查询DVTR28515T供应商

DVTR2800T Series

HIGH RELIABILITY HYBRID DC-DC CONVERTERS

DESCRIPTION

The DVTR series of high reliability DC-DC converters is operable over the full military (-55 °C to +125 °C) temperature range with no power derating. Unique to the DVTR series is a fault tolerant magnetic feedback circuit. Operating at a nominal fixed frequency of 325 kHz per stage, these regulated, isolated units utilize well-controlled undervoltage lockout circuitry to eliminate slow start-up problems.

These converters are designed and manufactured in a facility qualified to ISO9001, compliant to AS9000, and certified to MIL-PRF-38534 and MIL-STD-883.

FEATURES

- High Reliability
- Very Low Output Noise
- Wide Input Voltage Range: 15 to 50 Volts per MIL-STD-704
- Up to 30 Watts Output Power
- Fault Tolerant Magnetic Feedback Circuit
- NO Use of Optoisolators
- Undervoltage Lockout
- Industry Standard Pinout
- High Input Transient Voltage: 80 Volts for 1 sec per MIL-STD-704A
- Precision Seam Welded or Solder Seal Hermetic Package
- High Power Density: > 28 W/in³
- Custom Versions Available
- Additional Environmental Screening Available
- Meets MIL-STD-461C and MIL-STD-461D EMC Requirements When Used With a DVMH28 EMI Filter
- Flanged and Non-flanged Versions Available.
- MIL-PRF-38534 Element Evaluated Components

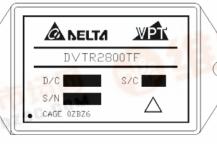


Figure 1 – DVTR2800T / DVTR2800TF DC-DC Converter (Not To Scale)

17921 Bothell-Everett Highway, Suite 108 Sales Information: Phone: (425) 487-4850 A DELTA MPL

DVTR2800T Series

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load⁵, Unless Otherwise Specified) **ABSOLUTE MAXIMUM RATINGS** Input Voltage (Continuous) 50 V_{DC} Junction Temperature Rise to Case +15°C Input Voltage (Transient, 1 second) 80 Volts Storage Temperature -65°C to +150°C Lead Solder Temperature (10 seconds) 270°C **Output Power** 30 Watts Power Dissipation (Full Load, $T_{CASE} = +125^{\circ}C$) 10 Watts Weight 50 grams DVTR28512T DVTR28515T Units Parameter Conditions Min Min Max Typ Max Тур STATIC Continuous 28 50 15 28 50 V 15 INPUT Voltage Transient, 1 sec⁴ 80 80 V -_ _ -Inhibited 3.5 7.5 3.5 7.5 mΑ -_ Current 20 40 No Load -_ 20 40 mΑ mA_{p-p} **Ripple Current** Full Load⁵, 20Hz to 20MHz 20 50 _ 20 50 _ Inhibit Pin Input⁴ 0 _ 1.5 0 _ 1.5 V Inhibit Pin Open Circuit Voltage⁴ 13 13 15 17 15 17 V UVLO Turn On 11.5 14.5 V 11.5 _ 14.5 _ UVLO Turn Off⁴ 11.0 14.5 11.0 14.5 V -- V_{MAIN} 4.95 5.0 5.05 4.95 5.0 5.05 v $+V_{AUX}$ 14.85 15.15 $T_{CASE} = 25^{\circ}C$ 11.88 12.0 12.12 15.0 V -12.24 -12.0 -11.76 -15.30 -15.0 -14.70 V -V_{AUX} OUTPUT Voltage 4.85 5.0 5.15 4.85 5.0 5.15 V V_{MAIN} $+V_{AUX}$ 11.64 12.0 12.36 14.55 15.0 15.45 V $T_{CASE} = -55^{\circ}C$ to $+125^{\circ}C$ -12.48 -12.0 -11.52 -15.60 -15.0 -14.40 v $-V_{\text{AUX}}$ W Total 0 _ 30 0 _ 30 Power⁴ V_{MAIN} 0 _ 15 0 _ 15 ۱۸*I* $\pm V_{\text{AUX}}{}^6$ 0 w 0 15 15 _ _ 0 3.0 0 3.0 А VMAIN _ -Current³ Either Output⁶ 0 0.87 0 0.70 А $\pm V_{\text{AUX}}$ _ _ VMAIN -20 60 -20 60 mV_{p-p} Full Load⁵. 20Hz to 10MHz **Ripple Voltage** 40 100 100 $\pm V_{\text{AUX}}$ 40 mV_{p-p} _ VMAIN 10 25 10 25 mV --Line Regulation +V_{AUX} V_{IN} = 15V to 50V _ 15 50 _ 15 50 mV $-V_{AUX}$ 20 100 20 100 _ _ mV $\mathsf{V}_{\mathsf{MAIN}}$ 10 25 _ 10 25 mV Load Regulation No Load to Full Load⁵ 10 50 10 50 $+V_{AUX}$ _ _ mV -V_{AUX} 50 250 _ 50 250 mV - $+V_{OUT} = 30\%, -V_{OUT} = 70\%$ % Cross Regulation $\pm V_{\text{AUX}}$ 5 5 -_ -_ +V_{OUT} = 70%, -V_{OUT} = 30% EFFICIENCY Full Load⁵ 74 79 75 80 % _ Overload⁴ 15 15 W -_ LOAD FAULT POWER DISSIPATION Short Circuit 10 10 W ----CAPACITIVE LOAD⁴ 500 500 μF _ _ _ _ SWITCHING FREQUENCY 600 650 700 600 650 700 kHz SYNCHRONIZATION FREQUENCY7 700 750 800 700 750 800 kHz **ISOLATION** 500 V_{DC}, T_{CASE} = 25°C 100 -100 -MΩ _ -THERMAL RESISTANCE Case to Ambient (0CA) 25 25 °C/W _ _ -MTBF (MIL-HDBK-217F) AIF @ T_c = 55°C 307 307 kHrs _ _ _ _

A NELTA MPT

DVTR2800T Series

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS									
Input Voltage (Continuous)	50 V_{DC}	Junction Temperature Rise to Case	+15°C						
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C						
Output Power	30 Watts	Lead Solder Temperature (10 seconds)	270°C						
Power Dissipation (Full Load, T _{CASE} = +125°C)	10 Watts	Weight	50 grams						

Parameter		Conditions	[OVTR28512	Т	DVTR28515T			Units
		Mi		Тур	Max	Min	Тур	Max	Units
DYNAMIC			-	-		-			-
Load Step Output Transient	V_{MAIN}		-	200	400	-	200	400	mV_{PK}
	$\pm V_{\text{AUX}}$	Half Load to Full Load	-	500	700	-	500	700	тV _{РК}
Load Step Recovery ²	V_{MAIN}		-	200	400	-	200	400	μSec
	$\pm V_{\text{AUX}}$		-	200	400	-	200	400	μSec
Line Step Output Transient ⁴	V_{MAIN}		-	200	400	-	200	400	mV_{PK}
	$\pm V_{\text{AUX}}$	V _{IN} = 15V to 50V	-	300	500	-	300	500	тV _{РК}
Line Step Recovery ^{2, 4}	V_{MAIN}	$v_{\rm IN} = 15 v 10 50 v$	-	200	400	-	200	400	μSec
	$\pm V_{\text{AUX}}$		-	200	400	-	200	400	μSec
Turn On Delay Turn On Overshoot ²		$V_{IN} = 0V$ to 28V	-	-	20	-	-	20	mSec
		V _{IN} - UV 10 20V	-	-	0	-	-	0	тV _{РК}

Notes: 1. This note intentionally not used.

2. Time for output voltage to settle within 1% of its nominal value.

3. Derate linearly to 0 at 135°C.

4. Verified by qualification testing.

5. 15W on V_{MAIN} and 15W on $\pm V_{AUX}$.

6. Up to 70% of the total auxiliary power or current can be drawn from either of the auxiliary outputs. 7. Synchronization is TTL signal with $V_{SYNC MAX} = 6V$.

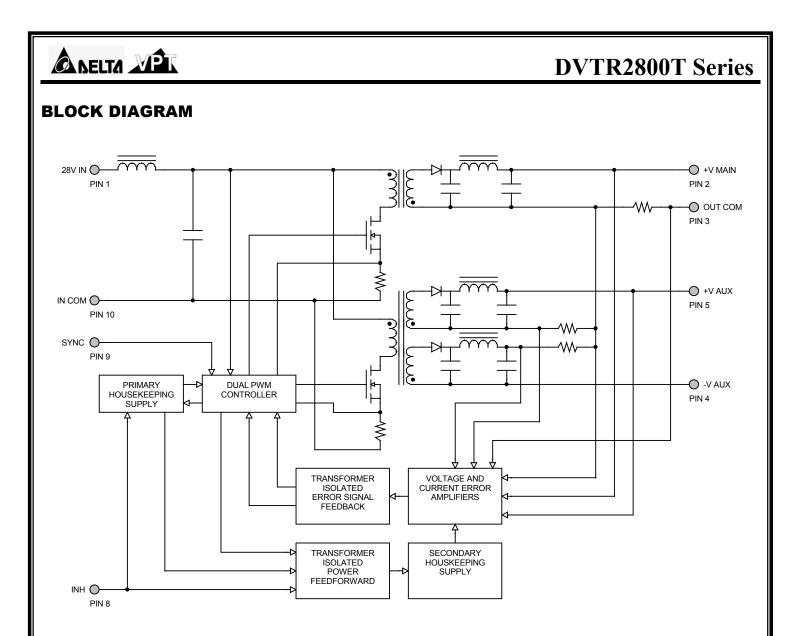


Figure 2

A DELTA MPT

DVTR2800T Series

CONNECTION DIAGRAM 2 28V IN +V MAIN LOAD 9 5 SYNC +V AUX LOAD 28 Vdc 4 8 INH -V AUX LOAD 10 IN COM OUT COM 3 Figure 3 INHIBIT DRIVE CONNECTION DIAGRAMS 28V IN 1 28V IN 1 \bigcirc \bigcirc 15K **Č** 15K **OPTOISOLATOR** INH 8 INH 8 BIAS BIAS OPTIONAL CAPACITOR OPTIONAL CAPACITOR 14V 14V IN COM 10 IN COM 10

Figure 4 – Internal Inhibit Circuit and Recommended Drive (Shown with optional capacitor for turn-on delay) Figure 5 – Isolated Inhibit Drive (Shown with optional capacitor for turn-on delay)

A NELTA VPT

DVTR2800T Series

EMI FILTER HOOKUP DIAGRAM

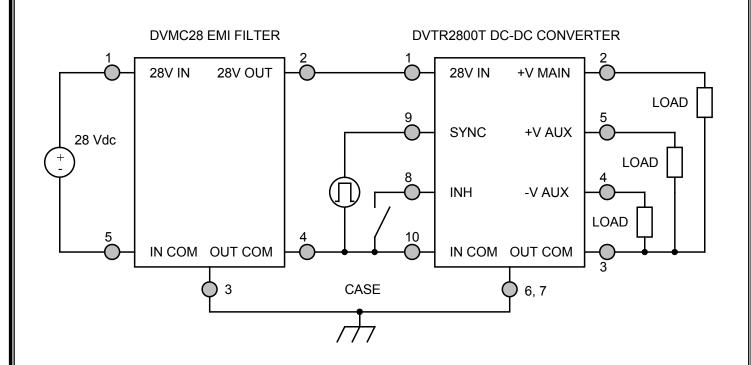
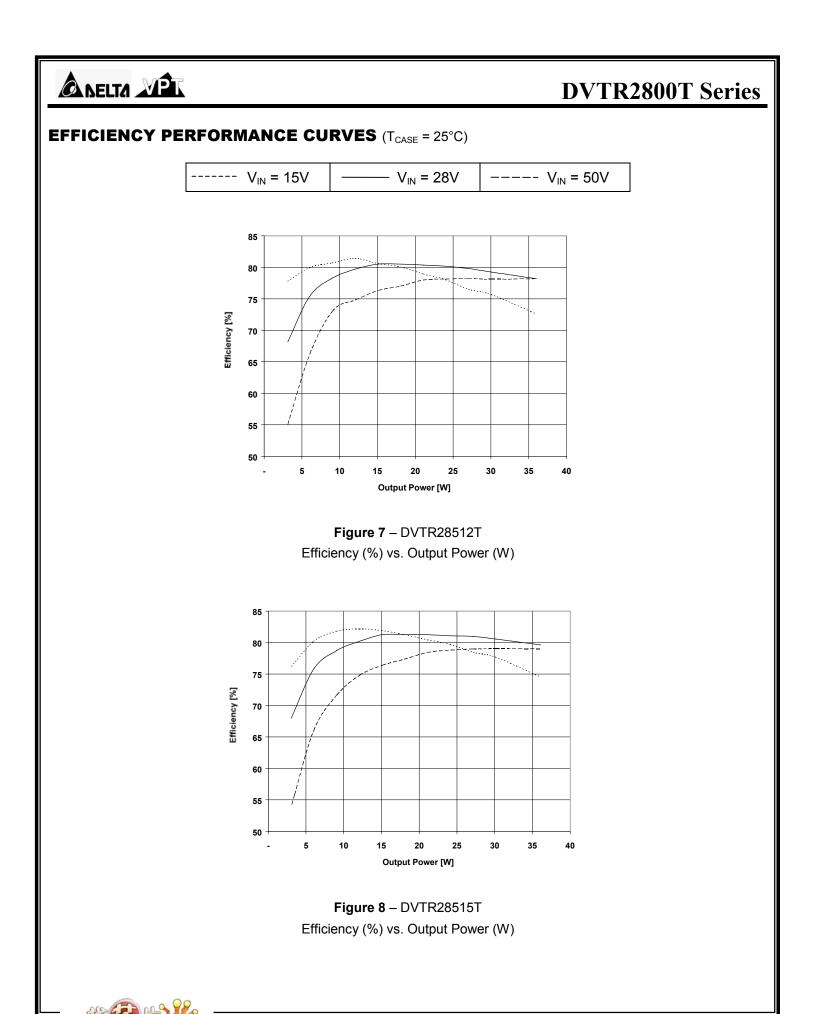
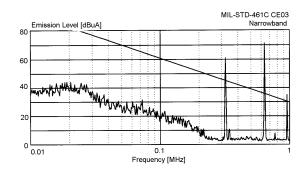
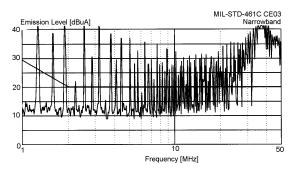
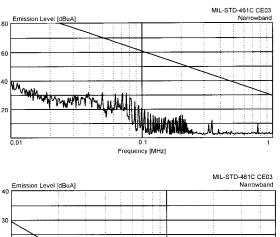
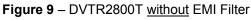



Figure 6 - Converter with EMI Filter

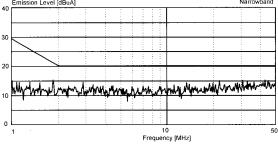
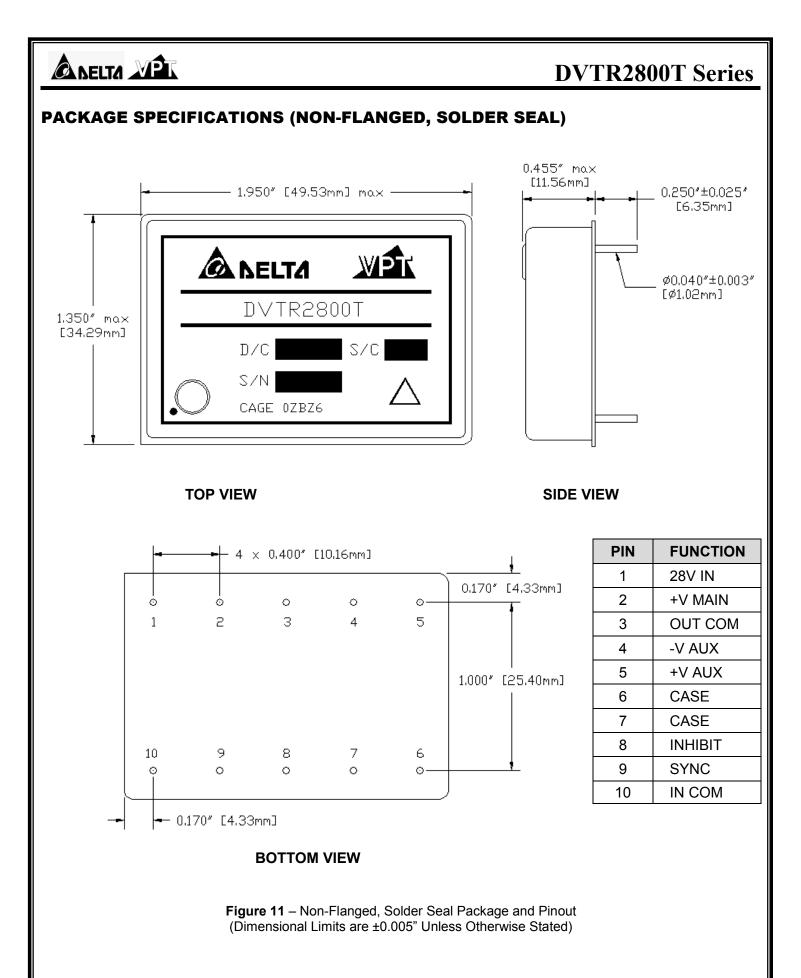


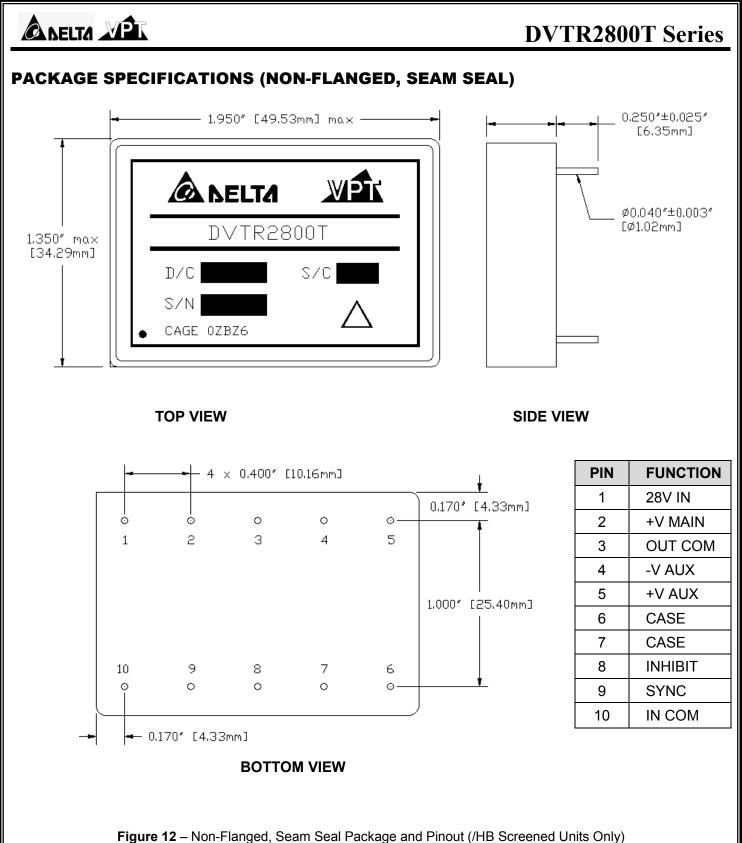

A NELTA MPL

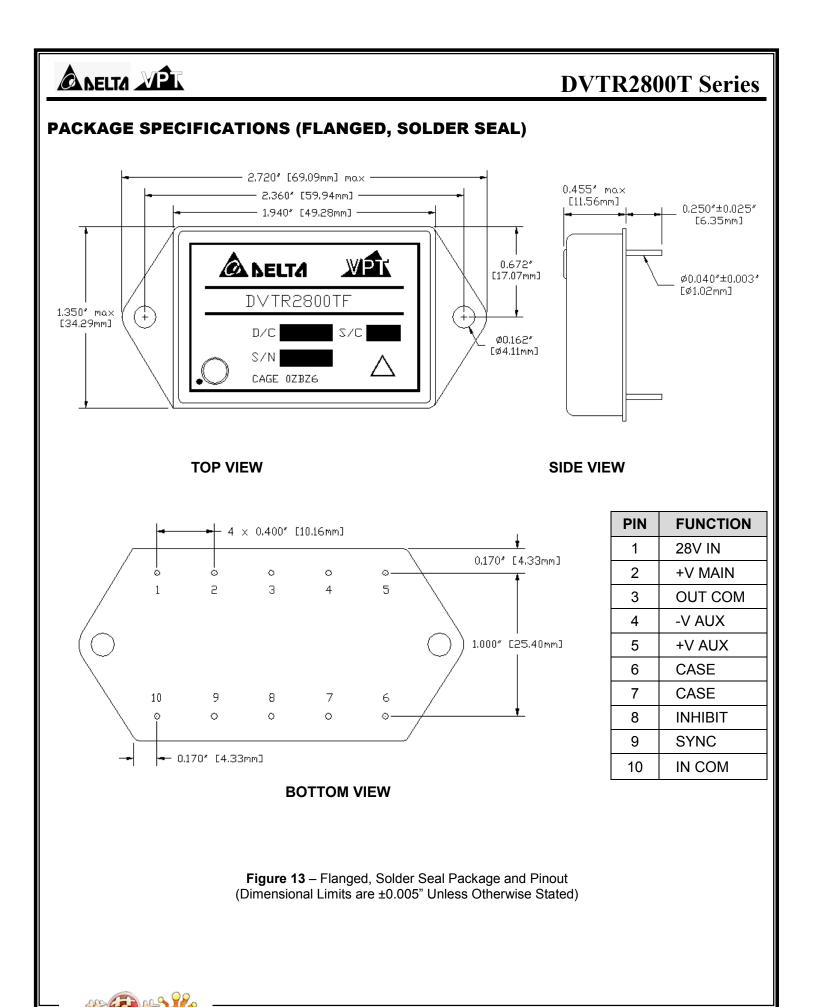

DVTR2800T Series

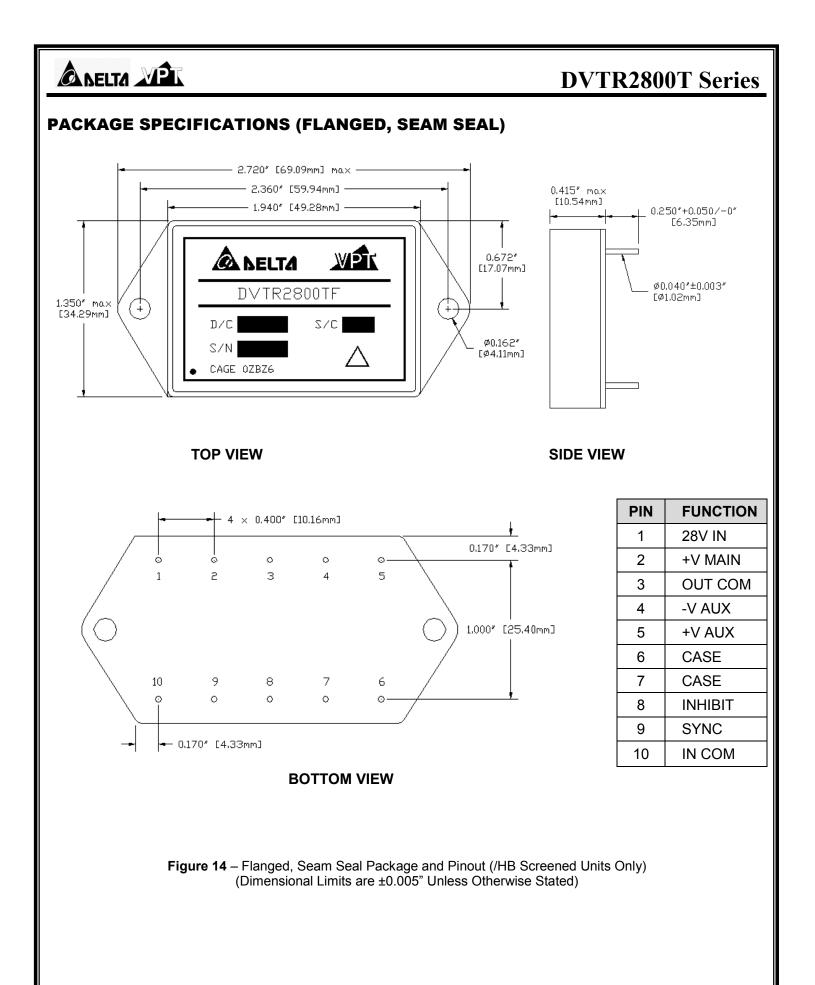

EMI PERFORMANCE CURVES

(T_{CASE} = 25°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)


Figure 10 – DVTR2800T with EMI Filter


man 12



(Dimensional Limits are ± 0.005 " Unless Otherwise Stated)

ma Pla

ma Plan

A NELTA MPL

DVTR2800T Series

PACKAGE PIN DESCRIPTION

Pin	Function	Description
1	28V IN	Positive Input Voltage Connection
2	+V MAIN	Positive Main Output Voltage Connection
3	OUT COM	Output Common Connection
4	-V AUX	Negative Auxiliary Output Voltage Connection
5	+V AUX	Positive Auxiliary Output Voltage Connection
6	CASE	Case Connection
7	CASE	Case Connection
8	INHIBIT	Logic Low = Disabled Output. Connecting the inhibit pin to input common causes converter shutdown. Logic High = Enabled Output. Unconnected or open collector TTL.
9	SYNC	Synchronization Signal
10	IN COM	Input Common Connection

ENVIRONMENTAL SCREENING (Per MIL-STD-883 as referenced to MIL-PRF-38534, Class H)

Screening	MIL-STD-883	Standard (No Suffix)	Extended /ES	HB /HB
Pre-Cap Inspection	Method 2017, 2032 Internal Procedure	•	•	•
Temperature Cycling	Method 1010, Condition C Method 1010, -55°C to 125°C		•	•
Constant Acceleration	Method 2001, Condition A Method 2001, 500g		•	•
Burn-In	Method 1015, 160 hours at +125°C 96 hours at +125°C 24 hours at +125°C	•	•	•
Hermeticity	Method 1014, Fine Leak, Condition A Method 1014, Gross Leak, Condition C Dip (1 x 10 ⁻³)	•	•	•
Final Electrical	MIL-PRF-38534, Group A ¹ 100% at 25°C	•	•	•
Final Inspection	Method 2009	•	•	•

Note: 1. 100% R&R testing at –55°C, +25°C, and +125°C with all test data included in product shipment.

A DELTA MAT										D	VT	R280	0T Serie	2S
ORDERING INFORMATION														
		DVTR	28	5	12	Т	F		/HB	- x	xx			
		1	2	3	4	5	6		7		8			
(1)			(2)			(3)			(4)			_		
	Produc	Nominal Input Voltage			Main Output Voltage				Auxiliary Output Voltages					
	DVTR		28	28 Volts			5 + 5 Volts			12 15	± 12 Volts ± 15 Volts			
(5)				(6))			(7)			(8)	
	Number o	Package Option				Screening Code			Additional Screening Code					
	т	Triple	None F	N	on-Flanged Flanged		None /ES /HB		Standard Extended HB		Contact Sales		Sales	

Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing, different input voltage, output voltage, power requirement, source inspection, and/or special element evaluation for space or other higher quality applications.

CONTACT INFORMATION

To request a quotation or place an order please contact your sales representative or the VPT Inc. Sales Department at:

 Phone:
 (425) 487-4850

 Fax:
 (425) 487-4802

 E-mail:
 sales@vpt-inc.com

All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.

