间AM29C828ASC供应商

捷多邦,专业PCB打样工厂,24小时加

Am29C827A/Am29C828A

High-Performance CMOS Bus Buffers

DISTINCTIVE CHARACTERISTICS

- High-speed CMOS buffers and inverters - D-Y delay = 4 ns typical
- Low standby power
- JEDEC FCT-compatible specs
- Very high output drive
 IoL = 48 mA Commercial, 32 mA Military
- Extra-wide (10-bit) data paths
- 200-mV typical hysteresis on data input ports
- Minimal speed degradation with multiple outputs switching

GENERAL DESCRIPTION

The Am29C827A and Am29C828A CMOS Bus Buffers provide high-performance bus interface buffering for wide address/data paths or buses carrying parity. Both devices feature 10-bit wide data paths and NORed output enables for maximum control flexibility. The Am29C827A has non-inverting outputs, while the Am29C828A has inverting outputs. Each device has data inputs with 200-mV typical input hysteresis to provide improved noise immunity. The Am29C827A and Am29C828A are produced with AMD's exclusive CS11SA CMOS process, and feature typical propagation delays of 4 ns, as well as an output current drive of 48 mA.

The 29C827A and Am29C828A incorporate AMD's proprietary edge-controlled outputs in order to minimize simultaneous switching noise (ground bounce). By con-

- Proprietary edge-rate controlled outputs dramatically reduce undershoots, overshoots, and ground bounce
- Power-up/down disable circuit provides for glitch-free power supply sequencing
- Ideal for driving 1Mbit x 1 and 1Mbit x 4 DRAM address inputs
- Can be powered off while in 3-state, ideal for card edge interface applications
- JEDEC FCT-compatible specs

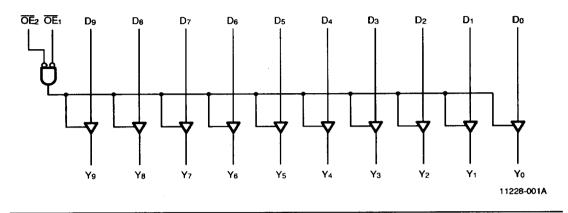
trolling the output transient currents, ground bounce and output ringing have been greatly reduced. A modified AMD output provides a stable, usable voltage level in less time than a non-controlled output.

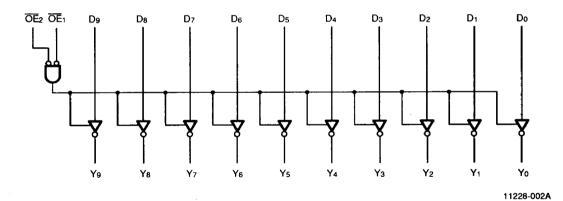
Additionally, speed degradation due to increasing number of outputs switching is reduced. Together, these benefits or edge-rate control result in significant increase in system performance despite a minor increase in device propagation delay.*

A unique I/O circuitry provides for high-impedance outputs during power-off and power-up/down sequencing, thus providing glitch-free operation for card-edge and other active bus applications.

The Am29C827A and Am29C828A are available in the standard package options: DIPs and SOICs.

*For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (See Chapter 3).


WW.DZSC.COM


Advanced Micro Devices

急出货

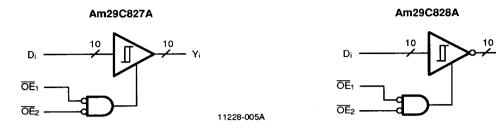
BLOCK DIAGRAMS Am29C827A (Noninverting)

Am29C828A (Inverting)

ma Para Pa

CONNECTION DIAGRAMS (Top View)

DIPs*


			•
OE [24	
Do [2	23] Y₀
D1 [3	22] Y1
D2 [4	21] Y2
D3 [5	20] Y₃
D₄ [6	19] Y₄
Ds [7	18] Y₅
D6 [8	17] Y6
D7 [9	16] Y7
D8 🛛	10	15] Y8
D9 [11	14] Y9
GND [12	13] DE 2

11228-003A

*Also available in Small Outline package; pinout identical to DIPs.

LOGIC SYMBOLS

11228-006A

· Yi

FUNCTION TABLES

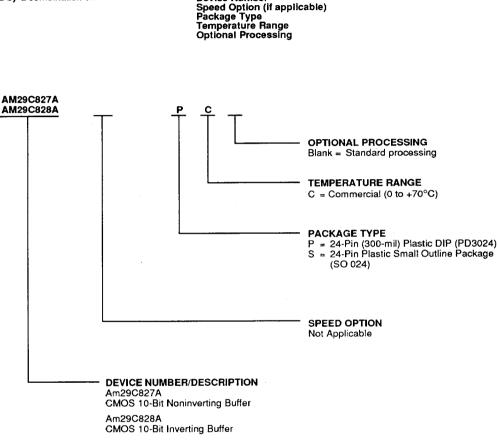
Am29C827A

	Inputs		Outputs	
OE ₁	OE ₂	Di	Yi	Function
L	L	Н	Н	Transparent
L	L	L	L	Transparent
Х	н	Х	Z	Hi-Z
н	х	Х	Z	Hi-Z

Am29C828A

	Inputs		Outputs	
ŌE1	OE ₂	Di	Yi	Function
L	L	н	L	Transparent
L	L	L	н	Transparent
х	Н	Х	Z	Hi-Z
н	Х	Х	Z	Hi-Z

H = HIGH


L = LOWX = Don't Care Z = Hi-Z

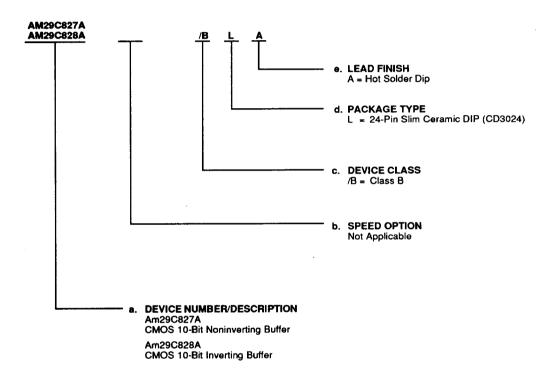
ma Par

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: Device Number

Valid Combinations					
AM29C827A	00.00				
AM29C828A	PC, SC				

Valid Combinations


Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION **APL Products**

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed by a combination of: **Device Number a**.

- Speed Option (if applicable) Device Class Package Type Lead Finish b.
- C.
- d.
- **e**.

Valid Combinations				
AM29C827A				
AM29C828A	/BLA			

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consuit the local AMD sales office to confirm availability of specific valid combinations, or to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ma Pana Pa

6-1

PIN DESCRIPTION

<u>OE</u>i

Output Enables (Input, Active LOW)

When the $\overline{OE_1}$ and $\overline{OE_2}$ are both LOW, the outputs are enabled. When either one or both are HIGH, the outputs are in the Hi-Z state.

$\mathbf{D}_{\mathbf{i}}$

Data Inputs (Input)

Di are the 10-bit data inputs.

Yi Data Outputs (Output)

Yi are the 10-bit data outputs.

ABSOLUTE MAXIMUM RATINGS

–65 to +150°C
–0.5 V to +7.0 V
–0.5 V to +6.0 V
-0.5 V to +6.0 V
+50 mA
–50 mA
+20 mA
–20 mA
+100 mA
–100 mA

Total DC Vcc Current

(n x IOH + m x ICCT) mA (Note 1)

Note:

1. n = number of outputs, m = number of inputs.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature (T _A)	0 to +70°C
Supply Voltage (Vcc)	+4.5 V to +5.5 V
Military (M) Devices	

Temperature (T_A) Supply Voltage (Vcc) -55 to +125°C +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Condition	Test Conditions			Max.	Unit
Vон	Output HIGH Voltage	Vcc = 4.5 V Vin = Vin or ViL	loн = -15 m/	Ą	2.4		V
Vol	Output LOW Voltage	Vcc = 4.5 V	MIL IOL = 3	2 mA		0.5	V
		Vin = Vihor Vil	COM'L IOL	= 48 mA		0.5	V
Vін	Input HIGH Voltage	Guaranteed In Voltage for All			2.0		V
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 1)				0.8	V
Vi	Input Clamp Voltage	Vcc = 4.5 V, In = -18 mA				-1.2	V
lı.	Input LOW Current	Vcc = 5.5 V, Vin = GND				-5	μA
lн	Input HIGH Current	Vcc = 5.5 V, VIN = 5.5 V				5	μA
lozн	Output Off-State Current	Vcc = 5.5 V, Vo = 5.5 V				+10	μA
lozl	(High Impedance)	Vcc = 5.5 V, Vc	= or GND			-10	μA
lsc	Output Short-Circuit Current	Vcc = 5.5 V, Vc	o = 0 V (Note	2)	-60		mA
lcco			VIN = VCC OF	MIL		1.5	
	Statia Cumply Current	Vcc = 5.5 V	GND	COM'L		1.2	mA
Ісст	Static Supply Current	Outputs Open	VIN = 3.4 V	Data Input		1.5	mA/
				OE1, OE2		3.0	Bit
Iccot	Dynamic Supply Current	Vcc = 5.5 V (Note 3) Outputs Open			275	μA/ MHz/	
				Outputs Loaded		400	Bit

Notes:

1. Input thresholds are tested in combination with other DC parameters or by correlation.

2. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds.

3. Measured at a frequency \leq 10 MHz with 50% duty cycle.

† Not included in Group A tests.

SWITCHING CHARACTERISTICS for light capacitive loading over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

			Commercial		Military		
Symbol	Parameter Description	Test Conditions*	Min.	Max.	Min.	Max.	Unit
t PLH	Data (Di) to Output (Yi)		· 1.0	7.5	1.0	8.5	ns
t PHL	Am29C827A (Noninverting) (Note 1)		1.0	7.5	1.0	8.5	ns
t PLH	Data (Di) to Output (Yi)		1.0	7.5	0.5	8.5	ns
t PHL	Am29C828A (Inverting) (Note 1)	$C_L = 50 \text{ pF}$ $B_1 = 500 \Omega$	1.0	7.5	0.5	8.5	ns
tzн	Output Enable Time OE to Yi	$R_2 = 500 \ \Omega$	1.0	9	1.0	11	ns
tzL			3.0	12	3.0	14	ns
tнz]	2.0	8	2.0	9	ns
tız	Output Disable Time OE to Yi		3.0	8	2.0	9	ns

SWITCHING CHARACTERISTICS for heavy capacitive loading over operating ranges unless otherwise specified

			Commercial		Military		
Symbol	Parameter Description (Note 2)	Test Conditions*	Min.	Max.	Min.	Max.	Unit
t PLH	Data (Di) to Output (Yi)		1.0	15.5	1.0	17.0	ns
t PHL	Am29C827A (Noninverting) (Note 1)		1.0	15.5	1.0	17.0	ns
t PLH	Data (Di) to Output (Yi) Am29C828A (Inverting) (Note 1)	$\begin{array}{c} C_{L} = 300 \text{ pF} \\ R_{1} = 500 \Omega \\ R_{2} = 500 \Omega \end{array}$	1.0	13.5	0.5	15.0	ns
t PHL			1.0	14	0.5	15.0	ns
tzн	Output Enable Time \overline{OE} to Y_i		1.0	13.5	1.0	15.0	ns
tzı			3.0	17	3.0	18.0	ns
tHZ		C _L = 5 pF	2.0	7	2.0	8	ns
t∟z	Output Disable Time OE to Yi	$\begin{array}{c} R_1 = 500 \ \Omega \\ R_2 = 500 \ \Omega \end{array}$	3.0	7	2.0	8	ns

*See Test Circuit and Waveforms listed in Chapter 2.

Notes:

- 1. For more details refer to a Minimization of Ground Bounce Through Output Edge-Rate Control Application Note (See Chapter 3).
- 2. These parameters are guaranteed by characterization but not production tested.