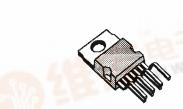


STV9378F

VERTICAL DEFLECTION BOOSTER

ADVANCE DATA

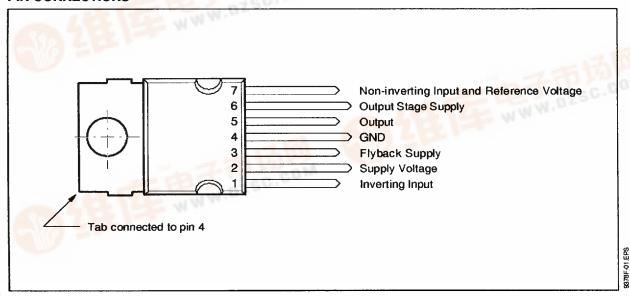

- POWER AMPLIFIER
- THERMAL PROTECTION
- OUTPUT CURRENT UP TO 2.0APP
- FLYBACK VOLTAGE UP TO 90V (on Pin 5)
- INTERNAL REFERENCE VOLTAGE
- **EXTERNAL FLYBACK SUPPLY**

DESCRIPTION

Designed for monitors and high performance TVs, the STV9378F vertical deflection booster can handle flyback voltage up to 90V. More than this it is possible to have a flyback voltage which is more than the double of the supply (Pin 2). This allows to decrease the power consumption or to decrease the flyback time for a given supply voltage.

The STV9378F operates with supplies up to 42V and provides up to 2App output current to drive the yoke.

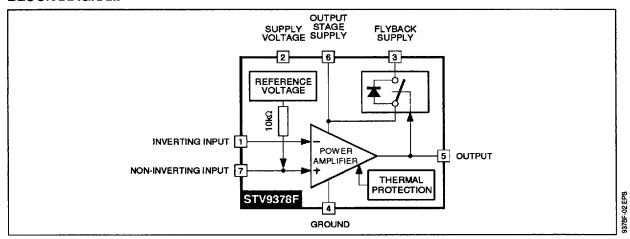
The STV9378F is offered in HEPTAWATT package.



HEPTAWATT (Plastic Package)

ORDER CODE: STV9378F

PIN CONNECTIONS


July 1994

1/5

This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

BLOCK DIAGRAM

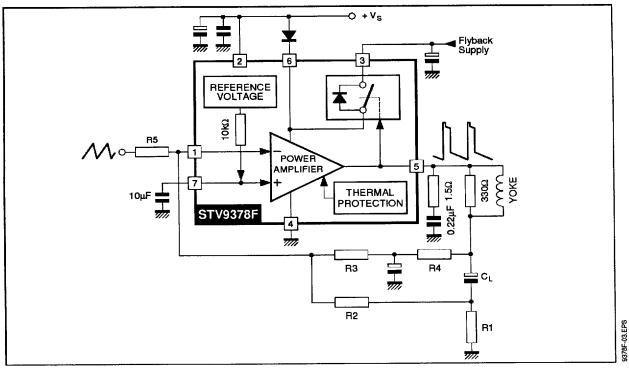
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
٧s	Supply Voltage (Pin 2) (see note 1)	50	V
V ₆	Flyback Peak Voltage (Pin 6) (see note 1)	100	V
V ₁ , V ₇	Amplifier Input Voltage (Pins 1-7) (see note 1)	- 0.3, + V _S	V
lo	Maximum Output Peak Current (see notes 2 and 3)	1.5	Α
lз	Maximum Sink Current (t < 1ms)	1.5	Α
lз	Maximum Source Current (t < 1ms) (in the diode, see Block Diagram)	1.5	Α
V3 - V2	Voltage Difference between Flyback Supply and Supply Voltage	70	V
Toper	Operating Ambient Temperature	- 20, + 75	°C
T _{stg}	Storage Temperature	- 40, + 150	°C
Τ _i	Junction Temperature	+150	°C

- Notes: 1. Versus GND.
 - The output current can reach 4A peak for t ≤ 10µs (up to 120Hz).
 - Provided SOAR is respected (see Figures 1 and 2).

THERMAL DATA

Symbol	Parameter	Value	Unit
Rth (j-c)	Junction-case Thermal Resistance Ma	іх. З	°C/W
Tt	Temperature for Thermal Shutdown	150	°C
ΔTt	Hysteresis on T ₁	- 10	°C
Tjr	Recommended Max. Junction Temperature	120	°C



ELECTRICAL CHARACTERISTICS

(V_S = 42V, T_A = 25°C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Operating Supply Voltage Range		10		42	V
Vзм	Operating Flyback Supply Voltage		Vs		90	٧
l ₂	Pin 2 Quiescent Current	$l_3 = 0, l_5 = 0$		10	20	mΑ
l ₆	Pin 6 Quiescent Current	$I_3 = 0, I_5 = 0$	5	10	30	mΑ
lo	Max. Peak Output Current				1	Α
l ₁	Amplifier Bias Current	V ₁ = 1V		- 0.15	- 1	μΑ
V ₇	Internal Reference Voltage		2.2	2.3	2.4	٧
ΔV ₇ ΔV _S	Reference Voltage Drift versus Vs	Vs = 24 to 42V		2	4	mV/V
Kt	Reference Voltage Drift versus Ti			100	150	ppm/°C
GV	Voltage Gain		80			dB
V _{5L}	Output Saturation Voltage to GND (Pin 4)	I ₅ = 1A		1	1.5	٧
V _{5H}	Output Saturation Voltage to Supply (Pin 6)	I ₅ = - 1 A		1.6	2.1	V
V _{D5 - 6}	Diode Forward Voltage between Pins 5-6	I ₅ = 1A		1.5	2	V
V _{D3-6}	Diode Forward Voltage between Pins 3-6	l ₃ = 1A		1.5	2	V
V ₃₋₆	Voltage Drop between Pins 3-6 (2nd part of flyback)	I ₃ = - 1A		2.1	2.9	V

APPLICATION CIRCUIT

SGS-THOMSON MICROELLECTRONICS

Figure 1: Output Transistors SOA (for secondary breakdown)

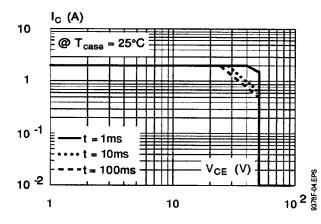
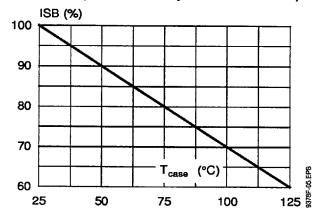
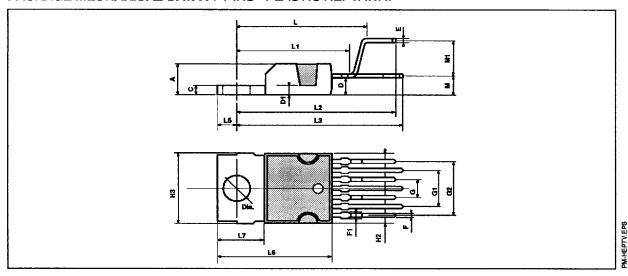




Figure 2: Secondary Breakdown Temperature
Derating Curve
(ISB = secondary breakdown current)

PACKAGE MECHANICAL DATA: 7 PINS - PLASTIC HEPTAWAT

Dimensions		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		08	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		16.97			0.668	
L1		14.92			0.587	
L2		21.54			0.848	
L3		22.62			0.891	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
М		2.8			0.110	
M1		5.08			0.200	
Dia.	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of PC Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I'C Patent. Rights to use these components in a I'C system, is granted provided that the system conforms to the FC Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

5/5