TRIPLE 2-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER WITH LATCH

FEATURES

- Wide analog input voltage range: $\pm 5 \mathrm{~V}$
- Low "ON" resistance: 80Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$ 70Ω (typ.) at $V_{C C}-V_{E E}=6.0 \mathrm{~V}$ 60Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation: to enable $5 \vee$ logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical "break before make" built in
- Address latches provided
- Output capability: non-standard
- ICC category: MSI

GENERAL DESCRIPTION

The 74HC̃/HCT4353 are high-speed Si-gate CMOS devices.
They are specified in compliance with JEDEC standard no. 7A.
The $\mathbf{7 4 H C} /$ HCT4353 are triple 2 -channel analog multiplexers/demultiplexers with two common enable inputs (\bar{E}_{1} and E_{2}) and a latch enable input ($\overline{\mathrm{LE}}$). Each multiplexer has two independent inputs/outputs ($n Y_{0}$ and $n Y_{1}$), a common input/output ($\mathrm{n} Z$) and select inputs (S_{1} to S_{3}).
(continued on next page)

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\begin{aligned} & \mathrm{tPZH}^{\prime} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	turn "ON" time $E_{1}, E_{2} \text { or } S_{n} \text { to } V_{o s}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	29	21	ns
$\begin{aligned} & \mathrm{tphz}^{\prime} \\ & \mathrm{tPLZ}^{\prime} \end{aligned}$	turn "OFF" time \bar{E}_{1}. E_{2} or S_{n} to $V_{o s}$		20	22	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{CPD}^{\text {d }}$	power dissipation capacitance per switch	notes 1 and 2	23	23	pF
C_{S}	max. switch capacitance independent (Y) common (Z)		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

$V_{E E}=G N D=0 V ; T_{a m b}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):

$$
P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\} \text { where: }
$$

$\mathrm{f}_{\mathrm{i}}=$ input frequency in $\mathrm{MHz} \quad \mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF $f_{0}=$ output frequency in $\mathrm{MHz} \quad \mathrm{C}_{\mathrm{S}}=$ max. switch capacitance in pF $\Sigma\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{O}}\right\}=$ sum of outputs $\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For $H C$ the condition is $V_{1}=G N D$ to $V_{C C}$ For HCT the condition is $V_{1}=G N D$ to $V_{C C}-1.5 V$

PACKAGE OUTLINES

20-lead DIL; plastic (SOT146).
20-lead mini-pack; plastic (SO20; SOT163A).

Fig. 1 Pin configuration.

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2,1	$2 Y_{0}, 2 Y_{1}$	independent inputs/outputs
5	$3 Z$	common input/output
6,4	$3 Y_{0}, 3 Y_{1}$	independent inputs/outputs
3,14	n.c.	not connected
7	\bar{E}_{1}	enable input (active LOW)
8	E_{2}	enable input (active HIGH)
9	$V_{E E}$	negative supply voltage
10	GND	ground (0 V)
11	LE	latch enable input (active LOW)
$15,13,12$	$\mathrm{~S}_{1}$ to S_{3}	select inputs
16,17	$1 Y_{0}, 1 \mathrm{Y}_{1}$	independent inputs/outputs
18	$1 Z$	common input/output
19	$2 Z$	common input/output
20	V_{CC}	positive supply voltage

FUNCTION TABLE

INPUTS				CHANNEL ON
\bar{E}_{1}	E_{2}	$\overline{L E}$	S_{n}	
$\begin{aligned} & H \\ & X \end{aligned}$	${ }_{\text {L }} \mathrm{L}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	none none
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & n Y_{0}-n Z \\ & n Y_{1}-n Z \end{aligned}$
L	H \times	\downarrow	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	**

$$
\begin{array}{lll}
\mathrm{H}=\mathrm{HIGH} \text { voltage level } & \text { * Last selected channel "ON". } \\
\mathrm{L}=\mathrm{LOW} \text { voltage level } & & \text { ** Selected channels latched. } \\
\mathrm{X}=\text { don't care } & \\
\downarrow=\text { HIGH-to-LOW } \overline{\text { LE }} \text { transition } &
\end{array}
$$

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

GENERAL DESCRIPTION

Each multiplexer/demultiplexer contains two bidirectional analog switches, each with one side connected to an independent input/output ($n Y_{0}$ and $n Y_{1}$) and the other side connected to a common input/output (nZ).
With \tilde{E}_{1} LOW and $E_{2} \mathrm{HIGH}$, one of the two switches is selected (low impedance ON -state) by S_{\uparrow} to S_{3}.
The data at the select inputs may be latched by using the active LOW latch enable input ($\overline{\mathrm{LE}}$). When $\overline{\mathrm{LE}}$ is HIGH, the latch is transparent. When either of the two enable inputs, \bar{E}_{1} (active LOW) and E_{2} (active HIGH), is inactive, all analog switches are turned off.
$V_{C C}$ and GND are the supply voltage pins for the digital control inputs (S_{1} to S_{3}. $\overline{L E}, \bar{E}_{1}$ and E_{2}). The $V_{C C}$ to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs ($n Y_{0}$ and $n Y_{1}$, and $n Z$) can swing between $V_{C C}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{C C}-V_{E E}$ may not exceed 10.0 V .
For operation as a digital multiplexer/demultiplexer, $V_{E E}$ is connected to GND (typically ground).

Fig. 4 Functional diagram.

Fig. 5 Schematic diagram (one switch).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to $V_{E E}=G N D$ (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
$V_{\text {CC }}$	DC supply voltage	-0.5	+11.0	V	
$\pm 11 \mathrm{~K}$	DC digital input diode current		20	mA	for $V_{1}<-0.5 V$ or $V_{1}>V_{C C}+0.5 V$
$\pm{ }^{\text {I SK }}$	DC switch diode current		20	mA	for $V_{S}<-0.5 V$ or $V_{S}>V_{C C}+0.5 V$
$\pm{ }^{\prime}$	DC switch current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm{ }^{\text {E }}$ E	DC V $\mathrm{EEE}^{\text {current }}$		20	mA	
$\begin{aligned} & \pm \mathrm{I} \mathrm{CC} \\ & \pm \mathrm{I}_{\mathrm{GND}} \end{aligned}$	DC V $\mathrm{CC}^{\text {or }}$ GND current		50	mA	
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package plastic DIL		750	mW	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ $74 \mathrm{HC} / \mathrm{HCT}$ above $+70^{\circ} \mathrm{C}$: derate linearly with $12 \mathrm{~mW} / \mathrm{K}$
	plastic mini-pack (SO)		500	mW	above $+70^{\circ} \mathrm{C}$: derate linearly with $8 \mathrm{~mW} / \mathrm{K}$
P_{S}	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing $V_{C C}$ current out of terminals $n Z$, when switch current flows in terminals $n Y_{n}$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminals $n Z$, no $V_{C C}$ current will flow out of terminals $n Y_{n}$. In this case there is no limit for the voltage drop across the switch, but the voltages at $n Y_{n}$ and $n Z$ may not exceed $V_{C C}$ or $V_{E E}$.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
$V_{\text {CC }}$	DC supply voltage $V_{C C}-\mathrm{GND}$	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
$V_{\text {CC }}$	DC supply voltage $V_{C C}-V_{\text {EE }}$	2.0	5.0	10.0	2.0	5.0	10.0	\checkmark	see Figs 6 and 7
V_{1}	DC input voltage range	GND		$V_{\text {CC }}$	GND		$V_{\text {CC }}$	V	
V_{S}	DC switch voltage range	$V_{\text {EE }}$		V_{CC}	$V_{\text {EE }}$		$V_{\text {cc }}$	V	
Tamb	operating ambient temperature range	-40		+85	-40		$+85$	${ }^{\circ} \mathrm{C}$	see DC and AC
Tamb	operating ambient temperature range	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$	CHARACTERISTICS
t_{r}, t_{f}	input rise and fall times		6.0	$\begin{aligned} & 1000 \\ & 500 \\ & 400 \\ & 250 \end{aligned}$		6.0	500	ns	$V_{C C}=2.0 \mathrm{~V}$ $V_{C C}=4.5 \mathrm{~V}$ $V_{C C}=6.0 \mathrm{~V}$ $V_{C C}=10.0 \mathrm{~V}$

Fig. 6 Guaranteed operating area as a function of the supply voltages for 74 HC 4353 .

Fig. 7 Guaranteed operating area as a function of the supply voltages for 74 HCT 4353 .

DC CHARACTERISTICS FOR 74HC/HCT

For $74 \mathrm{HC}: \quad V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0,4.5,6.0$ and 9.0 V
For $74 \mathrm{HCT}: \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=4.5$ and $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS				
		74HC/HCT								$\underset{v}{v_{C C}}$	V_{VE}	$\begin{aligned} & \text { Is } \\ & \mu \mathrm{A} \end{aligned}$	$v_{\text {is }}$	v_{1}
		+25			-40 to +85		-40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
RoN	ON resistance (peak)		$\begin{aligned} & - \\ & 100 \\ & 90 \\ & 70 \end{aligned}$	$\begin{aligned} & 180 \\ & 160 \\ & 130 \end{aligned}$		$\begin{aligned} & - \\ & 225 \\ & 200 \\ & 165 \end{aligned}$		$\begin{aligned} & 270 \\ & 240 \\ & 195 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & v_{\mathrm{CC}} \\ & \text { to } \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{array}{\|l} v_{\text {IN }} \\ \text { or } \\ v_{\text {IL }} \end{array}$
R_{ON}	ON resistance (rail)		$\begin{aligned} & 150 \\ & 80 \\ & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & 140 \\ & 120 \\ & 105 \end{aligned}$		$\begin{aligned} & - \\ & 175 \\ & 150 \\ & 130 \end{aligned}$		$\begin{aligned} & - \\ & 210 \\ & 180 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{array}{\|l\|} 100 \\ 1000 \\ 1000 \\ 1000 \\ \hline \end{array}$	$V_{\text {EE }}$	$\begin{aligned} & V_{\text {IH }} \\ & \text { or } \\ & V_{I L} \end{aligned}$
R_{ON}	ON resistance		$\begin{aligned} & 150 \\ & 90 \\ & 80 \\ & 65 \end{aligned}$	$\begin{aligned} & 160 \\ & 140 \\ & 120 \end{aligned}$		$\begin{aligned} & 200 \\ & 175 \\ & 150 \end{aligned}$		$\begin{aligned} & -70 \\ & 210 \\ & 180 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}\right.$	$\begin{aligned} & 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$V_{C C}$	$\begin{aligned} & v_{1 H} \\ & o_{1} \\ & v_{1 L} \end{aligned}$
$\triangle \mathrm{R}_{\text {ON }}$	maximum $\triangle O N$ resistance between any two channels		$\begin{aligned} & - \\ & 9 \\ & 8 \\ & 6 \end{aligned}$						Ω Ω Ω Ω Ω	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}\right.$		$\begin{aligned} & v_{\mathrm{CC}} \\ & \text { to } \\ & \mathrm{v}_{\mathrm{EE}} \end{aligned}$	$\begin{aligned} & v_{1 H} \\ & o r \\ & V_{I L} \end{aligned}$

Notes to DC characteristics

1. At supply voltages ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) approaching 2.0 V the analog switch ON -resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
2. For test circuit measuring R_{ON} see Fig. 8.

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	$\mathrm{Tamb}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS			
		74HC								$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{Cc}}}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}} \\ \mathrm{~V} \end{gathered}$	v_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage	$\begin{aligned} & 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.4 \\ & 3.2 \\ & 4.7 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$		v	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$			
$V_{\text {IL }}$	LOW level input voltage		$\begin{aligned} & 0.8 \\ & 2.1 \\ & 2.8 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 1.35 \\ & 1.8 \\ & 2.7 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \\ \hline \end{array}$		$\begin{aligned} & 0.5 \\ & 1.35 \\ & 1.8 \\ & 2.7 \\ & \hline \end{aligned}$	V	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \\ & \hline \end{aligned}$			
± 11	input leakage current			$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & 6.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}} \\ & \text { or } \\ & \text { GND } \end{aligned}$	
$\pm 1 \mathrm{~S}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	$\begin{array}{\|l\|} \hline V_{\mathrm{IH}} \\ \mathrm{or}_{1 \mathrm{~L}} \\ V_{\mathrm{I}} \\ \hline \end{array}$	$\begin{aligned} & \hline V_{S} I= \\ & V_{C C}-V_{E E} \\ & \text { (see Fig. 10) } \end{aligned}$
$\pm \mathrm{I}$ s	analog switch OFF-state current all channels			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	$\begin{array}{\|l} \hline V_{\text {IH }} \\ \text { or } \\ V_{\text {IL }} \\ \hline \end{array}$	$\begin{aligned} & \left\|V_{S}\right\|= \\ & V_{C C}-V_{\text {EE }} \\ & \text { (see Fig. } 10) \end{aligned}$
± 1 S	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	$\begin{aligned} & V_{I H} \\ & \text { or } \\ & V_{I L} \\ & \hline \end{aligned}$	$\begin{aligned} & \left\|V_{S}\right\|= \\ & V_{C C}-V_{E E} \\ & \text { (see Fig. 11) } \end{aligned}$
${ }^{\text {I CC }}$	quiescent supply current			$\begin{aligned} & 8.0 \\ & 16.0 \end{aligned}$		$\begin{array}{\|l\|} \hline 80.0 \\ 160.0 \end{array}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & 6.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$V_{C C}$ or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \\ & v_{C C} \mathrm{~V}_{\text {os }}= \\ & v_{C C} \text { or } \mathrm{V}_{\text {EE }} \end{aligned}$

AC CHARACTERISTICS FOR 74HC

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HC								$\left\lvert\, \begin{gathered} \mathbf{v}_{\mathbf{C c}} \end{gathered}\right.$	$\begin{gathered} V_{E E} \\ V \end{gathered}$	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\begin{aligned} & \text { tpHL' } \\ & \text { tPLH } \end{aligned}$	propagation delay $V_{\text {is }} \text { to } V_{\text {os }}$		$\begin{aligned} & 14 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 60 \\ & 12 \\ & 10 \\ & 8 \\ & \hline \end{aligned}$		$\begin{array}{r} 75 \\ 15 \\ 13 \\ 10 \\ \hline \end{array}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 12 \\ & \hline \end{aligned}$	ns	$\begin{array}{\|l} 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & R_{L}=\infty ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig. 18) } \end{aligned}$
$\begin{aligned} & \mathrm{tpZH}^{\prime} \\ & \text { tpZL } \end{aligned}$	turn "ON" time $E_{1} ; E_{2}$ to $V_{o s}$		$\begin{aligned} & 61 \\ & 22 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 250 \\ & 50 \\ & 43 \\ & 40 \\ & \hline \end{aligned}$		$\begin{aligned} & 315 \\ & 63 \\ & 54 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 375 \\ & 75 \\ & 64 \\ & 60 \\ & \hline \end{aligned}$	ns	$\begin{array}{\|l} 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & \mathrm{tpZH} \\ & \mathrm{tpZL} \end{aligned}$	turn "ON" time LE to $V_{o s}$		$\begin{aligned} & 55 \\ & 20 \\ & 16 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 40 \\ & 34 \\ & 40 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 250 \\ 50 \\ 43 \\ 50 \\ \hline \end{array}$		$\begin{aligned} & 300 \\ & 60 \\ & 51 \\ & 60 \\ & \hline \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & \mathrm{tPZH} \\ & \mathrm{t}^{\prime}{ }^{\prime} \end{aligned}$	turn "ON" time S_{n} to $V_{\text {os }}$		$\begin{array}{\|l} 61 \\ 22 \\ 18 \\ 17 \end{array}$	$\begin{aligned} & 225 \\ & 45 \\ & 38 \\ & 40 \\ & \hline \end{aligned}$		$\begin{array}{\|l} 280 \\ 56 \\ 48 \\ 50 \\ \hline \end{array}$		$\begin{aligned} & 340 \\ & 68 \\ & 58 \\ & 60 \\ & \hline \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & { }^{\text {tPHZ }} \text { ' } \\ & \text { tPLZ } \end{aligned}$	turn "OFF" time $\mathrm{E}_{1} ; \mathrm{E}_{2}$ to V_{os}		$\begin{array}{\|l\|} \hline 66 \\ 24 \\ 19 \\ 19 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 50 \\ & 43 \\ & 40 \\ & \hline \end{aligned}$		$\begin{aligned} & 315 \\ & 63 \\ & 54 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 375 \\ & 75 \\ & 64 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & \mathrm{tPHZ}^{\prime} \\ & \text { tPLZ } \end{aligned}$	$\begin{aligned} & \text { turn "OFF" time } \\ & S_{n} \text { to } V_{o s} \text {; "LE to } V_{\text {os }} \end{aligned}$		$\begin{array}{\|l} 55 \\ 20 \\ 16 \\ 19 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 40 \\ & 34 \\ & 40 \end{aligned}$		$\begin{aligned} & 250 \\ & 50 \\ & 43 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 300 \\ & 60 \\ & 51 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text {; } \\ & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\mathrm{t}_{\text {su }}$	set-up time S_{n} to $\overline{L E}$	$\begin{aligned} & 60 \\ & 12 \\ & 10 \\ & 18 \end{aligned}$	$\begin{aligned} & 17 \\ & 6 \\ & 5 \\ & 8 \end{aligned}$		$\begin{aligned} & 75 \\ & 15 \\ & 13 \\ & 23 \\ & \hline \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 27 \\ & \hline \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see } \mathrm{Fig} .20 \text {) } \end{aligned}$
$t^{\text {n }}$	hold time S_{n} to $\overline{L E}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & -6 \\ & -2 \\ & -2 \\ & -3 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig. 20) } \end{aligned}$
${ }^{\text {t }}$ W	$\overline{\mathrm{LE}}$ minimum pulse width HIGH	$\begin{array}{\|l\|} \hline 80 \\ 16 \\ 14 \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 4 \\ & 3 \\ & 6 \end{aligned}$		$\begin{array}{\|l} 100 \\ 20 \\ 17 \\ 20 \\ \hline \end{array}$		$\begin{aligned} & 120 \\ & 24 \\ & 20 \\ & 24 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=50 \mathrm{pF} \\ & (\text { see } F \text { Fig. 20) } \end{aligned}$

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS			
		74HCT								$\underset{\mathbf{V}}{\mathrm{V}_{\mathbf{C C}}}$	$\underset{\mathbf{V}}{\mathrm{V}_{\mathrm{EE}}}$	v_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage	2.0	1.6		2.0		2.0		V	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$			
$V_{\text {IL }}$	LOW level input voltage		1.2	0.8		0.8		0.8	V	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$			
± 11	input leakage current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	0	$\begin{aligned} & v_{\mathrm{CC}} \\ & \text { or } \\ & \mathrm{GND}^{2} \end{aligned}$	
± 15	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	$\begin{array}{\|l\|} \hline v_{I H} \\ o r \\ v_{I L} \end{array}$	$\begin{aligned} & \left\|V_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & (\text { see Fig. } 10) \end{aligned}$
$\pm{ }^{\text {I }}$	analog switch OFF-state current all channels			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	$\begin{array}{\|l} \hline v_{\mathrm{IH}} \\ o^{\prime} \\ \mathrm{V}_{\mathrm{LL}} \end{array}$	$\begin{aligned} & \hline V_{S} \mid= \\ & V_{C C}-V_{E E} \\ & (\text { see Fig. } 10) \end{aligned}$
± 1 S	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	$\begin{array}{\|l\|} \hline V_{\text {IH }} \\ o r \\ V_{I L} \end{array}$	$\begin{aligned} & \text { } V_{S} I= \\ & v_{C C}-V_{E E} \\ & \text { (see Fig. 11) } \end{aligned}$
ICC	quiescent supply current			$\begin{array}{\|l\|} \hline 8.0 \\ 16.0 \\ \hline \end{array}$		$\begin{aligned} & 80.0 \\ & 160.0 \end{aligned}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & -5.0 \end{aligned}\right.$	$V_{\text {CC }}$ or GND	$V_{\text {is }}=V_{E E}$ or $V_{\mathrm{CC}} ; \mathrm{V}_{\text {os }}=$ $V_{C C}$ or $V_{E E}$
${ }^{\triangle} \mathrm{C} C$	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	$\mu \mathrm{A}$	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$	0	$\begin{aligned} & v_{C C} \\ & -2.1 \\ & v \end{aligned}$	other inputs at V_{CC} or GND

Note to HCT types

1. The value of additional quiescent supply current ($\Delta \mathrm{I} \mathrm{CC}$) for a unit load of 1 is given here.

To determine Δ^{\prime} CC per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\bar{E}_{1}, \mathrm{E}_{2}$	0.50
$\mathrm{~S}_{\mathrm{n}}$	0.50
LE	1.5

AC CHARACTERISTICS FOR 74HCT
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT		TEST	CONDITIONS
		74HCT								$\left\lvert\, \begin{gathered} v_{c c} \\ v \end{gathered}\right.$	\mathbf{V}_{EE}	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\begin{aligned} & \mathrm{tPHL}^{\prime} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	propagation delay $V_{\text {is }}$ to $V_{\text {os }}$		$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 8 \end{aligned}$		$\begin{array}{\|l} 15 \\ 10 \end{array}$		$\begin{aligned} & 18 \\ & 12 \end{aligned}$	ns	$\begin{array}{l\|l} 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & R_{L}=\infty ; C_{L}=50 \mathrm{pF} \\ & \text { (see Fig. 18) } \end{aligned}$
$\begin{aligned} & \mathrm{tPZH}^{\prime} \\ & \mathrm{t}_{\mathrm{PZZL}} \end{aligned}$	turn "ON" time E_{1} to $V_{o s}$		$\begin{aligned} & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$		$\begin{array}{\|l\|} 69 \\ 56 \end{array}$		$\begin{aligned} & 83 \\ & 68 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	0	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig. } 19 \text {) } \end{aligned}$
$\begin{aligned} & \mathrm{tPZH}^{\prime} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	turn "ON" time E_{2} to $V_{\text {os }}$		$\begin{aligned} & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$		$\begin{array}{\|l} 63 \\ 50 \end{array}$		$\begin{aligned} & 75 \\ & 60 \end{aligned}$	ns	$\begin{array}{\|l\|} 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega_{i} \\ & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & \text { tpZH/ } \\ & \text { tpZL } \end{aligned}$	turn "ON" time LE to $V_{\text {os }}$		$\begin{aligned} & 21 \\ & 17 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$		$\begin{array}{\|l} 56 \\ 50 \end{array}$		$\begin{aligned} & 68 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	${ }_{-4.5}^{0}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}}{ }^{\prime}{ }^{\prime} \end{aligned}$	turn "ON" time S_{n} to $V_{\text {os }}$		$\begin{array}{\|l} 25 \\ 19 \end{array}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$		$\begin{array}{\|l} 63 \\ 56 \end{array}$		$\begin{aligned} & 75 \\ & 68 \end{aligned}$	ns	$\begin{array}{\|l\|} 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & \text { tpHz/ } \\ & \text { tpLZ } \end{aligned}$	turn "OFF" time E_{1} to $V_{o s}$		$\begin{array}{\|l} 23 \\ 19 \end{array}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$		$\begin{array}{\|l} 63 \\ 50 \\ \hline \end{array}$		$\begin{aligned} & 75 \\ & 60 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & \text { tpHz/ } \\ & \text { tpLZ } \end{aligned}$	turn "OFF" time E_{2} to $V_{o s}$		$\begin{aligned} & 27 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$		$\begin{array}{\|l} 63 \\ 50 \\ 50 \end{array}$		$\begin{aligned} & 75 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & \text { tpHz/ } \\ & \text { tPLZ } \end{aligned}$	turn "OFF" time $\overline{\text { LE }}$ to $V_{\text {os }}$		$\begin{array}{\|l} 19 \\ 19 \end{array}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	ns	$\begin{array}{\|l\|} 4.5 \\ 4.5 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 19) } \end{aligned}$
$\begin{aligned} & \text { tpHz/ } \\ & \text { tpLZ } \end{aligned}$	turn "OFF" time S_{n} to $V_{\text {os }}$		$\begin{array}{\|l} 22 \\ 22 \end{array}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 56 \\ & 56 \end{aligned}$		$\begin{aligned} & 68 \\ & 68 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{l\|} 0 \\ -4.5 \end{array}$	$\left(\begin{array}{l} R_{\mathrm{L}}=1 \mathrm{k} \Omega_{i} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { isee Fig. 19) } \end{array}\right.$
${ }_{\text {tsu }}$	set-up time S_{n} to $\overline{L E}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{array}{\|l} 7 \\ 9 \end{array}$		$\begin{array}{\|l} 15 \\ 19 \end{array}$		$\begin{array}{\|l} 18 \\ 22 \\ \hline \end{array}$		ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig. 20) } \end{aligned}$
t_{n}	hold time S_{n} to $\overline{L E}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & -2 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$\begin{array}{\|l} 5 \\ 5 \end{array}$		ns	$\begin{array}{\|l} 4.5 \\ 4.5 \end{array}$	$\left\lvert\, \begin{aligned} & 0 \\ & -4.5 \end{aligned}\right.$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=50 \mathrm{pF} \\ & (\text { see } \mathrm{Fig} .20) \end{aligned}$
${ }^{\text {t }}$ W	$\overline{\text { LE }}$ minimum pulse width HIGH	$\begin{aligned} & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 3 \\ 5 \\ \hline \end{array}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$		ns	$\begin{array}{\|l\|l} 4.5 \\ 4.5 \end{array}$	$\left\lvert\, \begin{aligned} & 0 \\ & -4.5 \end{aligned}\right.$	$\begin{aligned} & R_{L}=1 \mathrm{kS} ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig. 20) } \end{aligned}$

Fig. 8 Test circuit for measuring R_{ON}.

Fig. 9 Typical R ON as a function of input voltage $V_{\text {is }}$ for $V_{\text {is }}=0$ to $V_{C C}-V_{E E}$.

Fig. 10 Test circuit for measuring OFF-state current.

Fig. 11 Test circuit for measuring ON-state current.

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT
Recommended conditions and typical values
GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	typ.	UNIT	$\begin{gathered} V_{C c} \\ V \end{gathered}$	$V_{E E}$ \mathbf{V}	$V_{i s(p-p)}$	CONDITIONS
	sine-wave distortion $\mathrm{f}=1 \mathrm{kHz}$	$\begin{aligned} & 0.04 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -2.25 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega ; C_{L}=50 \mathrm{pF} \\ & \text { (see Fig. 14) } \end{aligned}$
	sine-wave distortion $f=10 \mathrm{kHz}$	$\begin{aligned} & 0.12 \\ & 0.06 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -2.25 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 14 \text {) } \end{aligned}$
	switch "OFF's signal feed-through	$\begin{aligned} & -50 \\ & -50 \end{aligned}$	dB dB	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -2.25 \\ & -4.5 \end{aligned}$	note 1	$\begin{aligned} & R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} \\ & f=1 \mathrm{MHz} \text { (see Figs } 12 \text { and 15) } \end{aligned}$
	crosstalk between any two switches/ multiplexers	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -2.25 \\ & -4.5 \end{aligned}$	note 1	$\begin{aligned} & R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF}: \\ & f=1 \mathrm{MHz} \text { (see Fig. } 16 \text {) } \end{aligned}$
$V_{(p-p)}$	crosstalk voltage between control and any switch (peak-to-peak value)	$\begin{aligned} & 110 \\ & 220 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$		$R_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $f=1 \mathrm{MHz}\left(\bar{E}_{1}, \mathrm{E}_{2}\right.$ or S_{n}, square-wave between $V_{C C}$ and GND, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$) (see Fig. 17)
$f_{\text {max }}$	minimum frequency response (-3 dB)	$\begin{aligned} & 160 \\ & 170 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -2.25 \\ & -4.5 \end{aligned}$	note 2	$R_{L}=50 \Omega ; C_{L}=10 \rho F$ (see Figs 13 and 14)
C_{S}	maximum switch capacitance independent (Y) common (Z)	$\begin{aligned} & 5 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$				

Notes to AC characteristics

General note
$V_{i s}$ is the input voltage at an $n Y_{n}$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at an $n Y_{n}$ or $n Z$ terminal, whichever is assigned as an output.
Notes

1. Adjust input voltage $V_{\text {is }}$ to 0 dBm level ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
2. Adjust input voltage $V_{\text {is }}$ to 0 dBm level at V_{os} for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

Fig. 12 Typical switch "OFF" signal feed-through as a function of frequency.

Note to Figs 12 and 13
Test conditions:
$V_{C C}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; V_{E E}=-4.5 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 13 Typical frequency response.

Fig. 14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.

(a)

(b)

Fig. 16 Test circuits for measuring crosstalk between any two switches/multiplexers. (a) channel ON condition; (b) channel OFF condition.

Fig. 17 Test circuit for measuring crosstalk between control and any switch.

Note to Fig. 17
The crosstalk is defined as follows (oscilloscope output):

$$
\underset{7293949}{\sqrt{\square} v_{(p-p)}^{4}}
$$

AC WAVEFORMS

Fig. 18 Waveforms showing the input ($V_{\text {is }}$) to output ($V_{\text {os }}$) propagation delays.

Fig. 19 Waveforms showing the turn-ON and turn-OFF times.
Note to Fig. 19
(1) $\mathrm{HC}: V_{M}=50 \% ; V_{I}=$ GND to $V_{C C}$.

$$
H C T: V_{M}^{M}=1.3 V ; V_{I}=G N D \text { to } 3 V
$$

S_{n} input

LE input

Fig. 20 Waveforms showing the set-up and hold times from S_{n} inputs to $\overline{\mathrm{LE}}$ input, and minimum pulse width of $\overline{L E}$.

Note to Fig. 20

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=\mathbf{5 0} \% ; \mathrm{V}_{1}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: V_{M}=1.3 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ to 3 V .

TEST CIRCUIT AND WAVEFORMS

Fig. 21 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	$V_{\text {is }}$
tPZH	$V_{E E}$	$V_{C C}$
t $_{\text {PZL }}$	$V_{C C}$	$V_{E E}$
tPHZ	$V_{E E}$	$V_{C C}$
tPLZ $^{\text {others }}$	$V_{C C}$	$V_{E E}$
open	pulse	

Definitions for Figs 21 and 22:
$\mathrm{C}_{\mathrm{L}}=$ load capacitance including jig and probe capacitance
(see AC CHARACTERISTICS for values).
$\mathrm{R}_{\mathbf{T}}=$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator.
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint on t_{r}, t_{f} with 50% duty factor.

