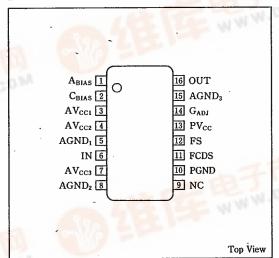
T-77-17

IR3P66 CDS Amp IC

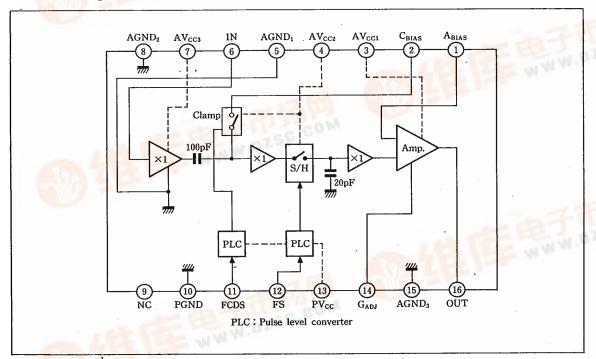
Description

The IR3P66 is a CDS/AMP IC for a CCD area sensor.

This IC receives the CCD area sensor output, clamps the feed-through level of the sensor output, samples and holds the signal level and then outputs it.


A built-in amplifier varies the gain within the range from 0 to 6dB.

The functions of the IR3P66 are the same as that of the IR3P68 except for an internal amplifier.


Features

- Reduces the low range noise included in the CCD area sensor output
- 2. Incorporates a clamp capacitor
- 3. Incorporates variable gain amplifier (0~6dB)
- 4. 5V single power supply
- 5. 16-pin small outline package

Pin Connections

Block Diagram

SHARP

Pin Functions

Pin No.	Symbol	I/O	Pin function	
		I	Bias level pin for an amplifier	
- 1	A _{BIAS}		An internal bias resistor sets the bias level	
2	C _{BIAS}	I	Reference voltage pin to clamp the feedthrough level of a CCD area sensor output	
3	AV _{CC1}		Power supply for an amplifier	
4	AV _{CC2}		Power supply for a clamp, and sample and hold	
5	AGND ₁		Analog GND (for input)	
6	IN	I	Inputs the CCD area sensor output by a capacitor conjunction	
7	AV _{CC3}	-	V _{CC} for inputs (buffer)	
8	AGND ₂		GND for inputs (buffer), clamps and sample and hold	
9	ŅC			
10	PGND		GND for pulses	
	nono	7	Pulse input to clamp the feedthrough level of a CCD area sensor output. Clamped	
` 11	FCDS	FCDS	1	by an "High" level
10	FS	FS I	Pulse input to sample/hold the signal level of a CCD area sensor output. Held by	
12			an "Low" level	
13	PV _{cc}		Power supply for a pulse level converter	
14	G _{ADJ}	I	Amplifier gain adjusting input pin	
15	AGND ₃		GND for an amplifier	
16	OUT	0	Amplifier output	

Absolute Maximum Ratings

(Ta=25℃)

Parameter	Symbol Conditions		Rating	Unit	
	AV _{CC1} ~AV _{CC3}		7	V	
Supply voltage	PVcc		7	V	
	Via	Pins 1, 2, 6 and 14	0~AV _{cc}	V	
Input voltage	V _{ip}	Pins 11 and 12	$-0.2 \sim PV_{CC} + 0.2$	v	
Output current	I _O	Pin 16	5	mA	
Power dissipation	P_{D}	Operating temperature range	300	mW	
Operating temperature	Topr		-10~+60	°C	
Storage temperature	T _{stg}		-55~+150	°C	

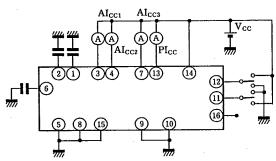
Electrical Characteristics (1)

 $(V_{CC}=5V, Ta=25^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
0	AV _{CC1} ~AV _{CC3}	AV _{CC1} ~AV _{CC3} Pins 3, 4, 7 and 13		5.00	5.25	v	
Operating supply voltage	PVcc	(Ta=−10~60°C)	4.75	5.00	0.20	L v	
	I _{CC1} Pin 3 of the circuit 1		3.3	5.0	7.5		
6 1	I _{CC2}	Pin 4 of the circuit 1	0.9	1.4	2.1	mA	
Supply current	I _{CC3}	Pin 7 of the circuit 1	1.3	2.0	3.0	liira	
	PI _{CC}	Pin 13 of the circuit 1	5.3	8.0	13		
Open terminal voltage							
	V ₆	Pin 6 of the circuit 2	2.4	2.5	2.6		
Input open terminal voltage	V ₂	Pin 2 of the circuit 2	2.95	3.08	3.20	v	
	V ₁	Pin 1 of the circuit 2	2.68	2.80	2.92		
Output voltage	V ₁₆	Pin 16 of the circuit 2	1.9	2.15	2.4	V	
Input current					·		
Input current	I ₁₄	Pin 14 of the circuit 3	-20	5	10.	μA	

				114.1	· · · · · · · · · · · · · · · · · · ·	MIN	TYP.	MAX.	Unit
Parameter	Symbol Commons						ITP.	MAA.	Omt
Pulse level converter (For clam		 				· · ·		0.8	v
Input "Low" voltage	V _{IL}			. •				0.0	V
Input "High" voltage	V _{IH}	Pin 11	and 12			2.0		0.5	ļ`
Input "Low" current	I _{IL}			V _{IL} =0V		-1.1	-0.8	-0.5	mA
Input "High" current	I _{IH}	V _{IL} =5V			-10	1	10	μA	
	R _{IN}	Pin 6	Resisto			8	12		kΩ
Input impedance	C _{IN}		Capacit	ors	Circuit 5		4	6	pF
input impedance	R _{cbias}	R _{cbias} Pin 2					9.5		kΩ
	Rabias					11.5		kΩ	
Output impedance	Rout	Pin 16 for recietors f=1MHz			Circuit 7		190	300	Ω.
Input dynamic range	DR	Pin 6, Gain=6dB			Circuit /	0.6	0.9		V_{P-P}
	G ₁	V ₁₄ =0V V ₁₄ =1.7V			Circuit 6	-1	0	1	
Gain	G ₂					2	3	4	dB
	G ₃	V ₁₄ =5V				5	. 6	7	
S/H slew rate	V ₁₆	Amp. gain=0dB				0.6	0.9		V/20ns
Hold voltage fluctuation							-20		mV/μs
Hold mode feedthrough		f=1MHz IN=300mV Gain=6dB		Circuit 8	-	-55	-45	dB	
S/H offset error		VFS	S=10MHz,	gain=6dB			8		mV
Sampling transition noise	·			gain=6dB	Circuit 9		40		mV _{P-P}
Clamp low frequency rejection ratio		f=100kHz IN=0.3V _{P-P}			Circuit 10		-33	-27	dB
Linearity error		V _{IN} =0.2~0.6V _{P-P} Sampling=10MHz		Circuit 7		0.5	1	%	
Clamp pulse width						20			ns
Sample pulse width						20			ns

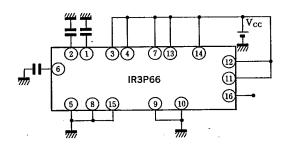
^{*} The electrode of current coming into IC is defined as positive.


Electrical Characteristics (2)

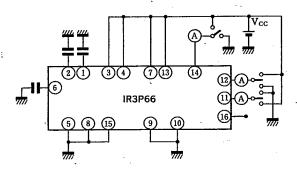
 $(AV_{CC}=PV_{CC}=4.75\sim5.25V, Ta=-10\sim+60^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
	AI _{CC1}	Pin 3		2.8		10.3	mA
	AI _{CC2}	Pin 4		0.7		2.3	mA
Supply current	AI _{CC3}	Pin 7		1.1		3.5	mA
	PIcc	Pin 13	4.5		15	mA	
Input "Low" voltage	V _{IL}	POPO FO				0.7	V
Input "High" voltage	V _{IH}			2.0			V
Input "Low" current	I _{IL}	FCDS FS	$V_{IN}=0V$	-1.2		-0.4	μA
Input "High" current	I _{IH}		V _{IN} =5V	∸10		10	μA
Input current	II	Pin 14		-25		25	μA
	V _{IN}	Pin 6	2.2		2.8	V	
Open input voltage	V _{cbias}	Pin 2	2.75		3.40	V	
	V _{abias}	Pin 1	2.5		3.1	V	
Open output voltage	V _{OUT}	$V_{11} = V_{12} = V_{CC}$	1.65		2.55	Ý	
		V ₁₄ =0~1V		-1.5		1.5	
Amplifier gain	G	$V_{14} = 1.7 V_{CC} / 5$		1.5		4.5	dB
		$V_{14} = 2.5 \sim 5V$	4.5		7.5		

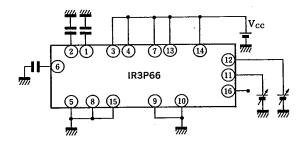
Test Circuits

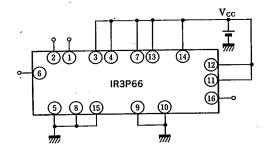

(1) Alcc, Plcc

- \cdot AI_{CC1} \sim AI_{CC3} must be measured under conditions that $V_{CC}\!=\!5V,$ and pins 11 and 12=5V. \cdot PI_{CC} must be measured under conditions that $V_{CC}\!=\!5V,$ and pins 11 and 12=0V.

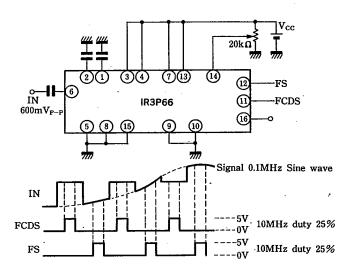

(2) Open input terminal voltage, Open output terminal voltage

ma 88

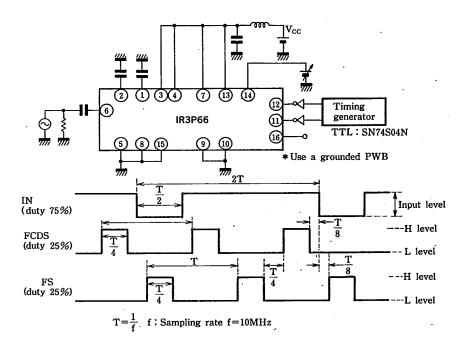



(3) I_{IL}, I_{IH}, I₁₄

(4) V_{IL} , V_{IH}

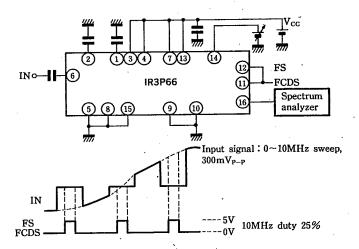


(5) Input terminal impedance, output terminal impedance

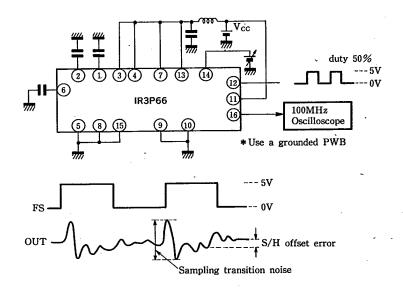


On a vector impedance meter f=1MHz

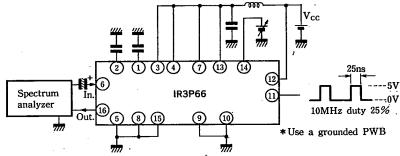
(6) Gain



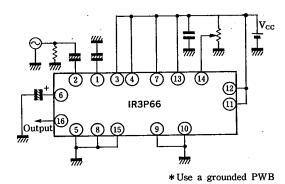
(7) S/H slew rate



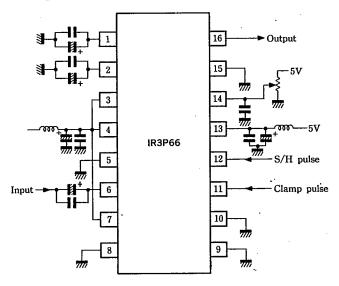
(8) Hold mode feedthrough



(9) Sample and hold offset error, sampling transition noise

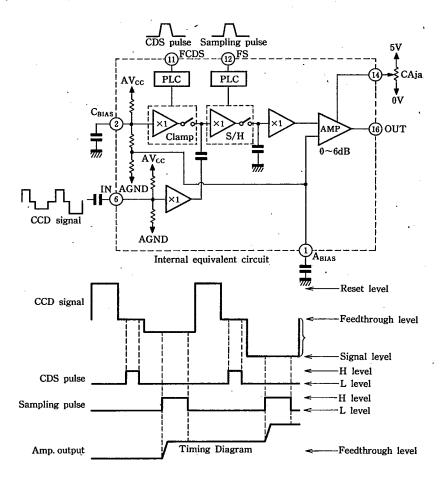

som and and

(10) Clamp frequency characteristics



Input: $0{\sim}10MHz$ Sweep signal $0.3V_{P-P}$

(11) Frequency characteristics



Basic Connection Diagram

Description of Operation

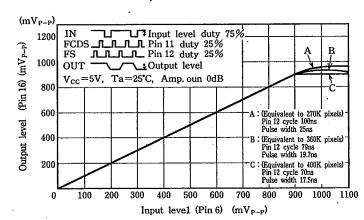
The IR3P66 inputs a CCD area sensor output by a capacitor conjunction, and clamps its feedthrough level at pin 2 ($C_{\rm BIAS}$ electrode). Then it samples and holds the difference between the signal level and the feedthrough level, which is amplified through a reverse amplifier to output.

Switches of a clamp and a S/H circuit should be closed by turning a pulse input to "H" and opened to "I"

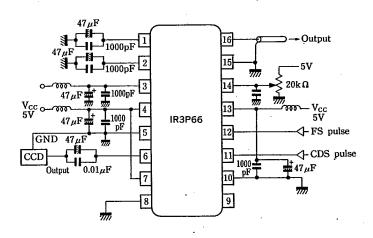

To apply voltages to pin 14 (G_{ADJ}) sets the amplifier gain within the range from 0 to 6dB.

(Higher the voltage on pin 14, higher the gain.)

000


Electrical Characteristic Curves

Frequency Characteristics


Frequency (Hz)

S/H, I/O Characteristics

Peripheral Circuit Example

ma Pe

- For the addition and removal of any external part, consider them in the mounted condition.
- The ground plane type with grounded on one side is recommended for the circuit board.
- · AGND₁ (pin 5), AGND₂ (pin 8) and AGND₃ (pin 15) should be connected using the minimum distance and kept at low impedance.
- The bypass capacitor between the power source and GND should be connected using the minimum distance. The use of a chip capacitor is recommended.
- For the peaking coil of the power source, use the one with the self-oscillation frequency of about 100MHz.
- · Use pin 5 for GND of the CCD area sensor, pin 10 for GND of FS and FCDS pulses, and pin 15 for GND of outputs.
- · It is preferable that the NC pin is connected to GND.
- If there is any external influence, provide a shield plate on the top and bottom of the IC to prevent noise.

