OCTAL BUFFER/LINE DRIVER; 3-STATE

FEATURES

- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT244 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT244 are octal non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs are controlled by the output enable inputs 10E and 20E. A HIGH on nOE causes the outputs to assume a high impedance OFF-state.

The "244" is identical to the "240" but has non-inverting outputs.

FUNCTION TABLE

	INP	PUTS	OUTPUT					
-	nŌĒ	пА _п	nY _n					
	L L	L H	L H					
	н	×	Z					

H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

		CONDITIONS	TYF	UNIT	
SYMBOL	PARAMETER	CONDITIONS	нс	11	
tPHL/ tPLH	propagation delay 1A _n to 1Y _n ; 2A _n to 2Y _n	C _L = 15 pF V _{CC} = 5 V	9	11	ns
CI	input capacitance	9077	3.5	3.5	pF
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	35	35	ρF

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

Notes

1. CPD is used to determine the dynamic power dissipation (PD in μ W):

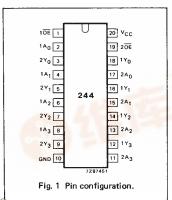
PD = CPD x VCC² x f_i + Σ (CL x VCC² x f₀) where:

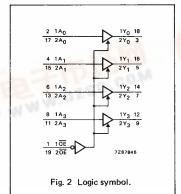
f; = input frequency in MHz

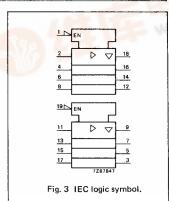
CL = output load capacitance in pF

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

2. For HC the condition is V_I = GND to VCC For HCT the condition is V_I = GND to VCC -1.5 V


PACKAGE OUTLINES


20-lead DIL; plastic (SOT146).


20-lead mini-pack; plastic (SO20; SOT163A).

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	10E	output enable input (active LOW)
2, 4, 6, 8	1A ₀ to 1A ₃	data inputs
3, 5, 7, 9	2Y ₀ to 2Y ₃	bus outputs
10	GND	ground (0 V)
17, 15, 13, 11	2A ₀ to 2A ₃	data inputs
18, 16, 14, 12	1Y ₀ to 1Y ₃	bus outputs
19	20E	output enable input (active LOW)
20	Vcc	positive supply voltage

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 \text{ ns}; C_L = 50 pF$

	L PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS	
0.44501										V	WAVEFORMS
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
tPHL/ tPLH	propagation delay 1A _n to 1Y _n ; 2A _n to 2Y _n		30 11 9	110 22 19		145 28 24		165 33 28	ns	2.0 4.5 6.0	Fig. 5
^t PZH [/] ^t PZL	3-state output enable time 10E to 1Y _n ; 20E to 2Y _n		36 13 10	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 6
tPHZ/ tPLZ	3-state output disable time 10E to 1Yn; 20E to 2Yn		39 14 11	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 6
[†] ТНL/ [†] ТLН	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig. 5

74HC/HCT244 MSI

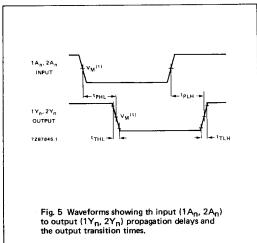
DC CHARACTERISTICS FOR 74HCT

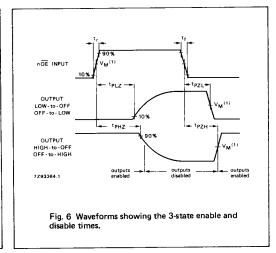
For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: bus driver I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
1A _n	0.70
1A _n 2A _n	0.70
1ŌE	0.70
2ÖE	0.70


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS	
SYMBOL	PARAMETER	DAMETER.		74HCT					UNIT	V _{CC}	WAVEFORMS
STIMIBOL	PARAMETER	+25		-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.			i
tPHL/ tPLH	propagation delay 1A _n to 1Y _n ; 2A _n to 2Y _n		13	22		28		33	ns	4.5	Fig. 5
tPZH/ tPZL	3-state output enable time 1 OE to 1 Yn; 2 OE to 2 Yn		15	30		38		45	ns	4,5	Fig. 6
tPHZ/ tPLZ	3-state output disable time 10E to 1Yn; 20E to 2Yn		15	25		31		38	ns	4.5	Fig. 6
^t THL [/] ^t TLH	output transition time		5	12		15		18	ns	4.5	Fig. 5

AC WAVEFORMS

Note to AC waveforms

(1) HC : $V_M = 50\%$; $V_1 = GND$ to V_{CC} . HCT: $V_M = 1.3$ V; $V_1 = GND$ to 3 V.