

# MOS INTEGRATED CIRCUIT $\mu$ PD78P058F

# 8-BIT SINGLE-CHIP MICROCONTROLLER

### **DESCRIPTION**

The  $\mu$ PD78P058F is an Electro Magnetic Interface (EMI) noise reduction version in comparison with the usual  $\mu$ PD78P058.

The  $\mu$ PD78P058F is a member of the  $\mu$ PD78058F subseries of 78K/0 series products, in which the on-chip mask ROM is replaced with one-time programmable (OTP) ROM.

Because this device can be programmed by users, it is ideally suited for applications involving the small-scale production of many different products, and rapid development and time-to-market of a new product.

Details are given in the following User's Manuals. Be sure to read them before starting design.  $\mu$ PD78058F, 78058FY Subseries User's Manual (to be prepared) 78K Series User's Manual—Instruction (IEU-1372)

### **FEATURES**

- EMI noise reduction version (The overall peak level is reduced by 5 to 10 dB)
- Pin compatible with mask ROM versions (except the VPP pin)
- Internal PROM : 60 Kbytes\*\*\*

Programmable once only (ideal for small-scale production)

- Internal high-speed RAM: 1024 bytes
- Internal expansion RAM: 1024 bytes<sup>Note2</sup>
- Buffer RAM: 32 bytes
- Operable in the same supply voltage range as mask ROM versions (VDD = 2.7 to 6.0 V)
- One of the QTOP™ microcontrollers
- Notes 1. Internal PROM capacity can be changed by memory size switching register (IMS).
  - Internal expansion RAM capacity can be changed by internal expansion RAM size switching register (IXS).
- Remarks 1. For the difference between PROM and Mask ROM versions, see the chapter 1. DIFFERNCES

  BETWEEN μPD78P058F AND MASK ROM VERSIONS.
  - 2. QTOP Microcontroller is the general name of the microcontrollers with on-chip one-time PROM that are totally supported by NEC write service (from write to marking, screening and testing.)

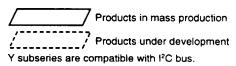
The information in this document is subject to change without notice.

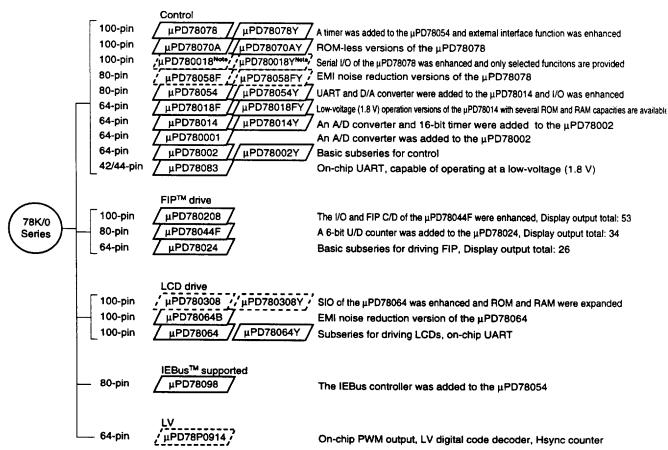
Document No. U11796EJ1V0DS00 (1st edition)
Date Published January 1997 N
Frinted in Japan

The mark \* shows major revised points.

■ 6427525 0086172 054 **■** 

# **ORDERING INFORMATION**


| Part Number          | Package                                                 | On-Chip ROM   |
|----------------------|---------------------------------------------------------|---------------|
| μPD78P058FGC-3B9     | 80-pin plastic QFP (14 × 14 mm, Resin thickness: 2.7mm) | One-time PROM |
| μPD78P058FGC-8BTNote | 80-pin plastic QFP (14 × 14 mm, Resin thickness: 1.4mm) | One-time PROM |


Note Under development

Remark The  $\mu$ PD78P058FGC contains two types of packages (see the chapter 8. PACKAGE DRAWINGS). For packages which can be supplied, consult your local NEC personnel.

### 78K/0 SERIES LINE-UP

These products are a further development in the 78K/0 series. The designations appearing inside the boxes are subseries names.





Note Under planning

me Pen me 980

The major functional differences among the subseries are shown below.

|                    | Function   | ROM       |       | Tir    | ner   |     | 8-bit | 8-bit | Serial Interface | 1/0 | Voo        | External  |
|--------------------|------------|-----------|-------|--------|-------|-----|-------|-------|------------------|-----|------------|-----------|
| Subseries na       | ame        | Capacity  | 8-bit | 16-bit | Watch | WDT | A/D   | D/A   |                  |     | MIN. Value | Expansion |
| Control            | μPD78078   | 32 K-60 K | 4ch   | 1ch    | 1ch   | 1ch | 8ch   | 2ch   | 3ch (UART: 1ch)  | 88  | 1.8 V      | v.        |
|                    | μPD78070A  | -         | 1     |        |       |     |       |       |                  | 61  | 2.7 V      |           |
|                    | μPD780018  | 48 K-60 K | 1     |        |       |     |       | -     | 2ch              | 88  |            |           |
|                    | μPD78058F  |           | 2ch   |        |       |     |       | 2ch   | 3ch (UART: 1ch)  | 69  |            |           |
|                    | μPD78054   | 16 K-60 K |       |        |       |     |       |       |                  |     | 2.0 V      |           |
|                    | μPD78018F  | 8 K-60 K  |       |        |       |     |       | -     | 2ch              | 53  | 1.8 V      |           |
|                    | μPD78014   | 8 K-32 K  |       |        |       |     |       |       |                  |     | 2.7 V      |           |
|                    | μPD780001  | 8 K       | 1     | _      | -     |     |       |       | 1ch              | 39  |            | -         |
|                    | μPD78002   | 8 K-16 K  |       |        | 1ch   |     | -     |       |                  | 53  |            | √.        |
|                    | μPD78083   |           |       |        | -     |     | 8ch   |       | 1ch (UART: 1ch)  | 33  | 1.8 V      | _         |
| FIP driving        | μPD780208  | 32 K-60 K | 2ch   | 1ch    | 1ch   | 1ch | 8ch   | -     | 2ch              | 74  | 2.7 V      | _         |
|                    | μPD78044F  | 16 K-40 K |       |        |       |     |       |       |                  | 68  | ]          |           |
|                    | μPD78024   | 24 K-32 K |       |        |       |     |       |       |                  | 54  | 1          |           |
| LCD driving        | μPD780308  | 48 K-60 K | 2ch   | 1ch    | 1ch   | 1ch | 8ch   | -     | 3ch (UART: 1ch)  | 57  | 1.8 V      | -         |
|                    | μPD78064B  | 32 K      |       |        |       |     |       |       | 2ch (UART: 1ch)  |     | 2.0 V      |           |
|                    | μPD78064   | 16 K-32 K |       | !      |       |     |       |       |                  |     | i          |           |
| IEBus<br>supported | μPD78098   | 32 K-60 K | 2ch   | 1ch    | 1ch   | 1ch | 8ch   | 2ch   | 3ch (UART: 1ch)  | 69  | 2.7 V      | √         |
| LV                 | μPD78P0914 | 32 K      | 6ch   | -      | -     | 1ch | 8ch   | _     | 2ch              | 54  | 4.5 V      | <b>V</b>  |



# **FUNCTION DESCRIPTION**

|                                    | Item                                    | Function                                                                                                                                                                                                                   |  |  |  |  |
|------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Internal memory                    |                                         | PROM : 60 Kbytes <sup>Note1</sup> RAM     Internal high-speed RAM : 1024 bytes     Internal expansion RAM : 1024 bytes Buffer RAM : 32 bytes                                                                               |  |  |  |  |
| Memory space                       | )                                       | 64 Kbytes                                                                                                                                                                                                                  |  |  |  |  |
| General regist                     | er                                      | 8 bits × 32 registers (8 bits × 8 registers × 4 banks)                                                                                                                                                                     |  |  |  |  |
| Instruction cyc                    | eles                                    | Instruction execution time is variable.                                                                                                                                                                                    |  |  |  |  |
|                                    | When main system clock is selected      | 0.4μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (@ 5.0 MHz)                                                                                                                                                                      |  |  |  |  |
|                                    | When subsystem clock is selected        | 122 μs (@ 32.768 kHz)                                                                                                                                                                                                      |  |  |  |  |
| Instruction set                    |                                         | <ul> <li>16-bit operation</li> <li>Multiply/divide (8-bit × 8-bit, 16-bit / 8-bit)</li> <li>Bit manipulation (set, reset, test, Boolean operation)</li> <li>BCD adjust, etc.</li> </ul>                                    |  |  |  |  |
| I/O ports                          | O ports                                 |                                                                                                                                                                                                                            |  |  |  |  |
| A/D converter                      |                                         | 8-bit resolution × 8 ch                                                                                                                                                                                                    |  |  |  |  |
| D/A converter                      |                                         | 8-bit resolution × 2 ch                                                                                                                                                                                                    |  |  |  |  |
| Serial interfac                    | ee                                      | 3-wire serial I/O, SBI, or 2-wire serial I/O mode selectable : 1 ch     3-wire serial I/O mode (with on-chip max. 32-byte automatic transmit/receive function) : 1 ch     3-wire serial I/O or UART mode selectable : 1 ch |  |  |  |  |
| Timer                              |                                         | 16-bit timer/event counter : 1 ch     8-bit timer/event counter : 2 ch     Watch timer : 1 ch     Watchdog timer : 1 ch                                                                                                    |  |  |  |  |
| Timer output                       |                                         | 3 pins (14-bit PWM output: 1 pin)                                                                                                                                                                                          |  |  |  |  |
| Clock output                       | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, and 5.0 MHz (@ 5.0 MHz with main system clock) 32.768 kHz (@ 32.768 kHz with subsystem clock)                                                  |  |  |  |  |
| Buzzer outpu                       | t                                       | 1.2 kHz, 2.4 kHz, 4.9 kHz and 9.8 kHz  (@ 5.0 MHz with main system clock)                                                                                                                                                  |  |  |  |  |
| Vectored Maskable interrupts       |                                         | Internal: 13, external: 7                                                                                                                                                                                                  |  |  |  |  |
| interrupts Non-maskable interrupts |                                         | Internal: 1                                                                                                                                                                                                                |  |  |  |  |
| Software interrupts                |                                         | 1                                                                                                                                                                                                                          |  |  |  |  |
| Test inputs                        |                                         | Internal: 1, external: 1                                                                                                                                                                                                   |  |  |  |  |
| Supply voltag                      | <b>)</b> e                              | Voo = 2.7 to 6.0 V                                                                                                                                                                                                         |  |  |  |  |
| Operating an                       | nbient temperature                      | T <sub>A</sub> = -40 to +85 °C                                                                                                                                                                                             |  |  |  |  |
| Packages                           |                                         | 80-pin plastic QFP (14 × 14 mm, Resin thickness: 2.7 mm)     80-pin plastic QFP (14 × 14 mm, Resin thickness: 1.4 mm)                                                                                                      |  |  |  |  |

Notes 1. Internal PROM capacity can be changed by memory size switching register (IMS).


2. Internal expansion RAM capacity can be changed by internal expansion RAM size switching register (IXS).



# PIN CONFIGURATIONS (TOP VIEW)

# (1) Normal Operating Mode

- 80-pin plastic QFP (14  $\times$  14 mm, Resin thickness: 2.7 mm)  $\mu$ PD78P058FGC-3B9
- 80-pin plastic QFP (14  $\times$  14 mm, Resin thickness: 1.4 mm)  $\mu$ PD78P058FGC-8BTNote



Note Under development

Cautions 1. Connect the VPP pin to Vss.

- The AV<sub>DD</sub> pin functions as both an A/D converter power supply and a port power supply. When
  the μPD78P058F is used in applications where the noise generated inside the microcontroller
  needs to be reduced, connect the AV<sub>DD</sub> pin to another power supply which has the same
  potencial as V<sub>DD</sub>.
- 3. The AVss pin functions as both grounds of an A/D converter and D/A converter and of a port. When the µPD78P058F is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVss pin to another ground line than Vss.

ma Pe

A8 to A15 : Address Bus
AD0 to AD7 : Address/ Data Bus

ANI0 to ANI7 : Analog Input ANO0 to ANO1 : Analog Output

ASCK : Asynchronous Serial Clock

ASTB : Address Strobe
AVDD : Analog Power Supply
AVREF0, AVREF1 : Analog Reference Voltage

AVss : Analog Ground

BUSY : Busy

BUZ : Buzzer Clock

INTP0 to INTP6 : Interrupt from Peripherals

: Port 13

P00 to P07 Port 0 P10 to P17 : Port 1 P20 to P27 : Port 2 P30 to P37 Port 3 P40 to P47 Port 4 P50 to P57 Port 5 P60 to P67 Port 6 P70 to P72 Port 7 P120 to P127 : Port 12

P130, P131

PCL : Programmable Clock

RD : Read Strobe
RESET : Reset

RTP0 to RTP7 : Real-Time Output Port

RxD : Receive Data
SB0, SB1 : Serial Bus
SCK0 to SCK2 : Serial Clock
SI0 to SI2 : Serial Input
SO0 to SO2 : Serial Output

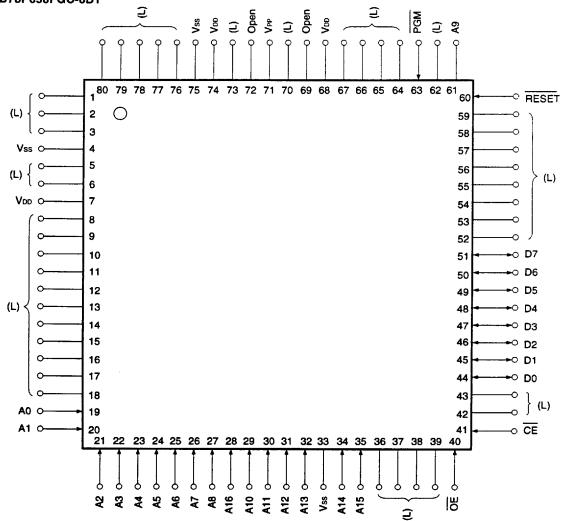
**STB** 

TI00, TI01 : Timer Input
TI1,TI2 : Timer Input
TO0 to TO2 : Timer Output
TxD : Transmit Data
Vbb : Power Supply

VPP : Programming Power Supply

Strobe

Vss : Ground WAIT : Wait


WR : Write Strobe

X1, X2 : Crystal (Main System Clock)
XT1, XT2 : Crystal (Subsystem Clock)



# (2) PROM Programming Mode

- 80-pin plastic QFP (14  $\times$  14 mm, Resin thickness: 2.7 mm)  $\mu$ PD78P058FGC-3B9
- 80-pin plastic QFP (14  $\times$  14 mm, Resin thickness: 1.4 mm)  $\mu$ PD78P058FGC-8BTNote



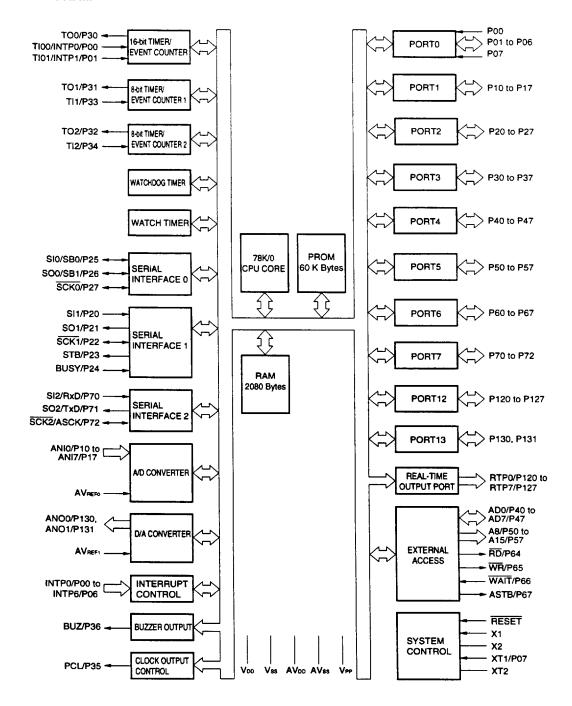
# Note Under development

Cautions 1. (L) : Individually connect to Vss via a pull-down resistor.

2. Vss : Connect to GND.
3. RESET : Set to low level.
4. Open : No connection

A0 to A16 : Address Bus RESET : Reset

D0 to D7 : Data Bus VDD : Power


The state of the s

OE : Output Enable Vss : Ground

PGM : Program

# **BLOCK DIAGRAM**

ma 88



# CONTENTS

| 1. | DIFFERENCES BETWEEN $\mu$ PD78P058F AND MASK ROM VERSIONS               | . 1              |
|----|-------------------------------------------------------------------------|------------------|
| 2. | PIN FUNCTIONS                                                           |                  |
|    | 2.1 PINS IN NORMAL OPERATING MODE                                       | . 13             |
|    | 2.2 PINS IN PROM PROGRAMMING MODE                                       | . 1              |
|    | 2.3 PIN INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS | . 1              |
| 3. | MEMORY SIZE SWITCHING REGISTER (IMS)                                    | . 2 <sup>.</sup> |
| 4. | INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)                    | . 2:             |
| 5. | PROM PROGRAMMING                                                        | 2:               |
|    | 5.1 OPERATING MODES                                                     |                  |
|    | 5.2 PROM WRITE PROCEDURE                                                |                  |
|    | 5.3 PROM READ PROCEDURE                                                 |                  |
| 6. | SCREENING OF ONE-TIME PROM VERSIONS                                     | . 30             |
| 7. | ELECTRICAL SPECIFICATIONS                                               | 3                |
| 8. | PACKAGE DRAWINGS                                                        | 64               |
| 9. | RECOMMENDED SOLDERING CONDITIONS                                        | 66               |
| ΑP | PENDIX A. DEVELOPMENT TOOLS                                             | 67               |
| ΑP | PENDIX B. RELATED DOCUMENTS                                             | 69               |

# 1. DIFFERENCES BETWEEN $\mu$ PD78P058F AND MASK ROM VERSIONS

The  $\mu$ PD78P058F is a single-chip microcontroller with an on-chip one-time writable PROM.

Setting the memory size switching register (IMS) and internal expansion RAM size switching register (IXS) enables the identical functions to mask ROM versions ( $\mu$ PD78P056F, 58F) except the functions of PROM specifications and of mask options for P60 to P63.

Differences between the µPD78P058F and mask ROM versions are shown in Table 1-1.

Table 1-1. Differences between  $\mu PD78P058F$  and Mask ROM Versions

| ltem                                                                                        | μPD78P058F                     | Mask ROM versions                              |  |
|---------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------|--|
| ROM structure                                                                               | One-time PROM                  | Mask ROM                                       |  |
| ROM capacity                                                                                | 60 Kbytes                      | μPD78056F : 48 Kbytes<br>μPD78058F : 60 Kbytes |  |
| Internal expansion RAM capacity                                                             | 1024 bytes                     | μPD78056F : None<br>μPD78058F : 1024 bytes     |  |
| Change of internal ROM capacity by memory size switching register                           | Can be changed <sup>Note</sup> | Cannot be changed                              |  |
| Change of internal expansion RAM capacity by internal expansion RAM size switching register | Can be changed <sup>Note</sup> | Cannot be changed                              |  |
| IC pin                                                                                      | None                           | Provided                                       |  |
| Ver pin                                                                                     | Provided                       | None                                           |  |
| Electrical chatacteristics                                                                  | See each Data Sheet            |                                                |  |

Note The RESET input sets the internal PROM and internal expansion RAM to 60 Kbytes and 1024 bytes, respectively.



# 2. PIN FUNCTIONS

# 2.1 Pins in Normal Operating Mode

# (1) Port Pins (1/2)

| Pin Name   | Input/Output |                                                                                             | Function                                                                                            | After Reset | Alternate Function |
|------------|--------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------|--------------------|
| P00        | Input        | Port 0                                                                                      | Input only                                                                                          | Input       | INTP0/TI00         |
| P01        | Input/output | 8-bit input/output<br>port                                                                  | Input/output is specifiable                                                                         | Input       | INTP1/TI01         |
| P02        |              |                                                                                             | bit-wise. When used as the input port, it is possible to                                            |             | INTP2              |
| P03        | 7            |                                                                                             | use an on-chip pull-up resistor by software.                                                        |             | INTP3              |
| P04        | 1            |                                                                                             |                                                                                                     |             | INTP4              |
| P05        | ]            |                                                                                             |                                                                                                     |             | INTP5              |
| P06        | 1            |                                                                                             |                                                                                                     |             | INTP6              |
| P07Note1   | Input        | 1                                                                                           | Input only                                                                                          | input       | XT1                |
| P10 to P17 | Input/output | Port 1 8-bit input/output po Input/output is speci When used as the ii use an on-chip pull- | rt<br>fiable bit-wise.<br>nput port, it is possible to<br>up resistor by software. <sup>Note2</sup> | Input       | ANI0 to ANI7       |
| P20        | Input/output | Port 2                                                                                      |                                                                                                     | Input       | SI1                |
| P21        |              | 8-bit input/output po<br>input/output is speci                                              |                                                                                                     |             | SO1                |
| P22        |              | when used as the ir<br>use an on-chip pull-                                                 |                                                                                                     |             | SCK1               |
| P23        |              |                                                                                             |                                                                                                     |             | STB                |
| P24        |              |                                                                                             |                                                                                                     |             | BUSY               |
| P25        |              |                                                                                             |                                                                                                     |             | SIO/SB0            |
| P26        |              |                                                                                             |                                                                                                     |             | SO0/SB1            |
| P27        | ]            |                                                                                             |                                                                                                     |             | SCK0               |
| P30        | Input/output | Port 3                                                                                      |                                                                                                     | Input       | TO0                |
| P31        |              | 8-bit input/output po<br>input/output is speci                                              | fiable bit-wise.                                                                                    | ·           | TO1                |
| P32        |              | when used as the ir<br>use an on-chip pull-                                                 | iput port, it is possible to up resistor by software.                                               |             | TO2                |
| P33        | Ì            |                                                                                             |                                                                                                     |             | TI1                |
| P34        |              |                                                                                             |                                                                                                     |             | TI2                |
| P35        |              |                                                                                             |                                                                                                     |             | PCL                |
| P36        |              |                                                                                             |                                                                                                     |             | BUZ                |
| P37        | 1            |                                                                                             |                                                                                                     |             | _                  |

Notes 1. When P07/XT1 pins are used as the input ports, set the processor clock control register (PCC) bit 6 (FRC) to 1, be sure not to use the feedback resistor of the subsystem clock oscillation circuit.

2. When P10/ANI0 to P17/ANI7 pins are used as the analog inputs for A/D converter, their pull-up resistor are automatically disabled.

Caution For pins which also function as port pins, do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept (except for LCD segment output alternate-function pin).

- <1> Rewrite the output latch while the pin is used as a port pin.
- <2> Change the output level of the pin used as an output pin, even if it is not used as a port pin.

# (1) Port Pins (2/2)

| Pin Name     | Input/Output | F                                                                                                                                          | unction                                                                  | After Reset  | Alternate Function |
|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------|--------------------|
| P40 to P47   | Input/output | Port 4<br>8-bit input/output port<br>Input/output is specific<br>When used as the inp<br>use an on-chip pull-up<br>Set test input flag(KRI | Input                                                                    | AD0 to AD7   |                    |
| P50 to P57   | Input/output | Port 5 8-bit input/output port it is possible to directi Input/output is specific When used as the inpuse an on-chip pull-up               | Input                                                                    | A8 to A15    |                    |
| P60          | Input/output | Port 6<br>8-bit input/output port                                                                                                          | N-ch open-drain                                                          | Input        | _                  |
| P61          |              | Input/output is specifiable bit-wise.                                                                                                      | It is possible to directly                                               |              |                    |
| P62          |              | specifiable bit-wise.                                                                                                                      | drive LEDs.                                                              |              |                    |
| P63          |              |                                                                                                                                            |                                                                          |              |                    |
| P64          |              |                                                                                                                                            | When used as the input                                                   |              | RD                 |
| P65          |              |                                                                                                                                            | port, it is possible to connect an on-chip pull-up resistor by software. | Input        | WR                 |
| P66          |              |                                                                                                                                            |                                                                          |              | WAIT               |
| P67          |              |                                                                                                                                            |                                                                          |              | ASTB               |
| P70          |              | Port 7                                                                                                                                     |                                                                          |              | SI2/RxD            |
| P71          | Input/output | 3-bit input/output port<br>input/output is specific                                                                                        | able bit-wise.                                                           | Input        | SO2/TxD            |
| P72          |              | use an on-chip pull-up                                                                                                                     | out port, it is possible to presistor by software.                       |              | SCK2/ASCK          |
| P120 to P127 | Input/output | Port 12<br>8-bit input/output port<br>Input/output is specific<br>When used as the inpuse an on-chip pull-up                               | input                                                                    | RTP0 to RTP7 |                    |
| P130, P131   | Input/output | Port 13 2-bit input/output port Input/output is specific When used as the inpuse an on-chip pull-up                                        | Input                                                                    | ANO0, ANO1   |                    |

Caution For pins which also function as port pins, do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept (except for LCD segment output alternate-function pin).

- <1> Rewrite the output latch while the pin is used as a port pin.
- <2> Change the output level of the pin used as an output pin, even if it is not used as a port pin.

m 280



# (2) Non-Port Pins (1/2)

| Pin Name | input/Output | Function                                                                    | After Reset | Alternate Function |
|----------|--------------|-----------------------------------------------------------------------------|-------------|--------------------|
| INTP0    | Input        | External interrupt inputs, with specifiable valid                           | Input       | P00/T100           |
| INTP1    |              | edges (rising edge, falling edge, and both rising and falling edges).       |             | P01/TI01           |
| INTP2    |              |                                                                             |             | P02                |
| INTP3    | 1            |                                                                             |             | P03                |
| INTP4    |              |                                                                             |             | P04                |
| INTP5    |              |                                                                             |             | P05                |
| INTP6    | 1            |                                                                             |             | P06                |
| SIO      | Input        | Serial data input of the serial interface                                   | Input       | P25/SB0            |
| SI1      |              |                                                                             |             | P20                |
| SI2      | 1            |                                                                             |             | P70/RxD            |
| SO0      | Output       | Serial data output of the serial interface                                  | Input       | P26/SB1            |
| SO1      | 1            |                                                                             |             | P21                |
| SO2      | 1            |                                                                             |             | P71/TxD            |
| SB0      | Input/output | Serial data input/output of the serial interface                            | Input       | P25/S10            |
| SB1      | 1            |                                                                             |             | P26/SO0            |
| SCK0     | Input/output | Serial clock input/output of the serial interface                           | Input       | P27                |
| SCK1     | 1            |                                                                             |             | P22                |
| SCK2     | 1            |                                                                             |             | P72/ASCK           |
| STB      | Output       | Automatic transmitting/receiving strobe output of the serial interface      | Input       | P23                |
| BUSY     | Input        | Automatic transmitting/receiving busy input of the serial interface         | Input       | P24                |
| RxD      | Input        | Serial data input for asynchronous serial interface                         | Input       | P70/SI2            |
| TxD      | Output       | Serial data output for asynchronous serial interface                        | Input       | P71/SO2            |
| ASCK     | Input        | Serial clock input for asynchronous serial interface                        | Input       | P72/SCK2           |
| TIOO     | Input        | External count clock input to 16-bit timer (TM0)                            | Input       | P00/INTP0          |
| TI01     |              | Capture trigger signal input to capture register (CR00)                     |             | P01/INTP1          |
| Ti1      |              | External count clock input to 8-bit timer (TM1)                             |             | P33                |
| TI2      |              | External count clock input to 8-bit timer (TM2)                             |             | P34                |
| TO0      | Output       | 16-bit timer (TM0) output<br>(Can be used together with 14-bit PWM output.) | Input       | P30                |
| TO1      | ]            | 8-bit timer (TM1) output                                                    |             | P31                |
| TO2      | 1            | 8-bit timer (TM2) output                                                    |             | P32                |



# (2) Non-Port Pins (2/2)

| Pin Name     | Input/Output | Function                                                                                                                | After Reset | Alternate Function |
|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|
| PCL          | Output       | Clock output (for trimming main system clock and subsystem clock)                                                       | Input       | P35                |
| BUZ          | Output       | Buzzer output                                                                                                           | Input       | P36                |
| RTP0 to RTP7 | Output       | Real-time output port which outputs data in synchronization with trigger.                                               | Input       | P120 to P127       |
| AD0 to AD7   | Input/output | Low-order address/data bus when expanding memory to the outside.                                                        | Input       | P40 to P47         |
| A8 to A15    | Output       | High-order address bus when expanding memory to the outside.                                                            | Input       | P50 to P57         |
| RD           | Output       | Strobe signal output for the external memory read operation                                                             | Input       | P64                |
| WR           | •            | Strobe signal output for the external memory write operation                                                            | Input       | P65                |
| WAIT         | Input        | Wait insertion when accessing external memory                                                                           | Input       | P66                |
| ASTB         | Output       | Strobe output to externally latches address information which is output to ports 4 and 5 for accessing external memory. | Input       | P67                |
| ANI0 to ANI7 | Input        | Analog input of A/D converter                                                                                           | Input       | P10 to P17         |
| ANO0, ANO1   | Output       | Analog output of D/A converter                                                                                          | Input       | P130, P131         |
| AVREFO       | Input        | Reference voltage input of A/D converter                                                                                | _           | _                  |
| AVREF1       | Input        | Reference voltage input of D/A converter                                                                                | _           | <del>-</del>       |
| AVDD         | _            | Analog power supply of A/D converter (shared with the port power supply).                                               | _           | _                  |
| AVss         | _            | Ground potential of A/D converter and D/A converter (shared with the port ground potential).                            | _           | _                  |
| RESET        | Input        | System reset input                                                                                                      | _           | _                  |
| X1           | Input        | Main system clock oscillation crystal connection                                                                        | _           | _                  |
| X2           | _            |                                                                                                                         | _           | _                  |
| XT1          | input        | Subsystem clock oscillation crystal connection                                                                          | Input       | P07                |
| XT2          | <del>_</del> |                                                                                                                         | _           | _                  |
| Vaa          | <del>_</del> | Positive power supply (except for port)                                                                                 | <u> </u>    | _                  |
| VPP          |              | High-voltage applied during program write/verify. Connected to Vss in normal operating mode.                            | _           | _                  |
| Vss          | _            | Ground potential (except for port)                                                                                      | _           | _                  |

- Cautions 1. The AV<sub>DD</sub> pin functions as both an A/D converter power supply and a port power supply. When the μPD78P058F is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AV<sub>DD</sub> pin to another power supply which has the same potential as V<sub>DD</sub>.
  - 2. The AVss pin functions as both grounds of an A/D converter and D/A converter and of a port. When the  $\mu$ PD78P058F is used in applications where the noise generated inside the microcontroller needs to be reduced, connect the AVss pin to another ground line than Vss.

ma Pe

# 2.2 Pins in PROM Programming Mode

| Pin Name        | Input/Output | Function                                                                                                                                                                        |  |  |  |
|-----------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| RESET           | Input        | PROM programming mode setting When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the RESET pin, this chip is set in the PROM programming mode. |  |  |  |
| Vpp             | Input        | PROM programming mode setting and high-voltage applied during program write/verification                                                                                        |  |  |  |
| A0 to A16       | Input        | Address bus                                                                                                                                                                     |  |  |  |
| D0 to D7        | Input/output | Data bus                                                                                                                                                                        |  |  |  |
| CE              | Input        | PROM enable input/program pulse input                                                                                                                                           |  |  |  |
| ŌĒ              | Input        | Read strobe input to PROM                                                                                                                                                       |  |  |  |
| PGM             | Input        | Program/program inhibit input in PROM programing mode.                                                                                                                          |  |  |  |
| V <sub>DD</sub> | _            | Positive power supply                                                                                                                                                           |  |  |  |
| Vss             | _            | Ground potential                                                                                                                                                                |  |  |  |

# 2.3 Pin Input/Output Circuits and Recomended Connection of Unused Pins

Types of input/output circuits of the pins and recommeded connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, see Figure 2-1.

Table 2-1. Pin input/Output Circuits (1/2)

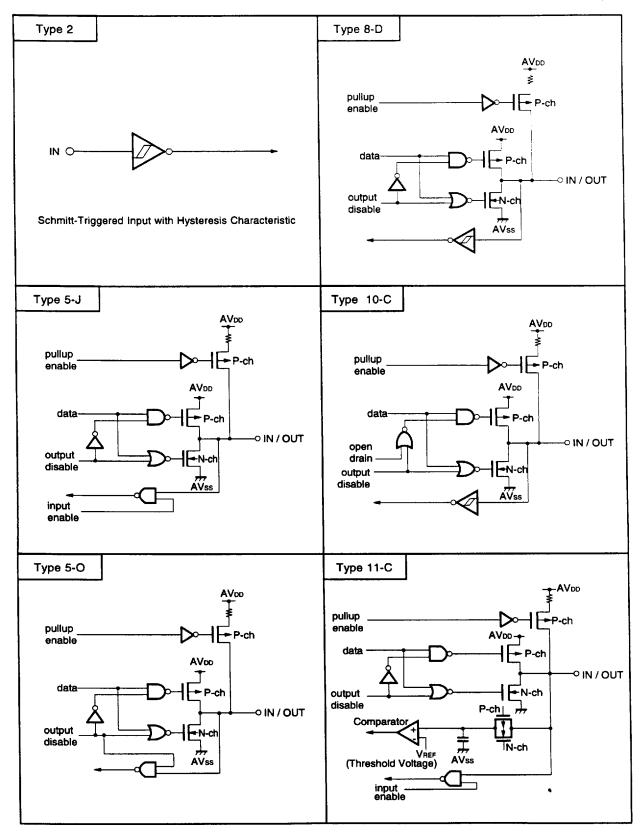

| Pin Name             | Input/Output<br>Circuit Type | Input/Output | Recommended Connecting Method when Unused      |
|----------------------|------------------------------|--------------|------------------------------------------------|
| P00/INTP0/TI00       | 2                            | Input        | Connect to Vss.                                |
| P01/INTP1/TI01       | 8-D                          | Input/output | Independently connect to Vss through           |
| P02/INTP2            |                              |              | resistor.                                      |
| P03/INTP3            |                              |              |                                                |
| P04/INTP4            |                              |              |                                                |
| P05/INTP5            |                              |              |                                                |
| P06/INTP6            |                              |              |                                                |
| P07/XT1              | 16                           | Input        | Connect to V <sub>DD</sub> .                   |
| P10/ANI0 to P17/ANI7 | 11-C                         | Input/output | Independently connect to VDD or Vss through    |
| P20/SI1              | 8-D                          | 1            | resistor.                                      |
| P21/SO1              | 5-J                          | 1            |                                                |
| P22/SCK1             | 8-D                          | ]            |                                                |
| P23/STB              | 5-J                          |              |                                                |
| P24/BUSY             | 8-D                          |              |                                                |
| P25/SI0/SB0          | 10-C                         | 1            |                                                |
| P26/SO0/SB1          | 1                            |              |                                                |
| P27/SCK0             | 1                            |              |                                                |
| P30/TO0              | 5-J                          | 1            |                                                |
| P31/TO1              |                              |              |                                                |
| P32/TO2              | 1                            |              |                                                |
| P33/TI1              | 8-D                          | 1            |                                                |
| P34/T12              | 1                            |              |                                                |
| P35/PCL              | 5-J                          | 1            |                                                |
| P36/BUZ              | 1                            |              |                                                |
| P37                  | 1                            |              |                                                |
| P40/AD0 to P47/AD7   | 5-O                          | 1            | Independently connect to Vpb through resistor. |



Table 2-1. Pin Input/Output Circuits (2/2)

| Pin Name               | Input/Output<br>Circuit Type | Input/Output | Recommended Connecting  Method when Unused                           |
|------------------------|------------------------------|--------------|----------------------------------------------------------------------|
| P50/A8 to P57/A15      | 5-J                          | Input/output | Independently connect to VDD or Vss through resistor.                |
| P60 to P63             | 13-H                         |              | Independently connect to Voo through resistor.                       |
| P64/RD                 | 5-J                          | Input/output | Independently connect to Voo or Vss.                                 |
| P65/WR                 |                              |              |                                                                      |
| P66/WAIT               |                              |              |                                                                      |
| P67/ASTB               |                              |              |                                                                      |
| P70/SI2/RxD            | 8-D                          | Input/output |                                                                      |
| P71/SO2/TxD            | 5-J                          |              |                                                                      |
| P72/SCK2/ASCK          | 8-D                          |              |                                                                      |
| P120/RTP0 to P127/RTP7 | 5-J                          | Input/output |                                                                      |
| P130/ANO0, P131/ANO1   | 12-B                         | Input/output | Independently connect to Vss through resistor.                       |
| RESET                  | 2                            | Input        | _                                                                    |
| XT2                    | 16                           | _            | Leave open.                                                          |
| AVREF0                 | _                            |              | Connect to Vss.                                                      |
| AVREF1                 |                              |              | Connect to Voo.                                                      |
| AVDD                   |                              |              | Connect to another ground line which has the same potential as Voo.  |
| AVss                   |                              |              | Connect to another power supply which has the same potential as Vss. |
| VPP                    |                              |              | Connect to Vss.                                                      |

Figure 2-1. Pin Input/Output Circuits (1/2)



m 280

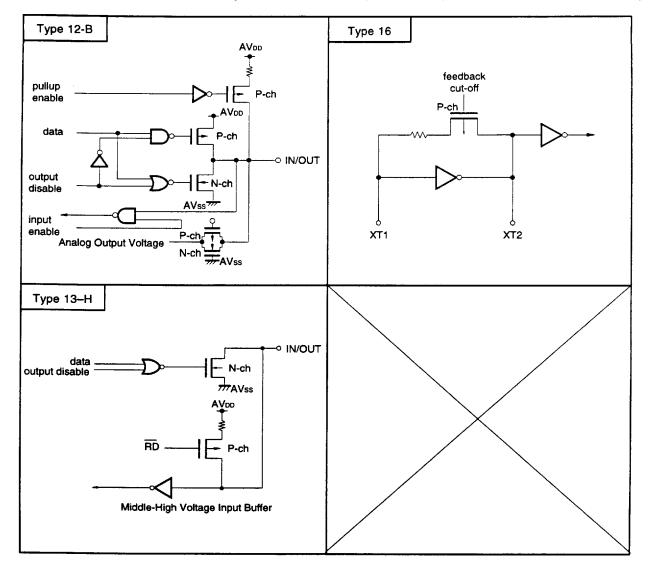
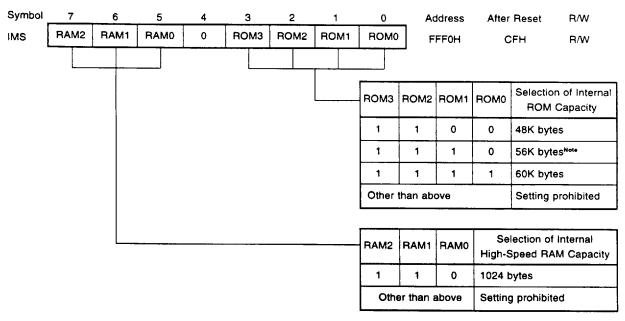



Figure 2-1. Pin Input/Output Circuits (2/2)

ma 88


# 3. MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory mapping as that of mask ROM version having different internal memories (ROM).

The IMS is set up by the 8-bit memory manipulation instruction.

CFH will result by the RESET input.

Figure 3-1. Memory Size Switching Register Format



Note Set the internal ROM capacity to 56K bytes or less when external device expansion function is used.

Table 3-1 shows the setting values of IMS which makes the memory mapping the same as that of the various mask ROM versions.

Table 3-1. Memory Size Switching Register Setting Values

| Target Mask ROM Version | IMS Setting Value |
|-------------------------|-------------------|
| μPD78056F               | ссн               |
| μPD78058F               | CFH               |



# 4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This is a register to set the internal expansion RAM capacity by software. By setting this internal expansion RAM size switching register (IXS), it is possible to get the same memory mapping as that of mask ROM version having different internal expansion RAM.

The IXS is set up by 8-bit memory manipulation instruction. 0AH will result by the RESET input.

Figure 4-1. Internal Expansion RAM Size Switching Register Format

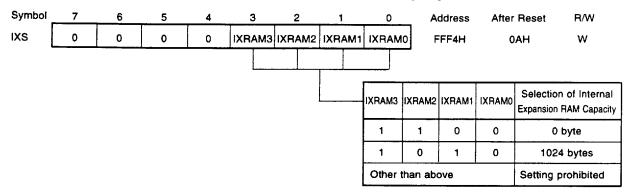



Table 4-1 shows the setting values of IXS which makes the memory mapping the same as that of the various mask ROM versions.

Table 4-1. Internal Expansion RAM Size Switching Register Setting Values

| Target Mask ROM Version | IXS Setting Value |
|-------------------------|-------------------|
| μPD78056F               | 0CH               |
| μPD78058F               | 0AH               |

**Remark** Even if the  $\mu$ PD78P058F program that includes "MOV IXS, #0CH" is implemented on the  $\mu$ PD78056F, its operation will not be affected.

ma 98

### 5. PROM PROGRAMMING

The  $\mu$ PD78P058F has an on-chip 60K-byte PROM as a program memory. For programming, set the PROM programming mode by the VPP and RESET pins. For connecting unused pins, refer to "PIN CONFIGURATIONS (TOP VIEW) (2) PROM Programming Mode."

Caution Program writing should be performed in the address range 0000H to EFFFH (the last address, EFFFH, should be specified). Writing cannot be performed with a PROM programmer that cannot specify the write addresses.

### 5.1 Operating Modes

When +5 V or +12.5 V is applied to the VPP pin and a low level signal is applied to the RESET pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the CE, OE and PGM pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

Pin RESET CE ŌĒ **PGM** VPP VDD D0 to D7 Operating Mode Page data latch L +12.5 V +6.5 V н L н Data input Page write Н High-impedance Н Byte write L н L Data input Program verify L L н Data output Program inhibit н н High-impedance × L L × Read +5 V +5 V L L н Data output Output disable L н High-impedance Standby н High-impedance

Table 5-1. Operating Modes of PROM Programming

Remark x: L or H

ma Pe

### (1) Read mode

Read mode is set if  $\overline{CE} = L$ ,  $\overline{OE} = L$  is set.

### (2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if  $\overline{OE} = H$  is set.

Therefore, it allows data to be read from any device by controlling the  $\overline{OE}$  pin, if multiple  $\mu$ PD78P058F are connected to the data bus.

# (3) Standby mode

Standby mode is set if  $\overline{CE} = H$  is set.

In this mode, data outputs become high-impedance irrespective of the  $\overline{\text{OE}}$  status.

# (4) Page data latch mode

Page data latch mode is set if  $\overline{CE} = H$ ,  $\overline{PGM} = H$ ,  $\overline{OE} = L$  are set at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

### (5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1 ms program pulse (active low) to the  $\overline{PGM}$  pin with  $\overline{CE} = H$ . Then, program verification can be performed, if  $\overline{CE} = L$ ,  $\overline{OE} = L$  are set.

If programming is not performed by a one-time program pulse, X ( $X \le 10$ ) write and verification operations should be executed repeatedly.

### (6) Byte write mode

Byte write is executed when a 0.1 ms program pulse (active low) is applied to the  $\overline{PGM}$  pin with  $\overline{CE} = L$ ,  $\overline{OE} = H$ . Then, program verification can be performed if  $\overline{OE} = L$  is set.

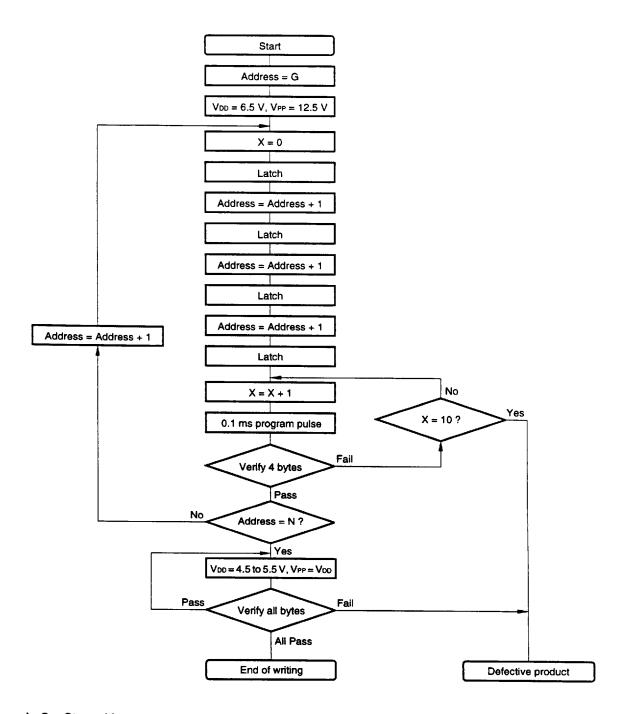
If programming is not performed by a one-time program pulse, X ( $X \le 10$ ) write and verification operations should be executed repeatedly.

# (7) Program verify mode

Program verify mode is set if  $\overline{CE} = L$ ,  $\overline{PGM} = H$ ,  $\overline{OE} = L$  are set.

In this mode, check if a write operation is performed correctly, after the write.

# (8) Program inhibit mode


Program inhibit mode is used when the  $\overline{OE}$  pin, V<sub>PP</sub> pin, and D0 to D7 pins of multiple  $\mu$ PD78P058Fs are connected in parallel and a write is performed to one of those devices.

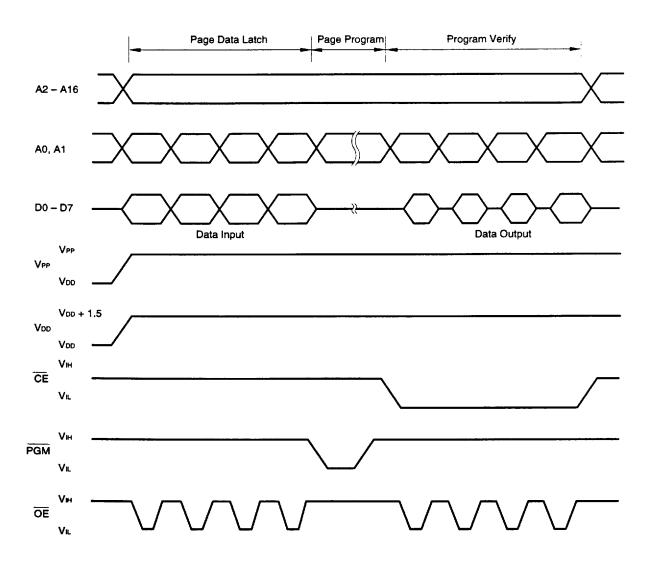
When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the  $\overline{PGM}$  pin driven high.



# 5.2 PROM Write Pocedure

Figure 5-1. Page Program Mode Flowchart




Remark G = Start address

as of the same

N = Program last address

25

Figure 5-2. Page Program Mode Timing



Start Address = G  $V_{DD} = 6.5 \text{ V}, \text{ Vpp} = 12.5 \text{ V}$ X = 0X = X + 1No Yes X = 10? 0.1 ms program pulse Address = Address + 1 Fail Verify Pass Address = N? Yes  $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, V_{PP} = V_{DD}$ Pass Fail Verify all bytes All Pass End of writing Defective product

Figure 5-3. Byte Program Mode Flowchart

Remark G = Start address
N = Program last address

m 280

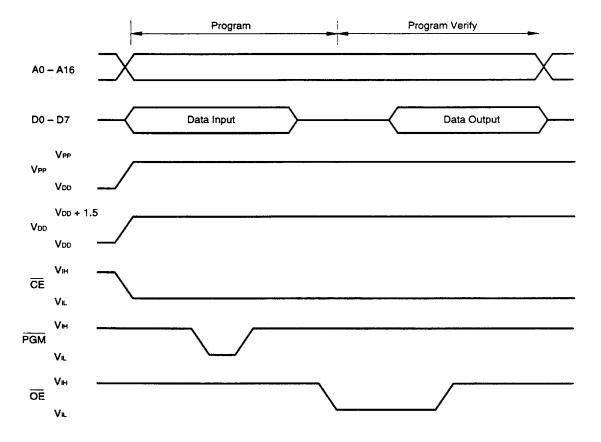
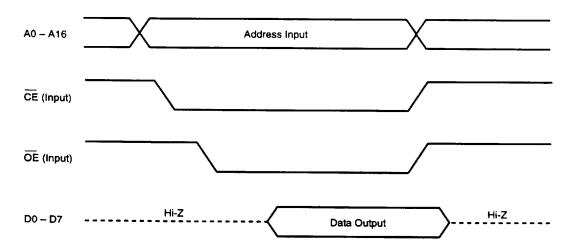



Figure 5-4. Byte Program Mode Timing

- Cautions 1. Vop should be applied before VPP and removed after VPP.
  - 2. VPP must not exceed +13.5 V including overshoot.
  - 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to VPP.

ma Pen


# 5.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in "PIN CONFIGURATION (TOP VIEW) (2) PROM Programming Mode".
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A16 pins.
- (4) Read mode
- (5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 5-5.

Figure 5-5. PROM Read Timings





# 6. SCREENING OF ONE-TIME PROM VERSIONS

The one-time PROM version ( $\mu$ PD78P058FGC-3B9, 78P058FGC-8BT) can not be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

| Storage Temperature | Storage Time |
|---------------------|--------------|
| 125 °C              | 24 hours     |

At present, a fee is charged by NEC for one-time PROM after-programming imprinting, screening, and verify service for the QTOP Microcontroller. For details, contact your sales representative.



# 7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25 °C)

| PARAMETER                     | SYMBOL          |                              | TEST CONDITIONS                                                                |                            | RATING                        | UNIT |
|-------------------------------|-----------------|------------------------------|--------------------------------------------------------------------------------|----------------------------|-------------------------------|------|
| Supply voltage                | VDD             |                              |                                                                                |                            | -0.3 to +7.0                  | V    |
|                               | VPP             |                              |                                                                                |                            | -0.3 to +13.5                 | V    |
|                               | AVob            |                              |                                                                                |                            | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                               | AVREF0          |                              |                                                                                |                            | -0.3 to Vpp + 0.3             | V    |
|                               | AVREF1          |                              |                                                                                |                            | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                               | AVss            |                              |                                                                                |                            | -0.3 to + 0.3                 | V    |
| Input voltage                 | Vıı             | P30 to P37,                  | P10 to P17, P20 to P2<br>P40 to 47, P50 to P57<br>P120 to P127, P130,<br>RESET | , P64 to P67,              | -0.3 to Voo + 0.3             |      |
|                               | V <sub>12</sub> | P60 to P63                   | N-ch open drain                                                                |                            | -0.3 to +16                   | V    |
|                               | Vıз             | A9                           | PROM programming                                                               | -0.3 to +13.5              | ٧                             |      |
| Output voltage                | Vo              |                              |                                                                                |                            | -0.3 to V <sub>DD</sub> + 0.3 |      |
| Analog input voltage          | Van             | P10 to P17 Analog input pins |                                                                                | AVss - 0.3 to AVREF0 + 0.3 |                               |      |
| Output current, high          | Іон             | Per pin                      | Per pin                                                                        |                            | -10                           | mA   |
|                               |                 | į.                           | 1 to P06, P30 to P37,<br>P120 to P127                                          | P56, P57,                  | -15                           | mA   |
|                               |                 | <b>I</b>                     | 0 to P17, P20 to P27,<br>P70 to P72, P130, P1                                  |                            | -15                           | mA   |
| Output current, low           | IOL Note        | Per pin                      |                                                                                | peak value                 | 30                            | mA   |
|                               |                 |                              |                                                                                | r.m.s. value               | 15                            | m/   |
|                               |                 | Total for P5                 | 60 to P55                                                                      | peak value                 | 100                           | mA   |
|                               |                 |                              |                                                                                | r.m.s. value               | 70                            | m/   |
|                               |                 | Total for Ps                 | 56, P57, P60 to P63                                                            | peak value                 | 100                           | m/   |
|                               |                 |                              |                                                                                | r.m.s. value               | 70                            | m/   |
|                               |                 |                              | 0 to P17, P20 to P27,                                                          | peak value                 | 50                            | m/   |
|                               | :               | P130, P13                    | r, P70 to P72,<br>1                                                            | r.m.s. value               | 20                            | m/   |
|                               |                 | Total for Po                 |                                                                                | peak value                 | 50                            | m/   |
|                               |                 | P30 to P37                   | 7, P64 to P67,<br>27                                                           | r.m.s value                | 20                            | m    |
| Operating ambient temperature | Ta              |                              |                                                                                |                            | -40 to +85                    | ٥    |
| Storage temperature           | Tatg            |                              |                                                                                |                            | -65 to +150                   | •0   |

Note r.m.s. values should be calculated as follows: [r.m.s. value] = [peak value]  $x \sqrt{Duty}$ 

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.



| Main System Clock Oscillator Characteristics | $(T_A = -40 \text{ to } +85 \text{ °C}, V_{DD} = 2.7 \text{ to } 6.0 \text{ V})$ |
|----------------------------------------------|----------------------------------------------------------------------------------|
|----------------------------------------------|----------------------------------------------------------------------------------|

| RESONATOR         | RECOMMENDED<br>CIRCUIT | PARAMETER                                   | TEST CONDITIONS                                         | MIN. | TYP. | MAX. | UNIT |
|-------------------|------------------------|---------------------------------------------|---------------------------------------------------------|------|------|------|------|
| Ceramic resonator | X2 X1 VPP              | Oscillatior frequency (fx) <sup>Note1</sup> | VDD = Oscillation voltage range                         | 1.0  |      | 5.0  | MHz  |
|                   | C2 = C1                | Oscillatior stabilization timeNote2         | After Voo has reached MIN. of oscillation voltage range |      |      | 4    | ms   |
| Crystal resonator | X2 X1 VPP              | Oscillatior frequency (fx) <sup>Note1</sup> |                                                         | 1.0  |      | 5.0  | MHz  |
|                   |                        | Oscillatior stabilization time Note2        | VDD = 4.5 to 6.0 V                                      |      |      | 10   | ms   |
|                   |                        |                                             |                                                         |      |      | 30   | IIIS |
| External clock    | x1 x2                  | X1 input frequency (fx) <sup>Note1</sup>    |                                                         | 1.0  |      | 5.0  | MHz  |
|                   | μPD74HCU04 💍           | X1 input high-/low-level width (tx+/txL)    |                                                         | 85   |      | 500  | ns   |

- Notes 1. Only the oscillator characteristics are shown. See the AC characteristics for instruction execution times.
  - 2. This is the time required for oscillation to stabilize after a reset or STOP mode release.
- 1. When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by broken lines to prevent the influence of wiring capacitance, etc.
  - The wiring should be kept as short as possible.
  - No other signal lines should be crossed.
  - · Keep away from lines carrying a high fluctuating current.
  - The oscillator capacitor grounding point should always be at the same potential as Vss.
  - Do not connect to a ground pattern carrying a high current.
  - A signal should not be taken from the oscillator.
  - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Osillator Characteristics ( $T_A = -40 \text{ to } +85 \text{ °C}$ ,  $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$ )

| RESONATOR         | RECOMMENDED<br>CIRCUIT | PARAMETER                                   | TEST CONDITIONS    | MIN. | TYP.   | MAX. | UNIT |
|-------------------|------------------------|---------------------------------------------|--------------------|------|--------|------|------|
| Ceramic resonator | VPP XT2 XT1            | Oscillatior frequency (fx) <sup>Note1</sup> |                    | 32   | 32.768 | 35   | kHz  |
|                   | C4 — C3                | Oscillatior stabilization timeNote2         | VDD = 4.5 to 6.0 V |      | 1.2    | 2    | s    |
|                   | <del>,,,,</del>        |                                             |                    |      |        | 10   | ĺ    |
| External clock    | XT1 XT2                | X1 input frequency<br>(fxt)Note1            |                    | 32   |        | 100  | kHz  |
|                   | 4                      | X1 input high-/low-level width (txтн/txть)  |                    | 5    |        | 15   | μs   |

- Notes 1. Only the oscillator characteristics are shown. See the AC characteristics for instruction execution times.
  - 2. This is the time required for oscillation to stabilize after power (VDD) is turned on.
- Cautions 1. When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by broken lines to prevent the influence of wiring capacitance, etc.
  - The wiring should be kept as short as possible.
  - · No other signal lines should be crossed.
  - · Keep away from lines carrying a high fluctuating current.
  - The oscillator capacitor grounding point should always be at the same potential as VSS.
  - Do not connect to a ground pattern carrying a high current.
  - A signal should not be taken from the oscillator.
  - The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to misoperation due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.





Capacitance (TA = 25 °C, VDD = Vss = 0 V)

| PARAMETER                                                     | SYMBOL                                   | TEST CONDITIONS                                                                                                          |            | MIN.     | TYP. | MAX. | UNIT |
|---------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------|----------|------|------|------|
| Input capacitance                                             | Cin                                      | f = 1 MHz, Measured pins returned to 0 V.                                                                                |            |          |      | 15   | pF   |
| Input/output Cio f = 1 MHz capacitance Measured pins returned | f = 1 MHz<br>Measured pins returned to 0 | P01 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P120 to P127, P130, P131 |            |          | 15   | pF   |      |
|                                                               |                                          |                                                                                                                          | P60 to P63 | <b>†</b> |      | 20   | рF   |

Remark Unless specified otherwise, dual-function pin characteristics are the same as port pin characteristics.

# DC Characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$ )

| PARAMETER                      | SYMBOL           | TEST CO                                                                                                      | NDITIONS                                                                                                                                   | MIN.                  | TYP. | MAX.                | UNIT |
|--------------------------------|------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|---------------------|------|
| Input voltage, high            | VIH1             | P10 to P17, P21, P23, P30 to P50 to P57, P64 to P67, P71,                                                    | P32, P35 to P37, P40 to P47, P120 to P127, P130, P131                                                                                      | 0.7 VDD               |      | Vpp                 | ٧    |
|                                | V <sub>IH2</sub> | P00 to P06, P20, P22, P24 to RESET                                                                           | P27, P33, P34, P70, P72,                                                                                                                   | 0.8 VDD               |      | VDD                 | ٧    |
|                                | VIH3             | P60 to P63 (N-ch open-drain)                                                                                 |                                                                                                                                            | 0.7 Voo               |      | 15                  | ٧    |
|                                | VIH4             | X1, X2                                                                                                       |                                                                                                                                            | V <sub>DD</sub> – 0.5 |      | Voo                 | V    |
|                                | VIHS             | XT1/P07, XT2                                                                                                 | Voc = 4.5 to 6.0 V                                                                                                                         | 0.8 V <sub>DD</sub>   |      | VDD                 | ٧    |
|                                |                  |                                                                                                              |                                                                                                                                            | 0.9 VDD               |      | V <sub>DD</sub>     | ٧    |
| Input voltage, low             | VIL1             | P10 to P17, P21, P23, P30 to P50 to P57, P64 to P67, P71,                                                    | P32, P35 to P37, P40 to P47,<br>P120 to P127, P130, P131                                                                                   | 0                     |      | 0.3 V <sub>DD</sub> | ٧    |
|                                | VIL2             | P00 to P06, P20, P22, P24 to RESET                                                                           | P27, P33, P34, P70, P72,                                                                                                                   | 0                     |      | 0.2 V <sub>DD</sub> | ٧    |
|                                | VIL3             | P60 to P63                                                                                                   | V <sub>DD</sub> = 4.5 to 6.0 V                                                                                                             | 0                     |      | 0.3 VDD             | ٧    |
|                                |                  |                                                                                                              |                                                                                                                                            | 0                     |      | 0.2 V <sub>DD</sub> | v    |
|                                | VIL4             | X1, X2                                                                                                       |                                                                                                                                            | 0                     |      | 0.4                 | ٧    |
|                                | VILS             | XT1/P07, XT2                                                                                                 | VDD = 4.5 to 6.0 V                                                                                                                         | 0                     |      | 0.2 VDD             | ٧    |
|                                |                  |                                                                                                              |                                                                                                                                            | 0                     |      | 0.1 VDD             | ٧    |
| Output voltage, high           | Vон              | Voo = 4.5 to 6.0 V, loн = - 1m                                                                               | A                                                                                                                                          | VDD - 1.0             |      |                     | ٧    |
|                                |                  | loн = −100 μA                                                                                                |                                                                                                                                            | Voo - 0.5             |      |                     | V    |
| Output voltage, low            | Vol1             | P50 to P57, P60 to P63                                                                                       | VDD = 4.5 to 6.0 V,<br>IOL = 15 mA                                                                                                         |                       | 0.4  | 2.0                 | V    |
|                                |                  | P01 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P70 to P72, P120 to P127, P130, P131 | Voc = 4.5 to 6.0 V,<br>loc = 1.6 mA                                                                                                        |                       |      | 0.4                 | V    |
|                                | Vo.2             | SB0, SB1, SCK0                                                                                               | $V_{DD}=4.5$ to 6.0 V, N-ch open-drain at pull-up time (R = 1 k $\Omega$ )                                                                 |                       |      | 0.2 VDD             | V    |
|                                | Vol3             | lot = 400 μA                                                                                                 |                                                                                                                                            |                       |      | 0.5                 | V    |
| Input leakage<br>current, high | lum              | VIN = VDD                                                                                                    | P00 to P06, P10 to P17, P20<br>to P27, P30 to P37, P40 to<br>P47, P50 to P57, P60 to P67<br>P70 to P72, P120 to P127,<br>P130, P131, RESET |                       |      | 3                   | μΑ   |
|                                | IL#H2            |                                                                                                              | X1, X2, XT1/P07, XT2                                                                                                                       |                       |      | 20                  | μА   |
|                                | lинз             | VIN = 15 V                                                                                                   | P60 to P63                                                                                                                                 |                       |      | 80                  | μА   |

Remark Unless specified otherwise, dual-function pin characteristics are the same as port pin characteristics.



**DC Characteristics** ( $T_A = -40 \text{ to } +85 \text{ °C}$ ,  $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$ )

| PARAMETER                     | SYMBOL                                                                              | TEST CO                                                                                                                                    | NDITIONS                       | MIN. | TYP. | MAX.               | UNIT |
|-------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|------|--------------------|------|
| Input leakage<br>current, low | flil1                                                                               | Vin = 0 V  P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P72, P120 to P127, P130, P131, RESET |                                |      |      | -3                 | μА   |
|                               | lu <sub>L2</sub>                                                                    |                                                                                                                                            | X1, X2, XT1/P07, XT2           |      |      | -20                | μА   |
|                               | luca                                                                                |                                                                                                                                            | P60 to P63                     | ·    |      | -3 <sup>Note</sup> | μΑ   |
| Output leakage current, high  | Ігон                                                                                | Vout = VDD                                                                                                                                 |                                |      |      | 3                  | μΑ   |
| Output leakage current, low   | ILOL                                                                                | Vουτ = 0 V                                                                                                                                 | Vout = 0 V                     |      |      | -3                 | μА   |
| Software pull-up resistor     | R <sub>2</sub>                                                                      | V <sub>IN</sub> = 0 V, P01 to P06, P10<br>to P17, P20 to P27, P30 to                                                                       | V <sub>DD</sub> = 4.5 to 6.0 V | 15   | 40   | 90                 | kΩ   |
|                               | P37, P40 to P47, P50 to<br>P57, P64 to P67, P70 to P72,<br>P120 to P127, P130, P131 |                                                                                                                                            | 20                             |      | 500  | kΩ                 |      |

Note When the pull-up resistor is not included in P60 to P63 (specified by a mask option), the –200 μA (MAX.) low-level input leakage current is passed only at the 1.5 clock interval (no wait) when the read instruction to the port6 (P6) and port mode register (PM6) is executed. Other than the 1.5 clock interval, –3 μA (MAX.) is passed.

Remark Unless specified otherwise, dual-function pin characteristics are the same as port pin characteristics.



# DC Characteristics ( $T_A = -40 \text{ to } +85 \text{ °C}$ , $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$ )

| PARAMETER                       | SYMBOL | TEST CONDITION                          | IS                                               | MIN. | TYP. | MAX. | UNIT     |
|---------------------------------|--------|-----------------------------------------|--------------------------------------------------|------|------|------|----------|
| Supply current <sup>Note1</sup> | looı   | 5.0 MHz crystal oscillation operating   | $V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note5}}$ |      | 5    | 15   | mA       |
|                                 |        | mode (fxx = 2.5 MHz)Note2               | VDD = 3.0 V ± 10%Note6                           | ,    | 0.7  | 2.1  | mA       |
|                                 |        | 5.0 MHz crystal oscillation operating   | $V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note5}}$ |      | 9.0  | 27.0 | mA       |
|                                 |        | mode (fxx = 5.0 MHz) <sup>Note3</sup>   | VDD = 3.0 V ± 10%Note6                           |      | 1.0  | 3.0  | mA       |
|                                 | IDD2   | 5.0 MHz crystal oscillation HALT        | Voo = 5.0 V ± 10%                                |      | 1.4  | 4.2  | mA       |
|                                 |        | mode (fxx = 2.5 MHz) <sup>Note2</sup>   | Voo = 3.0 V ± 10%                                |      | 0.5  | 1.5  | mA       |
|                                 |        | 5.0 MHz crystal oscillation HALT        | Voo = 5.0 V ± 10%                                |      | 1.6  | 4.8  | mA       |
|                                 |        | mode (fxx = 5.0 MHz)Note3               | VDD = 3.0 V ± 10%                                |      | 0.65 | 1.95 | mA       |
|                                 | IDD3   | 32.768 kHz                              | VDD = 5.0 V ± 10%                                |      | 135  | 270  | μА       |
|                                 |        | crystal oscillation operating modeNote4 | Vpp = 3.0 V ± 10%                                |      | 95   | 190  | μΑ       |
|                                 | IDD4   | 32.768 kHz                              | VDD = 5.0 V ± 10%                                |      | 25   | 55   | μΑ       |
|                                 |        | crystal oscillation HALT modeNote4      | Voo = 3.0 V ± 10%                                |      | 5    | 15   | μΑ       |
|                                 | IDDs   | XT1 = Voo                               | VDD = 5.0 V ± 10%                                |      | 1    | 30   | μΑ       |
|                                 |        | STOP mode                               | V 00V 100                                        |      |      |      | <u> </u> |
|                                 |        | Feedback resistor used                  | VDD = 3.0 V ± 10%                                |      | 0.5  | 10   | μΑ       |
|                                 | IDDe   | XT1 = Voo                               | V <sub>DD</sub> = 5.0 V ± 10%                    |      | 0.1  | 30   | μA       |
|                                 |        | STOP mode                               | V <sub>DD</sub> = 3.0 V ± 10%                    |      | 0.05 | 10   |          |
| L                               |        | Feedback resistor not used              | VDD = 3.0 V ± 10%                                |      | 0.05 | 10   | μΑ       |

- Notes 1. Passed through the Voo and AVoo pins. Not include the current which is passed through the A/D converter, D/A converter, and on-chip pull-up resistor.
  - 2. fxx = fx/2 operation (when an oscillation mode selection register (OSMS) is set to 00H)
  - 3. fxx = fx operation (when the OSMS is set to 01H)
  - 4. When the main system clock is stopped
  - 5. High-speed mode operation (when a processor clock control register (PCC) is set to 00H)
  - 6. Low-speed mode operation (when the PCC is set to 04H)

and and and

- Remarks 1. fxx: Main system clock frequency (fx or fx/2)
  - 2. fx : Main system clock oscillator frequency



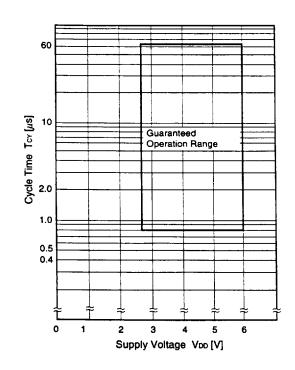
#### **AC Characteristics**

(1) Basic Operation ( $T_A = -40 \text{ to } +85 \text{ °C}, V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$ )

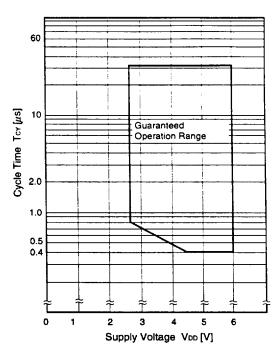
| PARAMETER             | SYMBOL          | TE                             | ST CONDITIO    | NS                             | MIN.                          | TYP. | MAX. | UNIT |
|-----------------------|-----------------|--------------------------------|----------------|--------------------------------|-------------------------------|------|------|------|
| Cycle time            | Тсч             | Operating on                   | fxx = fx/2Note | 1                              | 0.8                           |      | 64   | μs   |
| (minimum instruction  |                 | main system clock              | fxx = fx/Note2 | V <sub>DD</sub> = 4.5 to 6.0 V | 0.4                           |      | 32   | μs   |
| execution time)       |                 |                                |                |                                | 0.8                           |      | 32   | μs   |
|                       |                 | Operating on subsys            | tem clock      |                                | 40                            | 122  | 125  | μs   |
| TI00 input high-/low  | tтiноо,         | V <sub>DD</sub> = 4.5 to 6.0 V | <del>-</del>   |                                | 2/1sem + 0.1 Note3            |      |      | μs   |
| level width           | t⊤iLoo          |                                |                |                                | 2/fsam + 0.2 <sup>Note3</sup> |      |      | μs   |
| TI01 input high-/low  | <b>t</b> тіно1, |                                |                |                                | 10                            |      |      | μs   |
| level width           | tTIL01          |                                |                |                                |                               |      |      |      |
| TI1, TI2 input        | fTI1            | Voo = 4.5 to 6.0 V             |                |                                | 0                             |      | 4    | MHz  |
| frequency             |                 |                                |                |                                | 0                             |      | 275  | kHz  |
| TI1, TI2 input        | <b>t</b> тін1,  | V <sub>DD</sub> = 4.5 to 6.0 V |                |                                | 100                           |      |      | ns   |
| high-/low-level width | triL1           |                                |                |                                | 1.8                           |      |      | μs   |
| Interrupt input high- | tintl,          | INTP0                          |                | V <sub>DD</sub> = 4.5 to 6.0 V | 2/fsam + 0.1 Note3            |      |      | μs   |
| /low-level width      | ритн            |                                |                |                                | 2/fsam + 0.2 <sup>Note3</sup> |      |      | μs   |
|                       |                 | INTP1 to INTP6, KR0 to         | o KR7          |                                | 10                            |      |      | μs   |
| RESET low-level       | tası            |                                |                |                                | 10                            |      |      | μs   |
| width                 |                 |                                |                |                                |                               |      |      |      |

Notes 1. When oscillation mode selection register (OSMS) is set to 00H.

2. When OSMS is set to 01H.


3.  $f_{sam}$  can be selected as  $f_{xx}/2^N$ ,  $f_{xx}/32$ ,  $f_{xx}/64$ , or  $f_{xx}/128$  (N = 0 to 4) by bits 0 and 1 (SCS0 and SCS1) of the sampling clock selection register (SCS).

Remarks 1. fxx: Main system clock frequency (fx or fx/2)


2. fx : Main system clock oscillatior frequency

ma Pen

Tcy vs VDD (Main System Clock, fxx = fx/2)



Tcy vs VDD (Main System Clock, fxx = fx)





# (2) Read/Write Operations

(a) When MCS = 1, PCC2 to PCC0 = 000B ( $T_A = -40$  to +85 °C,  $V_{DD} = 4.5$  to 6.0 V)

| PARAMETER                                    | SYMBOL            | TEST CONDITIONS | MIN.                 | MAX.                 | UNIT |
|----------------------------------------------|-------------------|-----------------|----------------------|----------------------|------|
| ASTB high-level width                        | <b>t</b> asth     |                 | 0.85 tcy - 50        |                      | ns   |
| Address setup time                           | tads              |                 | 0.85 tey - 50        |                      | ns   |
| Address hold time                            | <b>t</b> adh      |                 | 50                   |                      | ns   |
| Data input time from address                 | tADD1             |                 |                      | (2.85 + 2n)tcy - 80  | ns   |
|                                              | t <sub>ADD2</sub> |                 |                      | (4 + 2n)tey - 100    | ns   |
| Data input time from RD↓                     | tRDD1             |                 |                      | (2 + 2n)tcy - 100    | ns   |
|                                              | tRDD2             |                 |                      | (2.85 + 2n)tcy - 100 | ns   |
| Read data hold time                          | tярн              |                 | 0                    |                      | ns   |
| RD low-level width                           | tRDL1             |                 | (2 + 2n)tcy - 60     |                      | ns   |
|                                              | tRDL2             |                 | (2.85 + 2n)tcy - 60  |                      | ns   |
| WAIT↓ input time from RD↓                    | trow11            |                 |                      | 0.85 toy - 50        | ns   |
|                                              | trowт₂            |                 |                      | 2 tcy - 60           | ns   |
| WAIT↓ input time from WR↓                    | twnwr             |                 |                      | 2 tcy - 60           | ns   |
| WAIT low-level width                         | twn.              |                 | (1.15 + 2n)tcr       | (2 + 2n)tcy          | ns   |
| Write data setup time                        | twos              |                 | (2.85 + 2n)tcy - 100 |                      | ns   |
| Write data hold time                         | twoH              |                 | 20                   | -                    | ns   |
| WR low-level width                           | twnL1             |                 | (2.85 + 2n)tcy - 60  |                      | ns   |
| RD↓ delay time from ASTB↓                    | tastro            |                 | 25                   |                      | ns   |
| WR↓ delay time from ASTB↓                    | tastwr            |                 | 0.85 tcy + 20        |                      | ns   |
| ASTB↑delay time from RD↑ in external fetch   | TRDAST            |                 | 0.85 tey 10          | 1.15 tcy + 20        | ns   |
| Address hold time from RD↑ in external fetch | trdadh            |                 | 0.85 toy - 50        | 1.15 tcy + 50        | ns   |
| Write data output time from RD↑              | trowo             |                 | 40                   |                      | ns   |
| Write data output time from WR↓              | twawd             |                 | 0                    | 50                   | ns   |
| Address hold time from WR↑                   | twradh            |                 | 0.85 tcv             | 1.15 tcv + 40        | ns   |
| RD↑ delay time from WAIT1                    | twrno             |                 | 1.15 tcv + 40        | 3.15 tcv + 40        | ns   |
| WR↑ delay time from WAIT↑                    | twrwa             |                 | 1.15 tcy + 30        | 3.15 tcy + 30        | ns   |

- Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)
  - 2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)
  - 3. tcy = Tcy/4
  - 4. n indicates the number of waits.



# (b) Except when MCS = 1, PCC2 to PCC0 = 000B ( $T_A = -40$ to +85 °C, $V_{DD} = 2.7$ to 6.0 V)

| PARAMETER                                    | SYMBOL         | TEST CONDITIONS | MIN.               | MAX.               | UNIT |
|----------------------------------------------|----------------|-----------------|--------------------|--------------------|------|
| ASTB high-level width                        | <b>t</b> asth  |                 | tcv - 80           |                    | ns   |
| Address setup time                           | tads           |                 | tcy - 80           |                    | ns   |
| Address hold time                            | <b>t</b> adh   |                 | 0.4 tcy - 10       |                    | ns   |
| Data input time from address                 | taddi          |                 |                    | (3 + 2n)tcv - 160  | ns   |
|                                              | tADD2          |                 |                    | (4 + 2n)tcy - 200  | ns   |
| Data input time from RD↓                     | <b>t</b> RDD1  |                 |                    | (1.4 + 2n)tcy - 70 | ns   |
|                                              | tRDD2          |                 |                    | (2.4 + 2n)tcv - 70 | ns   |
| Read data hold time                          | tron           |                 | 0                  |                    | ns   |
| RD low-level width                           | TRDL1          |                 | (1.4 + 2n)tcy - 20 |                    | ns   |
|                                              | tRDL2          |                 | (2.4 + 2n)tcy - 20 |                    | ns   |
| WAIT↓ input time from RD↓                    | trowt1         |                 |                    | tcy - 100          | ns   |
|                                              | tRDWT2         |                 |                    | 2 tcy - 100        | ns   |
| WAIT↓ input time from WR↓                    | twawr          |                 |                    | 2tcy - 100         | ns   |
| WAIT low-level width                         | twn            |                 | (1 + 2n)tcy        | (2 + 2n)tcv        | ns   |
| Write data setup time                        | twos           |                 | (2.4 + 2n)tcy - 60 |                    | ns   |
| Write data hold time                         | twoн           |                 | 20                 |                    | ns   |
| WR low-level width                           | twnL1          |                 | (2.4 + 2n)tcy - 20 |                    | ns   |
| RD↓ delay time from ASTB↓                    | <b>t</b> ASTRD |                 | 0.4 tey - 30       |                    | ns   |
| WR↓ delay time from ASTB↓                    | tastwn         |                 | 1.4 tcy - 30       |                    | ns   |
| ASTB↑delay time from RD↑ in external fetch   | TRDAST         |                 | toy - 10           | tcy + 20           | ns   |
| Address hold time from RD↑ in external fetch | trdadh         |                 | ter - 50           | tcv + 50           | ns   |
| Write data output time from RD↑              | trowo          |                 | 0.4tcy + 20        |                    | ns   |
| Write data output time from WR↓              | twawd          | ·               | 0                  | 60                 | ns   |
| Address hold time from WR↑                   | twradh         |                 | tcy                | tcy + 60           | ns   |
| RD↑ delay time from WAIT↑                    | twrno          |                 | 0.6 tcy + 180      | 2.6 tcy + 180      | ns   |
| WR↑ delay time from WAIT↑                    | twrwr          |                 | 0.6 tcy + 120      | 2.6 tcy + 120      | ns   |

- Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)
  - 2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register (PCC)
  - 3. tcy = Tcy/4
  - 4. n indicates the number of waits.

- (3) Serial Interface ( $T_A = -40 \text{ to } +85 \text{ °C}$ ,  $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$ )
  - (a) Serial interface channel 0
    - (i) 3-wire serial I/O mode (SCK0 ... internal clock output)

| PARAMETER                        | SYMBOL           | TEST CONDITIONS                | MIN.          | TYP. | MAX. | UNIT |
|----------------------------------|------------------|--------------------------------|---------------|------|------|------|
| SCK0 cycle time                  | tkcy1            | V <sub>DD</sub> = 4.5 to 6.0 V | 800           |      |      | ns   |
|                                  |                  |                                | 1600          |      |      | ns   |
| SCK0 high-/low-level width       | tĸnı,            | V <sub>DD</sub> = 4.5 to 6.0 V | tkcy1/2 - 50  |      |      | ns   |
|                                  | t <sub>KL1</sub> |                                | tkcy1/2 - 100 |      |      | ns   |
| SI0 setup time (to SCK01)        | tsikı            | V <sub>DD</sub> = 4.5 to 6.0 V | 100           |      |      | ns   |
|                                  |                  |                                | 150           |      |      | ns   |
| SI0 hold time (from SCK01)       | tksıı            |                                | 400           |      |      | ns   |
| SO0 output delay time from SCK0↓ | tkso1            | C = 100 pFNote                 |               |      | 300  | ns   |

Note C is the  $\overline{SCK0}$  and SO0 output line load capacitance.

# (ii) 3-wire serial I/O mode (SCK0 ... external clock input)

| PARAMETER                        | SYMBOL      | TEST CONDITIONS                                   | MIN.   | TYP. | MAX. | UNIT |
|----------------------------------|-------------|---------------------------------------------------|--------|------|------|------|
| SCK0 cycle time                  | tkcy2       | V <sub>DD</sub> = 4.5 to 6.0 V                    | 800    |      |      | ns   |
|                                  |             |                                                   | 1600   |      |      | ns   |
| SCK0 high-/low-level width       | tĸH2,       | V <sub>DD</sub> = 4.5 to 6.0 V                    | 400    |      |      | ns   |
| CO potent time (to COLOT)        | tk1.2       |                                                   | 800    |      |      | ns   |
| SI0 setup time (to SCK01)        | tsık2       |                                                   | 100    |      |      | ns   |
| SI0 hold time (from SCK0↑)       | tksı2       |                                                   | 400    |      |      | ns   |
| SO0 output delay time from SCK0↓ | tkso2       | C = 100 pFNete                                    | . 10.0 |      | 300  | ns   |
| SCK0 rise, fall time             | tn2,<br>tr2 | When using external device expansion function     |        |      | 160  | ns   |
|                                  |             | When not using external device expansion function |        |      | 1000 | ns   |

Note C is the SO0 output line load capacitance.

# (iii) SBI mode (SCK0 ... internal clock output)

| PARAMETER                       | SYMBOL        | TEST CO                    | NDITIONS                       | MIN.          | TYP. | MAX. | UNIT |
|---------------------------------|---------------|----------------------------|--------------------------------|---------------|------|------|------|
| SCK0 cycle time                 | tксуз         | V <sub>DD</sub> = 4.5 to 6 | .0 V                           | 800           | •    |      | ns   |
|                                 |               |                            |                                | 3200          |      |      | ns   |
| SCK0 high-/low-level width      | <b>t</b> кнз, | V <sub>DD</sub> = 4.5 to 6 | .0 V                           | tkcys/2 - 50  |      |      | ns   |
|                                 | tĸĿs          |                            |                                | tксүз/2 — 100 |      |      | ns   |
| SB0, SB1 setup time (to SCK0↑)  | tsıks         | V <sub>DD</sub> = 4.5 to 6 | .0 V                           | 100           |      |      | ns   |
|                                 |               |                            |                                | 300           |      |      | ns   |
| SB0, SB1 hold time (from SCK0↑) | tksia         |                            |                                | tkcy3/2       |      |      | ns   |
| SB0, SB1 output delay time from | txso3         | R = 1 kΩ,                  | V <sub>DD</sub> = 4.5 to 6.0 V | 0             |      | 250  | ns   |
| <u>scko</u> ↓                   |               | C = 100 pFNote             |                                | 0             |      | 1000 | ns   |
| SB0, SB1↓ from SCK0↑            | tksB          |                            | •                              | <b>t</b> ксуз |      |      | ns   |
| SCK0↓ from SB0, SB1↓            | tsak          |                            |                                | tксуз         |      |      | ns   |
| SB0, SB1 high-level width       | tsвн          |                            |                                | tксүз         |      |      | ns   |
| SB0, SB1 low-level width        | tsaL          |                            |                                | tксvз         |      |      | ns   |

Note R and C are the SCKO, SBO, and SB1 output line load resistance and load capacitance.

# (iv) SBI mode (SCK0 ... external clock input)

| PARAMETER                       | SYMBOL | TEST CO                      | NDITIONS           | MIN.    | TYP. | MAX. | UNIT |
|---------------------------------|--------|------------------------------|--------------------|---------|------|------|------|
| SCK0 cycle time                 | tkcy4  | Voo = 4.5 to 6               | .0 V               | 800     |      |      | ns   |
|                                 |        |                              |                    | 3200    |      |      | ns   |
| SCK0 high-/low-level width      | tkH4,  | Vpp = 4.5 to 6               | .0 V               | 400     |      |      | ns   |
|                                 | tKL4   |                              |                    | 1600    |      |      | ns   |
| SB0, SB1 setup time (to SCK01)  | tsik4  | V <sub>DO</sub> = 4.5 to 6   | .0 V               | 100     |      |      | ns   |
|                                 |        |                              |                    | 300     |      |      | ns   |
| SB0, SB1 hold time (from SCK01) | tksia  |                              |                    | txcv4/2 |      |      | ns   |
| SB0, SB1 output delay time from | tkso4  | $R = 1 k\Omega$ ,            | Voo = 4.5 to 6.0 V | 0       |      | 300  | ns   |
| SCK0↓                           |        | C = 100 pFNote               |                    | 0       |      | 1000 | ns   |
| SB0, SB1↓ from SCK0↑            | tĸsв   |                              | •                  | tkcy4   |      |      | ns   |
| SCK0↓ from SB0, SB1↓            | tsak   |                              |                    | tkcy4   |      |      | ns   |
| SB0, SB1 high-level width       | tsвн   |                              |                    | tkcy4   |      |      | ns   |
| SB0, SB1 low-level width        | tsaL   |                              |                    | tkcy4   |      |      | ns   |
| SCK0 rise, fall time            | tR4,   | When using e                 | xternal device     |         |      | 160  | ns   |
|                                 | tr4    | expansion function           |                    |         |      |      |      |
|                                 |        | When not using device expans | •                  |         |      | 1000 | ns   |

Note R and C are the SB0 and SB1 output line load resistance and load capacitance.

ma Pa



### (v) 2-wire serial I/O mode (SCK0 ... internal clock output)

| PARAMETER                             | SYMBOL | TEST CONDITIONS   |                                | MIN.          | TYP. | MAX. | UNIT |
|---------------------------------------|--------|-------------------|--------------------------------|---------------|------|------|------|
| SCK0 cycle time                       | tkcys  | $R = 1 k\Omega$ , |                                | 1600          | ·    |      | ns   |
| SCK0 high-level width                 | tĸнs   | C = 100 pFNote    |                                | tkcys/2 - 160 |      |      | ns   |
| SCK0 low-level width                  | tkls   |                   | V <sub>DO</sub> = 4.5 to 6.0 V | txcys/2 - 50  |      |      | ns   |
|                                       |        |                   |                                | tkcys/2 - 100 | ,    |      | ns   |
| SB0, SB1 setup time (to SCK01)        | tsiks  |                   | V <sub>DD</sub> = 4.5 to 6.0 V | 300           |      |      | ns   |
|                                       |        |                   |                                | 350           |      |      | ns   |
| SB0, SB1 hold time (from SCK0↑)       | tksis  |                   |                                | 600           |      |      | ns   |
| SB0, SB1 output delay time from SCK0↓ | tksos  |                   |                                | 0             |      | 300  | ns   |

Note R and C are the SCKO, SBO, and SB1 output line load resistance and load capacitance.

### (vi) 2-wire serial I/O mode (SCK0 ... external clock input)

| PARAMETER                       | SYMBOL | TEST CC                                       | ONDITIONS                      | MIN.    | TYP.    | MAX.     | UNIT |
|---------------------------------|--------|-----------------------------------------------|--------------------------------|---------|---------|----------|------|
| SCK0 cycle time                 | tkcys  |                                               |                                | 1600    |         |          | ns   |
| SCK0 high-level width           | tкнs   |                                               |                                | 650     |         |          | ns   |
| SCK0 low-level width            | tkle   |                                               |                                | 800     |         | <u> </u> | ns   |
| SB0, SB1 setup time (to SCK01)  | tsike  |                                               |                                | 100     | <u></u> |          | ns   |
| SB0, SB1 hold time (from SCK01) | tksie  |                                               |                                | tkcys/2 |         |          | ns   |
| SB0, SB1 output delay time      | tkso6  | R = 1 kΩ,                                     | V <sub>DO</sub> = 4.5 to 6.0 V | 0       | 1       | 300      | ns   |
| from SCK0↓                      |        | C = 100 pFNot                                 | 4                              | 0       |         | 500      | ns   |
| SCK0 rise, fall time            | tns,   | When using external device expansion function | !                              |         |         | 160      | ns   |
|                                 |        |                                               | ng external                    |         |         | 1000     | ns   |

Note R and C are the SB0 and SB1 output line load resistance and load capacitance.

### (b) Serial interface channel 1

# (i) 3-wire serial I/O mode (SCK1...internal clock output)

| PARAMETER                        | SYMBOL        | TEST CONDITIONS                | MIN.          | TYP. | MAX. | UNIT |
|----------------------------------|---------------|--------------------------------|---------------|------|------|------|
| SCK1 cycle time                  | tkcy7         | Vod = 4.5 to 6.0 V             | 800           |      |      | ns   |
|                                  |               |                                | 1600          |      |      | ns   |
| SCK1 high-/low-level width       | <b>t</b> кн7, | V <sub>DD</sub> = 4.5 to 6.0 V | tkcy7/2 - 50  |      |      | ns   |
|                                  | tKL7          |                                | txcy7/2 - 100 |      |      | ns   |
| SI1 setup time (to SCK1↑)        | tsik7         | V <sub>DD</sub> = 4.5 to 6.0 V | 100           |      |      | ns   |
|                                  |               |                                | 150           |      |      | ns   |
| SI1 hold time (to SCK1 ↑)        | tksi7         |                                | 400           | -    |      | ns   |
| SO1 output delay time from SCK1↓ | tkso7         | C = 100 pFNote                 |               |      | 300  | ns   |

Note C is the SCK1 and SO1 output line load capacitance.

# (ii) 3-wire serial I/O mode (SCK1...external clock output)

| PARAMETER                       | SYMBOL        | TEST CONDITIONS                                   | MIN. | TYP. | MAX. | UNIT |
|---------------------------------|---------------|---------------------------------------------------|------|------|------|------|
| SCK1 cycle time                 | tkcys         | Vpp = 4.5 to 6.0 V                                | 800  |      |      | ns   |
|                                 |               |                                                   | 1600 |      |      | ns   |
| SCK1 high-/low-level width      | <b>t</b> кнв, | Vpp = 4.5 to 6.0 V                                | 400  |      |      | ns   |
|                                 | tĸLa          |                                                   | 800  |      |      | ns   |
| SI1 setup time (to SCK1 1)      | tsika         |                                                   | 100  |      |      | ns   |
| SI1 hold time (to SCK1 1)       | tksie         |                                                   | 400  |      |      | ns   |
| SO1 output delay time from SCK1 | txsos         | C = 100 pFNote                                    |      |      | 300  | ns   |
| SCK1 rise, fall time            | tne,<br>tre   | When using external device expansion function     |      |      | 160  | ns   |
|                                 |               | When not using external device expansion function |      |      | 1000 | ns   |

Note C is the SO1 output line load capacitance.



# (iii) Automatic transmission/reception function 3-wire serial I/O mode (SCK1 ... internal clock output)

| PARAMETER                                                | SYMBOL       | TEST CONDITIONS                | MIN.          | TYP. | MAX.          | UNIT |
|----------------------------------------------------------|--------------|--------------------------------|---------------|------|---------------|------|
| SCK1 cycle time                                          | tkcys        | V <sub>DD</sub> = 4.5 to 6.0 V | 800           |      |               | ns   |
|                                                          |              |                                | 1600          |      |               | ns   |
| SCK1 high-/low-level width                               | tкн»,        | V <sub>DD</sub> = 4.5 to 6.0 V | tксүэ/2 — 50  |      |               | ns   |
|                                                          | tkra         |                                | tkcys/2 - 100 |      |               | ns   |
| SI1 setup time (to SCK1↑)                                | tsıkı        | Voo = 4.5 to 6.0 V             | 100           |      |               | ns   |
|                                                          |              |                                | 150           |      |               | ns   |
| SI1 hold time (from SCK1↑)                               | tksie        |                                | 400           |      |               | ns   |
| SO1 output delay time from SCK1↓                         | tks09        | C = 100 pFNote                 |               |      | 300           | ns   |
| STB↑ from SCK1↑                                          | tsao         |                                | txcy9/2 - 100 |      | tkcys/2 + 100 | ns   |
| Strobe signal high-level width                           | tsew         |                                | tkcys - 30    |      | tксүэ + 30    | ns   |
| Busy signal setup time                                   | tevs         |                                | 100           |      |               | ns   |
| (to busy signal detection timing)  Busy signal hold time |              | V 45+ 00V                      | 100           |      |               |      |
| • •                                                      | <b>t</b> вүн | V <sub>DD</sub> = 4.5 to 6.0 V | 100           |      |               | ns   |
| (from busy signal detection timing)                      |              |                                | 150           |      |               | ns   |
| SCK1↓ from busy inactivation                             | tsps         | ···                            |               |      | 2tkcys        | ns   |

Note C is the SCK1 and SO1 output line load capacitance.

# (iv) Automatic transmission/reception function 3-wire serial I/O mode (SCK1 ... external clock input)

| PARAMETER                       | SYMBOL         | TEST CONDITIONS                                   | MIN. | TYP. | MAX.                                  | UNIT |
|---------------------------------|----------------|---------------------------------------------------|------|------|---------------------------------------|------|
| SCK1 cycle time                 | tkCY10         | Vpo = 4.5 to 6.0 V                                | 800  |      |                                       | ns   |
|                                 |                |                                                   | 1600 |      |                                       | ns   |
| SCK1 high-/low-level width      | <b>t</b> кн10, | VDD = 4.5 to 6.0 V                                | 400  |      |                                       | ns   |
|                                 | tKL10          |                                                   | 800  |      |                                       | ns   |
| SI1 setup time (to SCK11)       | tsik10         |                                                   | 100  |      |                                       | ns   |
| SI1 hold time (from SCK11)      | tksi10         |                                                   | 400  |      | · · · · · · · · · · · · · · · · · · · | ns   |
| SO output delay time from SCK1↓ | tkso10         | C = 100 pFNote                                    |      |      | 300                                   | ns   |
| SCK1 rise, fall time            | tnio,<br>trio  | When using external device expansion function     |      |      | 160                                   | ns   |
|                                 |                | When not using external device expansion function |      |      | 1000                                  | ns   |

Note C is the SO1 output line load capacitance.

# (c) Serial interface channel 2

# (i) 3-wire serial I/O mode (SCK2...internal clock output)

| PARAMETER                        | SYMBOL | TEST CONDITIONS                | MIN.           | TYP. | MAX. | UNIT |
|----------------------------------|--------|--------------------------------|----------------|------|------|------|
| SCK2 cycle time                  | tkcy11 | V <sub>DD</sub> = 4.5 to 6.0 V | 800            |      |      | ns   |
|                                  |        |                                | 1600           |      |      | ns   |
| SCK2 high-/low-level width       | tкн11, | V <sub>DD</sub> = 4.5 to 6.0 V | tkcy11/2 - 50  |      |      | ns   |
|                                  | tKL11  |                                | tkcy11/2 - 100 |      |      | ns   |
| SI2 setup time (to SCK21)        | tsik11 | Voo = 4.5 to 6.0 V             | 100            |      |      | ns   |
|                                  |        |                                | 150            |      |      | ns   |
| SI2 hold time (to SCK21)         | tksi11 |                                | 400            |      |      | ns   |
| SO2 output delay time from SCK2↓ | tkso11 | C = 100 pF <sup>Note</sup>     |                |      | 300  | ns   |

Note C is the load capacitance of SCK2 and SO2 output lines.

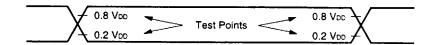
# (ii) 3-wire serial I/O mode (SCK2...external clock output)

| PARAMETER                        | SYMBOL        | TEST CONDITIONS                                                       | MIN. | TYP. | MAX. | UNIT |
|----------------------------------|---------------|-----------------------------------------------------------------------|------|------|------|------|
| SCK2 cycle time                  | tKCY12        | Voo = 4.5 to 6.0 V                                                    | 800  |      |      | ns   |
|                                  |               |                                                                       | 1600 |      |      | ns   |
| SCK2 high-/low-level width       | tкн12,        | V <sub>DD</sub> = 4.5 to 6.0 V                                        | 400  |      |      | ns   |
|                                  | tKL12         |                                                                       | 800  |      |      | ns   |
| SI2 setup time (to SCK2 1)       | tsik12        |                                                                       | 100  |      |      | ns   |
| SI2 hold time (to SCK2 ↑)        | tksi12        |                                                                       | 400  |      |      | ns   |
| SO2 output delay time from SCK2↓ | tkso12        | C = 100 pFNote                                                        |      |      | 300  | ns   |
| SCK2 rise, fall time             | tR12,<br>tF12 | Vpc = 4.5 to 6.0 V, when not using external device expansion function |      |      | 1000 | ns   |
|                                  |               |                                                                       |      |      | 160  | ns   |

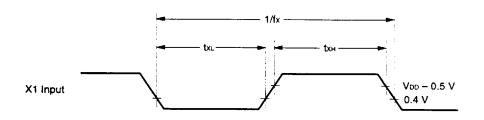
Note C is the SO2 output line load capacitance.

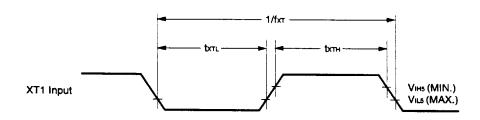
ma Pen



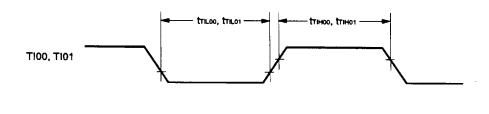

# (iii) UART mode (Dedicated baud rate generator output)

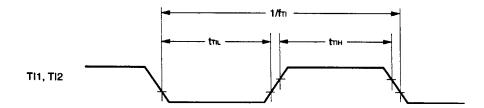
| PARAMETER     | SYMBOL | TEST CONDITIONS    | MIN. | TYP. | MAX.  | UNIT |
|---------------|--------|--------------------|------|------|-------|------|
| Transfer rate |        | Voo = 4.5 to 6.0 V |      |      | 78125 | bps  |
|               |        |                    |      |      | 39063 | bps  |


# (iv) UART mode (External clock input)


| PARAMETER            | SYMBOL         | TEST CONDITIONS                                                       | MIN. | TYP. | MAX.  | UNIT |
|----------------------|----------------|-----------------------------------------------------------------------|------|------|-------|------|
| ASCK cycle time      | tkCY13         | Voc = 4.5 to 6.0 V                                                    | 800  |      |       | ns   |
|                      |                |                                                                       | 1600 |      |       | ns   |
| ASCK high-/low-level | <b>t</b> кн13, | VDD = 4.5 to 6.0 V                                                    | 400  |      |       | ns   |
| width                | tĸL13          |                                                                       | 800  |      |       | ns   |
| Transfer rate        |                | V <sub>DD</sub> = 4.5 to 6.0 V                                        |      |      | 39063 | bps  |
|                      |                |                                                                       |      |      | 19531 | bps  |
| SCK rise, fall time  | tris,<br>tris  | Voc = 4.5 to 6.0 V, when not using external device expansion function |      |      | 1000  | ns   |
|                      |                |                                                                       |      |      | 160   | ns   |

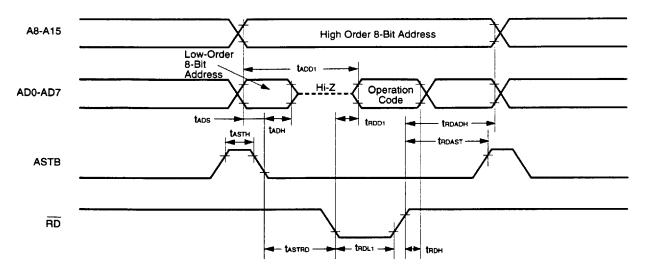
# AC Timing Test Point (Excluding X1, XT1 Input)



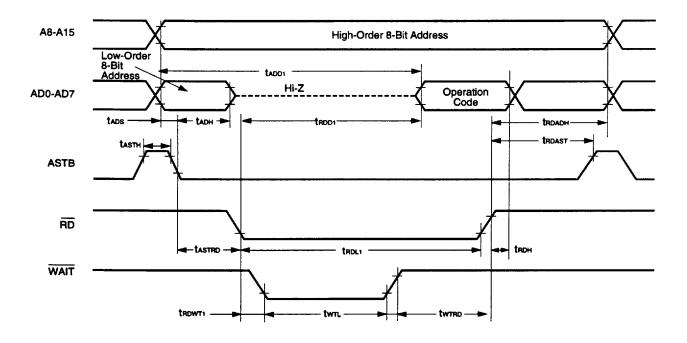


# **Clock Timing**





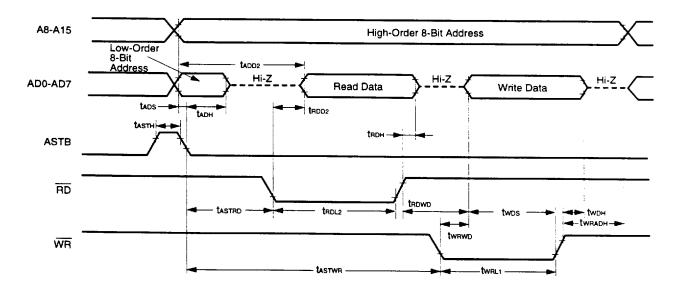

# **TI Timing**





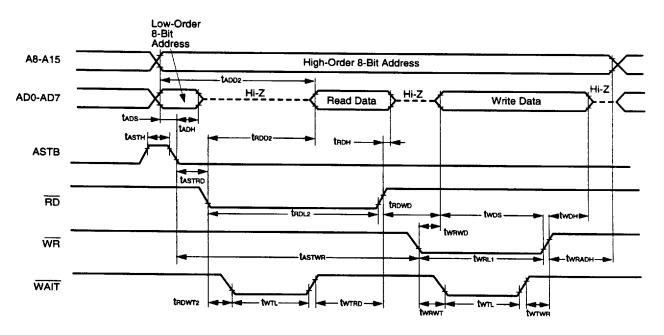

#### Read/Write Operations

### External fetch (no wait):



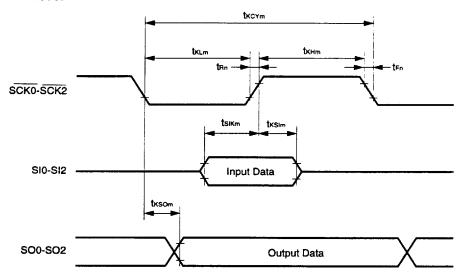

# External fetch (wait insertion):




ma Pen

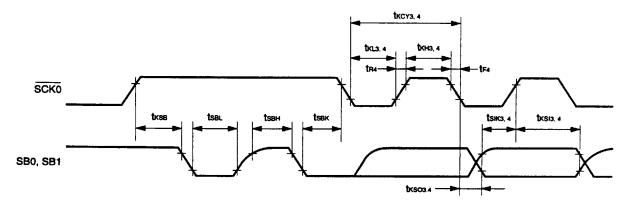
# External data access (no wait):



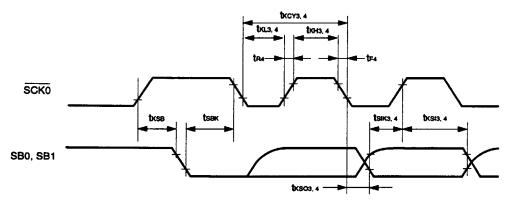

# External data access (wait insertion):

ma 88

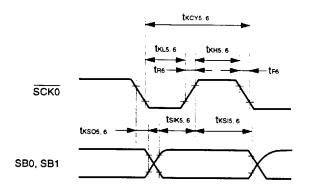



# Serial Transfer Timing

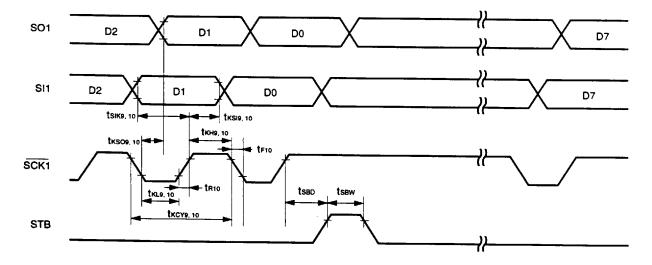
#### 3-wire serial I/O mode:



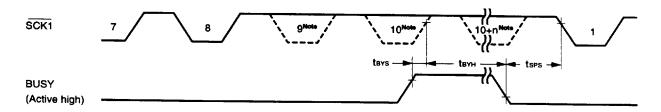

**Remark** m = 1, 2, 7, 8, 11 or 12n = 2, 8, or 12


# SBI mode (bus release signal transfer):



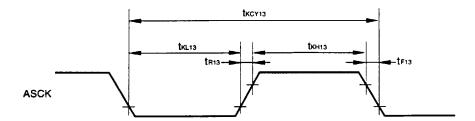

# SBI mode (command signal transfer):




### 2-wire serial I/O mode:



# Automatic transmission/reception function 3-wire serial I/O mode:




# Automatic transmission/reception function 3-wire serial I/O mode (busy processing):



Note The signal is not actually low here, but is represented in this way to show the timing.

# **UART mode (external Clock Input):**





A/D Converter Characteristics ( $T_A = -40 \text{ to } +85 \text{ °C}$ ,  $AV_{DD} = V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$ ,  $AV_{SS} = V_{SS} = 0 \text{ V}$ )

| PARAMETER                   | SYMBOL  | TEST CONDITIONS       | MIN.   | TYP. | MAX.   | UNIT |
|-----------------------------|---------|-----------------------|--------|------|--------|------|
| Resolution                  |         |                       | 8      | 8    | 8      | bit  |
| Total error <sup>Note</sup> |         | 2.7 V ≤ AVREFO ≤ AVDD |        |      | 1.4    | %    |
| Conversion time             | tconv   |                       | 19.1   |      | 200    | μs   |
| Sampling time               | tsamp   |                       | 12/fxx |      |        | μs   |
| Analog input voltage        | Vian    |                       | AVss   |      | AVREFO | V    |
| Reference voltage           | AVREFO  |                       | 2.7    | -    | AVDD   | V    |
| AVREFO-AVss resistance      | RAIREFO |                       | 4      | 14   | 1      | kΩ   |

Note Excluding quantization error (±1/2 LSB). Shown as a percentage of the full scale value.

Caution For pins which also function as port pins, do not perform the following operations during A/D conversion. If these operations are performed, the total error ratings cannot be kept (except for LCD segment output alternate-function pin).

- <1> Rewrite the output latch while the pin is used as a port pin.
- <2> Change the output level of the pin used as an output pin, even if it is not used as a port pin.

Remarks 1. fxx: Main system clock frequency (fx or fx/2)

2. fx : Main system clock oscillatior frequency

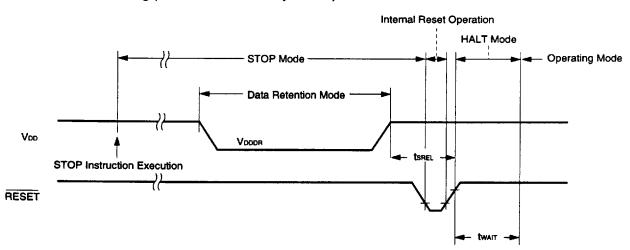
D/A Converter Characteristics ( $T_A = -40 \text{ to } +85 \text{ °C}$ ,  $V_{DD} = 2.7 \text{ to } 6.0 \text{ V}$ ,  $AV_{SS} = V_{SS} = 0 \text{ V}$ )

| PARAMETER                          | SYMBOL  | TES                                               | ST CONDITIONS          | MIN. | TYP. | MAX. | UNIT |
|------------------------------------|---------|---------------------------------------------------|------------------------|------|------|------|------|
| Resolution                         |         |                                                   |                        |      |      | 8    | bit  |
| Total error                        |         | $R = 2 M\Omega^{Note 1}$ $R = 4 M\Omega^{Note 1}$ |                        |      |      | 1.2  | %    |
|                                    |         |                                                   |                        |      |      | 0.8  | %    |
|                                    |         | $R = 10 \text{ M}\Omega^{\text{Note}}$            | 1                      |      |      | 0.6  | %    |
| Settling time                      |         | C = 30 pFNote 1                                   | 4.5 V ≤ AVREF1 ≤ 6.0 V | ***  |      | 10   | μs   |
|                                    |         | 1                                                 | 2.7 V ≤ AVREF1 < 4.5 V |      |      | 15   | μs   |
| Output resistor                    | Ro      | Note 2                                            |                        |      | 10   |      | kΩ   |
| Analog reference voltage           | AVREF1  |                                                   |                        | 2.0  |      | VDD  | ٧    |
| Resistance between AVREF1 and AVSS | RAIREF1 | DACS0, DACS1 = 55HNoto 2                          |                        | 4    | 8    |      | mA   |

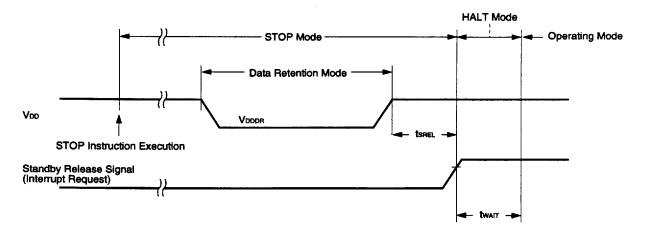
Notes 1. R and C are the D/A converter output pin load resistance and load capacitance.

2. Value for one D/A converter channel.

Remark DACS0, DACS1: D/A conversion value setting register 0, 1


| PARAMETER                     | SYMBOL | TEST CONDITIONS                                                       | MIN. | TYP.   | MAX. | UNIT |
|-------------------------------|--------|-----------------------------------------------------------------------|------|--------|------|------|
| Data retention supply voltage | VDDDR  |                                                                       | 1.8  |        | 6.0  | ٧    |
| Data retention supply current | IDDDA  | VDDDR = 1.8 V Subsystem clock stopped, feedback resister disconnected |      | 0.1    | 10   | μΑ   |
| Release signal setup time     | tsrel  |                                                                       | 0    |        |      | μs   |
| Oscillation<br>stabilization  | twait  | Release by RESET                                                      |      | 217/fx |      | ms   |
| wait time                     |        | Release by interrupt                                                  |      | Note   |      | ms   |

Note 2<sup>12</sup>/fxx, or 2<sup>14</sup>/fxx through 2<sup>17</sup>fxx can be selected by bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS).


Remark fxx: Main system clock frequency (fx or fx/2)

fx : Main system clock oscillatior frequency


### Data Retention Timing (STOP mode release by RESET)



#### Data Retention Timing (STOP mode release by standby release signal: interrupt signal)




# Interrupt Input Timing



# **RESET Input Timing**

ma Pen





# PROM PROGRAMMING CHARACTERISTICS

#### **DC Characteristics**

# (1) **PROM Write Mode** (TA = $25 \pm 5$ °C, VDD = $6.5 \pm 0.25$ V, VPP = $12.5 \pm 0.3$ V)

| PARAMETER             | SYMBOL      | SYMBOL Note | TEST CONDITIONS   | MIN.                  | TYP. | MAX.    | UNIT |
|-----------------------|-------------|-------------|-------------------|-----------------------|------|---------|------|
| Input voltage, high   | ViH         | ViH         |                   | 0.7 Voo               |      | VDD     | V    |
| Input voltage, low    | ViL         | VIL         |                   | 0                     |      | 0.3 Vpp | V    |
| Output voltage, high  | Vон         | Vон         | loн = -1 mA       | V <sub>DD</sub> - 1.0 |      |         | V    |
| Output voltage, low   | Vol         | Vol         | loL = 1.6 mA      |                       |      | 0.4     | V    |
| input leakage current | lu          | lu          | 0 \le Vin \le Voo | -10                   |      | +10     | μА   |
| VPP supply voltage    | VPP         | VPP         |                   | 12.2                  | 12.5 | 12.8    | V    |
| Von supply voltage    | VDD         | Vcc         |                   | 6.25                  | 6.5  | 6.75    | V    |
| VPP supply current    | <b>I</b> PP | IPP         | PGM = VIL         |                       |      | 50      | mA   |
| Voo supply current    | loo         | lcc         |                   |                       |      | 50      | mA   |

# (2) **PROM Read Mode** (TA = $25 \pm 5$ °C, VDD = $5.0 \pm 0.5$ V, VPP = VDD $\pm 0.6$ V)

| PARAMETER                      | SYMBOL           | SYMBOL Note      | TEST CONDITIONS          | MIN.      | TYP. | MAX.      | UNIT |
|--------------------------------|------------------|------------------|--------------------------|-----------|------|-----------|------|
| Input voltage, high            | ViH              | ViH              |                          | 0.7 VDD   |      | Voo       | V    |
| Input voltage, low             | VIL              | VIL              |                          | 0         |      | 0.3 Vpp   | V    |
| Output voltage, high           | Vон1             | Vонт             | Iон = −1 mA              | Vpp - 1.0 |      |           | V    |
|                                | V <sub>OH2</sub> | V <sub>OH2</sub> | Iон = −100 <i>μ</i> A    | Voo - 0.5 |      |           | ٧    |
| Output voltage, low            | Vol              | Val              | lot = 1.6 mA             |           |      | 0.4       | V    |
| input leakage current          | lu lu            | lu               | 0 ≤ Vin ≤ Vdd            | -10       |      | +10       | μА   |
| Output leakage current         | lro              | luo              | 0 ≤ Vout ≤ Vdd, OE = ViH | -10       |      | +10       | μА   |
| VPP supply voltage             | VPP              | VPP              |                          | Voo - 0.6 | VDD  | Vpp + 0.6 | V    |
| V <sub>DD</sub> supply voltage | VDD              | Vcc              |                          | 4.5       | 5.0  | 5.5       | V    |
| VPP supply current             | ĺРР              | PP               | VPP = VDD                |           |      | 100       | μΑ   |
| Voc supply current             | loo              | ICCA1            | CE = VIL, VIN = VIH      |           |      | 50        | mA   |

Note Correspond symbols for the  $\mu$ PD27C1001A.

### **AC Characteristics**

### (1) PROM Write Mode

### (a) Page program mode (TA = $25 \pm 5$ °C, VDD = $6.5 \pm 0.25$ V, VPP = $12.5 \pm 0.3$ V)

| PARAMETER                                                         | SYMBOL | SYMBOL Note | TEST CONDITIONS | MIN.  | TYP. | MAX.  | UNIT |
|-------------------------------------------------------------------|--------|-------------|-----------------|-------|------|-------|------|
| Address setup time (to OE↓)                                       | tas    | tas         |                 | 2     |      |       | μs   |
| OE setup time                                                     | toes   | toes        |                 | 2     |      |       | μs   |
| CE setup time (to OE↓)                                            | tces   | tces        |                 | 2     |      |       | μs   |
| Input data setup time (to OE↓)                                    | tos    | tos         |                 | 2     |      |       | μs   |
| Address hold time (from OE1)                                      | tан    | <b>t</b> an |                 | 2     |      |       | μs   |
|                                                                   | tahl   | tahl        |                 | 2     |      |       | μs   |
|                                                                   | tanv   | tahv        |                 | 0     |      |       | μs   |
| Input data hold time (from OE↑)                                   | tон    | tон         |                 | 2     |      |       | μs   |
| Data output float delay time from $\overline{\text{OE}} \uparrow$ | tor    | tor         |                 | 0     |      | 250   | ns   |
| V <sub>PP</sub> setup time (to <del>OE</del> ↓)                   | tves   | tvps        |                 | 1.0   |      |       | ms   |
| V <sub>DD</sub> setup time (to <del>OE</del> ↓)                   | tvos   | tvcs        |                 | 1.0   |      |       | ms   |
| Program pulse width                                               | tpw    | tpw         |                 | 0.095 | 0.1  | 0.105 | ms   |
| Valid data delay time from OE↓                                    | tos    | toe         |                 |       |      | 1     | μs   |
| OE pulse width during data latching                               | tıw    | 1Lw         |                 | 1     |      |       | μs   |
| PGM setup time                                                    | tegms  | tpgms       |                 | 2     |      |       | μs   |
| CE hold time                                                      | tсен   | tcen .      |                 | 2     |      | 1     | μs   |
| OE hold time                                                      | toen   | toen        |                 | 2     |      |       | μs   |

# (b) Byte program mode (TA = 25 $\pm$ 5 °C, VDD = 6.5 $\pm$ 0.25 V, VPP = 12.5 $\pm$ 0.3 V)

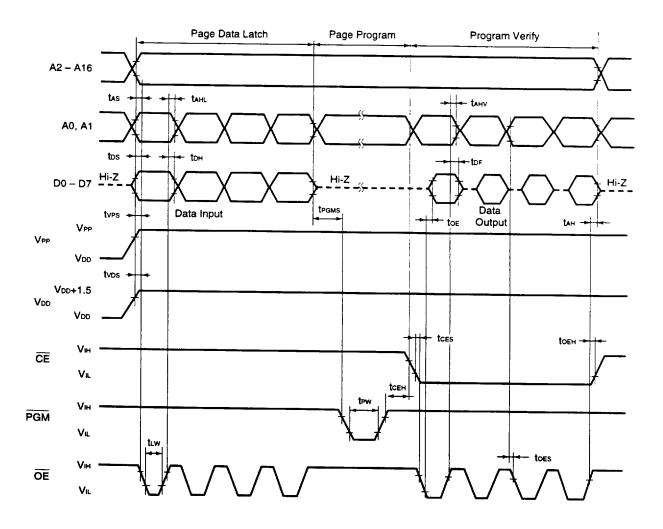
| PARAMETER                                          | SYMBOL       | SYMBOL Note | TEST CONDITIONS | MIN.  | TYP. | MAX.  | UNIT |
|----------------------------------------------------|--------------|-------------|-----------------|-------|------|-------|------|
| Address setup time (to PGM↓)                       | tas          | tas         |                 | 2     |      |       | μs   |
| OE setup time                                      | toes         | toes        |                 | 2     |      |       | μs   |
| CE setup time (to PGM↓)                            | toes         | tces        |                 | 2     |      |       | μs   |
| Input data setup time (to PGM↓)                    | tos          | tos         |                 | 2     |      |       | μs   |
| Address hold time (from OE↑)                       | <b>t</b> AH  | <b>t</b> ah |                 | 2     |      |       | μs   |
| Input data hold time (from PGM1)                   | tон          | tон         |                 | 2     |      |       | μs   |
| Data output float delay time from OE↑              | tor          | tor         |                 | 0     |      | 250   | ns   |
| V <sub>PP</sub> setup time (to $\overline{PGM}$ ↓) | tvps         | tvps        |                 | 1.0   |      |       | ms   |
| V <sub>DD</sub> setup time (to $\overline{PGM}$ ↓) | tvos         | tvcs        |                 | 1.0   |      |       | ms   |
| Program pulse width                                | tpw          | tpw         |                 | 0.095 | 0.1  | 0.105 | ms   |
| Valid data delay time from OE↓                     | toe          | toe         |                 |       |      | 1     | μs   |
| OE hold time                                       | <b>t</b> OEH | _           |                 | 2     |      |       | μs   |

Note Correspond symbols for the  $\mu$ PD27C1001A.

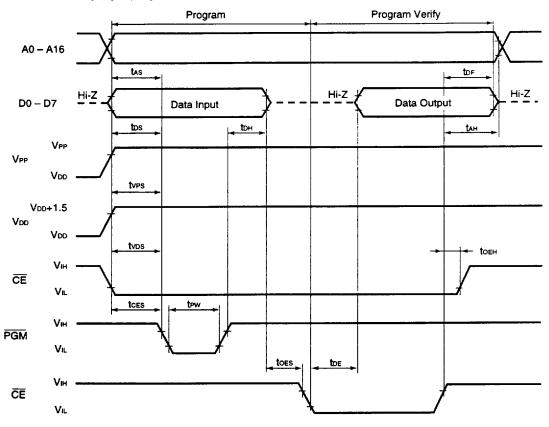


#### (2) PROM Read Mode ( $T_A = 25 \pm 5$ °C, $V_{DD} = 5.0 \pm 0.5$ V, $V_{PP} = V_{DD} \pm 0.6$ V)

| PARAMETER                             | SYMBOL      | SYMBOLNote | TEST CONDITIONS | MIN. | TYP. | MAX. | UNIT |
|---------------------------------------|-------------|------------|-----------------|------|------|------|------|
| Data output delay time from address   | tacc        | tacc       | CE = OE = VIL   |      |      | 800  | ns   |
| Data output delay time from CE↓       | tce         | tce        | ŌĒ = VIL        |      |      | 800  | ns   |
| Data output delay time from OE↓       | toe         | toe        | CE = Vil        |      |      | 200  | ns   |
| Data output float delay time from ŌĒ↑ | <b>t</b> DF | tor        | CE = VIL        | 0    |      | 60   | ns   |
| Data hold time from address           | tон         | tон        | CE = OE = VIL   | 0    |      |      | ns   |


Note Correspond symbols for the  $\mu$ PD27C1001A.

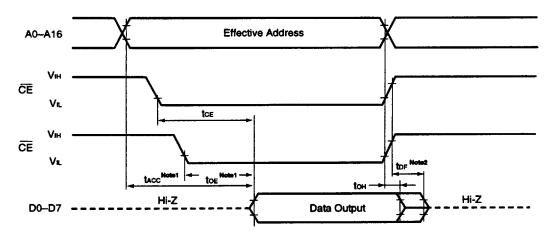
# (3) PROM Programming Mode Setting ( $T_A = 25 \, ^{\circ}\text{C}$ , $V_{SS} = 0 \, \text{V}$ )


| PARAMETER                        | SYMBOL | TEST CONDITIONS | MIN. | TYP. | MAX. | UNIT |
|----------------------------------|--------|-----------------|------|------|------|------|
| PROM programming mode setup time | tsma   |                 | 10   |      |      | μs   |

ma 98

PROM Write Mode Timing (page program mode)




PROM Write Mode Timing (byte program mode)

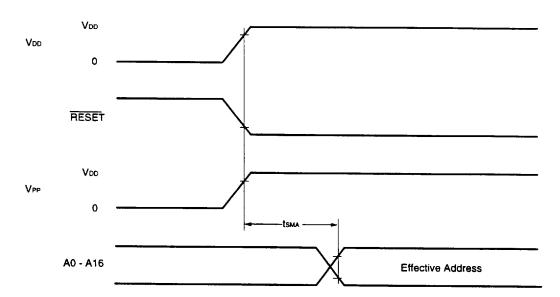


Cautions 1. VDD should be applied before VPP, and removed after VPP.

- 2. VPP should not exceed +13.5 V including overshoot.
- 3. Disconnection during application of  $\pm 12.5 \text{V}$  to VPP may have an adverse effect on reliability.

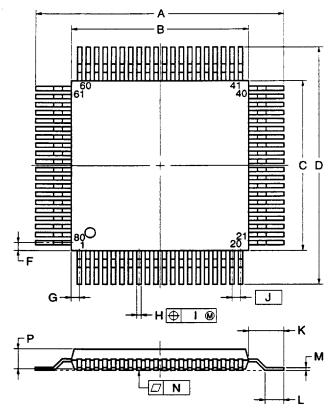
#### **PROM Read Mode Timing**



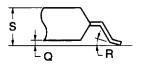

Notes 1. If you want to read within the tacc range, make the  $\overline{OE}$  input delay time from the fall of  $\overline{CE}$  a maxmum of tacc – toe.

2. toF is the time from when either  $\overline{OE}$  or  $\overline{CE}$  first reaches VIH.

ma Pen


ma Pen

# PROM Programming Mode Setting Timing



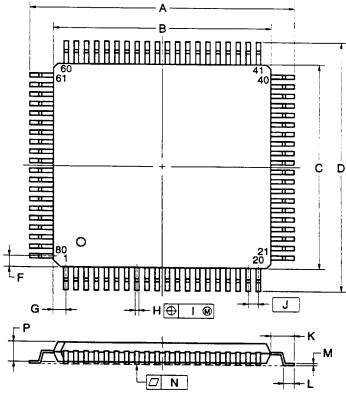

#### 8. PACKAGE DRAWINGS

# 80 PIN PLASTIC QFP (14×14)

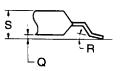


detail of lead end




#### NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


| ITEM | MILLIMETERS                    | INCHES                            |
|------|--------------------------------|-----------------------------------|
| Α    | 17.2±0.4                       | 0.677±0.016                       |
| В    | 14.0±0.2                       | 0.551+0.009                       |
| С    | 14.0±0.2                       | 0.551+0.009                       |
| D    | 17.2±0.4                       | 0.677±0.016                       |
| F    | 0.825                          | 0.032                             |
| G    | 0.825                          | 0.032                             |
| н    | 0.30±0.10                      | 0.012 <sup>+0.004</sup><br>-0.005 |
| 1    | 0.13                           | 0.005                             |
| J    | 0.65 (T.P.)                    | 0.026 (T.P.)                      |
| K    | 1.6±0.2                        | 0.063±0.008                       |
| L    | 0.8±0.2                        | 0.031 <sup>+0.009</sup><br>-0.008 |
| М    | 0.15 <sup>+0.10</sup><br>-0.05 | 0.006+0.004                       |
| N    | 0.10                           | 0.004                             |
| P    | 2.7                            | 0.106                             |
| Q    | 0.1±0.1                        | 0.004±0.004                       |
| R    | 5°±5°                          | 5°±5°                             |
| s    | 3.0 MAX.                       | 0.119 MAX.                        |
|      |                                | S80GC-65-3B9-4                    |

Remark Dimensions and materials of ES product are the same as those of mass-production products.

# 80 PIN PLASTIC QFP (14×14)



detail of lead end



#### NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

| ITEM     | MILLIMETERS | INCHES       |
|----------|-------------|--------------|
| A        | 17.20±0.20  | 0.677±0.008  |
| В        | 14.00±0.20  | 0.551+0.009  |
| С        | 14.00±0.20  | 0.551+0.009  |
| D        | 17.20±0.20  | 0.677±0.008  |
| F        | 0.825       | 0.032        |
| G        | 0.825       | 0.032        |
| н        | 0.32±0.06   | 0.013+0.002  |
|          | 0.13        | 0.005        |
| J        | 0.65 (T.P.) | 0.026 (T.P.) |
| <u> </u> | 1.60±0.20   | 0.063±0.008  |
| L        | 0.80±0.20   | 0.031+0.009  |
| М        | 0.17+0.03   | 0.007+0.001  |
| N        | 0.10        | 0.004        |
| Р        | 1.40±0.10   | 0.055±0.004  |
| Q        | 0.125±0.075 | 0.005±0.003  |
| R        | 3°+7°       | 3°+7°        |
| S        | 1.70 MAX.   | 0.067 MAX.   |
|          |             |              |

P80GC-65-8BT

#### 9. RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the conditions recommended below.

For details of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual (C10535E)".

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

Table 9-1. Surface Mount Type Soldering Conditions

 $\mu$ PD78P058FGC-3B9 : 80-Pin Plastic QFP (14 imes 14 mm, Resin thickness: 2.7 mm)

| Soldering Method | Soldering Conditions                                                                                                                                                                                                                    | Recommended Condition Symbol |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Infrared reflow  | Package peak temperature: 235°C, Duration: 30 sec. max. (210°C or above)  Number of times: Max. 2  Time limit: 7 days <sup>Note</sup> (thereafter 20 hours 125°C prebaking required)                                                    | IR35-207-3                   |
| VPS              | Package peak temperature: 215°C, Duration: 40 sec. max. (200°C or above)  Number of times: Max. 2  Time limit: 7 days <sup>Note</sup> (thereafter 20 hours 125°C prebaking required)                                                    | VP15-207-3                   |
| Wave soldering   | Solder bath temperature: 260°C max., Duration: 10 sec. max., Number of times: once, Preheating temperature: 120°C max. (package serface temperature), Time limit: 7 days <sup>Note</sup> (thereafter 20 hours 125°C prebaking required) | WS60-207-1                   |
| Partial heating  | Pin temperature: 300°C or less  Duration: 3 sec. max. (per side of device)                                                                                                                                                              | _                            |

Note For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.

Caution Use of more than one soldering method should be avoided (except in the case of partial heating).





#### APPENDIX A. DEVELOPMENT TOOLS

The following support tools are available for system development using the µPD78P058.

### **Language Processing Software**

| RA78K/0Notes 1, 2, 3, 4             | 78K/0 series common assembler package              |
|-------------------------------------|----------------------------------------------------|
| CC78K/0 <sup>Hotes 1, 2, 3, 4</sup> | 78K/0 series common C compiler package             |
| DF78054Notes 1, 2, 3, 4             | μPD78054 subseries common device file              |
| CC78K/0-LNotes 1, 2, 3, 4           | 78K/0 series common C compiler library source file |

#### **PROM Writing Tools**

| PG-1500                      | PROM programmer                           |
|------------------------------|-------------------------------------------|
| PA-78P054GC                  | Programmer adapter connected to a PG-1500 |
| PG-1500 controllerNotes 1, 2 | PG-1500 control program                   |

#### **Debugging Tools**

| IE-78000-R                    | 78K/0 series common in-circuit emulator                                     |
|-------------------------------|-----------------------------------------------------------------------------|
| IE-78000-R-ANOTO 8            | 78K/0 series common in-circuit emulator (for integrated debugger)           |
| IE-78000-R-BK                 | 78K/0 series common break board                                             |
| IE-78064-R-EM                 | Emulation board common to μPD78064 subseries                                |
| EP-78230GC-R                  | Emulation probe common to μPD78234 subseries                                |
| EV-9200GC-80                  | Socket for mounting on user system board created for 80-pin plastic QFP use |
| SM78K0Notes 5, 6, 7           | 78K/0 series common system simulator                                        |
| ID78K0Notes 4, 5, 6, 7        | Integrarted debugger for IE-78000-R                                         |
| SD78K/0Notes 1, 2             | Screen debugger for IE-78000-R                                              |
| DF78054Notes 1, 2, 4, 5, 6, 7 | Device file for μPD78054 subseries                                          |

- Notes 1. PC-9800 series (MS-DOS™) based
  - 2. IBM PC/AT™ and its compatibles (PC DOS™/IBM DOS™/MS-DOS) based
  - 3. HP9000 series 300™ (HP-UX™) based
  - 4. HP9000 series 700™ (HP-UX) based, SPARCstation™ (SunOS™) based, EWS4800 series (EWS-UX/V)
  - 5. PC-9800 series (MS-DOS + Windows™) based
  - 6. IBM PC/AT (PC DOS + Windows) based
  - 7. NEWS™ (NEWS-OS™) based
  - 8. Under development

- Remarks 1. For third party development tools, see the 78K/0 Series Selection Guide (U11126E).
  - 2. RA78K/0, CC78K/0, SM78K0, ID78K0, and SD78K/0 are used in combination with DF78054.

ma 88

#### Real-Time OS

| RX78K/0Notes 1, 2, 3, 4 | 78K/0 series real-time OS |
|-------------------------|---------------------------|
| MX78K0Notes 1, 2, 2, 4  | 78K/0 series OS           |

### **Fuzzy Inference Development Support System**

| FE9000Note 1/FE9200Note 8 | Fuzzy knowledge data creation tool |
|---------------------------|------------------------------------|
| FT9080Note 1/FT9085Note 2 | Translator                         |
| FI78K0Notes 1, 2          | Fuzzy inference module             |
| FD78K0Notes 1, 2          | Fuzzy inference debugger           |

#### Notes 1. PC-9800 series (MS-DOS) based

- 2. IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS) based
- 3. HP9000 series 300 (HP-UX) based
- 4. HP9000 series 700 (HP-UX) based, SPARCstation (SunOS) based, EWS4800 series (EWS-UX/V) based
- 5. IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows) based

- Remarks 1. For third party development tools, see the 78K/0 Series Selection Guide (U11126E).
  - 2. RX78K/0 is used in combination with DF78054.



# **APPENDIX B. RELATED DOCUMENTS**

#### **Device Documents**

| Document Name                              | Document No.<br>(English) | Document No.<br>(Japanese) |
|--------------------------------------------|---------------------------|----------------------------|
| μPD78058F, 78058FY Subseries User's Manual | To be prepared            | To be prepared             |
| μPD78P058F Data Sheet                      | This document             | U11796J                    |
| μPD78056F, 58F Data Sheet                  | To be prepared            | U11795J                    |
| 78K/0 Series User's Manual Instruction     | IEU-1372                  | IEU-849                    |
| 78K/0 Series Instruction Set               | _                         | U10904J                    |
| 78K/0 Series Instruction Table             | _                         | U10903J                    |

# **Development Tool Documents (User's Manual)**

| Document Name                                    |                          | Document No.<br>(English) | Document No.<br>(Japanese) |
|--------------------------------------------------|--------------------------|---------------------------|----------------------------|
| RA78K Series Assembler Package                   | Operation                | EEU-1399                  | EEU-809                    |
|                                                  | Language                 | EEU-1404                  | EEU-815                    |
| RA78K Series Structured Assembler Preprocessor   |                          | EEU-1402                  | EEU-817                    |
| CC78K Series C Compiler                          | Operation                | EEU-1280                  | EEU-656                    |
|                                                  | Language                 | EEU-1284                  | EEU-655                    |
| CC78K/0 C Compiler                               | Operation                | _                         | U11517J                    |
|                                                  | Language                 | _                         | U11518J                    |
| CC78K Series Library Source File                 |                          | _                         | EEU-777                    |
| PG-1500 PROM Programmer                          |                          | EEU-1335                  | EEU-651                    |
| PG-1500 Controller PC-9800 Series (MS-DOS) based |                          | EEU-1291                  | EEU-704                    |
| PG-1500 Controller IBM PC Series (PC DOS) based  |                          | U10540E                   | EEU-5008                   |
| IE-78000-R                                       |                          | U11376E                   | EEU-810                    |
| IE-78000-R-A                                     |                          | U10057E                   | U10057J                    |
| IE-78000-R-BK                                    |                          | EEU-1427                  | EEU-867                    |
| IE-78064-R-EM                                    |                          | EEU-1443                  | EEU-905                    |
| EP-78230                                         |                          | EEU-1515                  | EEU-985                    |
| EP-78054GK-R                                     |                          | EEU-1468                  | EEU-932                    |
| SM78K0 System Simulator Windows based            | Reference                | U10181E                   | U10181J                    |
| SM78K Series System Simulator                    | External parts user open | U10092E                   | U10092J                    |
|                                                  | interface specification  |                           |                            |
| ID78K0 Integrated Debugger EWS based             | Reference                | U11151E                   | U11151J                    |
| ID78K0 Integrated Debugger PC based              | Reference                | U11539E                   | U11539J                    |
| ID78K0 Integrated Debugger Windows based         | Guide                    | U11649E                   | U11649J                    |
| SD78K/0 Screen Debugger                          | Introduction             | _                         | EEU-852                    |
| PC-9800 Series (MS-DOS) based                    | Reference                | _                         | U10952J                    |
| SD78K/0 Screen Debugger                          | Introduction             | EEU-1414                  | EEU-5024                   |
| IBM PC/AT (PC DOS) based                         | Reference                | EEU-1413                  | U11279J                    |

Caution The contents of the above documents are subject to change without notice. Please ensure that the latest versions are used in design work, etc.

**■ 6427525 0086240 425** ■



### **Embedded Software Documents (User's Manual)**

| Document Name                                           |                          | Document No.<br>(English) | Document No.<br>(Japanese) |
|---------------------------------------------------------|--------------------------|---------------------------|----------------------------|
| 78K/0 Series Realtime OS                                | Basics                   |                           | U11537J                    |
|                                                         | Installation             | _                         | U11536J                    |
|                                                         | Technical                | _                         | U11538J                    |
| 78K/0 Series OS MX78K0                                  | Basics                   | _                         | EEU-5010                   |
| Fuzzy Knowledge Data Creation Tool                      |                          | EEU-1438                  | EEU-829                    |
| 78K/0, 78K/II, 87AD Series                              |                          | EEU-1444                  | EEU-862                    |
| Fuzzy, Inference Development Support System—Translator  |                          |                           |                            |
| 78K/0 Series Fuzzy Inference Development Support System | Fuzzy Inference Module   | EEU-1441                  | EEU-858                    |
| 78K/0 Series Fuzzy Inference Development Support System | Fuzzy Inference Debugger | EEU-1458                  | EEU-921                    |

#### **Other Documents**

| Document Name                                                         | Document No.<br>(English) | Document No.<br>(Japanese) |  |
|-----------------------------------------------------------------------|---------------------------|----------------------------|--|
| IC Package Manual                                                     | C10943X                   | C10943X                    |  |
| Semiconductor Device Mounting Technology Manual                       | C10535E                   | C10535J                    |  |
| Quality Guides on NEC Semiconductor Devices                           | IEI-1209                  | IEI-620                    |  |
| NEC Semiconductor Device Reliability and Quality Control              | C10983E                   | C10983J                    |  |
| Electrostatic Discharge (ESD) Test                                    | _                         | MEM-539                    |  |
| Semiconductor Device Quality Assurance Guide                          | MEI-1202                  | MEI-603                    |  |
| Microcomputer-related Product Guide (Products by other Manufacturers) | _                         | MEI-604                    |  |

Caution The contents of the above documents are subject to change without notice. Please ensure that the latest versions are used in design work, etc.

