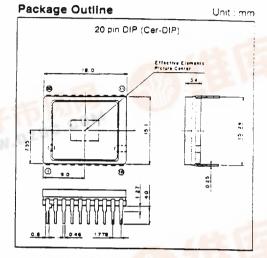
SONY

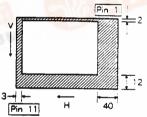
ICX038BLA

1/2 inch CCD Image Sensor for EIA B/W Camera

Description

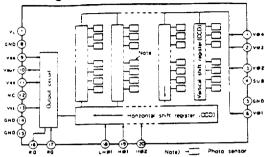
ICX038BLA is an interline transfer CCD solid-state imager suitable for EIA 1/2 inch B/W video cameras. High sensitiveness is achieved through the adoption of HAD (Hole-Accumulation Diode) sensors.


This chip features a field integration read out system, an electronic shutter with variable charge-storage time and 20 pin Cer-DIP package.


Features

- High image, high sensitivity and low dark current (+6dB compare with ICX038ALA)
- Consecutive various speed shutter 1/60s. (Typ.), 1/100s. to 1/1000os.
- Low smear
- High antiblooming
- Horizontal register 5V drive
- Reset gate 5V drive

Device Structure


- Optical size 1/2 inch format
- Number of effective pixels 768 (H) ×494 (V) Approx. 380k pixels
- Number of total pixels
 811(H) ×508 (V) Approx. 410k pixels
- Interline transfer CCD image sensor
- Chip size 7.95mm (H) ×6.45mm (V)
- Unit cell size 8.4 μm (H) ×9.8 μm (V)
- Optical black Horizontal (H) direction Front 3 pixels Rear 40 pixels
 - Vertical (V) direction Front 12 pixels Rear 2 pixels
- Number of dummy bits Horizontal 22
 - Vertical 1 (even field only)
- Substrate material silicon

Optical black position (Top View)

Block Diagram

Pin Configuration (Top View)

VØ4	0	,-,		⊗ Hø₂
∨ Ø3	②	'-'		(9) но 1
VØ2	3			(B) LHØ1
5 U B	4			⊕ RG
GND	③			16) RD
V Ø 1	⑤	TOP	VIEW	(3) GND
٧١	\odot			(4) GND
GND	➂			(13) ∨ s s
V 00	(9)			(2) N C
VOUT	(/ - \		(1) V 66

Pin Description

escripti	on			
Symbol	Description	No.	Symbol	Description
Vφ4	Vertical register transfer clock	11	VGG	Output amplifier gate bias
Vф3	Vertical register transfer clock	12	NC	
Vφ2	Vertical register transfer clock	13	Vss	Output amplifier source
SUB	Substrate (Overflow drain)	14	GND	GND
GND	GND	15	GND	GND
V ф 1	Vertical register transfer clock	16	RD	Reset drain bias
VL	Protective transistor bias	17	RG	Reset gate clock
GND	GND	18	LHφ1	Horizontal register final stage transfer clock
Vpo	Output amplifier drain supply	19	Нфі	Horizontal register transfer clock
Vout	Signal output	20	Нф2	Horizontal register transfer clock
	Symbol V \(\phi 4 \) V \(\phi 3 \) V \(\phi 2 \) SUB GND V \(\phi 1 \) VL GND Voo	V φ 4 Vertical register transfer clock V φ 3 Vertical register transfer clock V φ 2 Vertical register transfer clock SUB Substrate (Overflow drain) GND GND V φ 1 Vertical register transfer clock VL Protective transistor bias GND GND VDO Output amplifier drain supply	Symbol Description No. V φ 4 Vertical register transfer clock 11 V φ 3 Vertical register transfer clock 12 V φ 2 Vertical register transfer clock 13 SUB Substrate (Overflow drain) 14 GND GND 15 V φ 1 Vertical register transfer clock 16 VL Protective transistor bias 17 GND GND 18 Vpo Output amplifier drain supply 19	Symbol Description No. Symbol Vφ4 Vertical register transfer clock 11 Vqq Vφ3 Vertical register transfer clock 12 NC Vφ2 Vertical register transfer clock 13 Vss SUB Substrate (Overflow drain) 14 GND GND GND 15 GND Vφ1 Vertical register transfer clock 16 RD VL Protective transistor bias 17 RG GND GND 18 LHφ1 Vp0 Output amplifier drain supply 19 Hφ1

Absolute Maximum Ratings

	Item	Ratings	Unit	Remarks
Substrate voltage S	UB-GND	-0.3 to +55		
	VDD, VRD, VOUT, VSS - GND	-0.3 to +18	٧	
Supply voltage	VDD, VRD, VOUT, VSS - SUB	-55 to +10	٧	
	V	-15 to +20	٧	
Clock input voltage	V	to +10	٧	
Voltage difference b	etween vertical clock input pins	to+15	V	* (Max.)
	etween horizontal clock input pins	to+17	V	
H ф 1, H ф 2 — V ф 4		-17 to +17	٧	
LH . RG, Vgg - C	SND	-10 to +15	٧	
LH & 1, RG, Vaa - S		-55 to +10	٧	
VL - SUB		-65 to +0.3	٧	
Beside GND, SUB-	VL	-0.3 to +30	V	
Storage temperatur		-30 to +∪∪	℃	
Operating temperat		-10 to +60	℃	

^{* +27}V (Max.) when clock width < 10 µs, duty factor < 0.1%.

Bias Conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Output amplifier drain voltage	Voo	14.55	15.0	15.45	V	
Reset drain voltage	VRC	14.55	15.0	15.45	V	VRD=VDD
Output amplifier gate voltage	VGG	1.75	2.0	2.25	V	77.02.00
Output amplifier source	Vss	Ground 390 Ω r	through esistor	<u> </u>		± 5%
Substrate voltage adjustment range	Vsus	9.0		18.5	V	*2
Fluctuation range after substrate voltage adjustment	∆ Vsua	-3		+3	%	- -
Reset gate clock voltage adjustment range	VRGL	1.0		4.0	V	*2 *6
Fluctuation range after reset gate clock voltage adjustment	Δ VRGL	-3		+3	%	
Protective transistor bias	VL	l	*3			

DC Characteristics

ltem	Symbol	Min.	Тур.	Max.	Unit	Remarks
Output amplifier drain current	loo		5		mA	
Input current	lmı			1	μΑ	*4
Input current	lin ₂			10	μА	*5

*2 Substrate voltage (Vsus) • reset gate clock voltage (Vsus) setting value display.

Setting values of substrate voltage and reset gate clock voltage are displayed at the back of the device through a code address. Adjust substrate voltage (Vsus) and reset gate clock voltage (Vsus) to the displayed voltage. Fluctuation range after adjustment is ± 3%.

Vsus code address-1 digit display VRGL code address-1 digit display

Vsue address code

Code addresses and actual numerical values correspond to each other as follows.

VRGL address code	1	2	3	4	5	6	7
Numerical value	1.0	1.5	2.0	2.5	3.0	3.5	4.0

Vsus address code	E	1	G	ų	J	к	L	m	N	P	Q	A	s	Т	U	٧	w	x	Y	z
Numerical value	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5

<Example> "5L" → VngL=3.0V Vsue=12.0V

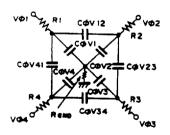
*3 VL setting is the VvL voltage of the vertical transfer clock waveform.

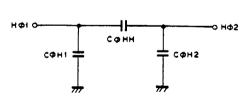
SONY

- *4 1. Current to each pin when 18V is applied to Voo, Vour, Vss and SUB pins, while pins that are not tested are grounded.
 - 2. Current to each pins when 20V is applied sequentially to V φ 1, V φ 2, V φ 3, V φ 4, H φ 1 and H φ 2, while pins that are not tested are grounded. However, 20V is applied to SUB.
 - Current to each pins when 15V is applied sequentially to pins RG, LH φ 1 and Vgg, while pins that are not tested are grounded. However, 15V is applied to SUB.
 - 4. Current to VL pin when it is grounded, while 30V is applied to all pins except pins that are not tested. However, GND and SUB pins are kept open.
- *5 Current to SUB pin when 55V is applied to SUB pin, while pins that are not tested are grounded.

Clock Voltage Conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Waveform diagram	Remarks
Read out clock voltage	Vvī	14.55	15.0	15.45	٧	1	
	VvH1, VvH2	-0.05	0	0.05	٧	2	VvH=(VvH1+VvH2)/2
	VvH3, VvH4	-0.2	0	0.05	٧	2	
	VVL1, VVL2, VVL3, VVL4	-9.6	-9.0	-8.5	٧	2	VvL=(VvL3+VvL4)/2
	٧٥٧	8.3	9.0	9.65	٧	2	V ov=VvHn-VvLn (n=1 to 4)
Vertical transfer clock	VvH1 - VvH2			0.1	٧	2	
voltage	VvH3-VvH	-0.25		0.1	٧	2	
	VvH4-VvH	-0.25		0.1	٧	2	
	VVHH			0.5	٧	2	High level coupling
	VVHL			0.5	٧	2	High level coupling
	VvLH			0.5	٧	2	Low level coupling
	VVIL			0.5	٧	2	Low level coupling
Horizontal transfer	Vфн	4.75	5.0	5.25	٧	3	
clock voltage	VHL	-0.05	0	0.05	٧	3	
Horizontal final stage	Vuн	4.75	5.0	5.25	V	4	
transfer clock voltage	VIHL	0.05	0	0.05	V	4	
Reset gate clock	V ф RG	4.5	5.0	5.5	٧	5	*6
voltage	Vague-Vague			0.8	V	5	Low level coupling
Substrate clock	V ф sue	23.0	24.0	25.0	٧	6	


397 !


*6 No adjustment of reset gate clock voltage is necessary when reset gate clock is driven as indicated below. In this case, reset gate clock voltage set point displayed on back of image sensor has no meaning.

ltem	Symbol	Min.	Тур.	Max.	Unit	Waveform diagram	Remarks
Reset gate clock	VRGL	-0.2	0	0.2	٧	5	
voltage	VφRG	8.5	9.0	9.5	V	5	

Clock Equivalent Circuit Constant

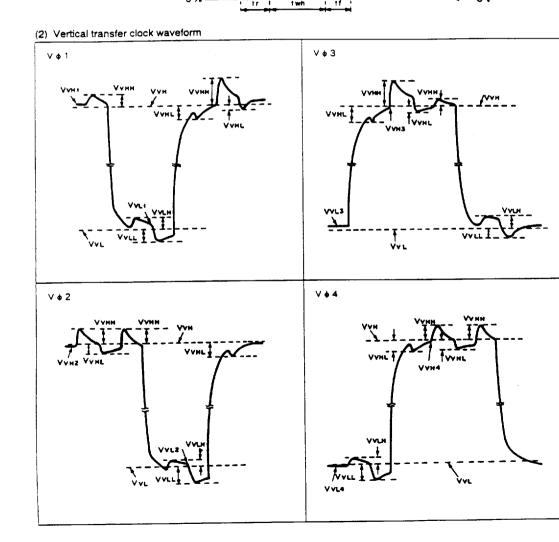
ltem	Symbol	Min.	Тур.	Max.	Unit	Remarks
Capacitance between vertical transfer	Сфуі, Сфуз		1800		pF	
clock and GND	Сф v2, Сф v4		2200		pF	
Capacitance between vertical transfer	Сф 12, Сф 134		450		pF	
clocks	Сф ү23, Сф ү41		270		pF	
Capacitance between horizontal transfer clock and GND	Сфн1, Сфн2		62		pF	
Capacitance between horizontal transfer clocks	Сфин		47		pF	
Capacitance between horizontal final stage transfer clock and GND	Сфин		8		pF	
Capacitance between reset gate clock and GND	Сфяс		8		pF	
Capacitance between substrate clock and GND	Сф вив		400		p₽	
Vertical transfer clock serial resistor	R1, R2, R3, R4		68		Ω	
Vertical transfer clock ground resistor	RGND		15		Ω	

Vertical transfer clock equivalent circuit

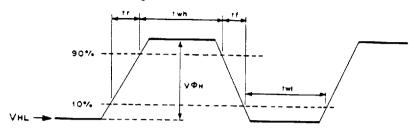
Horizontal transfer clock equivalent circuit

Drive Clock Waveform Conditions

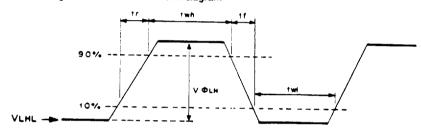
(1) Read out clock waveform

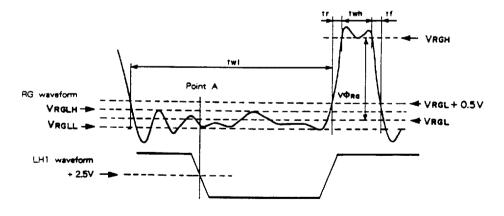

90 %

100 %


VVT

PM


2

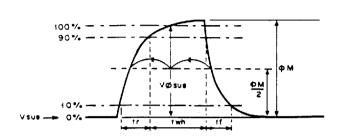

(3) Horizontal transfer clock waveform diagram

(4) Horizontal final stage transfer clock waveform diagram

(5) Reset gate clock waveform diagram

Vegus is the maximum value and Vegus the minimum value of the coupling waveform in the period from Point A in the diagram above to RG rise.

Vaguis the mean value for Vagua and Vagua.


VRGL=(VRGLH + VRGLL)/2

VRGH is the minimum value for twh period.

V & RG=VRGH - VRGL

(6) Substrate clock waveform

Clock switching characteristics

			twh			twl			tr			tf		l Init	Remarks
Item	Symbol	Min.	Тур.	Мах.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	μs 25 μs 9 ns	Heiliaiks
Read out clock	VT	2.3	2.5						0.5			0.5		μS	During read out
Vertical transfer clock	Vφ1, Vφ2, Vφ3, Vφ4										0.015		0.25	μз	*7
Horizontal transfer clock	Нф		20			20			15	19	*8	15	19	ns	During imaging
Horizontal final stage clock	LΗφ		20			20			15	19	*8	15	19	ns	During imaging
Horizontal transfer/horizontal final stage clock	Нф1, LНф		5.38						0.01			0.01		μ з	During parallel serial
Horizontal transfer clock	Нф2					5.38			0.01			0.01		μ\$	conversio
Reset gate clock	ф R G	11	13			51			3			3		กร	
Substrate clock	ф sue	1.5	1.8							0.5			0.5	μЗ	During charge drain.

- *7 When vertical transfer clock driver CXD1250 is in use.
- *8 tf ≥ tr-2 ns

	01-1		two		Unit	Remarks
Item	Symbol	Min.	Тур.	Max.	Offic	Heiliaiks
Horizontal transfer clock	Нф	16	20		ns	*9
Horizontal transfer/ horizontal final stage clock	Нф2, ЦНф	16	20		ns	* 10

*9 "two" is the overlap period of horizontal transfer clocks H ϕ 1 and H ϕ 2's twh and twl.

*10 "two" is the overlap period of horizontal transfer clock H φ 2's twi and horizontal final stage transfer clock LH φ 's twh'

Operating Characteristics

Œα	-25	4	١

item	Symbol	Min.	Тур.	Max.	Unit	Test method	Remarks
Sensitivity	S	300	380		mV	1	
Saturation signal	Vsat	600			mV	2	Ta=60 ℃
Smear	Sm		0.009	0.015	%	3	
Video signal shading	SH			20	%	4	Zone 0, I
				25	%	4	Zone 0 to II'
Dark signal	Vdt			2	mV	5	Ta=60 ℃
Dark signal shading	∆ Vdt			1	m۷	6	Ta=60 ℃
Flicker	F	-		2	%	7	
Lag	Lag			0.5	%	8	

Zone chart of Video signal shading

Image Sensor Characteristics Test Method

- Through the following tests the substrate voltage and reset gate clock voltage are set to the value displayed on the device, while the device drive conditions are at the typical value of the bias and clock voltage conditions.
- ② Through the following tests defects are excluded and, unless otherwise specified, the optical black level (Hence forth referred to as OB) is set as the reference, the values obtained at ② point in the figure of the Drive Circuit are utilized.

Definition of standard imaging conditions

① Standard imaging condition I: (As imaging device) Use a pattern box (luminance 706 cd/m², color temperature 3200K Halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t=1.0mm) as IR cut filter and image at F8. At this time, light intensity to sensor receiving surface is defined as standard sensitivity testing light intensity. Signal output average value in this condition is called VA.

Standard imaging condition II: Image a light source (color temperature of 3200K) which uniformity of brightness is within 2% at all angles. Use a testing standard lens with CM500S (t=1.0mm) as IR cut filter. The light intensity is adjusted to the value indicated in each testing item by lens diaphragm.
 Sensitivity

Set to standard image condition I. After selecting the electronic shutter mode at a 1/250s, shutter speed

Set to standard imaging condition II. Adjust light intensity to 500 times that of signal output average value (Va=200mV). Stop read out clock. When the charge drain executed by the electric shutter at the respective

Set to standard imaging condition II. Adjust light intensity to signal output average value (Va=200mV) with lens diaphragm at F5.6 to F8. Then test maximum (Vmax) and minimum (Vmin) values of signal output.

measure the signal (Vs) at the center of the screen and substitute in the following formula.
$$S=Vs\times\frac{250}{60}$$

3.

5.

Saturation signal
 Set to standard imaging condition II. Adjust light intensity to 10 times that of signal output average value (VA=200mV), then test signal output minimum value.

H blankings takes place, test the maximum value Vsm of signal output.

 $Sm = \frac{Vsm}{200} \times \frac{1}{500} \times \frac{1}{10} \times 100 (\%) (1/10V)$

SH=(Vmax-Vmin)/200 × 100 (%)

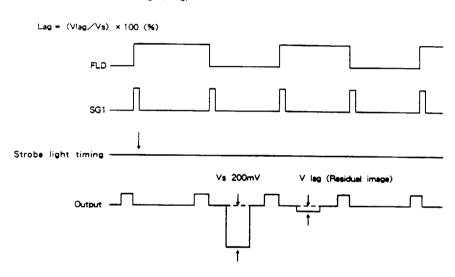
Video signal shading

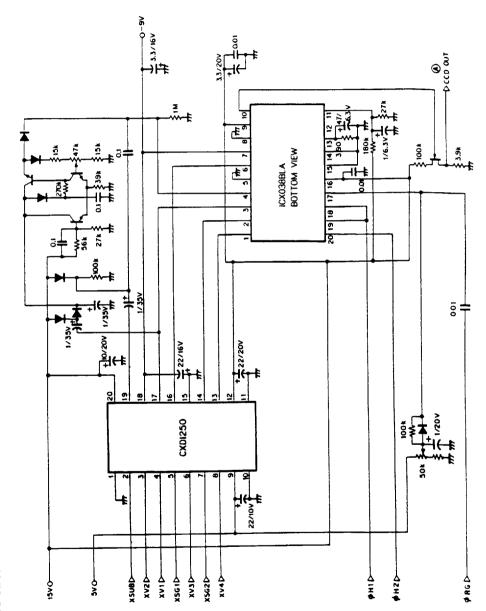
Test signal output average value Vdt when the device ambient temperature is at 60 ℃ and light is obstructe with horizontal idle transfer level as reference.

 Dark signal shading Following 5, test maximum (Vdmax) and minimum (Vdmin) values of dark signal output.

Δ Vdt=Vdmax-Vdmin

Dark signal

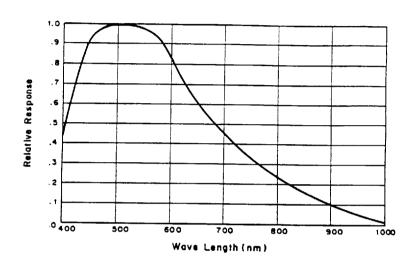

7. Flicker


Set to standard imaging condition II. Adjust light intensity to signal output average value (Va=200mV). Then test the signal output difference (Δ Vf) between even field and odd field.

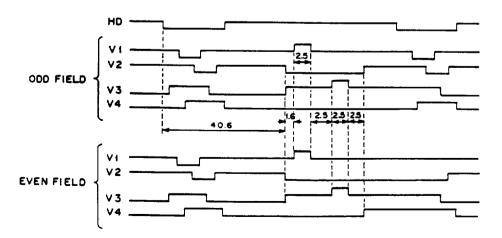
$$F=(\triangle \ \forall 1/200) \times 100 \ (\%)$$

8. Residual image

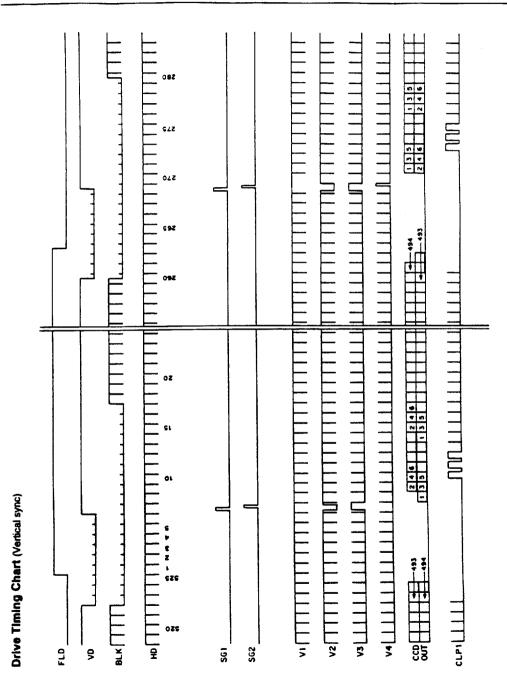
Adjust signal output value (Vs) by strobe light to 200mV. Then light a stroboscopic tube with the following timing and test the residual image (Vlag).

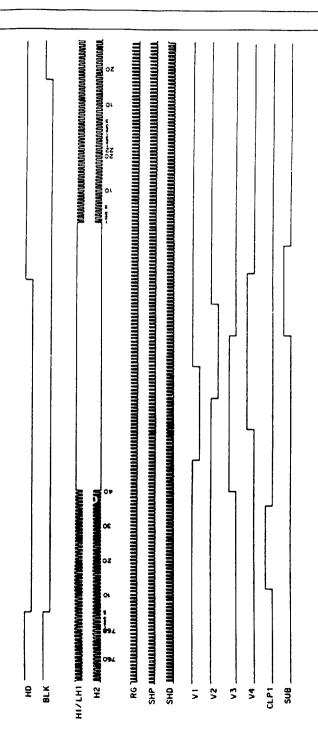


Drive Circuit


ma Pen

Spectral Sensitivity Characteristics


(Excluding light source characteristics, including lens characteristics)


Using read out clock timing chart

ma Pen

= 8382383 0006516 236 |

389

Drive Timing Chart (Horizontal sync)

Handling instructions

- Static charge prevention
 - CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.
 - a) Either handle bare handed or use non chargeable gloves, clothes or material. Also use conductive shoes
 - b) When handling directly use an earth band.
 - c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
 d) Ionized air is recommended for discharge when handling CCD image sensor.
 - e) For the shipment of mounted substrates use boxes treated for the prevention of static charges.

2) Soldering

- a) Make sure the package temperature does not exceed 80 ℃.
- b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a grounded 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
 c) To dismount an imaging device do not use a solder suction equipment. When using an electric
 - c) To dismount an imaging device do not use a solder suction equipment. When using an electric desoldering tool use a thermal controller of the zero cross On/Off type and connect to ground.

3) Dust and dirt protection

- a) Operate in clean environments (around class 1000 will be appropriate).
- b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface blow it off with an air blow. (For dirt stuck through static electricity ionized air is recommended)
 - c) Clean with a cotton bud and ethyl alcohol if the glass surface is grease stained. Be careful not to scratch the glass.d) Keep in case to protect from dust and dirt. To prevent dew condensation, preheat or precool when
 - moving to a room with great temperature differences.

 e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape.
- Do not expose to strong light (sun rays) for long periods.
- Exposure to high temperatures or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.
- CCD image sensor are precise optical equipment that should not be subject to mechanical shocks.