查询74HC573D-T供应商

捷多邦,专业PCB打样II

,24小时**4HC/HCT573** 加急出货 MSI

OCTAL D-TYPE TRANSPARENT LATCH; 3-STATE

FEATURES

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors/microcomputers
- 3-state non-inverting outputs for bus oriented applications
- Common 3-state output enable input
- Functionally identical to the "563" and "373"
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT573 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no, 7A.

The 74HC/HCT573 are octal D-type transparent latches featuring separate D-type inputs for each latch and 3-state outputs for bus oriented applications. A latch enable (LE) input and an output enable (\overline{OE}) input are common to all latches.

The "573" consists of eight D-type transparent latches with 3-state true outputs. When LE is HIGH, data at the D_n inputs enter the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its corresponding D-input changes.

When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE. When \overline{OE} is LOW, the contents of the 8 latches are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the latches. (continued on part pare)

of the latches. (continued on next page)

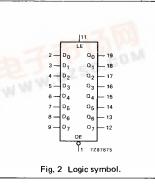
OE 1	U	20 Vcc
D0 2		19 ^Q 0
D1 3		18 ^Q 1
D ₂ 4		17 ⁰ 2
D3 5	670	16 Q3
D4 6	573	15 Q ₄
D5 7		14 05
D6 8		13 Q ₆
D7 9		12 07
GND 10		11 LE
-	7287872	-
Fig. 1 Pi	in config	uration.

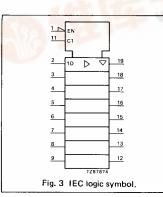
M- 88

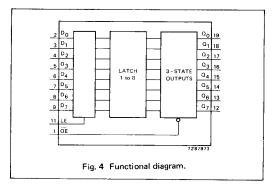
0140001	DADAMETER		TYF			
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT ns ns	
^t PHL/ ^t PLH	propagation delay D _n to Q _n LE to Q _n	C _L = 15 pF V _{CC} = 5 V	14 15	17 15		
с _I	input capacitance	1 9	3.5	3.5	pF	
CPD	power dissipation capacitance per latch	notes 1 and 2	26	26	pF	

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

Notes

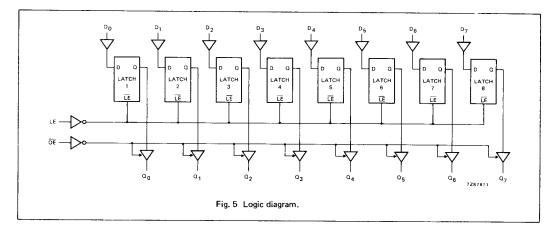

- 1. CPD is used to determine the dynamic power dissipation (PD in μ W):
 - $P_D = C_{PD} \times V_{CC^2} \times f_i + \Sigma (C_L \times V_{CC^2} \times f_o)$ where:
 - fi = input frequency in MHz
 - $f_0 = output frequency in MHz$
- CL = output load capacitance in pF VCC = supply voltage in V
- $$\begin{split} &\Sigma \ (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs} \\ &2. \ \text{For HC} \ \ \text{the condition is } V_I = \text{GND to } V_{CC} \\ &\text{For HCT the condition is } V_I = \text{GND to } V_{CC} 1.5 \ \text{V} \end{split}$$


PACKAGE OUTLINES


20-lead DIL; plastic (SOT146). 20-lead mini-pack; plastic (SO20; SOT163A).

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2, 3, 4, 5, 6, 7, 8, 9	D ₀ to D ₇	data inputs
11	LE	latch enable input (active HIGH)
1	ŌĒ	3-state output enable input (active LOW)
10	GND	ground (0 V)
19, 18, 17, 16, 15, 14, 13, 12	Q0 to Q7	3-state latch outputs
20	V _{CC}	positive supply voltage


FUNCTION TABLE

OPERATING MODES	11	VPU	гs	INTERNAL	OUTPUTS	
of EnAring MODES	ŌĒ	LE	Dn	LATCHES	Q ₀ to Q ₇	
enable and read register (transparent mode)	L L	н н	L H	L H	L H	
latch and read register	L L	L L	l h	L H	L H	
latch register and disable outputs	H H	L L	J h	L H	Z Z	

GENERAL DESCRIPTION

The "573" is functionally identical to the "563" and "373", but the "563" has inverted outputs and the "373" has a different pin arrangement.

- H = HIGH voltage level
- h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition
- L = LOW voltage level
- LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition
- Z = high impedance OFF-state

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL PARAMETER		T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER	74HC									
STINDOL	TARAMETER	+25			-40	-40 to +85 -40 to +1			UNIT		WAVEFORMS
	min.	typ.	max.	min.	max.	min.	max.	1			
^t PHL/ ^t PLH	propagation delay D _n to Q _n		47 17 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 6
^t PHL [/] ^t PLH	propagation delay LE to Q _n		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 7
tPZH/ tPZL	3-state output enable time OE to Q _n		44 16 13	140 28 24		175 35 30		210 42 36	ns	2.0 4.5 6.0	Fig. 8
^t PHZ [/] ^t PLZ	3-state output disable time OE to Q _n		55 20 16	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 8
^t THL∕ ^t TLH	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig. 6
tw	enable pulse width HIGH	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 7
t _{su}	set-up time D _n to LE	50 10 9	11 4 3		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig. 9
t _h	hold time D _n to LE	5 5 5	3 1 1		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig. 9

.

DC CHARACTERISTICS FOR 74HCT

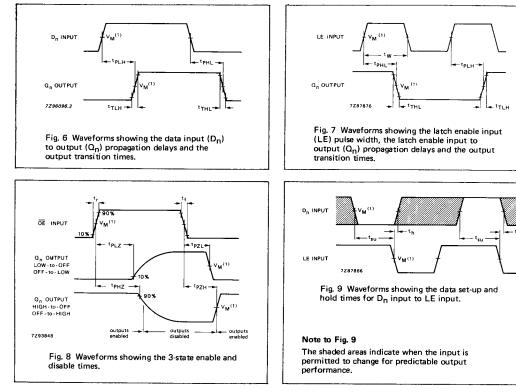
For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: bus driver I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current ($\triangle I_{CC}$) for a unit load of 1 is given in the family specifications. To determine $\triangle I_{CC}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D _n	0.35
LE	0.65
OE	1.25


AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$

ma P

SYMBÓL PARAMETER	T _{amb} (°C) 74HCT								TEST CONDITIONS		
									_		
01MBOL	(ADAME) EN	+25			-40	-40 to +85 -40 t		o +125	UNIT	V _{CC} V	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
^t PHL/ ^t PLH	propagation delay D _n to Q _n		20	35		44		53	ns	4.5	Fig. 6
^t PHL/ ^t PLH	propagation delay LE to Q _n		18	35		44		53	ns	4.5	Fig. 7
^t PZH [/] ^t PZL	3-state output enable time OE to Q _n		17	30		38		45	ns	4.5	Fig. 8
^t PHZ [/] ^t PLZ	3-state output disable time OE to Q _n		18	30		38		45	ns	4.5	Fig. 8
tTHL∕ tTLH	output transition time		5	12		15		18	ns	4.5	Fig. 6
tw	enable pulse width HIGH	16	5		20		24		ns	4.5	Fig. 7
t _{su}	set-up time D _n to LE	13	7		16		20		ns	4.5	Fig. 9
^t h	hold time D _n to LE	9	4		11		14		лs	4.5	Fig. 9

AC WAVEFORMS

Note to AC waveforms

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3$ V; $V_I = GND$ to 3 V.

March 1988

