

=AIRCHILD SEMICONDUCTOR

MM74HCT04 Hex Inverter

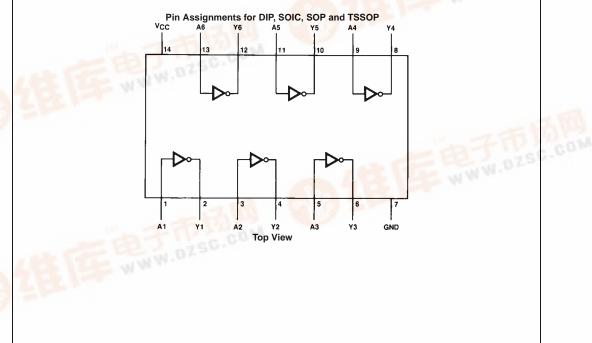
General Description

The MM74HCT04 is a logic function fabricated by using advanced silicon-gate CMOS technology which provides the inherent benefits of CMOS - low quiescent power and wide power supply range. This device is input and output characteristic as well as pin-out compatible with standard 74LS logic families. The MM74HCT04, triple buffered, hex inverters, features low power dissipation and fast switching times. All inputs are protected from static discharge by internal diodes to V_{CC} and ground.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. February 1984 Revised February 1999

IM74HCT04 Hex Inverter

These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.


Features

- TTL, LS pin-out and threshold compatible
- Fast switching: t_{PLH}, t_{PHL}=12 ns (typ)
- WWW.DZS Low power: 10 μW at DC, 3.7 mW at 5 MHz
- High fanout: ≥ 10 LS loads
- Inverting, triple buffered

Ordering Code:

Order Number	Package Number	Package Description
MM74HCT04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74HCT04SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT04MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT04N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available i	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.
Connectio	n Diagram	

Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS005357.prf

Absolute Maximum Ratings(Note 1) (Note 2)

	,	
Sup	ply Voltage (V _{CC})	-0.5 to +7.0V
DC	Input Voltage (V _{IN})	-1.5 to $V_{CC}{+}1.5V$
DC	Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clar	mp Diode Current (I _{IK} , I _{OK})	±20 mA
DC	Output Current, per pin (I _{OUT})	±25 mA
DC	V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Stor	rage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Pow	ver Dissipation (P _D)	
1)	Note 3)	600 mW
S	.O. Package only	500 mW
Lea	d Temperature (T _L)	
(5	Soldering 10 seconds)	260°C

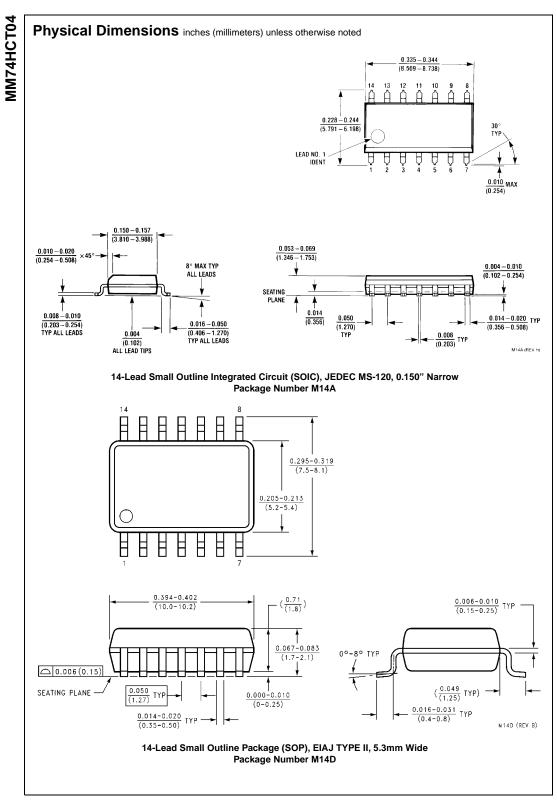
Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T_A)	-40	+85	°C
Input Rise or Fall Times			
(t _r , t _f)		500	ns
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values be	eyond whi	ch dam-
Note 2: Unless otherwise specified all voltages	are refere	nced to g	round.
Note 3: Power Dissipation temperature deratine 12 mW/°C from 65°C to 85°C.	ıg — plast	tic "N" pao	ckage: -

DC Electrical Characteristics

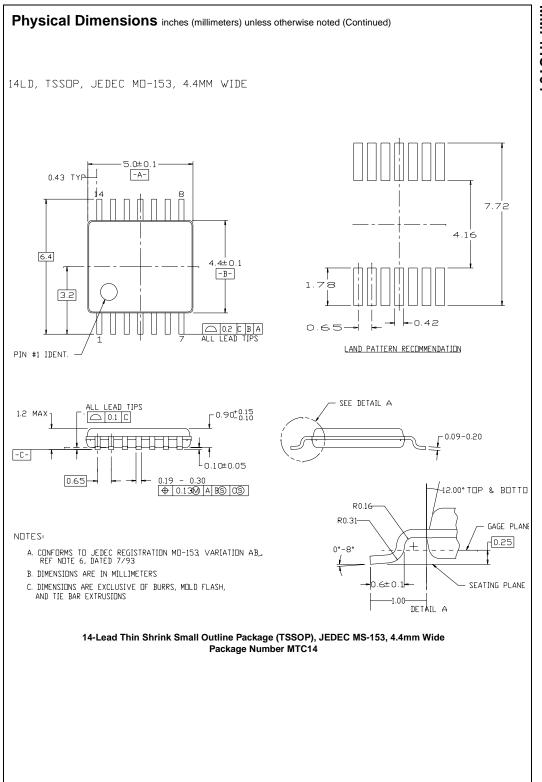
 $V_{CC} = 5V \pm 10\%$ (unless otherwise specified)

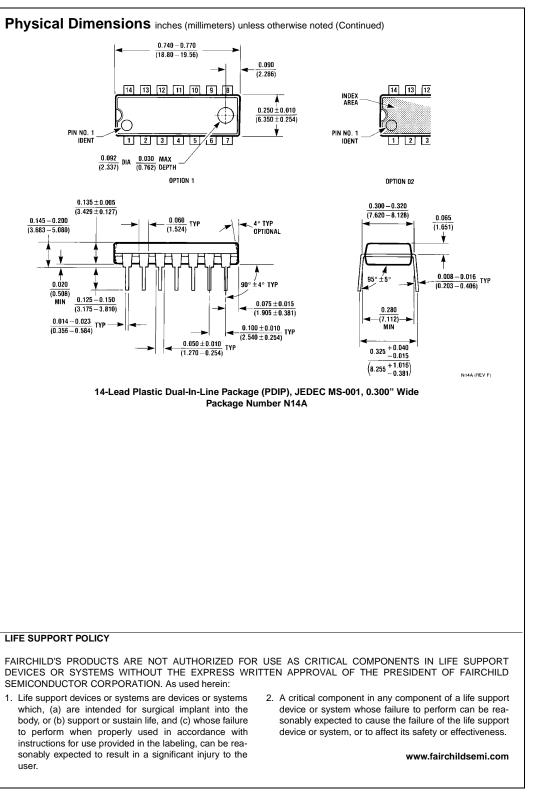
Symbol	Parameter	Conditions	T _A =	= 25°C	$T_A{=}{-}40$ to $85^\circ C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Falanetei	Conditions	Тур		Guaranteed L	imits	Units
VIH	Minimum HIGH Level			2.0	2.0	2.0	V
	Input Voltage						
V _{IL}	Maximum LOW Level			0.8	0.8	0.8	V
	Input Voltage						
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IL}$					
	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	$V_{CC} - 0.1$	V _{CC} - 0.1	V _{CC} - 0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	4.7	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$					
	Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.1	±1.0	±1.0	μΑ
	Current	V_{IH} or V_{IL}					
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND		2.0	20	40	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$					
		V _{IN} = 2.4V or 0.5V (Note 4)		0.3	0.4	0.5	mA


Note 4: This is measured per input with all other inputs held at $\rm V_{\rm CC}$ or ground.

www.fairchildsemi.com

ma Pana Pa


$V_{CC} = 5.0$	DV, $t_r = t_f = 6$ ns $C_L = 15$ pF, $T_A = 25^{\circ}C$	(unless otherwise noted)					
Symb	ool Parameter	Co	nditions		Тур	Guaranteed Limit	Units
t _{PLH} , t _{PHL}	Maximum Propagation Delay				10	18	ns
	Electrical Characteri DV $\pm 10\%$, t _r = t _f = 6 ns, C _L = 50 pF (un						
V _{CC} = 5.0			T _A =	25°C	T _A = -40 to 8	$5^{\circ}C$ $T_{A} = -55 tc$	o 125°C Units
	$DV \pm 10\%$, $t_r = t_f = 6$ ns, $C_L = 50$ pF (un	less otherwise noted)	T _A = Typ	25°C	T _A = -40 to 8 Guarantee	~	o 125°C Units
$V_{CC} = 5.0$ Symbol	$DV \pm 10\%$, $t_r = t_f = 6$ ns, $C_L = 50$ pF (un	less otherwise noted)	~	25°C 20		~	Units
V _{CC} = 5.0 Symbol	$DV \pm 10\%$, $t_r = t_f = 6$ ns, $C_L = 50$ pF (un Parameter	less otherwise noted)	Тур		Guarantee	ed Limits	Units
V _{CC} = 5.0	$V \pm 10\%$, $t_r = t_f = 6$ ns, $C_L = 50$ pF (un Parameter Maximum Propagation Delay	less otherwise noted)	Typ 14	20	Guarantee 25	ed Limits	Units


www.fairchildsemi.com

MM74HCT04

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

