查询MRF6S27015NR1供应商

Freescale Semiconductor Technical Data

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Designed for CDMA base station applications with frequencies from 2000 to 2700 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class AB and Class C amplifier applications.

- Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Volts, I_{DQ} = 160 mA, P_{out} = 3 Watts Avg., Full Frequency Band, Channel Bandwidth = 3.84 MHz, PAR = 8.5 dB @ 0.01% Probability on CCDF. Power Gain — 14 dB Drain Efficiency — 22% ACPR @ 5 MHz Offset — -45 dBc in 3.84 MHz Channel Bandwidth
- Capable of Handling 5:1 VSWR, @ 28 Vdc, 2600 MHz, 15 Watts CW
 Output Power

Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Internally Matched for Ease of Use
- Qualified Up to a Maximum of 32 V_{DD} Operation
- Integrated ESD Protection
- 200°C Capable Plastic Package
- RoHS Compliant
- In Tape and Reel. R1 Suffix = 500 Units per 24 mm, 13 inch Reel.

CB打样工厂,24小时加急出货

VRoHS

MRF6S27015NR1 MRF6S27015GNR1

2300-2700 MHz, 3 W AVG., 28 V SINGLE W-CDMA LATERAL N-CHANNEL RF POWER MOSFETs

TO-270-2 PLASTIC MRF6S27015NR1

CASE 1265A-02, STYLE 1 TO-270-2 GULL PLASTIC MRF6S27015GNR1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +68	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +12	Vdc
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	200	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (1,2)	Unit
Thermal Resistance, Junction to Case Case Temperature 80°C, 7.5 W Avg., Two-Tone Case Temperature 79°C, 3 W CW	R _{θJC}	2.0 2.2	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	IV (Minimum)

1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Packag	Unit						
Per JESD 22-A113, IPC/JEDEC J-STD-020	3		°C						
Table 5. Electrical Characteristics (T _C = 25°C unless otherwise noted)									
Characteristic	Symbol	Min	Тур	Max	Unit				
Off Characteristics									
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 68 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	—		10	μAdc				
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_		1	μAdc				
Gate-Source Leakage Current $(V_{GS} = 5 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}	—		500	nAdc				
On Characteristics		•	•	•	•				
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 40 \mu \text{Adc})$	V _{GS(th)}	1.5	2.2	3.5	Vdc				
Gate Quiescent Voltage ⁽¹⁾ (V _{DS} = 28 Vdc, I _D = 160 mAdc, Measured in Functional Test)	V _{GS(Q)}	2	2.8	3.5	Vdc				
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 0.4 Adc)	V _{DS(on)}		0.4	0.33	Vdc				
Dynamic Characteristics ⁽²⁾	·								
Reverse Transfer Capacitance (V_{DS} = 28 Vdc \pm 30 mV(rms)ac @ 1 MHz, V_{GS} = 0 Vdc)	C _{rss}	_	11.6	_	pF				
Output Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}		0.02		pF				
Functional Tests (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28 W-CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in 3 0.01% Probability on CCDF.	Vdc, I _{DQ} = 160 m 3.84 MHz Channe	A, P _{out} = 3 W I Bandwidth @	Avg., f = 260 ⊉ ±5 MHz Of	0 MHz, Singl fset. PAR = 8	e-Carrier .5 dB @				
Power Gain	G _{ps}	12.5	14	16	dB				

Power Gain	G _{ps}	12.5	14	16	dB
Drain Efficiency	η_D	19	22	_	%
Adjacent Channel Power Ratio	ACPR		-45	- 42	dBc
Input Return Loss	IRL		-18	-9	dB

1. V_{GG} = 11/10 x V_{GS(Q)}. Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit schematic.

2. Part internally input matched.

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic

Part	Description	Part Number	Manufacturer
C1	100 nF Chip Capacitor	CDR33BX104AKWS	AVX
C2	4.7 pF Chip Capacitor	600B4R7BT250XT	ATC
СЗ	9.1 pF Chip Capacitor	600B9R1BT250XT	ATC
C4, C5, C6	8.2 pF Chip Capacitors	600B8R2BT250XT	ATC
C7, C8, C9, C10	10 µF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C11	10 μF, 35 V Tantalum Chip Capacitor	T491D106K035AS	Kemet
R1	1 KΩ, 1/4 W Chip Resistor	CRCW12061001F100	Vishay
R2	10 KΩ,1/4 W Chip Resistor	CRCW12061002F100	Vishay
R3	10 Ω, 1/4 W Chip Resistor	CRCW120610R0F100	Vishay

Figure 2. MRF6S27015NR1(GNR1) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

Figure 4. Single-Carrier W-CDMA Broadband Performance @ Pout = 6 Watts Avg.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 12. Power Gain versus Output Power

This above graph displays calculated MTTF in hours x ampere² drain current. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ of the theoretical prediction for metal failure. Divide MTTF factor by I_D^2 for MTTF in a particular application.

Figure 14. MTTF Factor versus Junction Temperature

W-CDMA TEST SIGNAL

Figure 16. Single-Carrier W-CDMA Spectrum

Z_{load} 1 Z_{source} MHz 0 Ω 4.059 - j2.284 3.380 - j0.543 2500 2525 3.679 - j2.593 3.265 - j0.546 2550 3.006 - j2.574 3.077 - j0.449 2575 2.355 - j2.190 2.892 - j0.336 2.727 - j0.182 2600 2.075 - j1.657 2.564 - j0.034 2625 1.930 - j1.179 2.435 + j0.140 2650 1.973 - j0.771 2675 2.017 - j0.557 2.286 + j0.340 2700 2.024 - j0.379 2.227 + j0.538

 V_{DD} = 28 Vdc, I_{DQ} = 160 mA, P_{out} = 3 W Avg.

Z_{source} = Test circuit impedance as measured from gate to ground.

Figure 17. Series Equivalent Source and Load Impedance

f	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
500	0.984	- 178.2	1.453	39.2	0.001	- 109.8	0.870	-122.3
550	0.984	- 179.0	1.180	36.5	0.000	-121.0	0.888	-127.6
600	0.986	180.0	0.958	34.4	0.000	159.6	0.901	-132.0
650	0.987	179.0	0.776	33.0	0.001	118.4	0.911	- 135.8
700	0.987	178.1	0.627	32.3	0.001	106.5	0.921	-139.1
750	0.986	177.3	0.502	32.5	0.001	104.2	0.931	-142.1
800	0.985	176.5	0.397	34.1	0.002	96.0	0.940	-144.8
850	0.985	175.8	0.308	37.7	0.002	95.6	0.944	-147.3
900	0.984	175.1	0.235	44.5	0.003	94.0	0.951	- 149.5
950	0.983	174.5	0.180	56.5	0.003	91.2	0.956	- 151.5
1000	0.982	173.8	0.146	75.6	0.003	91.2	0.962	- 153.4
1050	0.981	173.2	0.142	98.9	0.004	89.9	0.965	- 155.2
1100	0.980	172.5	0.163	118.0	0.004	89.2	0.969	- 156.8
1150	0.978	171.9	0.199	129.9	0.005	88.9	0.973	- 158.3
1200	0.976	171.2	0.243	136.6	0.005	87.4	0.976	- 159.8
1250	0.974	170.5	0.291	140.2	0.006	86.5	0.980	-161.1
1300	0.970	169.8	0.342	141.8	0.006	86.3	0.983	-162.4
1350	0.966	169.0	0.395	142.1	0.006	84.6	0.986	- 163.7
1400	0.960	168.3	0.452	141.5	0.006	84.8	0.988	- 164.9
1450	0.953	167.5	0.514	140.2	0.007	86.9	0.990	-166.1
1500	0.945	166.6	0.580	138.4	0.007	92.5	0.993	- 167.3
1550	0.933	165.8	0.655	135.9	0.009	100.3	0.992	-168.4
1600	0.918	164.9	0.738	132.5	0.011	93.7	0.994	- 169.4
1650	0.901	164.1	0.828	128.4	0.013	83.6	0.996	- 170.4
1700	0.879	163.2	0.925	123.5	0.014	75.4	0.997	- 171.6
1750	0.850	162.5	1.030	117.6	0.014	69.1	0.998	-172.8
1800	0.815	162.2	1.139	110.8	0.015	62.8	0.995	- 173.9
1850	0.775	162.5	1.246	102.7	0.016	55.8	0.991	- 175.0
1900	0.734	164.0	1.337	93.6	0.016	48.2	0.984	-176.0
1950	0.700	167.0	1.399	83.5	0.015	40.3	0.976	- 176.9
2000	0.683	171.0	1.420	73.1	0.015	33.2	0.966	- 177.6
2050	0.687	175.1	1.396	62.9	0.014	26.5	0.957	- 178.0
2100	0.710	178.5	1.338	53.4	0.012	22.1	0.951	- 178.3
2150	0.741	- 179.3	1.259	45.0	0.011	19.8	0.948	- 178.6
2200	0.774	- 178.2	1.169	37.6	0.010	19.7	0.947	- 178.9
2250	0.805	- 177.8	1.079	31.1	0.009	19.7	0.947	- 179.2
2300	0.832	- 177.9	0.993	25.8	0.008	19.6	0.948	- 179.5
2350	0.855	- 178.2	0.917	21.2	0.007	22.6	0.950	- 179.9

Table 7. Common Source Scattering Parameters (V_{DD} = 28 V, I_{DQ} = 160 mA, T_{C} = 25°C, 50 ohm system)

and the second

f	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
2400	0.873	- 178.8	0.848	17.2	0.006	31.2	0.953	179.7
2450	0.887	- 179.4	0.786	13.7	0.006	42.2	0.955	179.2
2500	0.897	- 179.9	0.731	10.6	0.007	45.6	0.956	178.7
2550	0.907	179.6	0.682	7.9	0.007	46.5	0.957	178.2
2600	0.914	179.1	0.639	5.5	0.007	48.0	0.958	177.8
2650	0.919	178.8	0.600	3.3	0.007	47.0	0.960	177.2
2700	0.926	178.3	0.566	1.3	0.007	45.8	0.962	176.8
2750	0.931	177.9	0.534	-0.6	0.006	52.1	0.964	176.2
2800	0.936	177.4	0.505	-2.2	0.006	62.3	0.965	175.7
2850	0.940	177.0	0.480	-3.8	0.006	69.8	0.966	175.2
2900	0.942	176.6	0.457	-5.2	0.007	73.2	0.967	174.7
2950	0.945	176.3	0.436	-6.5	0.007	78.7	0.968	174.2
3000	0.947	175.8	0.416	-7.6	0.008	85.1	0.969	173.8
3050	0.949	175.6	0.399	-8.7	0.009	87.9	0.969	173.2
3100	0.950	175.1	0.382	-9.6	0.011	88.2	0.970	172.9
3150	0.953	174.8	0.368	- 10.5	0.012	86.9	0.972	172.6
3200	0.955	174.5	0.355	- 11.5	0.014	85.1	0.974	172.1

Table 7. Common Source Scattering Parameters (V_{DD} = 28 V, I_{DQ} = 160 mA, T_C = 25°C, 50 ohm system) (continued)

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASH98117A	REV: J
SURFACE MOUNT	CASE NUMBER: 1265-08 01 APR 2005			
SONTACE MOUNT	STANDARD: NO	N-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.		MECHANICA	LOUTLINE	PRINT VERSION NO	OT TO SCALE
	TITLE:		DOCUMENT NO): 98ASH98117A	REV: J
	SURFACE MOUNT	CASE NUMBER	2: 1265–08	01 APR 2005	
	SONTACE MOON	I	STANDARD: NO	N-JEDEC	

ma Plans Plan

MRF6S27015NR1 MRF6S27015GNR1

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION "A2" APPLIES WITHIN ZONE "J" ONLY.
- 8. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. OVERALL LENGTH INCLUDING MOLD PROTRUSION SHOULD NOT EXCEED 0.430 INCH FOR DIMENSION "D" AND 0.080 INCH FOR DIMENSION "E2". DIMENSIONS "D" AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -D-.

	INCH		MILLIMETER				INCH	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
А	.078	.082	1.98	2.08	F	.0	25 BSC	0	0.64 BSC
A1	.039	.043	0.99	1.09	Ь1	.193	.199	4.90	5.06
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	3 0.28
D	.416	.424	10.57	10.77	aaa		.004		0.10
D1	.378	.382	9.60	9.70					
D2	.290	.320	7.37	8.13					
D3	.016	.024	0.41	0.61					
E	.436	.444	11.07	11.28					
E1	.238	.242	6.04	6.15					
E2	.066	.074	1.68	1.88					
E3	.150	.180	3.81	4.57					
E4	.058	.066	1.47	1.68					
E5	.231	.235	5.87	5.97					
© FREESCALE SEMICONDUCTOR, INC. MECHANICA				L OUT	LINE	PRINT VERS	SION NO	T TO SCALE	
TITLE:				DOCUMENT NO: 98ASH98117A REV: J			REV: J		
						CASE NUMBER: 1265-08 01 APR 2			01 APR 2005
	501			I	STANDARD: NON-JEDEC				

STYLE 1: PIN 1 – DRAIN PIN 2 – GATE PIN 3 – SOURCE

CASE 1265A-02 **ISSUE B** TO-270-2 GULL PLASTIC **MRF6S27015GN**

NOTES:

- CONTROLLING DIMENSION: INCH.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- PER ASME Y14.5M-1994. 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION
- IS .006 PER SIDE. DIMENSIONS "D1" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETER-
- INCLUDE MOLD MISMAICH AND ARE DEIEH-MINED AT DATUM PLANE -H-. 5. DIMENSION 61 DOES NOT INCLUDE DAMBAR PROTRUSION SHALL BE. 005 TOTAL IN EXCESS OF THE 61 DIMENSION AT MAXIMUM MATERIAL CONDITION
- OF THE DT DIMENSION AT MODULING MICLE AS A CONDITION.
 DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
 DIMENSIONS "D" AND "E2" DO NOT INCLUDE MICLE DATTOLICOL ALLOWAGE E PROTEINCE
- MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .003 PER SIDE. DIMENSIONS "D" AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETER-MINED AT DATUM PLANE -D-.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	.078	.082	1.98	2.08
A1	.001	.004	0.02	0.10
A2	.077	.088	1.96	2.24
D	.416	.424	10.57	10.77
D1	.378	.382	9.60	9.70
D2	.290	.320	7.37	8.13
D3	.016	.024	0.41	0.61
E	.316	.324	8.03	8.23
E1	.238	.242	6.04	6.15
E2	.066	.074	1.68	1.88
E3	.150	.180	3.81	4.57
E4	.058	.066	1.47	1.68
E5	.231	.235	5.87	5.97
L	.018	.024	4.90	5.06
L1	.01 BSC		0.25 BSC	
b1	.193	.199	4.90	5.06
c1	.007	.011	0.18	0.28
e	2°	8 °	2°	8°
aaa	.004		0.10	

STYLE 1: PIN 1. DRAIN 2. GATE

3. SOURCE

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.

