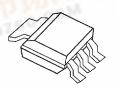


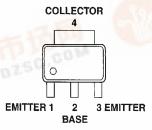
4.8 V NPN Common Emitter Medium Power Output Transistor

Technical Data

AT-31625


Features

- 4.8 Volt Operation
- +28.0 dBm P_{out} @ 900 MHz, Typ.
- 70% Collector Efficiency @ 900 MHz, Typ.
- 9 dB Power Gain @ 900 MHz, Typ.
- -31 dBc IMD₃ @ P_{out} of 21 dBm per Tone, 900 MHz, Typ.
- 50% Smaller than SOT-223 Package


Applications

- Medium Power Driver Device for Cellular/PCS, ISM 900, WLAN
- Output Power Device for ISM 900, Cordless, WLAN

MSOP-3 Surface Mount Plastic Package Outline 25

Pin Configuration

Description

Hewlett Packard's AT-31625 is a low cost, NPN medium power silicon bipolar junction transistor housed in a miniature, MSOP-3 surface mount plastic package. The AT-31625 can be used as a driver device or an output device, depending on the specific application. The AT-31625 features +28 dBm CW output power when operated at 4.8 volts. Excellent gain and superior efficiency make the AT-31625 ideal for use in battery powered systems.

The AT-31625 is fabricated with Hewlett Packard's 10 GHz F_t Self-Aligned-Transistor (SAT) process. The die are nitride passivated for surface protection. Excellent device uniformity, performance and reliability are produced by the use of ion-implantation, self-alignment techniques, and gold metalization in the fabrication of these devices.

AT-31625 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
$ m V_{EBO}$	Emitter-Base Voltage	V	1.4
$ m V_{CBO}$	Collector-Base Voltage	V	16.0
$ m V_{CEO}$	Collector-Emitter Voltage	V	9.5
${f I_C}$.	Collector Current	mA.	320
P_{T}	Power Dissipation [2]	W	1.0
$T_{ m j}$	Junction Temperature	$^{\circ}\mathrm{C}$	150
$T_{ m STG}$	Storage Temperature	°C	-65 to 150

Thermal Resistance ^[3] :	
$\theta_{\rm jc} = 65^{\circ} { m C/W}$	

Notes:

- Permanent damage may occur if any of these limits are exceeded.
- 2. Derate at 15.4 mW/ $^{\circ}$ C for $T_c > 85 ^{\circ}$ C. T_c is defined to be the temperature of the collector pin 4, where the lead contacts the circuit board.
- 3. Using the liquid crystal technique, $V_{CE}=4.8~V,~I_c=50~mA,~T_j=150^{\circ}C,\\1-2~\mu m~\text{``hot-spot''} resolution.$

Electrical Specifications, $T_C = 25^{\circ}C$

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.
	Freq. = 900 MHz, V_{CE} = 4.8 V, I_{CQ} = 5 mA, CW operation, Test Circuit A, unless otherwise specified				
P _{out}	Output Power ^[1] $P_{in} = +19 \text{ dBm}$	dBm	+27.0	+28.0	
η_{c}	Collector Efficiency ^[1] $P_{in} = +19 \text{ dBm}$	%	55	70	
IMD_3	3rd Order Intermodulation Distortion, 2 Tone Test, P_{out} each Tone = +21 dBm ^[1] F1 = 899 MHz F2 = 901 MHz	dBc		-31	
	Mismatch Tolerance, No Damage [1] $P_{out} = +28 \text{ dBm}$ any phase, 2 sec duration				7:1
BV_{EBO}	Emitter-Base Breakdown Voltage $I_E = 0.2$ mA, open collector	V	1.4		
$\mathrm{BV}_{\mathrm{CBO}}$	Collector-Base Breakdown Voltage $I_C = 1.0$ mA, open emitter	V	16.0		
BV_{CEO}	Collector-Emitter Breakdown Voltage $I_C = 5.0$ mA, open base	V	9.5		
h _{FE}	Forward Current Transfer Ratio $V_{CE} = 3 \text{ V}, I_{C} = 180 \text{ mA}$	_	80	150	330
I_{CEO}	Collector Leakage Current $V_{\text{CEO}} = 5 \text{ V}$	μA			15

Note:

1. With external matching on input and output, tested in a 50 ohm environment. Refer to Test Circuit A.

AT-31625 Typical Performance, T_C = 25°C Frequency = 900 MHz, V_{CE} = 4.8 V, I_{CQ} = 5 mA, CW operation, Test Circuit A, unless otherwise specified.

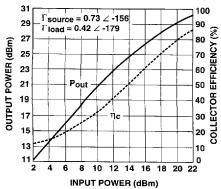


Figure 1. Output Power and Collector Efficiency vs. Input Power.

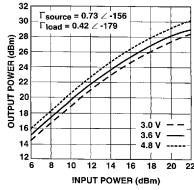


Figure 2. Output Power vs. Input Power Over Bias Voltage.

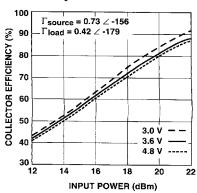


Figure 3. Collector Efficiency vs. Input Power Over Bias Voltage.

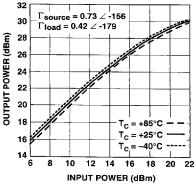


Figure 4. Output Power vs. Input Power Over Temperature.

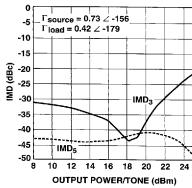


Figure 5. IMD3, IMD5 vs. Output Power Per Tone.

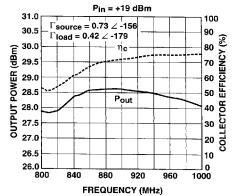


Figure 6. Output Power and Collector Efficiency vs. Frequency. Note: Tuned at 900 MHz, then Swept over Frequency.

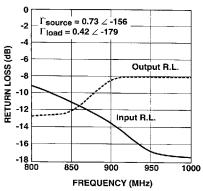


Figure 7. Input and Output Return Loss vs. Frequency.

AT-31625 Typical Large Signal Impedances

 $V_{CE} = 4.8 \text{ V}, I_{CQ} = 5 \text{ mA}, P_{out} = +28.0 \text{ dBm}$

Freq.	Гы	ource	Γ load		
MHz	Mag.	Ang.	Mag.	Ang.	
800	0.661	-149.0	0.382	-171.3	
825	0.679	-150.6	0.394	-172.8	
850	0.697	-152.4	0.403	-174.6	
875	0.712	-154.2	0.412	-176.5	
900	0.727	-155.8	0.422	-179.0	
925	0.740	-157.5	0.426	179.3	
950	0.754	-159.0	0.432	177.2	
975	0.767	-160.4	0.437	174.9	
1000	0.777	-162.1	0.438	172.5	

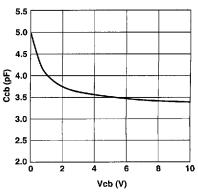
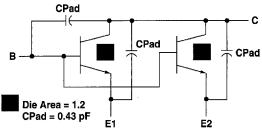
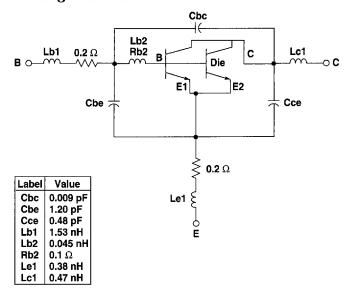



Figure 8. Collector-Base Capacitance vs. Collector-Base Voltage (DC Test).


SPICE Model Parameters

Die Model

Label	Value	Label	Value
BF	150	TR	1E-9
IKF	299.9	EG	1.11
ISE	9.9E-11	IS	3.598E-15
NE	2.399	XTI	3
VAF	33.16	CJC	1.4E-12
NF	0.9935	VJC	0.4776
TF	1.6E-11	MJC	0.2508
XTF	0.006656	XCJC	0.001
VTF	0.02785	FC	0.999
ITF	0.001	CJE	5.06E-12
PTF	23	VJE	1.148
XTB	0	MJE	0.5965
BR	54.61	RB	0.752
IKR	81	IRB	0
ISC	8.7E-13	RBM	0.01
NC	1.587	RE	2.488
VAR	1.511	RC	1.288
NR	0.9886		

Packaged Model

AT-31625 Typical Scattering Parameters, Common Emitter, \mathbf{Z}_0 = 50 Ω V_{CE} = 3.0 V, I_c = 200 mA, T_c = 25°C

Freq.	S	11		$\mathbf{S_{21}}$			$\overline{S_{12}}$		S	22
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.05	0.72	-150	30.7	34.19	113	-34.0	0.02	40	0.56	-120
0.10	0.77	-166	25.3	18.43	99	-34.0	0.02	42	0.52	-148
0.25	0.79	179	17.5	7.54	86	-28.0	0.04	57	0.51	-169
0.50	0.79	169	11.6	3.81	74	-23.1	0.07	64	0.51	-178
0.75	0.79	161	8.2	2.58	65	-20.9	0.09	63	0.52	177
09.0	0.79	156	6.7	2.17	59	-19.2	0.11	62	0.52	175
1.00	0.79	153	5.9	1.97	56	-18.4	0.12	61	0.52	174
1.25	0.79	146	4.1	1.61	48	-16.5	0.15	58	0.53	170
1.50	0.79	140	2.7	1.37	40	-14.9	0.18	54	0.54	167
1.75	0.79	133	1.7	1.21	32	-13.6	0.21	49	0.54	164
2.00	0.79	126	0.7	1.09	26	-12.8	0.23	45	0.55	160
2.25	0.79	120	0.0	1.00	19	-11.7	0.26	41	0.55	156
2.50	0.79	114	-0.6	0.93	13	-11.1	0.28	36	0.56	152
	$V, I_c = 200$	$mA, T_c =$	25°C						1	
0.05	0.71	-148	31.2	36.39	114	-34.0	0.02	41	0.56	-117
0.10	0.76	-165	25.9	19.69	100	-34.0	0.02	43	0.51	-146
0.25	0.78	180	18.1	8.06	86	-28.0	0.04	57	0.50	-168
0.50	0.78	169	12.2	4.07	75	-24.4	0.06	64	0.50	-177
0.75	0.78	161	8.8	2.75	65	-20.9	0.09	64	0.51	178
0.90	0.78	156	7.3	2.31	60	-19.2	0.11	62	0.51	176
1.00	0.78	153	6.4	2.10	56	-18.4	0.12	61	0.51	174
1.25	0.78	146	4.7	1.71	48	-16.5	0.15	58	0.52	171
1.50	0.78	140	3.3	1.46	40	-14.9	0.18	54	0.53	168
1.75	0.78	133	2.1	1.28	33	-14.0	0.20	50	0.54	164
2.00	0.78	127	1.3	1.16	26	-12.8	0.23	46	0.54	161
2.25	0.78	121	0.4	1.05	19	-11.7	0.26	41	0.55	157
2.50	0.78	115	-0.2	0.98	13	-11.1	0.28	37	0.55	153
$V_{\rm CE} = 4.8$	$V, I_c = 200$	$MA, T_c =$	25°C			<u> </u>			<u> </u>	
0.05	0.70	-145	31.7	38.47	115	-34.0	0.02	41	0.56	-114
0.10	0.75	-164	26.4	20.90	100	-34.0	0.02	43	0.50	-144
0.25	0.77	-180	18.7	8.57	87	-28.0	0.04	57	0.49	-167
0.50	0.77	169	12.7	4.33	75	-24.4	0.06	64	0.49	-176
0.75	0.77	161	9.3	2.92	66	-20.9	0.09	64	0.49	179
0.90	0.77	157	7.8	2.45	60	-19.2	0.11	62	0.50	176
1.00	0.77	154	7.0	2.23	57	-18.4	0.12	61	0.50	175
1.25	0.77	147	5.2	1.81	48	-16.5	0.15	58	0.51	173
1.50	0.77	140	3.8	1.54	41	-14.9	0.18	54	0.51	168
1.75	0.77	134	2.6	1.35	33	-14.0	0.10	50	0.51	165
2.00	0.77	127	1.7	1.22	27	-12.8	0.23	46	0.52	162
2.25	0.77	121	0.9	1.11	20	-12.0	0.25	41	0.54	158
2.50	0.77	115	0.3	1.03	13	-11.1	0.28	37	0.54	154

Typical Performance

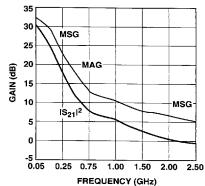


Figure 9. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency. $V_{CE} = 3.0 V$, $I_c = 200 \text{ mA}.$

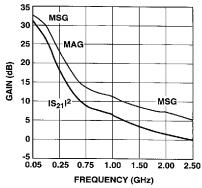


Figure 10. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency. $V_{\rm CE}$ = 3.6 V, $I_{\rm C}$ = 200 mA.

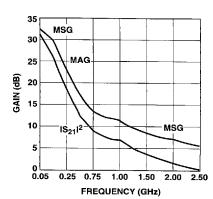


Figure 11. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency. $V_{CE} = 4.8 \text{ V}$, $I_c = 200 \text{ mA}.$

AT-31625 Typical Performance, $T_{\rm C}$ = 25°C Frequency = 1800 MHz, $V_{\rm CE}$ = 4.8 V, $I_{\rm CQ}$ = 15 mA, CW operation, Test Circuit B, unless otherwise specified.

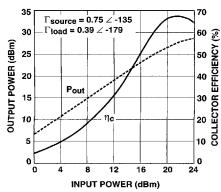
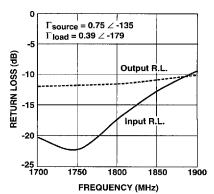
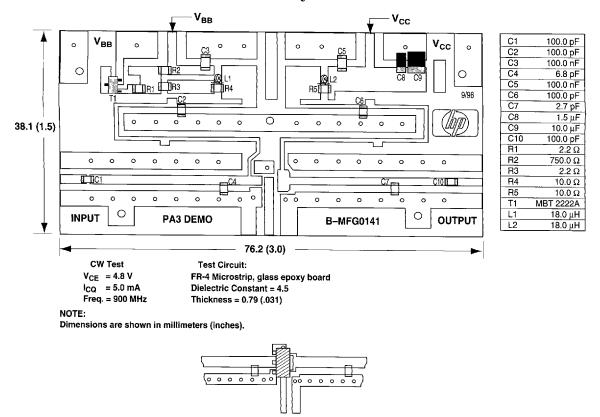
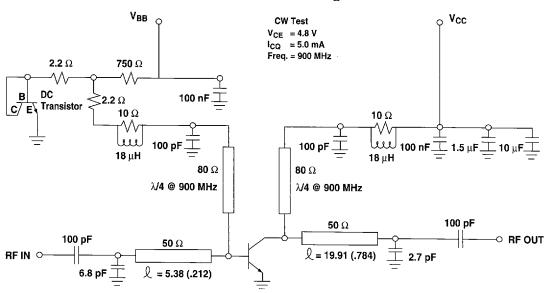


Figure 12. Output Power and Collector Efficiency vs. Input Power.



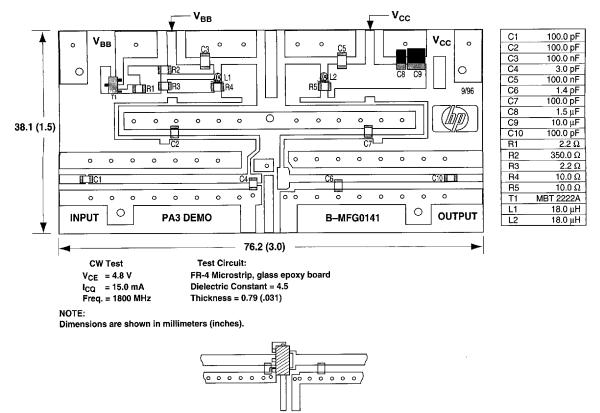

Figure 13. Input and Output Return Loss vs. Frequency.

AT-31625 Typical Large Signal Impedances

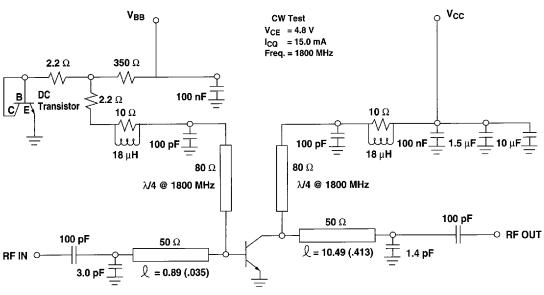

 $V_{CE} = 4.8 \text{ V}, I_{CQ} = 15 \text{ mA}, P_{out} = +25.0 \text{ dBm}$

Freq.	Γ_{so}	urce	Γ load		
MHz	Mag.	Ang.	Mag.	Ang.	
1700	0.717	-131.8	0.373	-174.3	
1725	0.724	-132.6	0.378	-175.6	
1750	0.732	-133.4	0.381	-176.7	
1775	0.743	-134.3	0.386	-177.9	
1800	0.752	-135.4	0.390	-179.1	
1825	0.763	-136.3	0.394	179.5	
1850	0.773	-137.0	0.397	178.4	
1875	0.780	-137.8	0.401	177.1	
1900	0.788	-138.7	0.403	175.7	

Test Circuit A: Test Circuit Board Layout @ 900 MHz

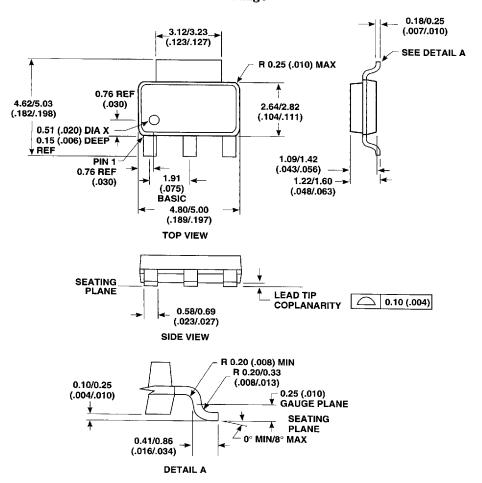


Test Circuit A: Test Circuit Schematic Diagram @ 900 MHz



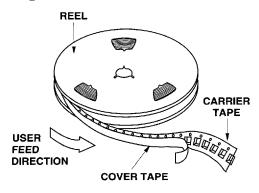
Test Circuit B: Test Circuit Board Layout @ 1800 MHz

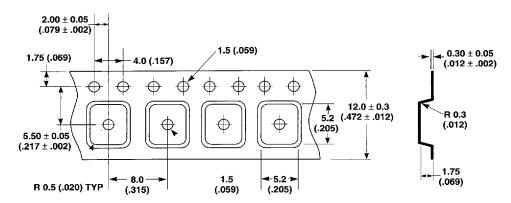
Test Circuit B: Test Circuit Schematic Diagram @ 1800 MHz



Part Number Ordering Information

Part Number	No. of Devices	Container
AT-31625-TR1	1000	7" Reel
AT-31625-BLK	25	Carrier Tape


Package Dimensions MSOP-3 Surface Mount Plastic Package



NOTE: DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES)

Tape Dimensions and Product Orientation for Package MSOP-3

NOTES:
1. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES)

2. TOLERANCES: .X ± 0.1 (.XXX ± .004)

For technical assistance or the location of your nearest Hewlett-Packard sales office, distributor or representative call:

Americas/Canada: 1-800-235-0312 or 408-654-8675

Far East/Australasia: Call your local HP sales office.

Japan: (81 3) 3335-8152

Europe: Call your local HP sales office.

Data subject to change. Copyright © 1997 Hewlett-Packard Co.

Printed in U.S.A. 5965-5911E (3/97)

