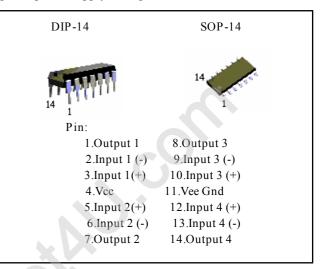
Quad Low Power Operational Amplifiers

he PJ324 series are low cost, quad operational amplifiers with true differential inputs. These have several distinct advantage over standard operational amplifier types in single supply applications. The quad amplifiers can operate at supply voltages as low as 3.0V or as high as 32V with very low

1).0

FEATURES

Short circuited protected outputs


- True differential input stage
- Single supply operation: 3.0V to 32V

PROMAX-JOHNTON

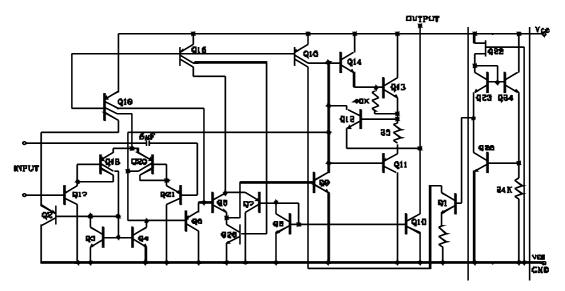
- Low input bias currents:100nA Max
- Four amplifiers per package
- Internally compensated
- Common mode range extends to negative supply
- Industry standard pinouts
- ESD clamps on the inputs increase raggedness without affecting device operation

eliminat the necessity for external quiescent currents and biasing components in many

applications. The output voltage range also includes the negative power supply voltage.

ORDERING INFORMATION

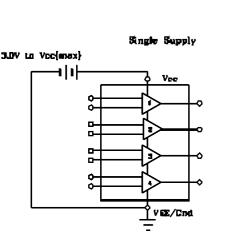
Device	Operating Temperature	Package
PJ324CD	-20°C to +85°C	DIP-14
PJ324CS		SOP-14

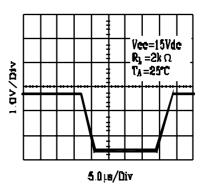

MAXIMUM RATING(Ta=+25°C, unless otherwise noted.)

Rating	Symbol	РЈ324	Unit
Power Supply Voltage	V _{CC}	±16	Vdc
Single Supply	$V_{CC,} V_{EE}$		
Split Supplies			
Input Differential Voltage	V _{IDR}	32	Vdc
Range (1)			
Input Common Mode Voltage	V _{ICR}	-0.3 to 32	Vdc
Range			
Output Short Circuit Duration	t _{SC}	Continuous	
Junction Temperature	TJ		°C
Plastic Packages		150	
Storage Temperature	T _{stg}		C
Ceramic Package		- 65 to + 150	0
Plastic Packages			0
NOTE : 1. Split Power Supplies.		S	
NOTE . 1. Split Fower Supplies.		×O	
		N.	
		www.DataSh	
	1-7	2002	

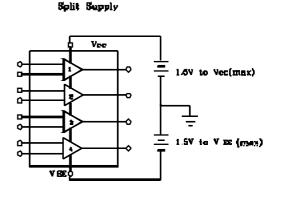
		PJ324				
Characteristics	Symbol	Min	Тур	Max	Unit	
Input Offset Voltage	V _{IO}				mV	
V_{CC} =5.0V to 30V						
$V_{ICR}=0$ V to $V_{CC}=0.7$ V, Vo=1.4V, Rs=0 Ω						
$T_A=25^{\circ}C$		-	2.0	7.0		
$T_A = T_{high}$ to T_{low} (Note 1)		-	-	9.0		
Average Temperature Coefficient of Input Offset Voltage	$ riangle V_{IO} / riangle T$	-	7.0	-	μ V/ °(
$T_A = T_{hige}$ to T_{low} (Note 1)						
Input Offset Current	I _{IO}	-	5.0	50	nA	
$T_A = T_{hige}$ to T_{low} (Note 1)		-	-	150		
Average Temperature Coefficient of Input Offset Current	$ riangle I_{IO} / riangle T$	-	10	-	pA/ °C	
$T_A = T_{hige}$ to T_{low} (Note 1)						
Input Bias Current	I _{IB}	-	-90	-250	nA	
$T_A = T_{hige}$ to T_{low} (Note 1)		-	-	-500		
Input Common Mode Voltage Range (Note 2)	V _{ICR}				V	
V _{CC} =30V		0	-	28.3		
$V_{CC}=30V$, $T_A=T_{hige}$ to T_{low}		0	-	28		
Differential Input Voltage Range	V _{IDR}	-	-	V _{CC}	V	
Large Signal Open-Loop Voltage Gain	A _{VOL}				V/mV	
$R_L=2.0K$, $V_{CC}=15V$, for Large Vo Swing		25	100	-		
$T_A = T_{hige}$ to T_{low} (Note 1)		15	-	-		
Channel Separation	CS	-	-120	-	dB	
10KHz≤f≤20KHz, Input Referenced						
Common Mode Rejection	CMR	65	70	_	dB	
$Rs \leq 10K \Omega$						
Power Supply Rejection	PSR	65	100	-	dB	
Output Voltage - High Limit ($T_A=T_{hige}$ to T_{low}) (Note 1)	V _{OH}				V	
$V_{CC}=5.0V, R_{L}=10K$, $T_{A}=25^{\circ}C$	- OII	3.3	3.5	-		
$V_{cc}=30V, R_{L}=2.0K$		26	_	-		
$V_{cc}=30V, R_{L}=10K$		27	28	-		
Output Voltage-Low Limit	V _{OL}	-	5.0	20	mV	
$V_{CC}=5.0V$, $R_L=10K$, $T_A=T_{hige}$ to T_{low} (Note 1)			*	÷	/	
Output Source Current (V_{ID} =+1.0V, V_{CC} =15V)	I_0^+				mA	
$T_A=25^{\circ}C$		20	40	-		
$T_A = T_{hige}$ to T_{low} (Note 1)		10	20	-		
Output Sink Current	Io				mA	
$(V_{ID} = -1.0V, V_{CC} = 15V)$	-					
$T_A=25^{\circ}C$		10	20	-		
$T_A = T_{hige}$ to T_{low} (Note 1)		5.0	8.0	-		
$(V_{ID} = -1.0V, V_{CC} = 200 \text{mV}, T_A = 25^{\circ}\text{C})$		12	50	-	μA	
Output Short Circuit Ground (Note 2)	Isc	-	40	60	mA	
Power Supply Current ($T_A = T_{hige}$ to T_{low}) (Note 1)	Icc		-		mA	
$V_{CC}=30V$ (26V for LM2902), Vo=0V, $R_L=\infty$			_	3.0		
$V_{CC}=5.0V, V_0=0V, R_L=\infty$			_	1.2		

Note: 1. Short circuits from the output to Vcc can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.


2. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V The upper end of the common mode voltage range is Vcc-1.7V.



Representative Circuit Schematic (One-Fourth of Circuit Shown)


CIRCUIT DESCRIPTION

The PJ324 series is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5.0pF) can be employed thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation without saturating either the input devices or the differential to single-ended converter . The second stage consists of a standed current source load amplifier stage.

Large Signal Voltage Follower Response Each amplifier is biased from an internal voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as will as excellent power supply rejection.

PJ324 Quad Low Power Operational Amplifiers

Figure 1.Input Voltage Range

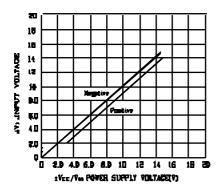


Figure 3.Large-Signal Frequency Response

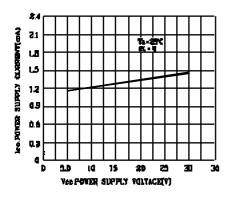


Figure 5.Power Supply Current versus Power Supply Voltage

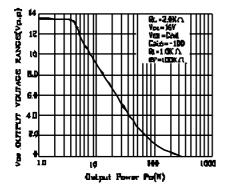


Figure 2.Open-Loop Frequency

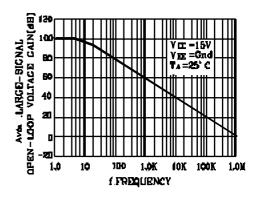
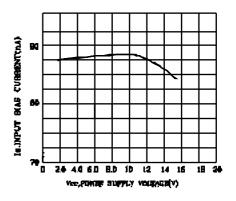
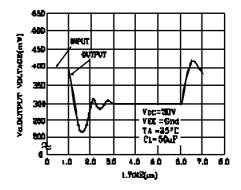
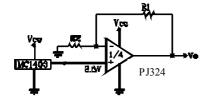


Figure 4.Small-Signal Voltage Follower Pulse Response (Noninverting)


Figure 6.Input Bias Current versus Power Supply Voltage

PJ324 Quad Low Power Operational Amplifiers

Figure 7. Voltage Reference

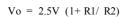
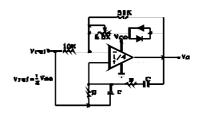


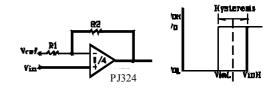
Figure 9. High Impedance Differential Amplifier

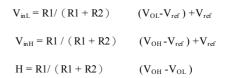

PJ324

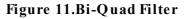
PJ324

PJ324

 $e_o = C (1+a+b) (e2-e1)$


Figure 8. Wlen Bridge Oscillator





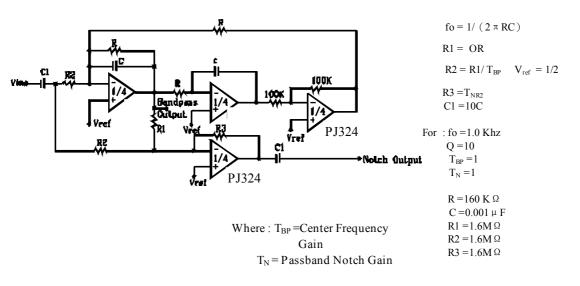
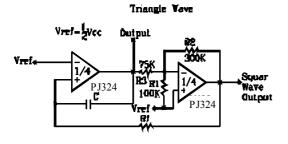

For: fo =1.0KHz R=16K Ω C =0.01 μ F

Figure 10. Comparator with Hysteresis



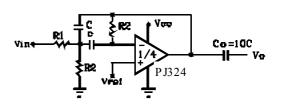
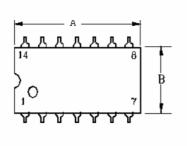


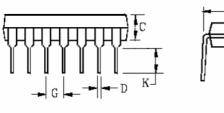
Figure 12. Function Generator

Figure 13. Mulitiple Feedback Bandpass Filter

f = (R1+R2) / (4CRfR1)R3= (R2R1) / (R2+R1)

Given: to=center frequency A(to)=gain at center frequency Choose value to C Then:

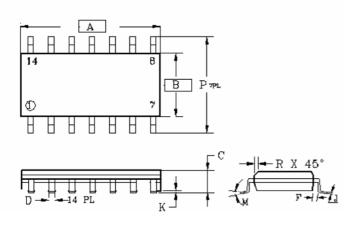

 $\begin{array}{l} R3= \, Q/ \, (\, \pi \, \, {\rm fo} \, C \,) \\ R1= \, R3/ \, (\, 2Af\! o \,) \\ R2= \, (R1R3) \, / \, (\, 4Q^2R1\text{-}R3 \,) \end{array}$


For less than 10% error operational amplifier Qofo<0.1 where fo and BW are expressed in Hz BW

If source impedance varies, filter may be preceded with voltage follow buffer to stabilize filter parameters.

PJ324 Quad Low Power Operational Amplifiers

DIP-14



	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	18.55	19.56	0.73	0.77
В	6.22	6.48	0.245	0.255
С	3.18	4.43	0.125	0.135
D	0.35	0.55	0.019	0.020
G	2.54BSC		0.10BSC	
J	0.29	0.31	0.011	0.012
Κ	3.25	3.35	0.128	0.132
L	7.75	8.00	0.305	0.315
М	-	10°	-	10°

SOP-14

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
А	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27BSC		0.05BSC	
K	0.10	0.25	0.004	0.009
М	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019