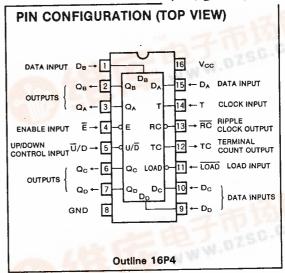
T-45-23-09

#### DESCRIPTION

The M74ALS191P is a semiconductor integrated circuit containing a synchronous 4-bit binary (hexadecimal) counter function with up/down control and load inputs.

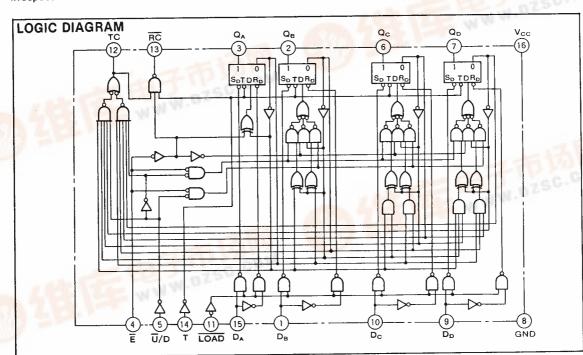
#### **FEATURES**

- Up/down switching with up/down control input
- Asynchronous load input provided
- Enable input provided
- Easy cascade connection possible
- Wide operating temperature range (T<sub>a</sub> = −20 ~ +75°C)


### APPLICATION

General purpose, for use in industrial and consumer equipment.

### **FUNCTIONAL DESCRIPTION**


When ednable input  $\overline{E}$  is low, load input  $\overline{\mathsf{LOAD}}$  is high and the count pulses are applied to clock input T, the number of count pulses appears as 4-bit binary code in the outputs ,  $Q_A$ ,  $Q_B$ ,  $Q_C$  and  $Q_D$  in synchronization with the count pulses. When the up/down control input  $\overline{\mathbf{U}}/\mathbf{D}$ is made low, count-up begins and when made high, count-down begins. Counting is performed when T changes from low to high.

Presetting is performed regardless of the count pulses and by applying the data to data inputs DA, DB, Dc and DD and by setting LOAD low, the DA, DB,  $D_{C}$  and  $D_{D}$  signals appear in outputs  $Q_{A},\,Q_{B},\,Q_{C}$  and  $Q_{D}$ irrespective of the status of the other inputs and the



count can be preset.

High appears in the terminal count output TC during count-up while 152 appears in QA, QB, Qc and QD and during count-down while 02 appears. Low appears in the ripple clock output  $\overline{RC}$  only when  $\overline{E}$  and T are low and 152 appears in outputs QA, QB, QC and QD during count-up or 02 appears in the outputs during countdown. E, TC and RC are used when cascade-connecting the counter.



# SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL

#### FUNCTION TABLE (Note 1)

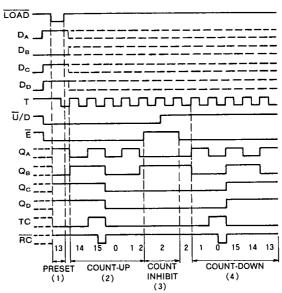
|                   | T    | Inp | outs |   | Outputs                  |    |    |                |  |
|-------------------|------|-----|------|---|--------------------------|----|----|----------------|--|
| Operation mode    | LOAD | Ē   | Ū/D  | Т | QA                       | Qв | Qc | Q <sub>D</sub> |  |
| Asynchronous mode | L    | ×   | ×    | х | DA                       | Dв | Dc | Do             |  |
| Count-up          | н    | L   | L    | t | Count-up (hexadecinal)   |    |    |                |  |
| Count-down        | н    | L   | н    | 1 | Count-down (hexadecinal) |    |    |                |  |
| Inhibit           | н    | - н | х    | X | Count Inhibit            |    |    |                |  |

Note 1.

† : Transition from low to high level

X : Irrevant

#### **RC FUNCTION TABLE**


|   | Inputs |   |    |  |  |  |
|---|--------|---|----|--|--|--|
| Ē | тс*    | Т | RC |  |  |  |
| L | Н      | L | L  |  |  |  |
| L | Τ      | н | Н  |  |  |  |
| н | х      | X | н  |  |  |  |
| × | L      | X | Н  |  |  |  |

<sup>\* :</sup> TC is the output but the signal generated internally by according to the below TC Function table.

#### **TC FUNCTION TABLE**

| Input | (              | Output |    |                |    |
|-------|----------------|--------|----|----------------|----|
| Ū/D   | Q <sub>A</sub> | Qв     | Qc | Q <sub>D</sub> | TC |
| L     | н              | Н      | Н  | н              | н  |
| L     | L              | ×      | х  | ×              | L_ |
| L     | Х              | L      | х  | х              | L  |
| L     | х              | х      | L  | ×              | L  |
| L     | х              | ×      | x  | L              | L  |
| Н     | L              | L      | L  | L              | н  |
| Н     | н              | х      | х  | х              | L  |
| н     | ×              | н      | х  | х              | L  |
| Н     | х              | х      | н  | X              | L  |
| Н     | х              | ×      | x  | н              | L  |

#### **OPERATION TIMING DIAGRAM**



Details of timing diagram

- (1) Preset to 13
- (2) Count-up 14, 15. 0, 1, 2
- (3)Count Inhibit
- (4) Count-down 1, 0, 15, 14, 13

#### ABSOLUTE MAXIMUM RATINGS ( $T_a = -20 - +75$ °C, unless otherwise noted)

| Symbol         | Parameter                                    | Conditions       | Ratings              | Unit |
|----------------|----------------------------------------------|------------------|----------------------|------|
| Vcc            | Supply voltage                               |                  | -0.5~+7              | V    |
| V <sub>L</sub> | Input voltage                                |                  | -0.5~+7              | V    |
| Vo             | Output voltage                               | High-level state | -0.5~V <sub>cc</sub> | V    |
| Topr           | Operating free-air ambient temperature range |                  | -20~+75              | င    |
| Tstg           | Storage temperature range                    |                  | <b>−65~+150</b>      | ť    |

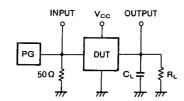
#### RECOMMENDED OPERATING CONDITIONS

| Symbol          |                                              |     | 11-14 |      |      |
|-----------------|----------------------------------------------|-----|-------|------|------|
|                 | Parameter                                    | Min | Тур   | Max  | Unit |
| Vcc             | Supply voltage                               | 4.5 | 5     | 5.5  | ٧    |
| V <sub>IH</sub> | High-level input voltage                     | 2   |       |      | V    |
| VIL             | Low-level input voltage                      |     |       | 0.8  | ٧    |
| Іон             | High-level output current                    | 0   |       | -0.4 | mA   |
| loL             | Low-level output current                     | 0   |       | 8    | mA   |
| Topr            | Operating free-air ambient temperature range | -20 |       | +75  | ٣    |

# SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL

#### ELECTRICAL CHARACTERISTICS (Ta = -20 ~ +75°C, unless otherwise noted)

| 0               | Parameter Input clamp voltage    |                          |                                                    |                      | Limits             |      |      |      |
|-----------------|----------------------------------|--------------------------|----------------------------------------------------|----------------------|--------------------|------|------|------|
| Symbol          |                                  |                          | les                                                | Test conditions      |                    |      | Max  | Unit |
| V <sub>IC</sub> |                                  |                          | V <sub>CC</sub> =4.5V, I <sub>IC</sub>             | =-18mA               |                    |      | -1.2 | V    |
| VoH             | High-level output voltage        |                          | V <sub>CC</sub> =4.5~5.5V, I <sub>OH</sub> =-0.4mA |                      | V <sub>cc</sub> -2 |      |      | V    |
| .,              | Low-level output voltage         |                          | Vcc=4.5V                                           | I <sub>OL</sub> =4mA |                    | 0.25 | 0.4  |      |
| V <sub>OL</sub> | Low-level output voltage         | LOW-level Output Voltage |                                                    | I <sub>OL</sub> =8mA |                    | 0.35 | 0.5  | ٧    |
| l <sub>t</sub>  | Input current at maximum voltage |                          | V <sub>CC</sub> =5.5V, V <sub>I</sub> =7V          |                      |                    |      | 0.1  | mA   |
| l <sub>iH</sub> | High-level input current         | High-level input current |                                                    | =2.7V                |                    |      | 20   | μА   |
|                 | Low-level input current          | Ē, T                     |                                                    |                      |                    |      | -0.2 |      |
| 1/L             | Low-sever input current          | Other inputs             | V <sub>cc</sub> =5.5V, V <sub>I</sub> =0.4V        |                      |                    |      | -0.1 | mA   |
| lo              | Output current                   |                          | V <sub>CC</sub> =5.5V, V <sub>O</sub> =2.25V       |                      | 30                 |      | -112 | mA   |
| lcc             | Supply current                   |                          | V <sub>cc</sub> =5.5V                              |                      |                    | 12   | 22   | mA   |


<sup>\* :</sup> All typical values are at V<sub>CC</sub> = 5V, T<sub>a</sub> = 25°C.

#### **SWITCHING CHARACTERISTICS**

|                  |                         |          | 7                              | est cond             | itions/Lin | nits                      |      | (Note 2)         |       |     |        |
|------------------|-------------------------|----------|--------------------------------|----------------------|------------|---------------------------|------|------------------|-------|-----|--------|
|                  |                         | ·        |                                |                      |            | V <sub>cc</sub> =4.5~5.5V |      |                  |       |     |        |
| Symbol           | Parameter               |          |                                | C <sub>L</sub> =15pF |            | C <sub>L</sub> =5         | 0pF  |                  |       |     | Unit   |
| 0,               | , aramotor              |          |                                | R <sub>L</sub> =500Ω |            | R <sub>L</sub> =5         | 00 Ω |                  |       |     | 3,,,,, |
|                  |                         |          |                                | T <sub>a</sub> =25℃  | Т,         | a=0~70                    | ℃    | T <sub>a</sub> = | -20~+ | 75℃ |        |
| ,                |                         | Inputs   | Outputs                        | Тур                  | Min        | Тур*                      | Max  | Min              | Typ * | Max |        |
| fmax             | Maximum clock frequency | Т        | $Q_A \sim Q_D$                 |                      | 30         | 40                        |      | 28               | 40    |     | MHz    |
| t <sub>PLH</sub> |                         | LOAD     | QA~QD                          | 14                   | 8          | 16                        | 30   | 8                | 16    | 31  |        |
| t <sub>PHL</sub> | Propagation time        | LOAD     | Q <sub>A</sub> ~Q <sub>D</sub> | 16                   | 8          | 18                        | 30   | 8                | 18    | 31  |        |
| t <sub>PLH</sub> | Propagation time        | D - D    | Q <sub>A</sub> ~Q <sub>D</sub> | 7                    | 4          | 9                         | 21   | 4                | 9     | 22  | ns     |
| t <sub>PHL</sub> |                         | DA~DD    | Q <sub>A</sub> ~Q <sub>b</sub> | 12                   | 4          | 14                        | 21   | 4                | 14    | 22  |        |
| t <sub>PLH</sub> |                         | т        | RC                             | 6                    | 5          | 8                         | 20   | 5                | 8     | 21  |        |
| t <sub>PHL</sub> |                         | <u> </u> | L                              | 11                   | 5          | 13                        | 20   | 5                | 13    | 21  |        |
| t <sub>PLH</sub> | Propagation time        | т        | Q <sub>A</sub> ~Q <sub>0</sub> | 8                    | 3          | 10                        | 18   | 3                | 10    | 19  | ns     |
| t <sub>PHL</sub> | Fropagation time        |          | Q <sub>A</sub> ~Q <sub>D</sub> | 8. 5                 | 3          | 10                        | 18   | 3                | 10    | 19  | 118    |
| t <sub>PLH</sub> |                         | т        | тс                             | 13                   | 8          | 15                        | 31   | 8                | 15    | 32  |        |
| t <sub>PHL</sub> |                         |          | 10                             | 19                   | 8          | 22                        | 31   | 8                | 22    | 32  |        |
| t <sub>PLH</sub> |                         | Ū/D      | RC                             | 18                   | 15         | 20                        | 37   | 15               | 20    | 38  |        |
| t <sub>PHL</sub> |                         | 0/0      | nc                             | 14                   | 10         | 16                        | 28   | 10               | 16    | 29  |        |
| t <sub>PLH</sub> | Propagation time        | Ū/D      | тс                             | 11                   | 8          | 13                        | 25   | 8                | 13    | 26  |        |
| t <sub>PHL</sub> | riopagation time        | U 0/D    |                                | 13                   | 8          | 15                        | 25   | 8                | 15    | 26  | ns     |
| t <sub>PLH</sub> |                         | Ē        | RC                             | 6                    | 4          | 8                         | 18   | 4                | 8     | 19  |        |
| t <sub>PHL</sub> |                         |          | nc                             | 11                   | 4          | 13                        | 18   | 4                | 13    | 19  |        |

<sup>\* :</sup> All typical values are at V<sub>CC</sub> = 5V, T<sub>a</sub> = 25°C

Note 2. Measurement circuit



(1) The pulse generator (PG) has the following characteristics:

PRR $\leq$ 1MHz  $t_r$ =2ns,  $t_f$ =2ns  $V_{IH}$ =3.5V,  $V_{IL}$ =0.3V duty cycle=50%  $Z_O$ =50 $\Omega$ 

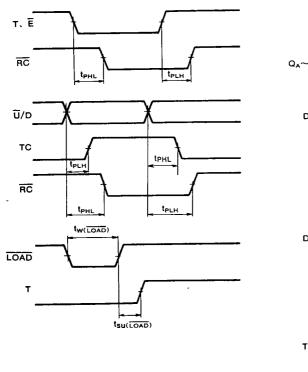
(2)  $C_L$  includes probe and jig capacitance.

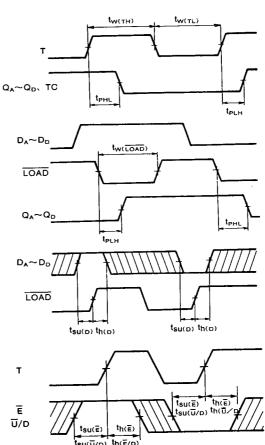


6249827 MITSUBISHI (DGTL LOGIC)

91D 12449 D

SYNCHRONOUS PRESETTABLE UP/DOWN 4-BIT BINARY COUNTER WITH MODE CONTROL


T-45-23-09


TIMING REQUIREMENTS (V<sub>CC</sub> = 4.5 ~ 5.5V, C<sub>L</sub> = 50<sub>P</sub>F, R<sub>L</sub> = 500Ω)

|                    |                         |                                | Í    |        |     |              |       |     |      |
|--------------------|-------------------------|--------------------------------|------|--------|-----|--------------|-------|-----|------|
| Symbol             | Parameter               |                                |      | a=0~70 | °C  | Ta=-20~+75°C |       |     | Unit |
| Oyinboi            |                         |                                | Min  | Typ *  | Max | Min          | Typ * | Max |      |
| t <sub>W(TH)</sub> |                         | т "н"                          | 16.5 | 10     |     | 17.5         | 10    |     | İ    |
| tw(TL)             | Pulse width             | T "L"                          | 16.5 | 13     |     | 17.5         | 13    |     | ns   |
| tw(LOAD)           |                         | LOAD "L"                       | 20   | 10     |     | 21           | 10    |     |      |
| t <sub>su(D)</sub> | Setup time before LOAD1 | D <sub>A</sub> ~D <sub>D</sub> | 20   | 6      |     | 21           | 6     |     | . ns |
| t <sub>su(Ē)</sub> |                         | Ē "L"                          | 20   | 12     |     | 21           | 12    |     | ]    |
| tsu(Ū/p)           | Setup time before T1    | Ū/D                            | 24   | 19     |     | 25           | 19    |     | ns   |
| tsu(LOAD)          | •                       | LOAD "H" (inactive)            | 20   | 10     |     | 21           | 10    |     | L    |
| th(D)              | Hold time after LOAD1   | D <sub>A</sub> ~D <sub>D</sub> | 5    | 0      |     | 6            | 0     |     | ns   |
| th(Ē)              |                         | Ē "L"                          | 0    | -2     |     | 1            | -2    |     | ns   |
| th(U/D)            | Hold time after T1      | Ū/D                            | 0    | -8     |     | 1            | -8    |     | 113  |

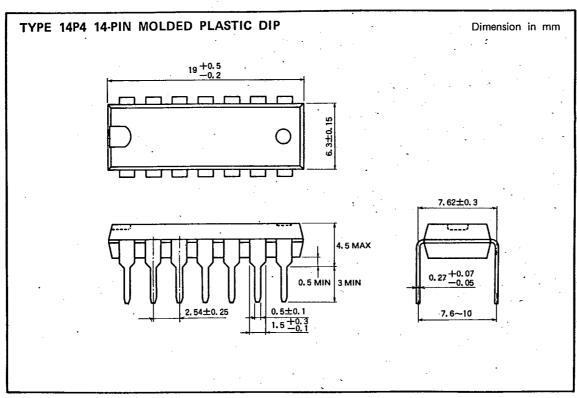
<sup>\* :</sup> All typical values are at V<sub>CC</sub> = 5V, T<sub>a</sub> = 25°C.

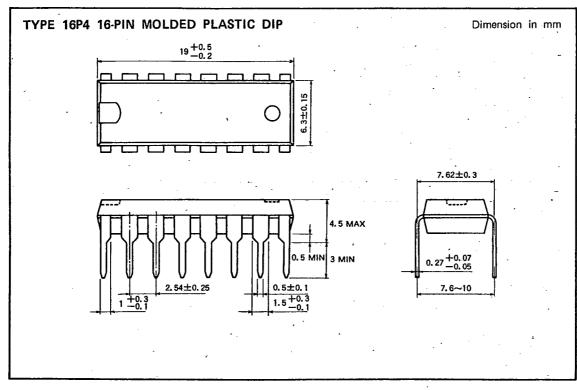
## TIMING DIAGRAM (Reference level = 1.3V)





Note 3. The shaded areas indicate when the input is permitted to change for predictagle output performance.


<sup>† :</sup> Transition from low to high.


910 D 6249827 0012323 4 MITSUBISHI ALSTTLS

## PACKAGE OUTLINES

MITSUBISHI {DGTL LOGIC}

91D 12323





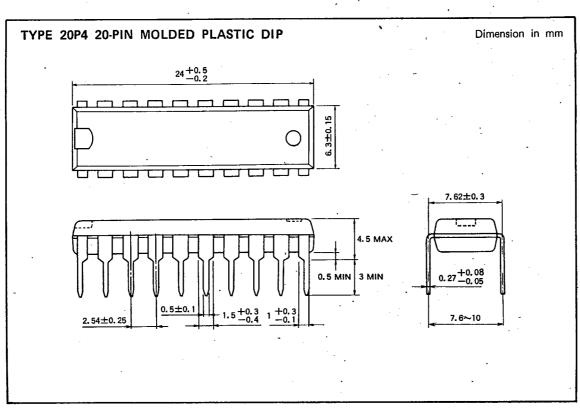
1895

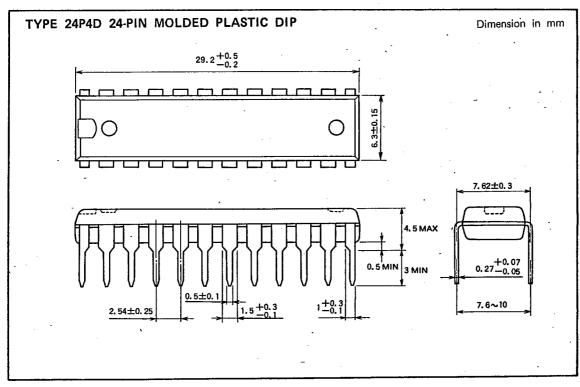
B-14

1-36






91D D 6249827 0012324 6


MII JUBIJHI ALJĪTLS

## **PACKAGE OUTLINES**

91D 12324

## 6249827 MITSUBISHI (DGTL LOGIC)









## MITSUBISHI ALSTTLS **TYPE DESIGNATION TABLE**

MITSUBISHI (DGTL LOGIC)

91D D

6249827 0012784 7 **MIT**3

# T-90-20

#### ALSTTL SERIES SOP TYPE DESIGNATION TABLE

| Type            |               | Circuit function                                                              | Package<br>Outlines |
|-----------------|---------------|-------------------------------------------------------------------------------|---------------------|
| M74ALS00ADP     | *             | Quadruple 2-Input Positive NAND Gate                                          | 14P2P               |
| M74ALS02DP      | *             | Quadruple 2-Input Positive NOR Gate                                           | 14P2P               |
| M74ALS04ADP     | *             | Hex Inverter                                                                  | 14P2P               |
| M74ALS05ADP     | **            | Hex Inverter with Open Colletor Output                                        | 14P2P               |
| M74ALS08DP      | *             | Quadruple 2-Input Positive AND Gate                                           | 14P2P               |
| M74ALS09DP      | **            | Quadruple 2-Input Positive AND Gate with Open Collector Output                | 14P2P               |
| M74ALS09DF      | *             | Triple 3-Input Positive NAND Gate                                             | 14P2P               |
| M74ALS11ADP     | <del></del>   | Triple 3-Input Positive AND Gate                                              | 14P2P               |
| M74ALS11ADP     | **            | Dual 4-Input Positive NAND Gate                                               | 14P2P               |
| M74ALS27DP      | **            | Triple 3-Input Positive NOR Gate                                              | 14P2P               |
| M74ALS30ADP     | **            | Single 8-Input Positive NAND Gate                                             | 14P2P               |
| M74ALS30ADP     | *             | Quadruple 2-Input Positive OR Gate                                            | 14P2P               |
| M74ALS37ADP     | **            | Quadruple 2-Input Positive NAND Buffer                                        | 14P2P               |
| M74ALS38ADP     | **            | Quadruple 2-Input Positive NAND Buffer with Open Collector Output             | 14P2P               |
| M74ALS74ADP     | *             | Dual D-Type Positive Edge-Triggered Flip-Flop with Set and Reset              | 14P2P               |
| M74ALS109ADP    | **            | Dual J-K Positive Edge-Triggered Flip-Flop with Set and Reset                 | 16P2P               |
| M74ALS109ADP    | *             | Dual J-K Negative Edge-Triggered Flip-Flop with Set and Reset                 | 16P2P               |
| M74ALS112ADF    | **            | 3-Line to 8-Line Decoder/Demultiplexer with Address Register                  | 16P2P               |
| M74ALS131DP     | <del>^^</del> | 3-Line to 8-Line Decoder/Demultiplexer                                        | 16P2P               |
| M74ALS153DP     | **            | Dual 4-Line to 1-Line Data Selector/Multiplexer with Strobe                   | 16P2P               |
| M74ALS157DP     | *             | Quadruple 2-Line to 1-Line Data Selector/Multiplexer                          | 16P2P               |
| M74ALS161BDP    | **            | Synchronous Presettable 4-Bit Binary Counter with Direct Reset                | 16P2P               |
| M74ALS163BDP    | **            | Fully Synchronous Presettable 4-Bit Binary Counter                            | 16P2P               |
| M74ALS169BDP    | **            | Synchronous 4-Bit Binary Counter                                              | 16P2P               |
| M74ALS174DP     | *             | Hex D-Type Positive Edge-Triggered Flip-Flop with Reset                       | 16P2P               |
| M74ALS175DP     | **            | Quadruple D-Type Positive Edge-Triggered Flip-Flop with Reset                 | 16P2P               |
| M74ALS193DP     | **            | Synchronous Presettable Up/Down 4-Bit Binary Counter                          | 16P2P               |
| M74ALS240ADWP   | *             | Octal Buffer/Line Driver with 3-State Output (Inverted)                       | 20P2V               |
| M74ALS244ADWP   | *             | Octal Buffer/Line Driver with 3-State Output (Noninverted)                    | 20P2V               |
| M74ALS245ADWP   | **            | Octal Bus Transceiver with 3-State Output (Noninverted)                       | 20P2V               |
| M74ALS245A-1DWP | **            |                                                                               | 20P2V               |
| M74ALS257DP     | *             | Quadruple 2-Line to 1-Line Data Selector/Multiplexer with 3-State Output      | 16P2P               |
| M74ALS273DWP    | **            | Octal D-Type Positive Edge-Triggered Flip-Flop with Reset                     | 20P2V               |
| M74ALS299DWP    | **            | 8-Bit Universal Shift/Storage Register with 3-State Output                    | 20P2V               |
| M74ALS373DWP    | **            | Octal D-Type Transparent Latch with 3-State Output                            | 20P2V               |
| M74ALS374DWP    | **            | Octal D-Type Positive Edge-Triggered Flip-Flop with 3-State Output            | 20P2V               |
| M74ALS533DWP    | **            | Octal D-Type Transparent Latch with 3-State Output (Inverted)                 | 20P2V               |
| M74ALS534DWP    | **            | Octal D-Type Positive Edge-Triggered Flip-Flop with 3-State Output (Inverted) | 20P2V               |
| M74ALS561ADWP   | **            |                                                                               | 20P2V               |
| M74ALS569ADWP   | . **          |                                                                               | 20P2V               |
| M74ALS573ADWP   | **            | Octal D-Type Transparent Latch with 3-State Output (Noninverted)              | 20P2V               |
| M74ALS574ADWP   | **            |                                                                               | 20P2V               |
| M74ALS640ADWP   | **            |                                                                               | 20P2V               |
| M74ALS642ADWP   | **            | Octal Bus Transceiver with Open Collector Output (Inverted)                   | 20P2V               |
| M74ALS645ADWP   | **            | Octal Bus Transceiver with 3-State Output (Noninverted)                       | 20P2V               |
| M74ALS1034DP    | **            | Hex Noninverting Buffer                                                       | 14P2P               |

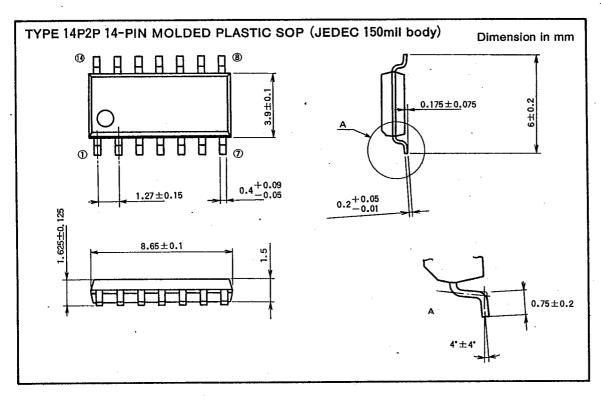
E-04

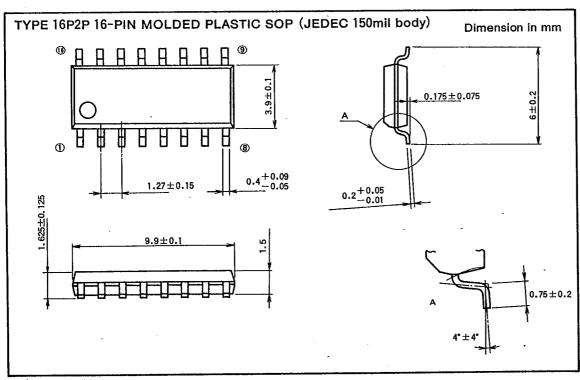




| 6249827    | MITSUBISHÎ (DGTL | LOGIC) | •                | MITSUBIS | HI ALSTTLs |
|------------|------------------|--------|------------------|----------|------------|
|            | 91D 12785        | D      | -<br>:<br>#      | DESC     | RIPTION    |
| MZIBUZTIM: | I (DGTL LOGIC)   | ATD D  | <b>■</b> 6249827 | 0012785  | ETIM P     |
|            |                  |        |                  | *        | T 00 20    |

#### DESCRIPTION


The ALSTTL SOP (Small Outline Package) devices are identical in all respects except for their package outlines to DIP (Dual Inline Package).


## MITSUBISHI ALSTTLS **PACKAGE OUTLINES**

MITSUBISHI (DGTL LOGIC)

ETIMMM 0 48527 007546 0 MM WIT3 91D D

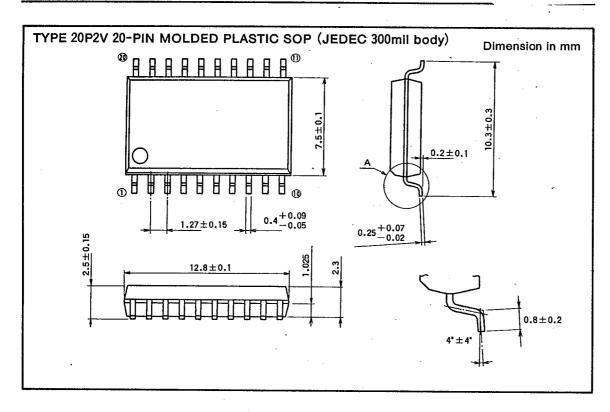
T-90-20





ma Pe

## MITSUBISHI ALSTTLs


## **PACKAGE OUTLINES**

MITSUBISHI (DGTL LOGIC)

G GIP

ETIM 5249827 0012787 2 BM MIT3

T-90-20



ma Pan 68