

LT1076-5 5V Step-Down Switching Regulator

DZSC.COM

FEATURES

- Fixed 5V Output
- 2A On-Board Switch
- 100kHz Switching Frequency
- 2% Output Voltage Tolerance Over Temperature
- Greatly Improved Dynamic Behavior
- Available in Low Cost 5- and 7-Lead Packages
- Only 9.5mA Quiescent Current
- Operates Up to 60V Input

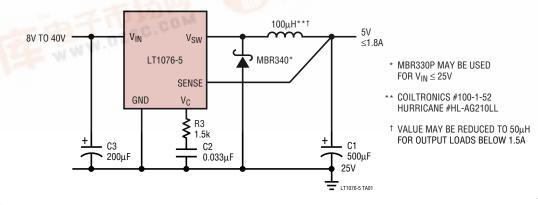
APPLICATIONS

- 5V Output Buck Converter
- Tapped Inductor Buck Converter with 4A Output at 5V
- Positive-to-Negative Converter

DESCRIPTION

The LT1076-5 is a 2A fixed 5V output monolithic bipolar switching regulator which requires only a few external parts for normal operation. The power switch, all oscillator and control circuitry, all current limit components, and an output monitor are included on the chip. The topology is a classic positive "buck" configuration but several design innovations allow this device to be used as a positive-to-negative converter, a negative boost converter, and as a flyback converter. The switch output is specified to swing 40V below ground, allowing the LT1076-5 to drive a tapped inductor in the buck mode with output currents up to 4A.

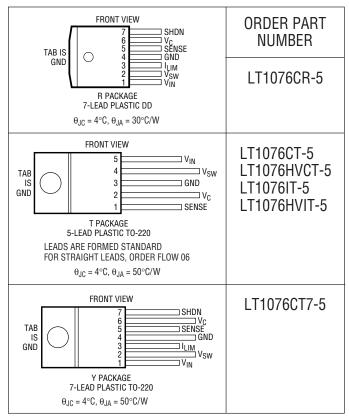
The LT1076-5 uses a true analog multiplier in the feedback loop. This makes the device respond nearly instantaneously to input voltage fluctuations and makes loop gain independent of input voltage. As a result, dynamic behavior of the regulator is significantly improved over previous designs.


On-chip pulse by pulse current limiting makes the LT1076-5 nearly bust-proof for output overloads or shorts. The input voltage range as a buck converter is 8V to 60V, but a selfboot feature allows input voltages as low as 5V in the inverting and boost configurations.

The LT1076-5 is available in a low cost 5- and 7-lead TO-220 packages with frequency pre-set at 100kHz and current limit at 2.6A. See Application Note 44 for design details.

17, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION


Basic Positive Buck Converter

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Input Voltage
LT1076-545V
LT1076HV-5 64V
Switch Voltage with Respect to Input Voltage
LT1076-5 64V
LT1076HV-5 75V
Switch Voltage with Respect to Ground Pin
(V _{SW} Negative)
LT1076-5 (Note 6)
LT1076HV-5 (Note 6)
Sense Pin Voltage –2V, 10V
Maximum Operating Ambient Temperature Range
LT1076C-5, LT1076HVC-5 0°C to 70°C
LT1076I-5, LT1076HVI-540°C to 85°C
Maximum Operating Junction Temperature Range
LT1076C-5, LT1076HVC-5 0°C to 125°C
LT1076I-5, LT1076HVI-540°C to 125°C
Maximum Storage Temperature −65°C to 150°C
Lead Temperature (Soldering, 10 sec)300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_J = 25^{\circ}C$. $V_{IN} = 25V$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Switch "On" Voltage (Note 2)	I _{SW} = 0.5A	•			1.2	V
,	I _{SW} = 2A	•			1.7	V
Switch "Off" Leakage	$V_{IN} = 25V, V_{SW} = 0$				150	μА
	$V_{IN} = V_{MAX}$, $V_{SW} = 0$ (Note 7)				250	μΑ
Supply Current (Note 3)	$V_{OUT} = 5.5V, V_{IN} \le 40V$	•		8.5	11	mA
	$40V < V_{IN} < 60V$	•		9.0	12	mA
	V _{SHDN} = 0.1V (Device Shutdown) (Note 9)			140	300	μΑ
Minimum Supply Voltage	Normal Mode	•		7.3	8.0	V
	Start-Up Mode (Note 4)	•		3.5	4.8	V
Switch Current Limit (Note 5)	I _{LIM} = Open	•	2	2.6	3.2-	A
	$R_{LIM} = 10k$ (Note 10)			1.8		A
	$R_{LIM} = 7k \text{ (Note 10)}$			1.2		A
Maximum Duty Cycle		•	85	90		%
Switching Frequency			90	100	110	kHz
	T _J ≤ 125°C	•	85		120	kHz
	$V_{OUT} = V_{SENSE} = 0V \text{ (Note 5)}$			20		kHz
Switching Frequency Line Regulation	$8V \le V_{IN} \le V_{MAX}$ (Note 8)	•		0.03	0.1	%/V
Error Amplifier Voltage Gain (Note 8)	$1V \le V_{\mathbb{C}} \le 4V$			2000		V/V
Error Amplifier Transconductance (Note 8)			3700	5000	8000	μmho

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_J = 25^{\circ}C$. $V_{IN} = 25V$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Error Amplifier Source and Sink Current	Source (V _{SENSE} = 4.5V) Sink (V _{SENSE} = 5.5V)		100 0.7	140 1.0	225 1.6	μA mA
Sense Pin Divider Resistance			3	5	8	kΩ
Sense Voltage	V _C = 2V	•	4.85	5	5.15	V
Output Voltage Tolerance	V _{OUT} (Nominal) = 5V All Conditions of Input Voltage, Output Voltage, Temperature and Load Current	•		±0.5 ±1.0	±2 ±3	% %
Output Voltage Line Regulation	$8V \le V_{IN} \le V_{MAX}$ (Note 7)	•		0.005	0.02	%/V
V _C Voltage at 0% Duty Cycle	Over Temperature	•		1.5 -4.0		V mV/°C
Multiplier Reference Voltage				24		V
Shutdown Pin Current	$V_{SHDN} = 5V$ $V_{SHDN} \le V_{THRESHOLD} (\cong 2.5V)$		5	10	20 50	μA μA
Shutdown Thresholds	Switch Duty Cycle = 0 Fully Shut Down		2.2 0.1	2.45 0.30	2.7 0.5	V
Thermal Resistance Junction to Case					4	°C/W

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device ay be impaired.

Note 2: To calculate maximum switch "on" voltage at currents between low and high conditions, a linear interpolation may be used.

Note 3: A sense pin voltage (V_{SENSE}) of 5.5V forces the V_C pin to its low clamp level and the switch duty cycle to zero. This approximates the zero load condition where duty cycle approaches zero.

Note 4: Total voltage from V_{IN} pin to ground pin must be $\geq 8V$ after start-up for proper regulation. For $T_A < 25^{\circ}C$, limit = 5V.

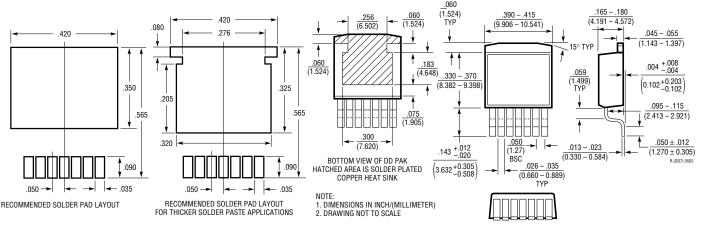
Note 5: Switch frequency is internally scaled down when the sense pin voltage is less than 2.6V to avoid extremely short switch on times. During

current limit testing, V_{SENSE} is adjusted to give a minimum switch on time of $1\mu s.$

Note 6: Switch to input voltage limitation must also be observed.

Note 7: $V_{MAX} = 40V$ for the LT1076-5 and 60V for the LT1076HV-5.

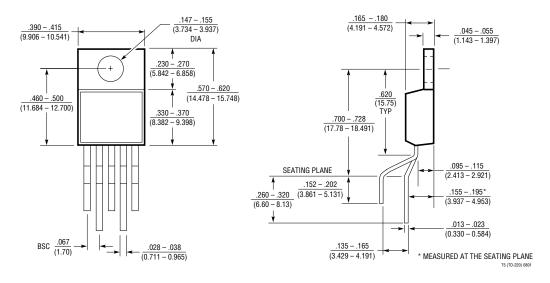
Note 8: Error amplifier voltage gain and transconductance are specified relative to the internal feedback node. To calculate gain and transconductance from the Sense pin (Output) to the $V_{\mathbb{C}}$ pin, multiply by 0.44.


Note 9: Does not include switch leakage.

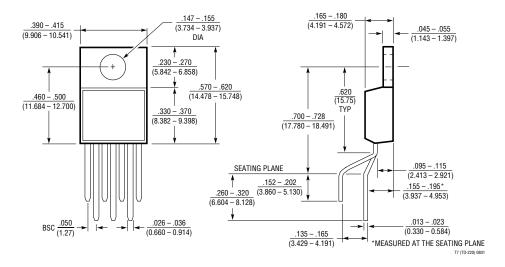
Note 10:
$$I_{LIM} \approx \frac{R_{LIM} - 1k}{5k}$$

PACKAGE DESCRIPTION

R Package 7-Lead Plastic DD Pak


(Reference LTC DWG # 05-08-1462)

PACKAGE DESCRIPTION


T Package 5-Lead Plastic TO-220 (Standard)

(Reference LTC DWG # 05-08-1421)

T7 Package 7-Lead Plastic T0-220 (Standard)

(Reference LTC DWG # 05-08-1422)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1074/HV	4.4A (I _{OUT}), 100kHz High Efficiency Step-Down DC/DC Converter	V _{IN} : 7.3V to 45V/64V, V _{OUT(MIN)} : 2.21V, I _Q : 8.5mA, I _{SHDN} : 10μA, DD5/7, TO-2205/7
LT3430	60V, 2.75A (I _{OUT}), 200kHz High Efficiency Step-Down DC/DC Converter	V _{IN} : 5.5V to 60V, V _{OUT(MIN)} : 1.20V, I _Q : 2.5mA, I _{SHDN} : 25μA, TSSOP16E
LT1956	60V, 1.2A (I _{OUT}), 500kHz High Efficiency Step-Down DC/DC Converter	V _{IN} : 5.5V to 60V, V _{OUT(MIN)} : 1.20V, I _Q : 2.5mA, I _{SHDN} : 25μA, TSSOP16E

