

Best USB Audio I/O Controller for

External High End 8CH Audio Devices

CM106-F/L High Integrated USB Audio I/O Controller

DataSheet 1.3

C-MEDIA ELECTRONICS INC.

TEL: 886-2-8773-1100 FAX: 886-2-8773-2211

6F, 100, Sec. 4, Civil Boulevard, Taipei, Taiwan 106, R.O.C.

For detailed product information, please contact sales@cmedia.com.tw

NOTICES

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHAT SO EVER, INCLUDING ANY WARRANTY OF MERCHANT ABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, DOCUMENT OR SAMPLE.

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT PERMISSION IN WRITING FROM C-MEDIA ELECTRONICS, INC.

COPYRIGHT

Copyright (c) 2003-2004 C-Media Electronics Inc.

All rights reserved. All content included on this document, such as text, graphics, logos, button icons, images, audio clips, digital downloads, data compilations, and software, is either the exclusive property of C-Media Electronics Inc., its affiliates (collectively, "C-Media"), its content suppliers, or its licensors and protected by Republic of China and international copyright laws.

TRADEMARKS

C-Media, the C-Media Logo, Xear 3D, Xear 3D Logo, Speaker Shifter, Smart Jack, and Smart Audio Jack are trademarks of C-Media Electronics Inc. in Republic of China and/or other countries. All other brand and product names listed are trademarks or registered trademarks of their respective holders and are hereby recognized as such.

C-Media reserves the right to modify the specifications without further notice

Table of Contents

1. Description and Overview

2. Features

3. Pin Descriptions

- 3.1 CM106-F QFP 100 Pin Table
- 3.2 CM106-L LQFP 48 Pin Table
- 3.3 CM106-F QFP 100 Pin
- 3.4 CM106-L LQFP 48 Pin

4. Ordering Information

5. Function Block Diagram of CM106-F/L

6. Function Descriptions

- 6.1 Internal Register
- 6.2 MCU Interface
- 6.3 Serial EEPROM Content
- **6.4 DAC**
- 6.5 ADC
- 6.6 Power Management

7. Volume Control

- 7.1 DAC Volume Control
- 7.2 ADC Volume Control
- 7.3 MIC / LINE-IN Monitor Volume Control

8. Electrical Characteristics

- 8.1 Absolute Maximum Rating
- 8.2 Recommended Operation Conditions
- 8.3 Audio Performance

9. Audio Performance Curves

- 9.1 AA path (Line In to Line Out) Frequency Response
- 9.2 AA path (Line In to Line Out) Cross Talk
- 9.3 DAC (Front) Frequency Response @ 48ks/sec
- 9.4 DAC (Front) Frequency Response @ 44.1ks/sec
- 9.5 DAC (Front) Pass Band Ripple @ 48ks/sec
- 9.6 DAC (Front) Pass Band Ripple @ 44.1ks/sec
- 9.7 ADC (Line In) Frequency Response @ 48ks/sec
- 9.8 ADC (Mic In) Frequency Response @ 48ks/sec

10. Application Circuit

10.1 CM106-L (LQFP 48) / CM106-F (QFP 100)

1. Description and Overview

CM106-F/L is a highly integrated single chip USB audio solution. All essential analog modules are embedded in CM106, including 8CH DAC and earphone buffer, 2CH ADC, microphone booster, PLL, regulator, and USB transceiver. It is very suitable for high end USB external audio box, USB multi-channel headphone or USB audio interface multi-channel speaker set application. Many features are programmable with external EEPROM and MCU interface. In addition, MCU/EEPROM/GPIO control can easily via HID software interface. Better yet, CM106-F/L support stereo MIC, phone jack sense, S/PDIF I/O and 48/44.1 Khz sampling rate. Moreover, unique patent driver can support world first SPEAKER SHIFTER, full HRTF 3D, EAX2.0, Karaoke and Dolby AC-3 real-time encoder function.

2. Features

- USB spec. 2.0 full speed compliant
- USB audio device class spec. 1.0 and USB HID class spec. 1.1 compliant
- IEC60958 spec. compliant (consumer format S/PDIF input and output with loop-back support)
- SCMS (Serial Copy Management System) compliant
- Dolby® digital audio streaming via S/PDIF out
- USB remote wake-up support
- 8 channel DAC output with
 - 16 bit resolution
 - 3.1 Vpp (1.1 Vrms) biased at 2.25V output swing
 - Volume control and mute function
 - Earphone buffer
 - 2X interpolator for digital playback data to improve quality
- 2 channel ADC input with
 - 16 bit resolution
 - 3.2 Vpp (or 4.0 Vpp programmed by vendor driver) biased at 2.25V input swing Volume control and mute function
- Additional headphone output with selectable source and phone jack sense

- Stereo MIC support with boost capability
- Recording source select from S/PDIF, MIC, Line-in and summation of MIC, Line-in and front channel
- MIC, Line-in monitor from front channel (all channels optional) with volume control and mute function
- Master volume control by default; per-channel volume control by C-Media driver
- Playback with soft-mute function
- Support 48 / 44.1 KHz sampling rate for both playback and recording
- MCU support with two-wire serial interface
- Serial EEPROM support for customized VID/PID
- MCU / EEPROM / GPIO control via HID software interface
- Volume up / volume down / playback mute HID button
- LED indicator pins: operation / recording mute / SCMS protection
- C-Media value added software (multi-channel positional 3D sound, AC-3 encoder, etc.)
- Embedded USB transceiver and power on reset circuit
- Single 12MHz crystal input with embedded PLL
- Single 5V power supply with embedded 5V to 3.3V regulator
- Industry standard LQFP-48 (CM106-L) or QFP-100 (CM106-F) package
- C-Media value added patent software driver

Xear 3D sound

Earphone Plus

SPEAKER SHIFTER

Environment sound effects

Room Size Mode

Graphic Equalizer

Karaoke Function

Dolby Digital Real-Time Content Encoder (Optional)

3. Pin Descriptions

3.1 CM106-F QFP 100Pin Table

PIN#	Signal Name	PIN#	Signal Name	PIN#	Signal Name	PIN#	Signal Name
1~7	NC	31~34	NC	61	LOCF	85	XO
8	DVSS5	35	LIL	62	LOLFE	86	DVSS1
9	PHONES	36	LIR	63	AVSS2	87	PWRSEL
10	CS	37	AVDD1	64	DVSS6	88	PWRSEL1
11	SK	38	VREF	65	VOLUP	89	DVSS3
12	DR	39	VBIAS	66	VOLDN	90	SDAT
13	DW	40	AVSS1	67	SPDIFI	91	SCLK
14	MSEL1	41	HPOUTL	68	MUTER	92	TEST
15	MSEL2	42	HPOUTR	69	MUTEP	93	MCLK
16	DVSS2	43	LOSL	70	SPDIFO	94	DVSS4
17	USBDP	44	LOSR	71	GPIO2	95	MINT
18	USBDM	45	LOFL	72	GPIO3	96	GPIO1
19	REGV	46	LOFR	73	GPIO4	97	LEDO
20	DVDD1	47~50	NC	74	DVSS7	98	LEDR
21	AVSS3	51~57	NC	75~80	NC	99	LEDS
22	MICINL	58	AVDD2	81~82	NC	100	NC
23	MICINR	59	LOLS	83	PDSW		
24~30	NC	60	LORS	84	XI	·	

3.2 CM106-L LQFP 48Pin Table

PIN#	Signal Name	PIN#	Signal Name	PIN#	Signal Name
1	PDSW	17	DW	33	LOSL
2	XI	18	USBDP	34	LOSR
3	XO	19	USBDM	35	LOFL
4	DVSS1	20	REGV	36	LOFR
5	SDAT	21	DVDD1	37	AVDD2
6	SCLK	22	AVSS3	38	LOLS
7	TEST	23	MICINL	39	LORS
8	MCLK	24	MICINR	40	LOCF
9	MINT	25	LIL	41	LOLFE
10	GPIO1	26	LIR	42	AVSS2
11	LEDO	27	AVDD1	43	VOLUP
12	LEDR	28	VREF	44	VOLDN
13	PHONES	29	VBIAS	45	SPDIFI
14	CS	30	AVSS1	46	MUTER
15	SK	31	HPOUTL	47	MUTEP
16	DR	32	HPOUTR	48	SPDIFO

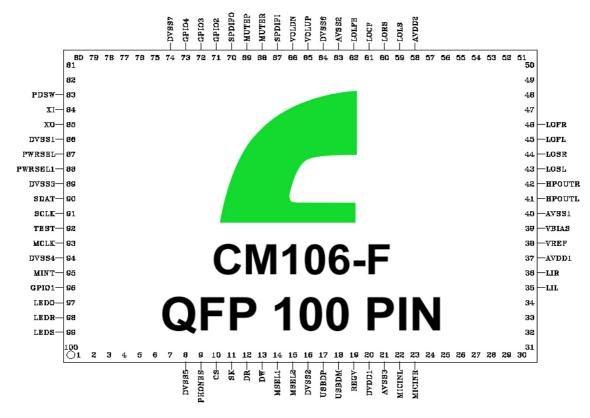


Figure 1. CM106-F QFP 100 Pin Assignments (Top View)

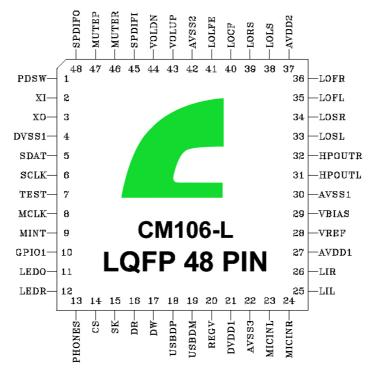


Figure 2. CM106-L LQFP 48 Pin Assignments (Top View)

3.3 CM106-F QFP 100 PIN

Pin #	Symbol	Туре	Description
1~7	NC		
8	DVSS5	Р	Digital ground
9	PHONES	DI	Phone jack sense pin for line out Tri-state; an internal register bit will be set when activated (active H)
10	CS	DO	EEPROM interface chip select
11	SK	DO	EEPROM interface clock
12	DR	DO	EEPROM interface data read
13	DW	DI	EEPROM interface data write
14	MSEL1	DI	0: MICINL/R and LIL/R mix to 8 channels 1: MICINL/R and LIL/R mix to LOFL and LOFR
15	MSEL2	DI	0: playback only 1: playback and recording
16	DVSS2	Р	Digital ground
17	USBDP	AIO	USB data D+
18	USBDM	AIO	USB data D-
19	REGV	AO	3.3V reference output for internal 5 → 3.3V regulator
20	DVDD1	Р	5V power supply to internal regulator
21	AVSS3	Р	Analog ground
22	MICINL	Al	Microphone input left channel
23	MICINR	Al	Microphone input right channel
24~30	NC		
31~34	NC		
35	LIL	Al	Line-In input left channel
36	LIR	Al	Line-In input right channel
37	AVDD1	Р	5V analog power for analog circuit
38	VREF	АО	Connecting to external decoupling capacitor for embedded band-gap circuit; 2.25V output

Pin #	Symbol	Туре	Description
39	VBIAS	AO	Microphone bias voltage supply (4.5V/2.25V)
40	AVSS1	Р	Analog ground
41	HPOUTL	AO	Headphone out left channel
42	HPOUTR	AO	Headphone out right channel
43	LOSL	AO	Line out side (back) left channel
44	LOSR	AO	Line out side (back) right channel
45	LOFL	AO	Line out front left channel
46	LOFR	AO	Line out front right channel
47~50	NC		
51~57	NC		
58	AVDD2	Р	5V analog power for analog circuit
59	LOLS	AO	Line out surround (rear) left channel
60	LORS	AO	Line out surround (rear) right channel
61	LOCF	AO	Line out center channel
62	LOLFE	AO	Line out LFE (subwoofer) channel
63	AVSS2	Р	Analog ground
64	DVSS6	Р	Digital ground
65	VOLUP	DI	Volume up (edge trigger with de-bouncing)
66	VOLDN	DI	Volume down (edge trigger with de-bouncing)
67	SPDIFI	DI	S/PDIF input
68	MUTER	DI	Mute recording (edge trigger with de-bouncing)
69	MUTEP	DI	Mute playback (edge trigger with de-bouncing)
70	SPDIFO	DO	S/PDIF output
71	GPIO2	DIO	GPIO pin #2
72	GPIO3	DIO	GPIO pin #3
73	GPIO4	DIO	GPIO pin #4
74	DVSS7	Р	Digital ground

Pin#	Symbol	Type	Description	
75~80	NC			
81~82	NC			
			Power down switch control (for PMOS polarity)	
83	PDSW	DO	0: normal mode	
			1: power down mode	
84	ΧI	DI	12MHz crystal, or oscillator input	
85	XO	DO	12MHz crystal output	
86	DVSS1	Р	Digital ground	
0.7	DWDCEL	DI	0: self power	
87	PWRSEL	DI	1: bus power	
00	DWDCEL4	DI	0: 100mA operation current	
88	PWRSEL1	DI	1: 500mA operation current	
89	DVSS3	Р	Digital ground	
90	SDAT	DIO	O External MCU serial bus data pin	
91	SCLK	DI External MCU serial bus clock pin		
92	TEST	DI	Test mode select pin; pull low in normal operation	
			External MCU clock pin; clock frequency is programmable (12MHz,	
93	MCLK	DO	6MHz, 3MHz, 1.5MHz)	
			Default is 1.5 MHz	
94	DVSS4	DO	Digital ground	
			External MCU interrupt pin (active L)	
95	MINT	DO	When internal register address 0 ~ 3 or external serial EEPROM is	
95	IVIIIVI	ЪО	accessed,	
			MINT is set low; after MCU read, MINT is reset to H	
96	GPIO1	DIO	GPIO pin #1	
97	LEDO	DO	LED for operation; output H for power on; toggling for data transmit	
98	LEDR	DO	LED for mute recording indication; output H when recording is muted	
00	LEDS	DO	LED for SCMS indication; output H when S/PDIF input is not	
99	LEDS	DO	authorized to record	
100	NC			

3.4 CM106-L LQFP 48 PIN

Pin#	Symbol	Type	Description
			Power down switch control (for PMOS polarity)
1	PDSW	DO	0: normal mode
			1: power down mode
2	ΧI	DI	12MHz crystal, or oscillator input
3	XO	DO	12MHz crystal output
4	DVSS1	Р	Digital ground
5	SDAT	DIO	External MCU serial bus data pin
6	SCLK	DI	External MCU serial bus clock pin
7	TEST	DI	Test mode select pin; pull low in normal operation
			External MCU clock pin; clock frequency is programmable
8	MCLK	DO	(12MHz, 6MHz, 3MHz, 1.5MHz)
			Default is 1.5 MHz
			External MCU interrupt pin (active L)
9	MINT	г ро	When internal register address 0 ~ 3 or external serial EEPROM is
	IVIIINI	ЪО	accessed,
			MINT is set low; after MCU read, MINT is reset to H
10	GPIO1	DIO	GPIO pin #1
11	LEDO	DO	LED for operation; output H for power on; toggling for data transmit
12	LEDR	DO	LED for mute recording indication; output H when recording is muted
13	PHONES	PHONES DI	Phone jack sense pin for line out Tri-state; an internal register bit will be
10	THONLS	Di	set when activated (active H)
14	CS	DO	EEPROM interface chip select
15	SK	DO	EEPROM interface clock
16	DR	DO	EEPROM interface data read
17	DW	DI	EEPROM interface data write
18	USBDP	AIO	USB data D+
19	USBDM	AIO	USB data D-
20	REGV	AO	3.3V reference output for internal 5 → 3.3V regulator
21	DVDD1	Р	5V power supply to internal regulator
22	AVSS3	Р	Analog ground
23	MICINL	Al	Microphone input left channel

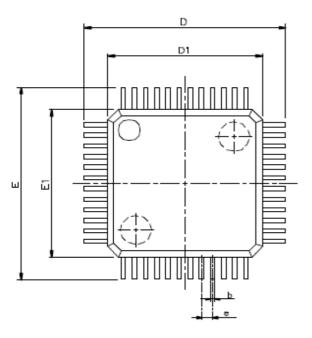
Pin#	Symbol	Туре	Description
24	MICINR	Al	Microphone input right channel
25	LIL	Al	Line-In input left channel
26	LIR	Al	Line-In input right channel
27	AVDD1	Р	5V analog power for analog circuit
28	VREF	АО	Connecting to external decoupling capacitor for embedded band-gap circuit; 2.25V output
29	VBIAS	AO	Microphone bias voltage supply (4.5V/2.25V)
30	AVSS1	Р	Analog ground
31	HPOUTL	AO	Headphone out left channel
32	HPOUTR	AO	Headphone out right channel
33	LOSL	AO	Line out side (back) left channel
34	LOSR	AO	Line out side (back) right channel
35	LOFL	AO	Line out front left channel
36	LOFR	AO	Line out front right channel
37	AVDD2	Р	5V analog power for analog circuit
38	LOLS	AO	Line out surround (rear) left channel
39	LORS	AO	Line out surround (rear) right channel
40	LOCF	AO	Line out center channel
41	LOLFE	AO	Line out LFE (subwoofer) channel
42	AVSS2	Р	Analog ground
43	VOLUP	DI	Volume up (edge trigger with de-bouncing)
44	VOLDN	DI	Volume down (edge trigger with de-bouncing)
45	SPDIFI	DI	S/PDIF input
46	MUTER	DI	Mute recording (edge trigger with de-bouncing)
47	MUTEP	DI	Mute playback (edge trigger with de-bouncing)
48	SPDIFO	DO	S/PDIF output

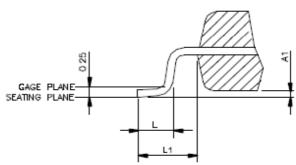
*Note 1: DI - digital input pad

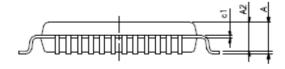
DO - digital output pad

DIO - digital bi-directional pad

AI/AO/AIO – analog pad


P – power pad


*Note 2: For LQFP 48 package, PWRSEL, PWRSEL1, MSEL1 and MSEL2 are internal bonding options; They are not bonded by default.



4. Ordering Information

4.1 CM106-L (LQFP48)

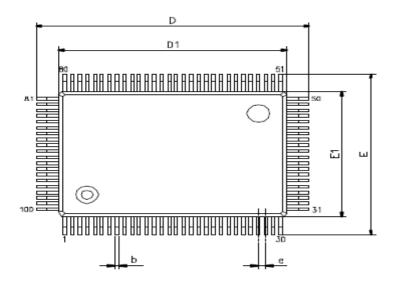
VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

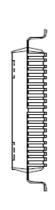
	,
MIN.	MAX.
	1.6
0.05	0 15
1.35	1.45
0.09	0.16
9.0	00 BSC
7.0	00 BSC
9.0	00 BSC
7,0	DO BSC
0.5	BSC
0.17	0.27
0.45	0.75
1	REF
	 0.05 1.35 0.09 9.0 7.0 9.0 0.5 0.17

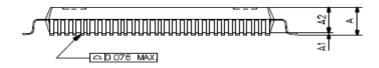
NOTES:

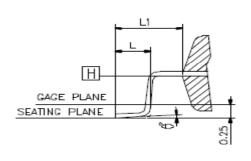
1. JEDEC OUTLINE:MS-026 BBC

2. DIMENSIONS D1 AND E1 D0 NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION IS


0.25mm PER SIDE. D1 AND E1 ARE MAXIMUM
PLASTIC BODY SIZE DIMENSIONS IMCLUDING
MOLD MISMATCH.


MOULD MISMATCH.


3.DIMENSION 6 DOES NOT INCLUDE DAMBAR
PROTRUSION.ALLOWABLE DAMBAR PROTRUSION
SHALL NOT CAUSE THE LEAD WIDTH TO
EXCEED THE MAXIMUM 6 DIMENSION BY MORE THAN 0.08mm



4.2 CM106-F (QFP100)

SYMBOLS	MIN.	NOM	MAX.
Α	_	_	3.30
A1	0.25	_	_
A2	2.68	2.80	2.92
ь	0.20	0.30	0.40
D	24.49	24.80	25.10
D1	19.90	20.00	20.10
е	0.50	0.65	0.8
E	18.48	18.80	19.10
E1	13.90	14.00	14.10
L	1.00	1.20	1.40
L1	2.21	2 40	2.59
θ°	0	_	12

UNIT: mm

NOTES.

- 1.JEDEC OUTLINE:MO-112 CC-1
- 2.DATUM PLANE HIS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- 3.DIMENSIONS D1 AND E1 D0 NOT INCLUDE MOLD PROTRUSION ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 D0 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE (F).
- 4.DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION .

5. Function Block Diagram of CM106-F/L

Block Diagram - 063 USB Audio 7.1 CH

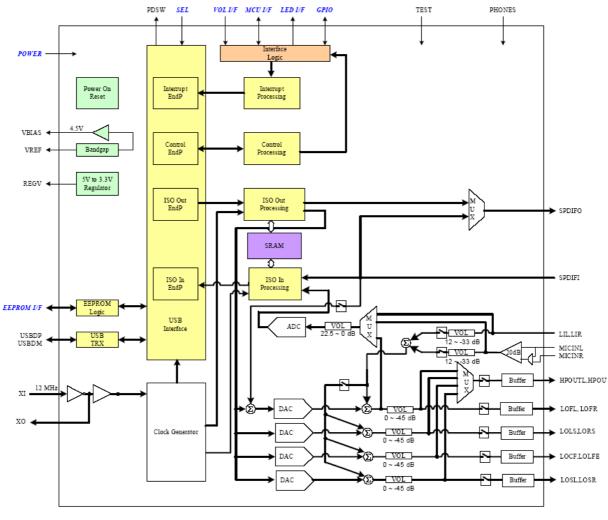


Figure 3: Function Block Diagram Of CM106-F/L

Signal Set	Signals
EEPROM	CS, SK, DR, DW
VOL I/F	VOLUP, VOLDN, MUTER, MUTEP
LED I/F	LEDO, LEDR, LEDS
MCU I/F	SCLK, SDAT, MCLK, MINT
SEL	PWRSEL, PWRSEL1, MSEL1, MSEL2
GPIO	GPIO1, GPIO2, GPIO3, GPIO4
Power	AVDD1, AVDD2, AVSS1, AVSS2, DVDD1, DVSS1, DVSS2

6. Function Descriptions Block Diagram of CM106-F/L

6.1 Internal Register

and from the same

The internal registers of CM106 can be divided to two parts. Some of them (REG0, REG1, REG2 and REG3) are 16-bit width and can be accessed via HID interface. The others are 8-bit width and can be accessed by vendor requests. To access registers via HID interface, users should issue a "Set Output Report" HID request. The four bytes of output report data is organized as below:

D. to [0]	Read: 8'd48
Byte [0]	Write: 8'd32
Byte [1]	DATAL
Byte [2]	DATAH
Byte [3]	Register address (0, 1, 2, 3)

In addition to internal registers, users can also access external serial EEPROM by the same way:

Dv40 [0]	Read: 8'd80
Byte [0]	Write: 8'd64
Byte [1]	DATAL
Byte [2]	DATAH
Byte [3]	EEPROM address (0 ~ 8'd63)

When users intend to read register / EEPROM by "Set Output Report", the returned data will be transferred to USB host via HID input report through interrupt pipe. The three bytes of input report data is organized as below:

Byte [0]	MCUIN	EEIN	REGIN	HEADPON		MUTE	VDN	VUP	
	DATAL from MCU when MCUIN = 1								
Byte [1]	DATAL fro	DATAL from EEPROM when EEIN = 1							
	DATAL from Register when REGIN = 1								
	DATAH from MCU when MCUIN = 1 e [2] DATAH from EEPROM when EEIN = 1								
Byte [2]									
	DATAH fro	om Registe	r when REO	GIN = 1					

Users can distinguish the source of input report by Byte[0], Byte[1] and Byte[2] consist a word which may be the content of addressed register or serial EEPROM. It may also be an arbitrary word programmed by external MCU. In addition, Byte[0] carries the information of HID button status (MUTE, VDN and VUP), and phone jack sense (HEADPON). VDN/VUP would be 1 when VOLDN/VOLUP button is pressed, and keeps pressed (VOLDN/VOLUP keeps 0). MUTE would be 1 when MUTEP button is pressed, and would be cleared to 0 after USB host reads the input report. HEADPON would be 1 when headphone is plugged in (PHONES is 1).

Refer to the following tables for the definition of internal registers can be accessed via HID interface:

REG0	Address:	0x00
	Reset State:	0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									CSR						

Bit Number	Bit Mnemonic	Read/ Write	Function
12-0	CSR	R/W	SPDIF out control

REG1	Address:	0x01
REGI	Reset State:	0xb000

15	14	13	12	11	10	9	8
DACX2en	FS	PLLBINe	SOFTMU TEen	GPIO4_o	GPIO4_ OEN	GPIO3_o	GPIO3_ OEN

7	6	5	4	3	2	1	0
GPIO2_o	GPIO2_ OEN	GPIO1_o	GPIO1_ OEN	LOWFIR SET	SPDIFLO OP	DIS_SPD IFO	SPDIFMI X

Bit Number	Bit Mnemonic	Read/ Write	Function			
15	DACX2en	R/W	DAC X 2 enable			
14	FS	R/W	ADC full scale setting			
13	PLLBINen	R/W	PLL binary search enable			
12	SOFTMUTEen	R/W	Soft mute enable			
11	GPIO4_o	R/W	Gpio4 signal			

10	GPIO4 OEN	R/W	Gpio4 output enable
10		17/77	
9	GPIO3_o	R/W	Gpio3 signal
8	GPIO3_OEN	R/W	Gpio3 output enable
7	GPIO2_o	R/W	Gpio2 signal
6	GPIO2_OEN	R/W	Gpio2 output enable
5	GPIO1_o	R/W	Gpio1 signal
4	GPIO1_OEN	R/W	Gpio1 output enable
3	LOWFIRSET	R/W	Low pass filter setting
2	SPDIFLOOP	R/W	SPDIF loop-back enable
1	DIS_SPDIFO	R/W	SPDIF out disable
0	SPDIFMIX	R/W	SPDIF in mix enable

REG2	Address: 0x02
REG2	Reset State: 0x0004

15	14	13	12	11	10	9	8
DRIVERON	HEAD	PSEL			PLAYMUTE		

7	6	5	4	3	2	1	0		
	F	PLAYMUTE			MICRSEL	MCUCLKSEL			

Bit Number	Bit Mnemonic	Read/ Write	Function
15	DRIVERON	R/W	If (HEADPON = 1 and DRIVERON = 0) 1. All channels muted except Headphone channels 2. Select Headphone source from Front channels Else
			Channel mute controlled by PLAYMUTE registers Headphone source selected by HEADPSEL registers
14~13	HEADPSEL	R/W	Headphone source select 00: Front channels 01: Center and Subwoofer 02: Surround channels 03: Side channels
12~3	PLAYMUTE	R/W	Channel mute control (high active) PLAYMUTE[0]: mute Left Front PLAYMUTE[1]: mute Right Front PLAYMUTE[2]: mute Center PLAYMUTE[3]: mute Subwoofer PLAYMUTE[4]: mute Left Surround PLAYMUTE[5]: mute Right Surround PLAYMUTE[6]: mute Side Left PLAYMUTE[7]: mute Side Right PLAYMUTE[8]: mute Headphone Left PLAYMUTE[9]: mute Headphone Right

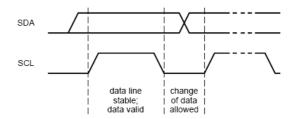
2	MICRSEL	R/W	MIC right channel source select 0: left channel (mono) 1: right channel (stereo)
1~0	MCUCLKSEL	R/W	MCU clock frequency 00: 1.5Mhz 01: 3Mhz 10: 6Mhz 11: 12Mhz

REG3	Address: 0x03
REGS	Reset State: 0x003f / 0x007f

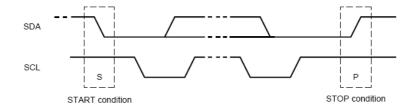
15	14	13	12	11	10	9	8
					VRAP	MSEL1	SPDFI_
					25EN		FREQ[1]

7	6	5	4	3	2	1	0
SPDFI	PINSEL	FOE	ROE	CBOE	LOSE	HPOE	CANREC
_FREQ[0]							

Bit Number	Bit Mnemonic	Read/ Write	Function
10	VRAP25EN	R/W	Microphone bias voltage supply select
			0: 4.5V
			1: 2.25V
9	MSEL1	R/W	0: MICINL/R and LIL/R mix to LOFL and LOFR
			1: MICINL/R and LIL/R mix to 8 channels
8~7	SPDFI_FREQ	R	SPDIF in sample rate
	_		00: 44.1K
			01: reserved
			10: 48K
			11: 32K
6	PINSEL	R	0: 100 pin package
			1: 48 pin package
5	FOE	R/W	1: LOFL/LOFR enable
			0: LOFL/LOFR disable (Hi Z)
4	ROE	R/W	1: LOLS/LORS enable
			0: LOLS/LORS disable (Hi Z)
3	CBOE	R/W	1: LOCF/LOLFE enable
			0: LOCF/LOLFE disable (Hi Z)
2	LOSE	R/W	1: LOSL/LOSR enable
			0: LOSL/LOSR disable (Hi Z)
1	HPOE	R/W	1: HPOUTL/HPOUTR enable
			0: HPOUTL/HPOUTR disable (Hi Z)
0	CANREC	R	SPDIF in recording status
			0: SPDIF in can not be recorded
			1: SPDIF in can be recorded

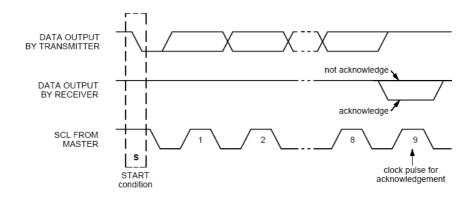

6.2 MCU Interface

CM106 can communicate with external MCU via two-wire serial interface and act as a slave device. By this way, MCU can read four bytes from and write two bytes to USB host through CM106.


When MCU writes two bytes to CM106, the data will be transferred to USB host via HID 'Input Report'. USB host will keep polling HID report every 32ms.

CM106 can also transfer four bytes from USB host to MCU. This is accomplished by a 'Set Output Report' HID request issued by USB host. CM106 will then assert MINT to inform MCU to read them.

CM106 has one input pin 'SCLK' to get serial clock from MCU, and one open-drain output pin 'SDAT' to send or receive serial signal to/from MCU. As shown below, 'SDAT' should be stable when 'SCLK' is high, and can have transition only when 'SCLK' is low.



START and STOP conditions shown below are the exception. Every transaction begins from a START, and ends with a STOP, or another START (repeated START).

The figure below demonstrates a transaction example. After every 8 bits sent by the transmitter, the receiver should send one bit low for positive acknowledgement or one bit high for negative acknowledgement. After the negative acknowledgement, a STOP or repeated START should follow.

The figure below shows typical transactions between MCU and CM106. After a START, MCU should send 7-bit slave address (7'b0111000) first, and then the 8th bit denotes a read transfer when it's high; or a write transfer when it's low.

MCU	write:
	011

S	8'h70	0	8'h01	0	Byte[1]	0	Byte[2]	1	Р		
MCU	J read:										
S	8'h70	0	8'h00	1							
S	8'h71	0	Byte[0]	0	Byte[1]	0	Byte[2]	0	Byte[3]	1	Р

: From CM106 to MCU : From MCU to CM106

S : START condition P : STOP condition

0 : Positive acknowledge 1 : Negative acknowledge

Byte : One byte data

In a write transfer, MCU keeps acting as the transmitter. CM106 regards the first DATA byte as start register address. The second and third DATA bytes are the content that MCU writes to the register addresses.

In a read transfer, two transactions are necessary. MCU resets start register address by the first transaction. Then MCU changes to be the receiver during the second transaction to get four bytes of data.

High End 8CH DAC and 2CH ADC Integrated Solution

6.3 Serial EEPROM Content

CM106 supports four-wire serial EEPROM interface. When an external serial EEPROM is detected, Vendor ID and Product ID reported within Device Descriptor will be derived from the content of serial EEPROM. The organization of serial EEPROM is shown below:

Address = 0	16'h630X
Address = 1	Vendor ID
Address = 2	Product ID
Address = 63	16'hXXXX

Users can program serial EEPROM via HID interface, as described in the former section. Although 64 words can be accessed by CM106, only the first three words are significant to CM106. The first word is a magic code. Only when it matches, CM106 will regard the serial EEPROM valid.

6.4 DAC

CM106 contains eight 16-bit DACs. The DACs are implemented in two-stage resister ladder architecture. With 2X interpolator in logic block, these DACs are indeed operated at two time of sample rate.

The playback stream from USB host is in signed 16-bit binary. CM106's logic block converts the data to unsigned format, and adds 64 as a fixed offset. The converted data to DAC input is then in unsigned 17-bit binary. The 2X interpolator, and fixed offset value added upon playback stream could improve SNR.

6.5 ADC

CM106 contain two 16-bit ADCs. The ADCs are implemented in Sigma-Delta architecture. In addition to the default digital low pass filter, CM106 provides an alternate one that could improve SNR further. A larger ADC input swing (4.0Vp-p) is also available. Refer to the internal register section for more information.

6.6 Power Management

To meet suspend current specification of USB, CM106 turns off most blocks when entering suspend. The only two exception are power-on-reset and regulator.

To meet unconfigured current specification of USB, CM106 provides a control signal PDSW to turn off external components. PDSW would be active when USB host does not configure CM106. PDSW would also be active when CM106 is suspended. If serial EEPROM is exist, notice that it should not be powered off anyway because it contains Vendor ID and Product ID which should be returned to USB host before CM106 is configured.

The value of two input pin PWRSEL and PWRSEL1 (for CM106-F only) would affect configuration descriptor. If users declare the device as bus-power and high-power, and it is attached to a bus-power hub, USB host would not configure the device because the power budget is over.

7. Volume Control

7.1 DAC Volume Control

VOL_*_<5:0>	Scale (linear)						
00	1.000	10	0.724	20	0.448	30	0.171
01	0.973	11	0.696	21	0.420	31	0.144
02	0.944	12	0.669	22	0.392	32	0.116
03	0.917	13	0.641	23	0.365	33	0.088
04	0.890	14	0.613	24	0.337	34	0.061
05	0.862	15	0.586	25	0.309	35	0.033
06	0.834	16	0.558	26	0.282	36	0.006
07	0.807	17	0.530	27	0.254	37	mute
08	0.779	18	0.503	28	0.227		
09	0.751	19	0.475	29	0.199		

Note: VOL_*_stands for VOL_FL_, VOL_FR_, VOL_CF_, VOL_LFE_, VOL_LS_, VOL_RS_, VOL_SL_, VOL_SR_. The volume control is in linear scale.

7.2 ADC Volume Control

ma Pen

VOL_*_<3:0>	Scale (log)						
00	+22.5dB	04	+16.5dB	08	+10.5dB	12	+4.5dB
01	+21.0dB	05	+15.0dB	09	+9.0dB	13	+3.0dB
02	+19.5dB	06	+13.5dB	10	+7.5dB	14	+1.5dB
03	+18.0dB	07	+12.0dB	11	+6.0dB	15	0.0dB

Note: VOL_*_ stands for VOL_REC_L_ and VOL_REC_R_. The volume control is in log scale.

7.3 MIC / Line-in Monitor Volume Control

VOL_*_<4:0>	Scale (log)						
00	+12.0dB	08	0.0dB	16	-12.0dB	24	-24.0dB
01	+10.5dB	09	-1.5dB	17	-13.5dB	25	-25.5dB
02	+9.0dB	10	-3.0dB	18	-15.0dB	26	-27.0dB
03	+7.5dB	11	-4.5dB	19	-16.5dB	27	-28.5dB
04	+6.0dB	12	-6.0dB	20	-18.0dB	28	-30.0dB
05	+4.5dB	13	-7.5dB	21	-19.5dB	29	-31.5dB
06	+3.0dB	14	-9.0dB	22	-21.0dB	30	-33.0dB
07	+1.5dB	15	-10.5dB	23	-22.5dB	31	mute

Note: VOL_*_ stands for VOL_MICM_L_, VOL_MICM_R_, VOL_LINEM_L_, VOL_LINEM_R_. The volume control is in log scale.

8. Electrical Characteristics

8.1 Absolute Maximum Rating

Symbol	Parameter	Value	Unit
Dvmin	Min Digital Supply Voltage	- 0.3	V
Dvmax	Max Digital Supply Voltage	+ 6	V
Avmin	Min Analog Supply Voltage	- 0.3	V
Avmax	Max Analog Supply Voltage	+ 6	V
Dvinout	Voltage on any Digital Input or Output	-0.3 to +5.5	V
	Pin		
Avinout	Voltage on any Analog Input or Output	-0.3 to +5.5	V
	Pin		
TB_{stgB}	Storage Temperature Range	-40 to +125	°C
ESD (HBM)	ESD Human Body Mode	3500	V
ESD (MM)	ESD Machine Mode	200	V
I _{Latch_Up}	Latch Up Trigger Current	400	mA

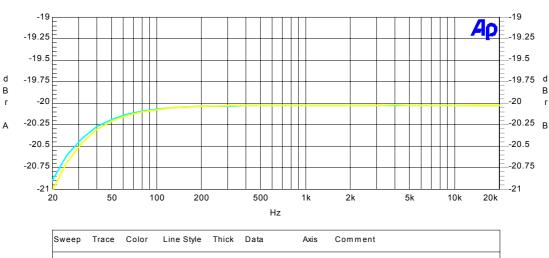
8.2 Recommended Operation Conditions

Operation conditions						
	Min	Тур	Max	Unit		
Analog Supply Voltage	4.5	5.0	5.5	V		
Digital Supply Voltage	4.5	5.0	5.5	V		
Operating Current:	-	-	350	mA		
Un-configure Current			80	mA		
Suspend Current	-	-	250	uA		
Operating ambient temperature	0	-	70	POPC		

8.3 Audio Performance

	Min	Тур	Max	Unit
AA Path	(Line In to L	ine Out)		
THD + N (-3dBr)		-89		dB
Dynamic range		99		dB
Cross talk		101		dB
Frequency response 48KHz	20		20K	Hz

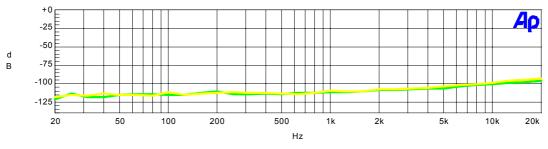
	DAC (Front)			
THD + N (-3dBr)	-	-69	-	dB
SNR	-	92	-	dB
Dynamic range		90		dB
Frequency response @ 48KHz	20		20K	Hz
Frequency Response @ 44.1KHz	20		17.6K	Hz
Full Scale Output Voltage Range	-	1.17	-	Vrms
Center Voltage		2.25		V
Pass Band Ripple @ 48KHz			+-0.05	dB
Pass Band Ripple @ 44.1KHz			+-0.05	dB
	DAC (Rear)			
THD + N (-3dBr)	-	-70	-	dB
SNR	-	91	-	dB
Dynamic range		90		dB
DA	C (Center/Ba	ss)		
THD + N (-3dBr)	-	-68	-	dB
SNR	-	91	-	dB
Dynamic range		90		dB
DAC	(Back Surro	und)		
THD + N (-3dBr)	-	-68	-	dB
SNR	-	91	-	dB
Dynamic range		90		dB
	ADC (Line In)			
THD + N (-3dBr)		-70		dB
SNR		84		dB
Dynamic Range		85		dB
Frequency Response @ 48KHz	20		20K	Hz
Input Range	0	-	3.2 (4.0)	Vpp
	ADC (Mic)			
THD + N (-3dBr)		-68		dB
SNR		83		dB
Dynamic Range		84		dB
Frequency Response @ 48KHz	70		12.5	Hz
Input Range	0	-	3.2 (4.0)	Vpp


*Note: All specifications at +25°C, AVdd=DVdd=5V, 10k Ohm loading

9. Audio Performance Curves

9.1 AA path (Line In to Line Out) Frequency Response

C-Media Analog Pass-Through (A-A) for Line Input to Line Output 08/12/04 10:44:41 Frequency Response

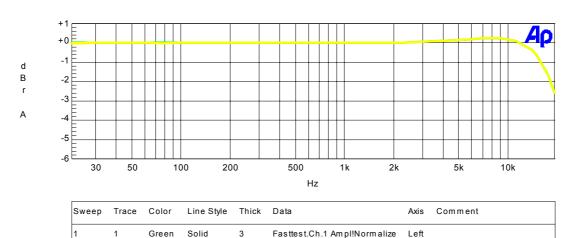


Cyan Solid AnIr.Level A Left Yellow Solid Anir.Level B Right

LL-FreqResp.at2

9.2 AA path (Line In to Line Out) Cross Talk

C-Media Analog to Analog Crosstalk 08/12/04 15:20:08


Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Green	Solid	3	Anir.Crosstalk	Left	
1	2	Yellow	Solid	3	Anir.Crosstalk	Left	

aa-axtalk.at2

9.3 DAC (Front) Frequency Response @ 48ks/sec

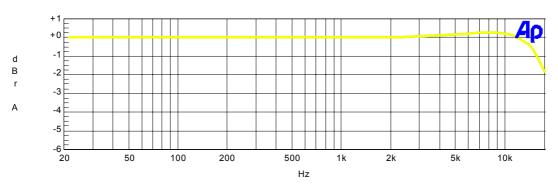
C-Media Digital Playback (PC-D-A) for Line Output Frequency 08/12/04 14:53:18 Response

WL-Multitone-48k.at2

 $Fasttest. Ch. 2\ Ampl! Normalize$

Left

9.4 DAC (Front) Frequency Response @ 44.1ks/sec

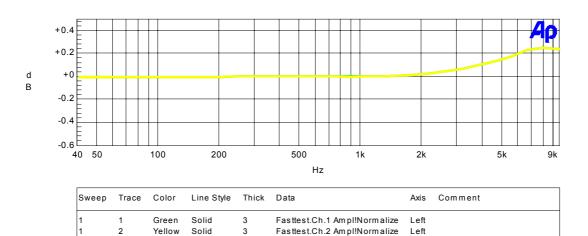

Yellow

Solid

3

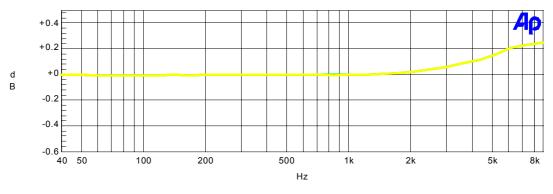
2

C-Media Digital Playback (PC-D-A) for Line Output Frequency 08/12/04 14:54:41 Response


Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Green	Solid	3	Fasttest.Ch.1 Ampl!Normalize	Left	
1	2	Yellow	Solid	3	Fasttest.Ch.2 Ampl!Normalize	Left	

WL-Multitone-44k.at2

9.5 DAC (Front) Pass Band Ripple @ 48ks/sec

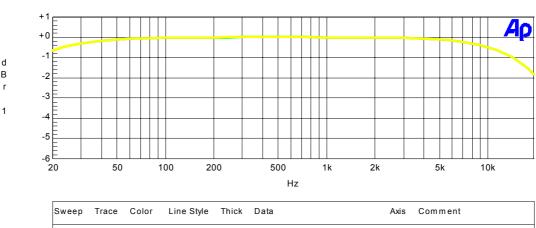

C-Media Digital Playback (PC-D-A) for Line Output Passband 08/12/04 14:54:00 Ripple @48ks/sec

WL-PassbandRipple-M48k.at2

9.6 DAC (Front) Pass Band Ripple @ 44.1ks/sec

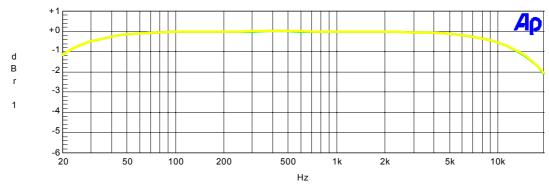
C-Media Digital Playback (PC-D-A) for Line Output Passband 08/12/04 14:55:21 Ripple @44.1ks/sec




Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Green	Solid	3	Fasttest.Ch.1 Ampl!Normalize	Left	
1	2	Yellow	Solid	3	Fasttest.Ch.2 Ampl!Normalize	Left	

WL-PassbandRipple-M44k.at2

MEDIA FI ECTRONICS INC.


Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Green	Solid	3	Fasttest.Ch.1 Ampl!Normalize	Left	
1	2	Yellow	Solid	3	Fasttest.Ch.2 Ampl!Normalize	Left	

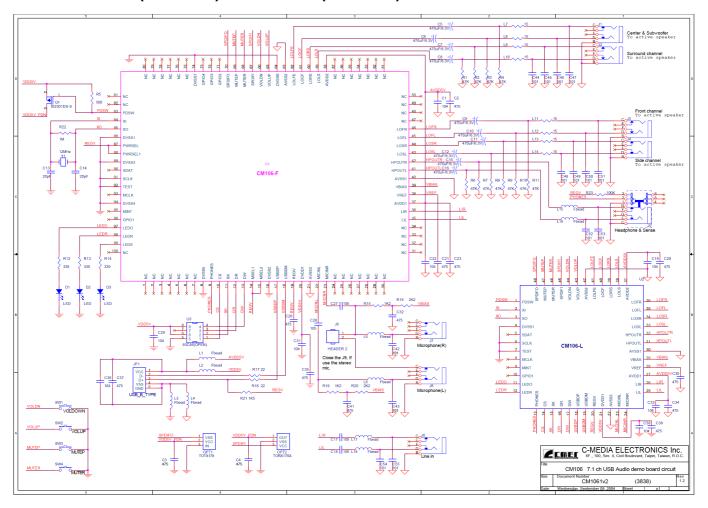
LW-MFreqResp-48K.at2

9.8 ADC (Mic In) Frequency Response @ 48ks/sec

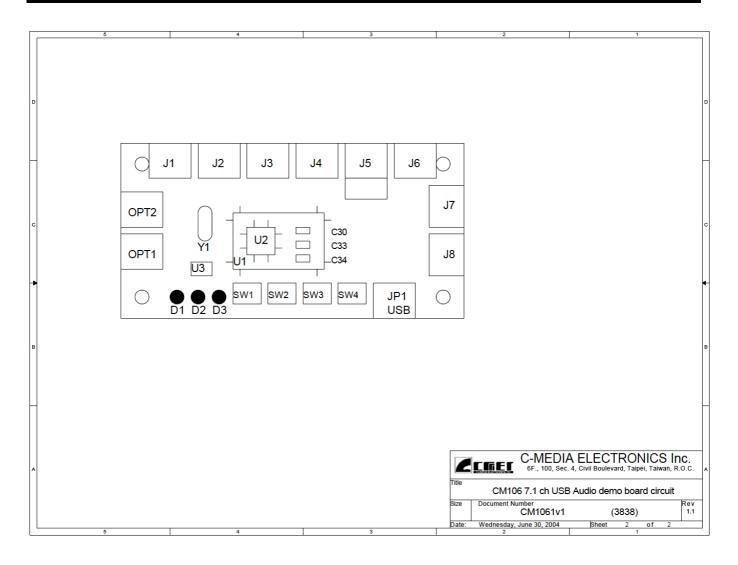
9.7 ADC (Line In) Frequency Response @ 48ks/sec

C-Media Digital Recording (A-D-PC) for Line Input Frequency Response

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Green	Solid	3	Fasttest.Ch.1 Ampl!Normalize	Left	
1	2	Yellow	Solid	3	Fasttest.Ch.2 Ampl!Normalize	Left	


LW-MFreqResp-48K.at2

CM106-F/L


10. Application Circuit

10.1 CM106-L (LQFP48) / CM106-F (QFP100)

REFERENCE

USB-IF, USB Specification, Revision 1.1 and 2.0, and USB Audio Device Class Specification, Revision 1.0

—End of Specifications—

C-MEDIA ELECTRONICS INC.

6F., 100, Sec. 4, Civil Boulevard, Taipei, Taiwan 106 R.O.C.

TEL:886-2-8773-1100 FAX:886-2-8773-2211

E-mail: sales@cmedia.com.tw URL: http://www.cmedia.com.tw