BATTERY BACKUP

MB3780A

August 1989 Edition 1 0

BATTERY BACKUP IC

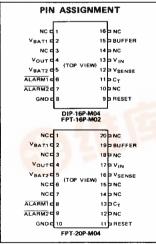
The Fujitsu MB3780A monolithic battery backup IC is fabricated with a bipolar linear IC technology, and is suitable for power supply of SRAM, ROM and Logic ICs.

The MB3780A generats a reset signal when power supply's ON/OFF or abnormal power supply. The MB3780A provides switching function for back up between modes such as primary bateery which is non-chargeable and secondary battery which is chargeable. All necessary functions for battery backup are available on a chip. The MB3780A is available in 16-pin Dual In-Line, space saving Flat package, or 20-pin shrink small outline which is suitable for memory card.

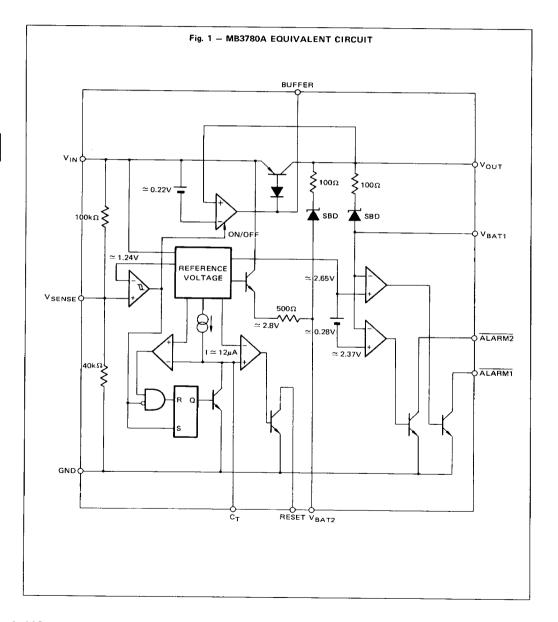
- Input circuit power consumption when unloaded: 1.0 mA typical
- Output drive current: 200 mA maximum (can be incleased with an external transistor)
- Input/output differential voltage: 230 mV typical
- Input loss voltage detection value: 4.2V ± 2.5%
- Onchip power-on reset circuit
- Low voltage detection value by primary battery: 2.65V, 2.37V
- Onchip secondary battery
- Output current at backup: 500 μA maximum
- Leak current at backup: 0.5 µA

ABSOLUTE MAXIMUM RATINGS (See Note)

1	TA	=	25°	C


Ratings	Symbol	Value	Unit
Input Voltage	VIN	-0.3 to 7	V
Battery Voltage	VBAT	-0.3 to 7	٧
Output Reset Voltage	VRESET	7	٧
Output Alarm Voltage	VALARM	7	٧
Output Current	I _{out}	250	mΑ
Output Buffer Current	I _{BUF}	55	mA
		*900	mW
Power Dissipation	P□	**540	mW
		***450	mW
Operating Temperature	T _{OP}	-30 to 85	°C
Storage Temperature	T _{STG}	-55 to 125	°c

NOTE:


* TA ≤ 25°C DIP-16P-M04

** TA \(\leq 25°C \text{ FPT-16P-M02} *** TA ≤ 25°C FPT-20P-M04

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

RECOMMENDED OPERATING CONDITIONS

	2	Symbol Min Typ Max		Value		
Parameter	Symbol			Max	Unit	
Input Voltage	V _{IN}		5.0	6.0	v	
Output Reset Current	RESET			3	mA	
Output Alarm Current	I _{ALARM}			3	mA	
Secondary Battery Charging Current	I _{CHARGE}	-3			mA	
Output Current	I _{OUT}			200	mA	
Output Buffer Current	l _{BUF}			50	mA	
Backup Current	l _{BU}			500	μΑ	
OtiT	T	-30		85	*°c	
Operating Temperature	Тор	-30		70	** °C	

NOTE: * DIP-16P-M04 ** FPT-16P-M02, FPT-20P-M04

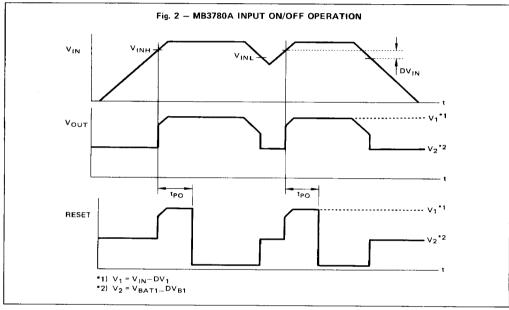
ELECTRICAL CHARACTERISTICS

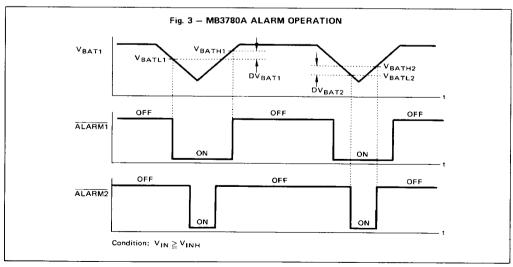
			-		(V _{IN} = 5V	, T _A = 25
Parameter	Symbol	Condition		Value		,, .
	3,50.		Min	Тур	Max	Unit
Whole Device		-	 -			<u> </u>
	I _{IN1}	I _{OUT} = 0mA		1.0	1.5	mA
Input Current	I _{IN2}	I _{OUT} = 200mA		225	250	mA
	I _{IN3}	V _{IN} = 4.0V		1.0	1.5	mA
Backup System						
Input/Output	DV ₁	I _{OUT} = 0mA	0.18	0.21	0.24	٧
Defferential Voltage	DV ₂	I _{OUT} = 200mA	0.19	0.22	0.25	V
Output Delay Time	tro	$C_{O} = 0.01 \mu F, C_{T} = 0$		2.0	10	μs
Output Buffer Current	I _{BUF}	$V_{O} = 4.7V, V_{BUF} = 4.0V$	50			mA
Buffer Leak Current	Іонв	V _{IN} = 0V, V _{BUF} = 4.5V			100	nA
Power Supply Monitoring Sys	stem		l	-	.1	L
Input Loss Voltage	V _{INL}	VIN	4.10	4.20	4.30	V
	VINH	V _{IN}	4.20	4.30	4.40	v
Hysteresis Width of Input Loss Voltage	DVIN	V _{INH} -V _{INL}	50	100	150	mV
Output Reset Voltage	V _{RESET}	I _{RESET} = 3mA		0.15	0.4	v
Output Reset Leak Current	I _{OHB}	V _{IN} = 4.0V, V _{RESET} = 6V		0	100	nA
Reset Pulse Width	t _{PO}	C _T = 0.01μF	0.5	1.0	1.5	ms
Input Pulse Width	t _{Pl}	$C_T = 0.01 \mu F, V_{IN}$	5			μs
Reset Output Rising Time	tre	$C_{T} = 0.01 \mu F$	2.0 3.0		μs	
Reset Output Falling Time	tf _R	$R_L = 5.1k\Omega$, $C_L = 100pF$		0.1	0.5	Unit mA mA v v μs mA nA v v nA ms μs
Reset Output Propagation Delay Time	tpd _R	C _T = 0.01μF	-	2.0	10	μs

MB3780A MMMMMM

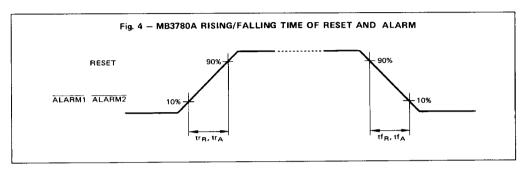
ELECTRICAL CHARACTERISTICS (continued)

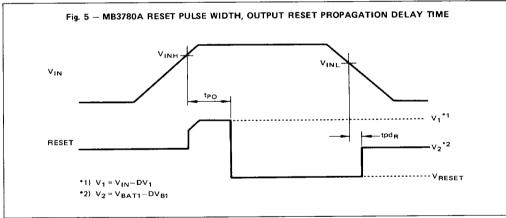
(V_{IN} = 5V, T_A = 25°C)

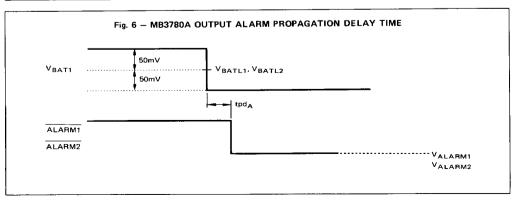

						-д -с с
Parameter	Symbol	Condition	Value			
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Primary Battery Monitoring S	/stem					
Low Voltage Detection	VBATL1	V _{BAT1}	2.55	2.65	2.75	V
(Primary)	V _{BATH1}	V _{BAT1}	2.59	2.69	2.79	٧
Hysteresis Width of Low Voltage Detection (Primary)	DV _{BAT1}	V _{BATH1} -V _{BATL1}	20	40	60	mV
Low Voltage Detection	V _{BATL2}	V _{BAT1}	2.27	2.37	2.47	٧
(Secondary)	V _{BATH2}	V _{BAT1}	2.31	2.41	2.51	٧
Hysteresis Width of Low Voltage Detection (Secondary)	DV _{VAT2}	V _{BATH2} -V _{VATL2}	20	40	60	m∨
Differential Detected Low Voltage	DV _{BAT}	V _{VATL1} -V _{BATL2}	0.26	0.28	0.30	٧
Innuit Comment	IVATA	$V_{BAT} = 3V, V_{IN} = 5V$	-100		500	nΑ
Input Current	I _{VATB}	$V_{BAT} = 3V, V_{IN} = 0V$	-100		500	nA
Output Differential Voltage	DV _{B1}	l _{BAT1} = 100μA		0.30	0.35	٧
Alarm Output Voltage	V _{ALARM1}	I _{ALARM1} = 3mA		0.15	0.4	٧
Alaim Output Voltage	V _{ALARM2}	I _{ALARM2} = 3mA		0.15	0.4	٧
Alarm Output Leak	I _{OHA1}	V _{ALARM1} = 6V		0	100	nA
Current	I _{OHA2}	V _{ALARM2} = 6V		0	100	nA
Alarm Output Rising Time	tr _A	$R_L = 5.1k\Omega$, $C_1 = 100pF$		2.0	3.0	μs
Alarm Output Falling Time	tf _A	пр э.тказ, ор – тоорг		0.1	0.5	μs
Alarm Output Propagation Delay Time	tpd _A	50mV over drive		2.0	10	μs
Secondary Battery Monitoring	System					
Output Voltage	V _{CHG}	I _{CHG} = -10μA	2.65	2.80	2.95	٧
Charging Current	I _{CHGL}	V _{CHG} = 2.0V	0.6	1.6	3.0	mA
Cherging Corrent	I _{CHGH}	V _{CHG} = 3.3V	-1	0	1	μΑ
Defferential Output Voltage	DV _{B2}	I _{BAT2} = 100μA		0.30	0.35	v


NOTE: R_L and C_L are output logic of load resistance and capacitor.

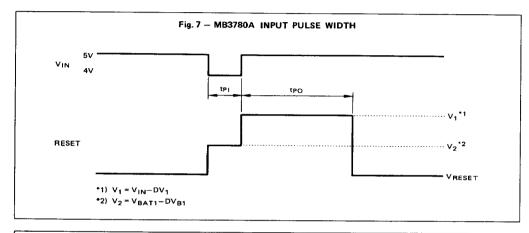
FUNCTION EXPLANATION

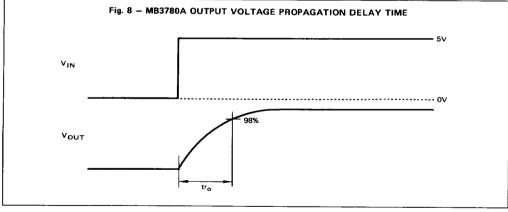


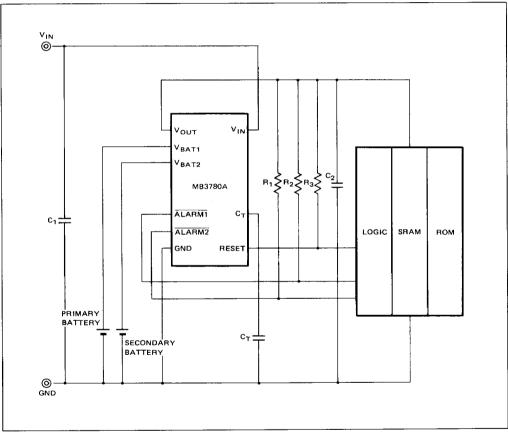



ma Pa

TIMMING DIAGRAM

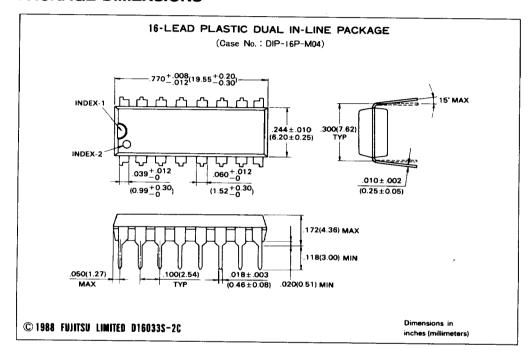




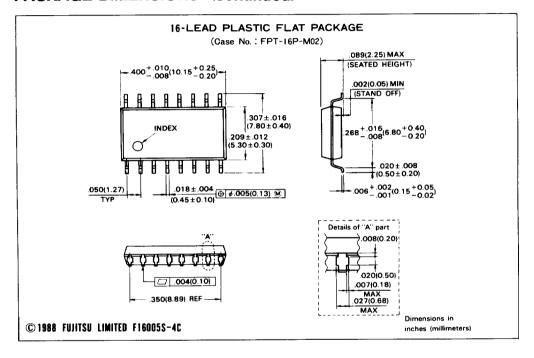

TIMING DIAGRAM (continued)

ma Pen

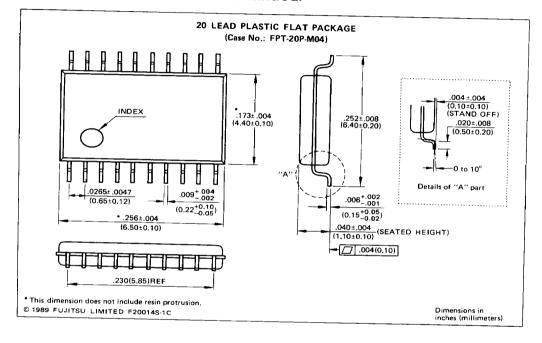
APPLICATION EXAMPLE



NOTE: The value of C_1 and C_2 should be more than $0.022\mu F$.


PACKAGE DIMENSIONS

as per a series


MB3780A MUMALUM

PACKAGE DIMENSIONS (continued)

PACKAGE DIMENSIONS (continued)

ma Pen