查询DS90CF562MTDX供应商

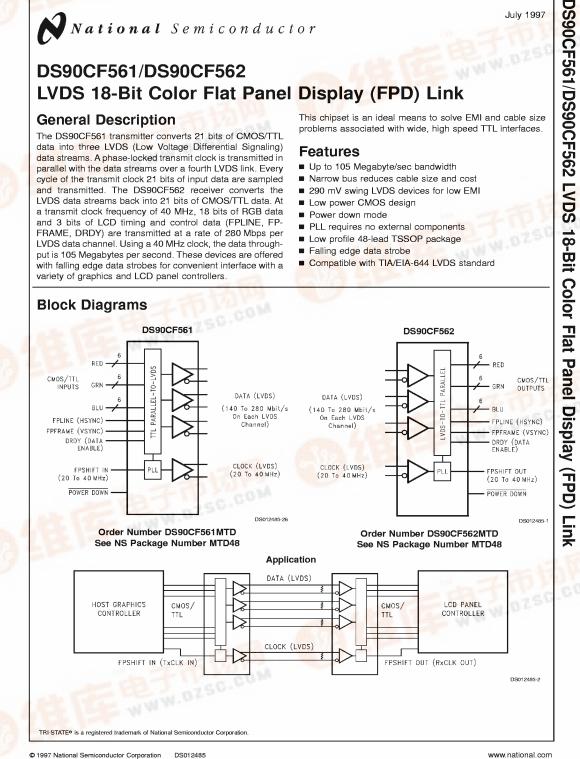
National Semiconductor

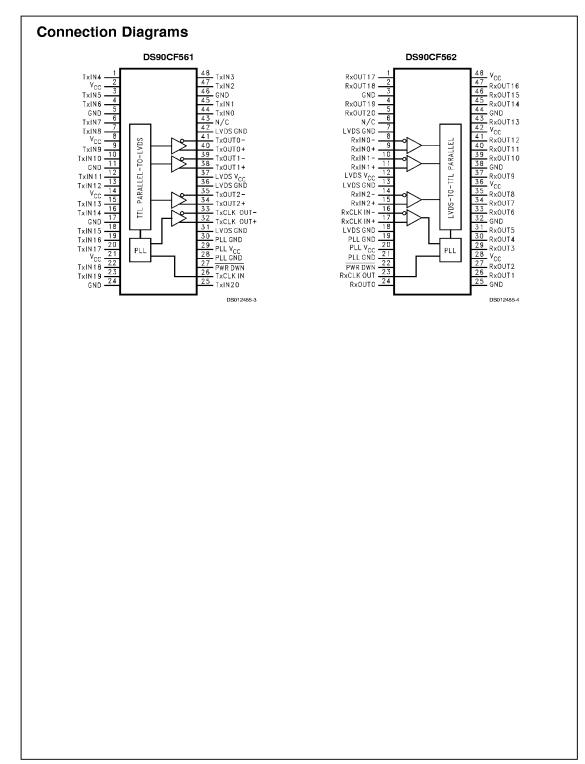
DS90CF561/DS90CF562 LVDS 18-Bit Color Flat Panel Display (FPD) Link

General Description

The DS90CF561 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CF562 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 40 MHz, 18 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FP-FRAME, DRDY) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 105 Megabytes per second. These devices are offered with falling edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.


专业PCB打样工厂,24小时加急出货


July 1997

Features

捷多邦

- Up to 105 Megabyte/sec bandwidth
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design
- Power down mode
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Falling edge data strobe
- Compatible with TIA/EIA-644 LVDS standard

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +6V
CMOS/TTL Input Voltage	-0.3V to (V _{CC} + 0.3V)
CMOS/TTL Ouput Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Receiver Input Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Driver Output Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Output	
Short Circuit Duration	continuous
Junction Temperature	+150°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature	
(Soldering, 4 sec.)	+260°C
Maximum Power Dissipation @ +25°C	
MTD48 (TSSOP) Package:	

DS90CF561 DS90CF562	1.98W 1.89W
Package Derating:	
DS90CF561	16 mW/°C above +25°C
DS90CF562	15 mW/°C above +25°C
This device does not meet 20	00V ESD rating (Note 4) .

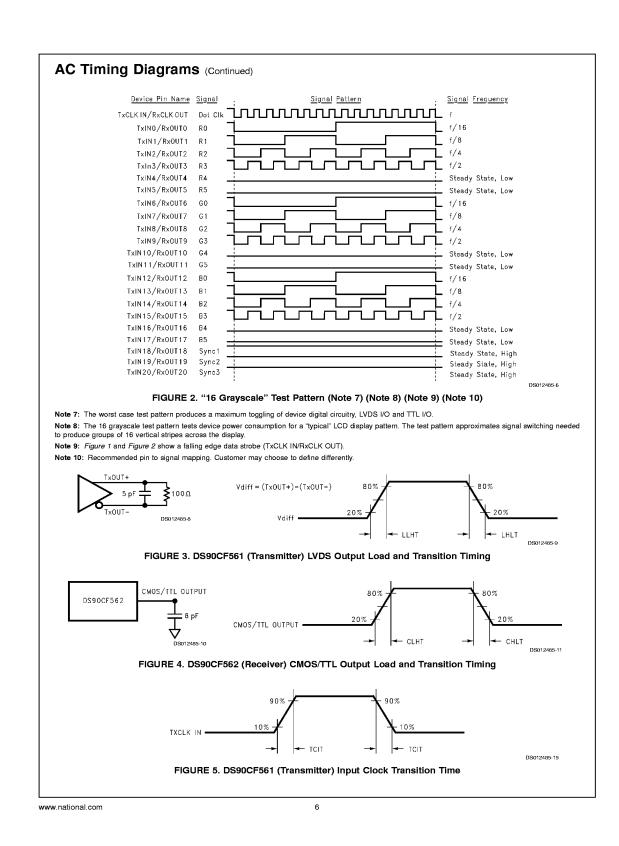
Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	4.5	5.0	5.5	V
Operating Free Air				
Temperature (T _A)	-10	+25	+70	°C
Receiver Input Range	0		2.4	ν
Supply Noise Voltage (V $_{\rm CC})$			100	$mV_{P\text{-}P}$

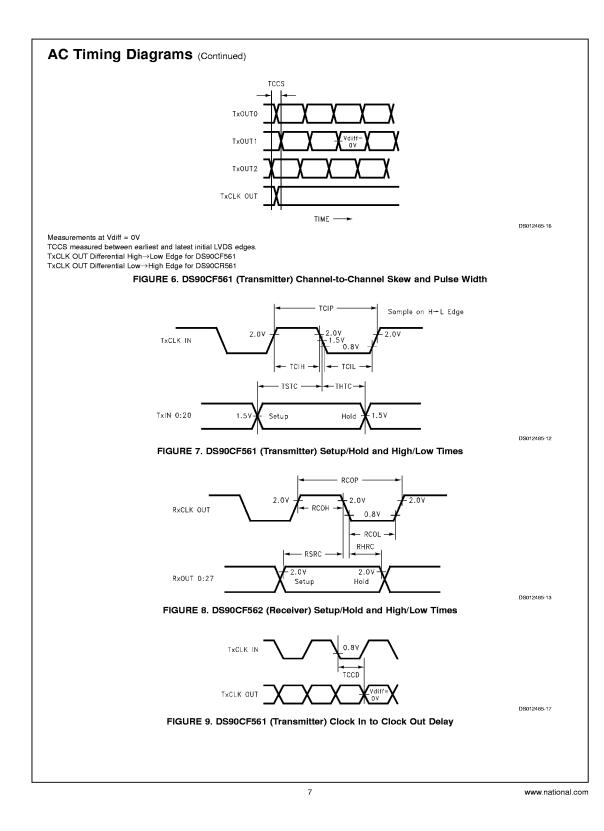
Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

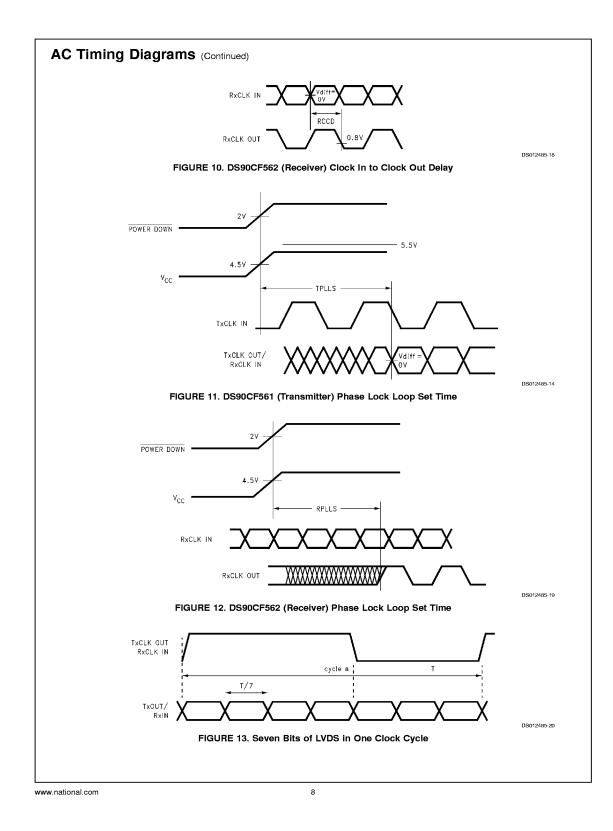
Symbol	Parameter	Conditio	Min	Тур	Max	Unit	
CMOS/T	TL DC SPECIFICATIONS	•					
VIH	High Level Input Voltage			2.0		$V_{\rm CC}$	V
V _{IL}	Low Level Input Voltage		GND		0.8	V	
V _{OH}	High Level Output Voltage	I _{OH} = -0.4 mA	3.8	4.9		V	
V _{OL}	Low Level Output Voltage	I _{OL} = 2 mA		0.1	0.3	V	
V _{CL}	Input Clamp Voltage	I _{CL} = –18 mA		-0.79	-1.5	V	
IN	Input Current	$V_{IN} = V_{CC}$, GND, 2.5V or	0.4V		±5.1	±10	μA
os	Output Short Circuit Current	V _{OUT} = 0V			-120	mA	
LVDS DF	RIVER DC SPECIFICATIONS						
V _{OD}	Differential Output Voltage	$R_{L} = 100\Omega$		250	290	450	m۷
ΔV _{OD}	Change in V _{OD} between					35	m۱
	Complimentary Output States						
V _{CM}	Common Mode Voltage			1.1	1.25	1.375	V
ΔV _{CM}	Change in V _{CM} between					35	m\
	Complimentary Output States						
V _{OH}	High Level Output Voltage				1.3	1.6	V
V _{OL}	Low Level Output Voltage			0.9	1.01		V
l _{os}	Output Short Circuit Current	$V_{OUT} = 0V, R_L = 100\Omega$			-2.9	-5	mÆ
oz	Output TRI-STATE® Current	Power Down = 0V, V _{OUT}	= 0V or $V_{\rm CC}$		±1	±10	μA
LVDS RE	ECEIVER DC SPECIFICATIONS			•			
V _{TH}	Differential Input High Threshold	$V_{\rm CM} = +1.2V$				+100	m\
V _{TL}	Differential Input Low Threshold			-100			m\
IN	Input Current	$V_{IN} = +2.4V$	$V_{\rm CC} = 5.5V$			±10	μA
		$V_{\rm IN} = 0V$				±10	μA
TRANSM	ITTER SUPPLY CURRENT	•	•	•			
I _{CCTW}	Transmitter Supply Current,	$R_{L} = 100\Omega, C_{L} = 5 \text{ pF},$	f = 32.5 MHz		34	51	mA
	Worst Case	Worst Case Pattern					
		(<i>Figure 1</i> , <i>Figure 3</i>) f = 37.5 MHz			36	53	mA
сста	Transmitter Supply Current,	$R_{L} = 100\Omega, C_{L} = 5 \text{ pF},$	f = 32.5 MHz		27	47	mA
	16 Grayscale	Grayscale Pattern					L
		(Figure 2, Figure 3)	f = 37.5 MHz		28	48	mA

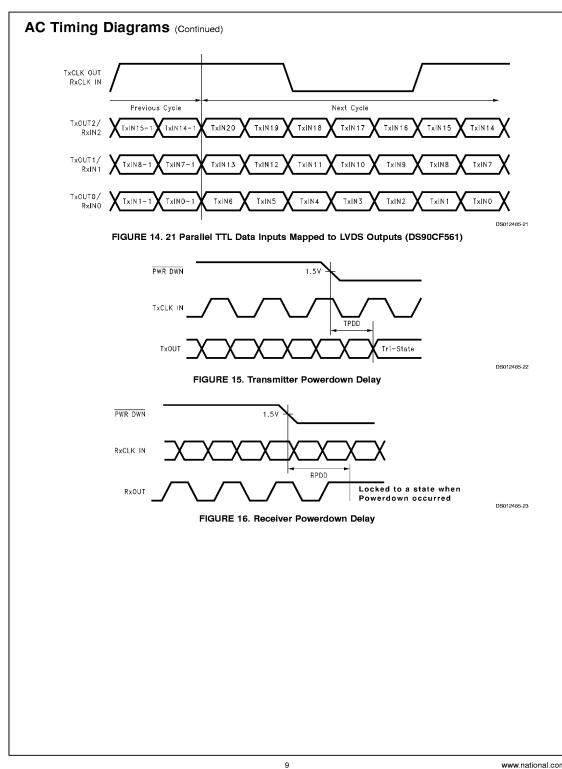

Symbol	commended operating supply and Parameter	Conditio	ons	Min	Тур	Max	Units
•					• 3 P	mux	
I _{CCTZ}	Transmitter Supply Current,	Power Down = Low			1	05	
	Power Down				1	25	μΑ
RECEIVE	R SUPPLY CURRENT						
I _{CCRW}	Receiver Supply Current,	C _L = 8 pF, Worst Case Pattern	f = 32.5 MHz		55	75	mA
	Worst Case	(Figure 1, Figure 4)	f = 37.5 MHz		60	80	mA
I _{CCBG}	Receiver Supply Current,	$C_1 = 8 \text{pF},$	f = 32.5 MHz		35	55	mA
CCHG	16 Grayscale	16 Grayscale Pattern				00	
		(Figure 2, Figure 4)	f = 37.5 MHz		37	58	mA
I _{CCRZ}	Receiver Supply Current,	Power Down = Low			1	10	μΑ
	Power Down						
	(0Ω, 200 pF) ≥ 150V						
Tran	smitter Switching C	haracteristics					
Over rec	smitter Switching C	d temperature ranges unless c	therwise specified				T
Over rec Symbol	commended operating supply and	temperature ranges unless o Parameter	therwise specified	Min	Тур	Max	Unit
Over red Symbol LLHT	commended operating supply and LVDS Low-to-High Transition T	d temperature ranges unless c Parameter Time (<i>Figure 3</i>)	therwise specified	Min	0.75	1.5	ns
Over red Symbol LLHT LHLT	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T	d temperature ranges unless o Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>)	therwise specified	Min		1.5 1.5	ns ns
Over red Symbol LLHT LHLT TCIT	commended operating supply and LVDS Low-to-High Transition T	d temperature ranges unless of Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) <i>ure 5</i>)	therwise specified	Min	0.75	1.5	ns
Over red Symbol LLHT LHLT TCIT TCCS	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig</i> .	d temperature ranges unless of Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) ure 5) tew (Note 5) (<i>Figure 6</i>)	therwise specified		0.75	1.5 1.5 8	ns ns ns
Over rec	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk	d temperature ranges unless c Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) <i>ure 5</i>) tew (Note 5) (<i>Figure 6</i>) tion for Bit 0 (<i>Figure 17</i>)			0.75	1.5 1.5 8 350	ns ns ns ps
Over red Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos1	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi	d temperature ranges unless c Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) <i>ure 5</i>) tew (Note 5) (<i>Figure 6</i>) tion for Bit 0 (<i>Figure 17</i>) tion for Bit 1			0.75 0.75 150 7.2	1.5 1.5 8 350 350	ns ns ns ps ps
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless c Parameter Time (Figure 3) Time (Figure 3) Time (Figure 3) Time (Figure 3) Time (Figure 6) tion for Bit 0 (Figure 6) tion for Bit 1 tion for Bit 2		-200 6.3	0.75 0.75 150 7.2	1.5 1.5 8 350 350 7.5	ns ns ns ps ps ns
Over red Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos1 TPPos2	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (Figure 3) Time (Figure 3) Time (Figure 3) ture 5) tew (Note 5) (Figure 6) tion for Bit 0 (Figure 17) tion for Bit 1 tion for Bit 2 tion for Bit 3		-200 6.3 12.8	0.75 0.75 150 7.2 13.6 20.8	1.5 1.5 8 350 350 7.5 14.6	ns ns ns ps ps ns ns
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos1 TPPos2 TPPos3 TPPos4 TPPos5	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) ture 5) tew (Note 5) (<i>Figure 6</i>) tion for Bit 0 (<i>Figure 17</i>) tion for Bit 1 tion for Bit 2 tion for Bit 3 tion for Bit 4 tion for Bit 5		-200 6.3 12.8 20 27.2 34.5	0.75 0.75 150 7.2 13.6 20.8 28 35.2	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6	ns ns ns ps ps ns ns ns
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos1 TPPos3 TPPos4 TPPos5 TPPos6	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (Figure 3) Time (Figure 3) Time (Figure 3) Time (Figure 3) Time (Figure 5) Time (Figure 6) Time (Figure 6) Time (Figure 17) Time (Figure	f = 20 MHz	-200 6.3 12.8 20 27.2 34.5 42.2	0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9	ns ns ps ps ns ns ns ns ns ns
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos1 TPPos2 TPPos4 TPPos5 TPPos6 TPPos0	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (<i>Figure 3</i>) Time (<i>Figure 5</i>) Time (<i>Figure 6</i>) Time (<i>Figure 17</i>) Time (<i>Figure 17</i>) Time (<i>Figure 17</i>) Time (<i>Figure 16</i>) Time (<i>Figure 16</i>)		-200 6.3 12.8 20 27.2 34.5 42.2	0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300	ns ns ps ps ns ns ns ns ns ps ps
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos0 TPPos3 TPPos5 TPPos6 TPPos0 TPPos1	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) UTE 5) UTE 5) UTE 5) UTE 5) UTE 5) UTE 6) UTE 7) UTE 7) UT	f = 20 MHz		0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100 3.3	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300 3.9	ns ns ps ps ns ns ns ns ns ns ns ns
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos0 TPPos3 TPPos4 TPPos5 TPPos6 TPPos1 TPPos2	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) ture 5) tew (Note 5) (<i>Figure 6</i>) tion for Bit 0 (<i>Figure 17</i>) tion for Bit 1 tion for Bit 2 tion for Bit 3 tion for Bit 3 tion for Bit 4 tion for Bit 5 tion for Bit 6 tion for Bit 0 (<i>Figure 16</i>) tion for Bit 1 tion for Bit 1	f = 20 MHz		0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100 3.3 6.6	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300 3.9 7.1	ns ns ps ps ns ns ns ns ns ns ns ns ns
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos0 TPPos3 TPPos4 TPPos6 TPPos0 TPPos1 TPPos2 TPPos3	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (Figure 3) Time (Figure 3	f = 20 MHz		0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100 3.3 6.6 10.2	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300 3.9 7.1 10.7	ns ns ps ps ns ns ns ns ns ns ns ns ns ns
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos0 TPPos3 TPPos4 TPPos6 TPPos1 TPPos2 TPPos3 TPPos3 TPPos3 TPPos4	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) ture 5) tew (Note 5) (<i>Figure 6</i>) tion for Bit 0 (<i>Figure 17</i>) tion for Bit 1 tion for Bit 2 tion for Bit 3 tion for Bit 4 tion for Bit 5 tion for Bit 6 tion for Bit 1 tion for Bit 1 tion for Bit 1 tion for Bit 2 tion for Bit 3 tion for Bit 4	f = 20 MHz		0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100 3.3 6.6	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300 3.9 7.1	ns ns ps ps ns ns ns ns ns ns ns ns ns
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos1 TPPos3 TPPos4 TPPos5 TPPos1 TPPos1 TPPos3 TPPos3 TPPos4 TPPos5	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) ture 5) tew (Note 5) (<i>Figure 6</i>) tion for Bit 0 (<i>Figure 17</i>) tion for Bit 1 tion for Bit 2 tion for Bit 3 tion for Bit 4 tion for Bit 5 tion for Bit 6 tion for Bit 1 tion for Bit 1 tion for Bit 2 tion for Bit 3 tion for Bit 4 tion for Bit 5	f = 20 MHz		0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100 3.3 6.6 10.2 13.5 17.4	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300 3.9 7.1 10.7 14.1	ns ns ps ns ns ns ns ns ns ns ns ns ns ns ns ns
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos1 TPPos2 TPPos4 TPPos5 TPPos3 TPPos3 TPPos4 TPPos3 TPPos5 TPPos5 TPPos6	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) Time (<i>Figure 3</i>) ture 5) tew (Note 5) (<i>Figure 6</i>) tion for Bit 0 (<i>Figure 17</i>) tion for Bit 1 tion for Bit 2 tion for Bit 3 tion for Bit 4 tion for Bit 5 tion for Bit 6 tion for Bit 1 tion for Bit 1 tion for Bit 2 tion for Bit 3 tion for Bit 4 tion for Bit 5	f = 20 MHz	200 6.3 12.8 20 27.2 34.5 42.2 34.5 42.2 34.5 42.2 34.5 12.9 6.1 9.7 13 17	0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100 3.3 6.6 10.2 13.5 17.4	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300 3.9 7.1 10.7 14.1 17.8	ns ns ps ns ns ns ns ns ns ns ns ns ns ns ns ns
Over rec Symbol LLHT LHLT TCIT TCCS TPPos0 TPPos0 TPPos3 TPPos4 TPPos5 TPPos6 TPPos1 TPPos2	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (Figure 3) Time (Figure 3) ture 5) tew (Note 5) (Figure 6) ton for Bit 0 (Figure 17) ton for Bit 1 ton for Bit 2 ton for Bit 3 ton for Bit 4 ton for Bit 5 ton for Bit 6 ton for Bit 7 ton for Bit 8 ton for Bit 9 ton for Bit 9 ton for Bit 1 ton for Bit 1 ton for Bit 3 ton for Bit 4 ton for Bit 1 ton for Bit 3 ton for Bit 4 ton for Bit 3 ton for Bit 3 ton for Bit 4 ton for Bit 5 ton for Bit 5 ton for Bit 5 ton for Bit 5 ton for Bit 6	f = 20 MHz		0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100 3.3 6.6 10.2 13.5 17.4 20.8 T	1.5 1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300 3.9 7.1 10.7 14.1 17.8 21.4	ns ns ps ns ns ns ns ns ns ns ns ns ns ns ns ns
Over rec Symbol LLHT LLHT TCCS TPPos0 TPPos1 TPPos2 TPPos3 TPPos4 TPPos5 TPPos1 TPPos2 TPPos3 TPPos1 TPPos2 TPPos3 TPPos3 TPPos4 TPPos5 TPPos5 TPPos6 TCIP TCIP TCIP	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (Figure 3) Time (Figure 3) ture 5) tew (Note 5) (Figure 6) ton for Bit 0 (Figure 17) ton for Bit 1 ton for Bit 2 ton for Bit 3 ton for Bit 4 ton for Bit 5 ton for Bit 6 ton for Bit 7 ton for Bit 8 ton for Bit 9 ton for Bit 9 ton for Bit 1 ton for Bit 1 ton for Bit 3 ton for Bit 4 ton for Bit 1 ton for Bit 3 ton for Bit 4 ton for Bit 3 ton for Bit 3 ton for Bit 4 ton for Bit 5 ton for Bit 5 ton for Bit 5 ton for Bit 5 ton for Bit 6	f = 20 MHz		0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100 3.3 6.6 10.2 13.5 17.4 20.8 T 0.5T	1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300 3.9 7.1 10.7 14.1 17.8 21.4 50	ns ns ps ns ns ns ns ns ns ns ns ns ns ns ns ns
Over rec Symbol LLHT LLHT TCIT TCCS TPPos0 TPPos1 TPPos2 TPPos4 TPPos5 TPPos1 TPPos4 TPPos1 TPPos1 TPPos2 TPPos3 TPPos3 TPPos4 TPPos5 TPPos5 TPPos6 TPPos6 TOPOs6 TCIP	commended operating supply and LVDS Low-to-High Transition T LVDS High-to-Low Transition T TxCLK IN Transition Time (<i>Fig.</i> TxOUT Channel-to-Channel Sk Transmitter Output Pulse Positi Transmitter Output Pulse Positi	d temperature ranges unless of Parameter Time (Figure 3) Time (Figure 3) Time (Figure 3) Time (Figure 3) Time (Figure 5) Time (Figure 6) Tom for Bit 0 (Figure 6) Tom for Bit 1 Tom for Bit 2 Tom for Bit 2 Tom for Bit 3 Tom for Bit 4 Tom for Bit 5 Tom for Bit 1 Tom for Bit 2 Tom for Bit 3 Tom for Bit 4 Tom for Bit 5 Tom for Bit 6 Tom for Bit 6	f = 20 MHz	 -200 6.3 12.8 20 27.2 34.5 42.2 -100 2.9 6.1 9.7 13 17 20.3 25 0.35⁻ 0.35⁻ 	0.75 0.75 150 7.2 13.6 20.8 28 35.2 42.6 100 3.3 6.6 10.2 13.5 17.4 20.8 T 0.5T	1.5 1.5 1.5 8 350 7.5 14.6 21.5 28.5 35.6 42.9 300 3.9 7.1 10.7 14.1 17.8 21.4 50 0.65T	ns ns ps ns ns ns ns ns ns ns ns ns ns ns ns ns

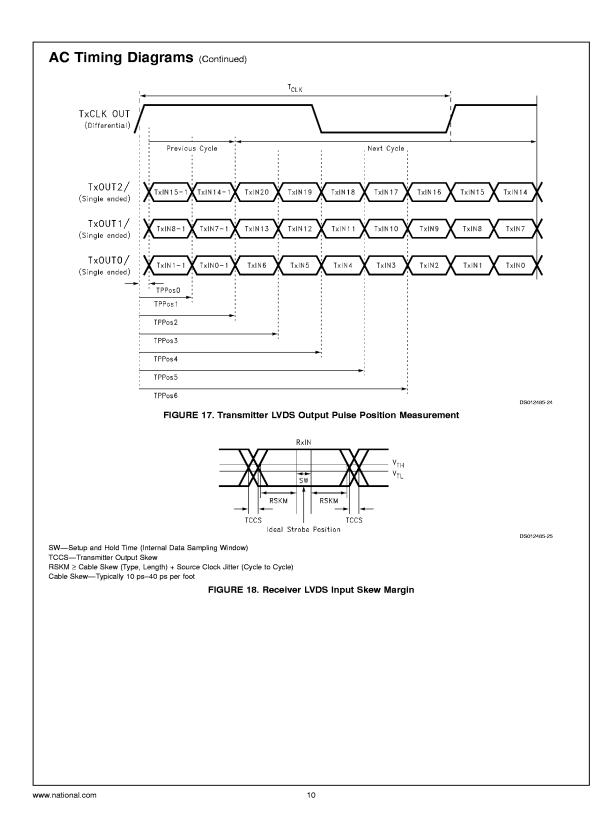
4

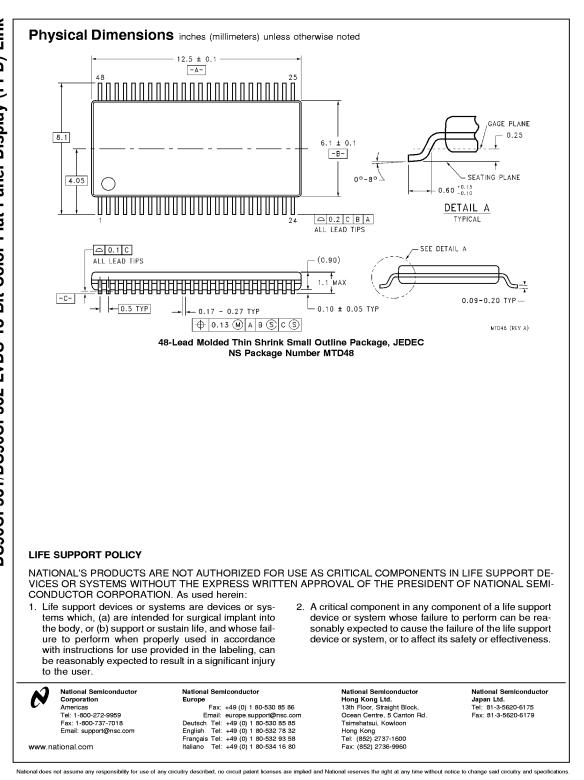


mmended operating supply and temperature ranges unless otherwise Parameter TxCLK IN to TxCLK OUT Delay @ 25°C, V _{CC} = 5.0V (<i>Figure 9</i>) Transmitter Phase Lock Loop Set (<i>Figure 11</i>) Transmitter Powerdown Delay (<i>Figure 15</i>) s limit based on bench characterization. Ver Switching Characteristics mmended operating supply and temperature ranges unless otherwise Parameter CMOS/TTL Low-to-High Transition Time (<i>Figure 4</i>) CMOS/TTL High-to-Low Transition Time (<i>Figure 4</i>)		Min 5	Тур	Max 9.7 10 100	Units ns ms ns
TxCLK IN to TxCLK OUT Delay @ 25°C, V _{CC} = 5.0V (<i>Figure 9</i>) Transmitter Phase Lock Loop Set (<i>Figure 11</i>) Transmitter Powerdown Delay (<i>Figure 15</i>) s limit based on bench characterization. Ver Switching Characteristics mmended operating supply and temperature ranges unless otherwise Parameter CMOS/TTL Low-to-High Transition Time (<i>Figure 4</i>)	specified			9.7 10	ns ms
V _{CC} = 5.0V (<i>Figure 9</i>) Transmitter Phase Lock Loop Set (<i>Figure 11</i>) Transmitter Powerdown Delay (<i>Figure 15</i>) s limit based on bench characterization. ver Switching Characteristics mmended operating supply and temperature ranges unless otherwise Parameter CMOS/TTL Low-to-High Transition Time (<i>Figure 4</i>)	specified	5		10	ms
Transmitter Phase Lock Loop Set (<i>Figure 11</i>) Transmitter Powerdown Delay (<i>Figure 15</i>) s limit based on bench characterization. ver Switching Characteristics mmended operating supply and temperature ranges unless otherwise Parameter CMOS/TTL Low-to-High Transition Time (<i>Figure 4</i>)	specified				
Transmitter Powerdown Delay (<i>Figure 15</i>) s limit based on bench characterization. ver Switching Characteristics mmended operating supply and temperature ranges unless otherwise Parameter CMOS/TTL Low-to-High Transition Time (<i>Figure 4</i>)	specified				
s limit based on bench characterization. ver Switching Characteristics mmended operating supply and temperature ranges unless otherwise Parameter CMOS/TTL Low-to-High Transition Time (<i>Figure 4</i>)	specified			100	115
ver Switching Characteristics mmended operating supply and temperature ranges unless otherwise Parameter CMOS/TTL Low-to-High Transition Time (<i>Figure 4</i>)	specified				
CMOS/TTL Low-to-High Transition Time (Figure 4)					
		Min	Тур	Max	Units
CMOS/TTL High-to-Low Transition Time (<i>Figure 4</i>)			3.5	6.5	ns
			2.7	6.5	ns
RxCLK OUT Period (Figure 8)		25	Т	50	ns
Receiver Skew Margin (Note 6) . $V_{CC} = 5V$, $T_A = 25^{\circ}C$ (<i>Figure 18</i>)	f = 20 MHz	1.1			ns
·· · · · · · · · · · · · · · · · · ·	f = 40 MHz	700			ps
RxCLK OUT High Time (<i>Figure 8</i>)	f = 20 MHz	21.5			ns
	f = 40 MHz	10.5			ns
RxCLK OUT Low Time (Figure 8)	f = 20 MHz	19			ns
	f = 40 MHz	6			ns
RxOUT Setup to RxCLK OUT (Figure 8)	f = 20 MHz	14			ns
	f = 40 MHz				ns
RXOUT Hold to RXCLK OUT (Figure 8)					ns
· · · · · · · · · · · · · · · · · · ·					ns
RxCLK IN to RxCLK OUT Delay @ 25°C.		7.6		11.9	ns
• · · · ·					
				10	ms
					μs
up and hold time (internal data sampling window), allowing LVDS cable skew dependent of ble skew (type, length) + source clock jitter (cycle to cycle)					(TCCS)
▲ T → T					
	RxCLK OUT High Time (<i>Figure 8</i>) RxCLK OUT Low Time (<i>Figure 8</i>) RxOUT Setup to RxCLK OUT (<i>Figure 8</i>) RxOUT Hold to RxCLK OUT (<i>Figure 8</i>) RxCLK IN to RxCLK OUT (<i>Figure 8</i>) RxCLK IN to RxCLK OUT Delay @ 25°C, V _{CC} = 5.0V (<i>Figure 10</i>) Receiver Phase Lock Loop Set (<i>Figure 12</i>) Receiver Powerdown Delay (<i>Figure 16</i>) zeiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This p and hold time (internal data sampling window), allowing LVDS cable skew dependent of the power of the sampling window).	f = 40 MHzRxCLK OUT High Time (Figure 8)f = 20 MHzf = 40 MHzf = 40 MHzRxCLK OUT Low Time (Figure 8)f = 20 MHzf = 40 MHzf = 40 MHzRxOUT Setup to RxCLK OUT (Figure 8)f = 20 MHzf = 40 MHzf = 40 MHzRxOUT Hold to RxCLK OUT (Figure 8)f = 20 MHzf = 40 MHzf = 40 MHzRxOUT Hold to RxCLK OUT (Figure 8)f = 40 MHzRxCLK IN to RxCLK OUT Delay @ 25°C,f = 40 MHzV _{CC} = 5.0V (Figure 10)Receiver Phase Lock Loop Set (Figure 12)Receiver Powerdown Delay (Figure 16)sever Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into ac p and hold time (internal data sampling window), allowing LVDS cable skew dependent on type/length and scole skew (type, length) + source clock jitter (cycle to cycle)	f = 40 MHz700RxCLK OUT High Time (Figure 8)f = 20 MHz21.5f = 40 MHz10.5RxCLK OUT Low Time (Figure 8)f = 20 MHz19f = 40 MHz6RxOUT Setup to RxCLK OUT (Figure 8)f = 20 MHz14f = 40 MHz4.5RxOUT Hold to RxCLK OUT (Figure 8)f = 20 MHz16f = 40 MHz6.57.67.6V _{CC} = 5.0V (Figure 10)7.67.6Receiver Phase Lock Loop Set (Figure 12)7.67.6Receiver Phase Lock Loop Set (Figure 16)5.67.6rever Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account for tr p and hold time (internal data sampling window), allowing LVDS cable skew dependent on type/length and source clock ble skew (type, length) + source clock jitter (cycle to cycle)	f = 40 MHz700RxCLK OUT High Time (Figure 8)f = 20 MHz21.5f = 40 MHz10.5RxCLK OUT Low Time (Figure 8)f = 20 MHz19f = 40 MHz6RxOUT Setup to RxCLK OUT (Figure 8)f = 20 MHz14f = 40 MHz4.5RxOUT Hold to RxCLK OUT (Figure 8)f = 20 MHz16f = 40 MHz6.57.6RxCLK IN to RxCLK OUT Delay @ 25°C,7.6V _{CC} = 5.0V (Figure 10)7.6Receiver Phase Lock Loop Set (Figure 12)2Receiver Powerdown Delay (Figure 16)2setiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account for transmitter of p and hold time (internal data sampling window), allowing LVDS cable skew dependent on type/length and source clock(TxCLK IN the skew (type, length) + source clock jitter (cycle to cycle)	f = 40 MHz700RxCLK OUT High Time (Figure 8)f = 20 MHz21.5f = 40 MHz10.51RxCLK OUT Low Time (Figure 8)f = 20 MHz19f = 40 MHz61RxOUT Setup to RxCLK OUT (Figure 8)f = 20 MHz14f = 40 MHz4.51RxOUT Hold to RxCLK OUT (Figure 8)f = 20 MHz14f = 40 MHz6.51RxOUT Hold to RxCLK OUT (Figure 8)f = 20 MHz16RxCLK IN to RxCLK OUT Delay @ 25°C,7.611.9V _{CC} = 5.0V (Figure 10)7.611.9Receiver Phase Lock Loop Set (Figure 12)10Receiver Powerdown Delay (Figure 16)1rever Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account for transmitter output skew part on type/length and source clock(TxCLK IN) jitter.vel e skew (type, length) + source clock jitter (cycle to cycle)10




ma Pe




DS90CF561 Pin Description—FPD Link Transmitter

Pin Name	I/O	No.	Description
TxIN	I	21	TTL level input. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines (FPLINE, FPFRAME,
			DRDY). (Also referred to as HSYNC, VSYNC and DATA ENABLE.)
TxOUT+	0	3	Positive LVDS differential data output
TxOUT-	0	3	Negative LVDS differential data output
FPSHIFT IN	1	1	TTL level clock input. The falling edge acts as data strobe.
TxCLK OUT+	0	1	Positive LVDS differential clock output
TxCLK OUT-	0	1	Negative LVDS differential clock output
PWR DOWN	1	1	TTL level input. Assertion (low input) TRI-STATES the outputs, ensuring low current at power
			down.
$V_{\rm cc}$	1	4	Power supply pins for TTL inputs
GND	1	5	Ground pins for TTL inputs
PLL V _{CC}	1	1	Power supply pin for PLL
PLL GND	1	2	Ground pins for PLL
LVDS V _{CC}	1	1	Power supply pin for LVDS outputs
LVDS GND	1	3	Ground pins for LVDS outputs

DS90CF562 Pin Description—FPD Link Receiver

Pin Name	I/O	No.	Description
RxIN+	I	3	Positive LVDS differential data inputs
RxIN-	I	3	Negative LVDS differential data inputs
RxOUT	0	21	TTL level data outputs. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines (FPLINE, FPFRAME, DRDY). (Also referred to as HSYNC, VSYNC and DATA ENABLE.)
RxCLK IN+	Ι	1	Positive LVDS differential clock input
RxCLK IN-	Ι	1	Negative LVDS differential clock input
FPSHIFT OUT	0	1	TTL level clock output. The falling edge acts as data strobe.
PWR DOWN	Ι	1	TTL level input. Assertion (low input) maintains the receiver outputs in the previous state
V _{cc}	Ι	4	Power supply pins for TTL outputs
GND	Ι	5	Ground pins for TTL outputs
PLL V _{CC}	Ι	1	Power supply for PLL
PLL GND	Ι	2	Ground pin for PLL
LVDS V _{CC}	Ι	1	Power supply pin for LVDS inputs
LVDS GND	Ι	3	Ground pins for LVDS inputs

