switch capacitance independent (Y) common (Z)	5 12	pF pF				

Notes to AC characteristics

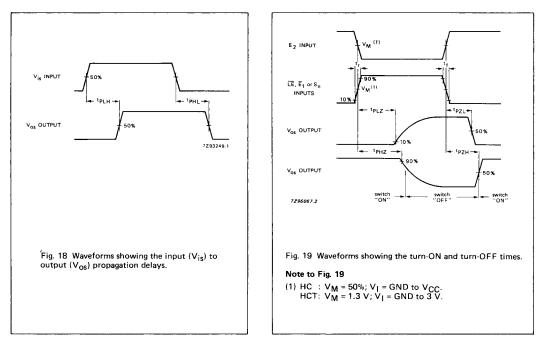

General note

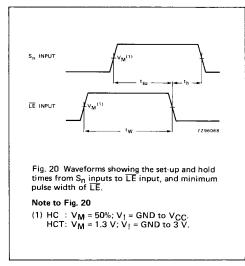
 V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output.

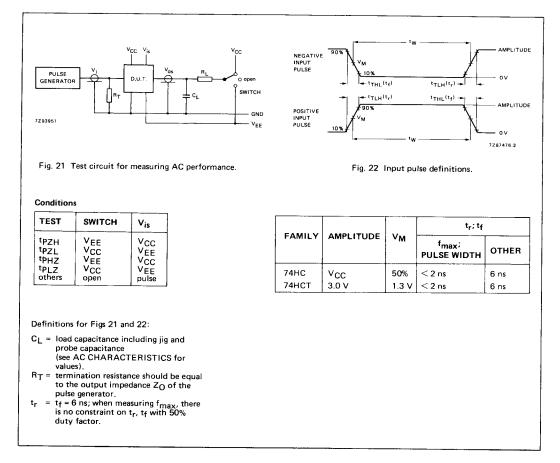
Notes


1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).

2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).


March 1988


Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer


Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

