

Agilent Technologies

Innovating the HP Way

PCS/AMPS Dual-Band Dual-Mode Power Amplifier Module

Features

Operating frequency:

PCS: 1850 - 1910 MHz AMPS: 824 - 849 MHz

 Typical Output Power @ 3.4V:

PCS: 28.5 dBm AMPS: 29 dBm

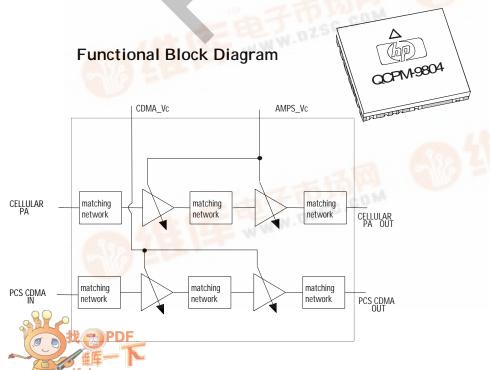
- Internal 50 ohm matching networks for both RF IN/OUT
- 3.4 4.2 V operation (reduced performance at 3V)
- Dynamic bias controls optimize PAE at low output power for PCS
- 11.5 mm x 11.5 mm SMT RF MultiPak
- Dual Band CDMA handsets

Package Pin Configuration

(Back side)

6 7 8 9

10 11


5 4 12

13

Applications

- Wireless Data terminals
- WLL
- Driver for Base station

Small SMT Multipak

QCPM-9801

General Description

The Dual-Band Dual-Mode Power Amplifier Module (PAM) offers a highly integrated solution for CDMA dual-band Dual-mode handsets. The integrated solution leads to improvements in cost, size, performance, and reliability. This PAM also offers several features that will make handset design more flexible and robust. The module contains two power amplifiers (PCS and Cellular PAs), two driver amplifiers with power control and bias circuits.

The cellular power amplifiers provides: 29 dBm Pout and 44% Power Added Efficiency (PAE) at 3.4 V in AMPS mode. While the PCS power amplifier achieves 28.5 dBm Pout and 28 % PAE at 3.4V in PCS mode. The PAM is designed with dynamic bias control to optimize the PAE at low output power in PCS mode to maximize the system talk time.

The surface mount RF MultiPak insures cost, size, and high volume manufacturing advantages over other traditional approaches.

QCPM-9801 Absolute Maximum Ratings¹

	Cellular		PCS	
Parameter	Min.	Max.	Min.	Max.
Vcc supply voltage		4.5 V		4.5 V
Power Dissipation ^{2,3}		2.5 W		2.5 W
Bias Current		1.5 A		1.5 A
Amplifier Input RF Power		10 dBm		10 dBm
Junction temperature		+150 °C		+150 °C
Storage temperature (case temperature)	-40 °C	+120 °C	-40 °C	+120 °C

Thermal Resistance ²	θ _{jC} = X °/W

- Notes:

 1. Operation of this device in excess of any of these limits may cause permanent damage.

 2. T_{case} = 25 °C

 2. W/OC for T 285 °C.
- 3. Derate at X mW/°C for T_{case}:>85 °C

Recommended operating range of Vcc = 3.4 to 4.2 V, T_a = - 30 to + 85 °C (reduced performance at 3.0 V and 110 °C)

QCPM-9801 Standard Test Conditions

All test are done in 50Ω system at 25 °C , unless noted otherwise.

 $V_{CC} = 3.4V$

Channel Power in $ACPR = \frac{Channel}{Power \ in \ a \ 30KHz \ band \ @\pm 1.25MHz \ away \ from \ the \ center \ of \ the \ channel}$

QCPM-9801 Summary Characterization Information

Parameter	Units	Min	Тур	Max	Comments
PCS Mode					
Frequency Range	MHz	1850		1910	
Gain (P _{out} = 28.5 dBm)	dB	22	24		Vc = 2.5V
Gain (P _{out} = 16 dBm)	dB	19	21		Vc = 1.8V
Output Power	dBm	28	28.5		
Power Added Efficiency					
P _{out} = 28.5 dBm	%	TBA	28		Vc = 2.5V
P _{out} = 16 dBm	%	TBA	6		Vc = 1.8V
Input VSWR (P _{out} = 28.5 dBm)			2.0:1		
Input VSWR (P _{out} = 16 dBm)			2.5:1		
Power Down Current	μΑ		40		
ACPR @ ± 1.25 MHz offset	dBc/30kHz	-45	-46		

QCPM-9801 Rev. B Feb 10th 2000 Preliminary Specification is subject to change with no prior notification

	ACPR @ ± 2.25 MHz offset	dBc/30kHz	-58			A
			-30			
	Noise Power @ 80 MHz offset in 1930-1990 MHz)	dBm/Hz		-139		
	Stability (Spurious): Load VSWR 5:1	dBc		55		All phases
	Harmonics: 2Fo, 3Fo	dBc		-30		
AMF	S mode					
	Frequency Range	MHz	824		849	
	Output Power	dBm	A	29		
	Power Added Efficiency (P _{out} = 29 dBm)	%	TBA	44		Vc = 1.6V
	Noise Power @ 45 MHz offset in RX band (869- 894MHz)	dBm/Hz		-136		
	Harmonics: 2Fo, 3Fo	dBc		-30		
Input VSWR				2:1		
Swit	ching Time					
	DC ON/OFF	μs		40		
	RF ON/OFF	μs		6		

QCPM-9801 Pin Description Table

No.	Mnemonic	Description	Typical Signal	Notes
1	CDMA_IN	Input RF for PCS CDMA	RF input	
2		Not connect		
3	CDMA OUT	RF PCS CDMA output	RF Output	
4	CDMA Vcc	Supply voltage for CDMA	DC	
5	AMPS Vcc	Supply voltage for AMPS and cellular CDMA	DC	
6	AMPS OUT	RF AMPS and cellular CDMA output	RF Output	
7		Not connect		
8		Not connect		
9	AMPS IN	RF AMPS and cellular CDMA input	RF	
10	AMPS_Vc	Bias control for AMPS and cellular CDMA PA		
11	Vcc_IC	Supply voltage for control and driver	DC	
12		Not connect		
13	CDMA_Vc	Bias control for PCS CDMA PA		
14	GND	Ground plane (back of the module)		

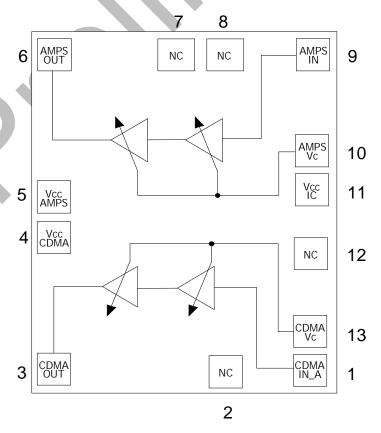
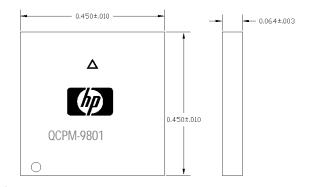
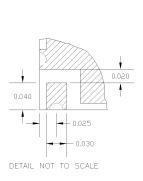
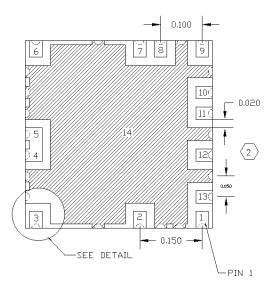
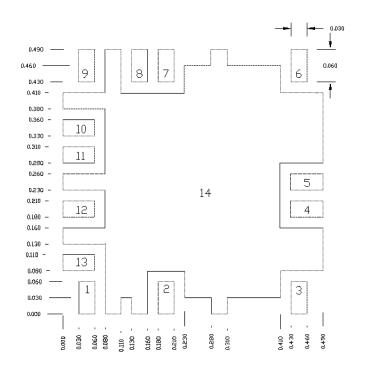



Figure 1 Internal block diagram with pinout (back side)


Part Number Ordering Information


Part Number	No. of Devices	Container
QCPM-9801		

Package Dimensions Small MultiPak-16 Package (in inches)


Land Pattern Recommendation:

QCPM-9801 Rev. B Feb 10th 2000 Preliminary Specification is subject to change with no prior notification

Notes:

- 1. All pads are 50 mil pitch with 20 mil spacing
- 2. Module to be centered on the land pattern
- 3. Pins 1, 3, 6, and 9 are 50 Ω
- 4. Pins 1 and 9 are DC shorts

for more information: United States: call your local HP sales office listed in your telephone directory. Ask for a components representative.

Canada: (416) 206-4725

Europe: (44) 276-685783

Asia Pacific / Australia: (65) 290-6360

Japan: (81) 3 3331-6111 Data subject to change

Copyright © December 1998 Hewlett packard Co. Printed in U.S.A.

_