PRELIMINARY PRODUCT INFORMATION

mos integrated circuit $\mu PD78F9328$

8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78F9328 is a μ PD789327 Subseries (designed for remote controller with on-chip LCD) product in the 78K/0S Series, featuring expanded flash memory in place of the internal ROM of the μ PD789322, 789324, 789326, and 789327.

Because flash memory allows the program to be written and erased with the device mounted on the target board, this product is ideal for development trials, small-scale production, or for applications that require frequent upgrades.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD789327, 789467 Subseries User's Manual: To be prepared 78K/0S Series User's Manual Instructions: U11047E

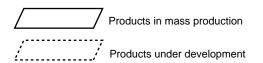
FEATURES

- Pin-compatible with mask ROM product (except VPP)
- · Flash memory: 32 Kbytes
- Internal high-speed RAM: 512 bytes
- LCD display RAM: 24 bytes
- Variable minimum instruction execution time: High speed (0.4 μ s: @5.0-MHz operation with main system clock), low speed (1.6 μ s: @5.0-MHz operation with main system clock), and ultra low speed (122 μ s: @32.768-kHz operation with subsystem clock)
- I/O ports: 21
- Serial interface (3-wire serial I/O mode): 1 channel
- LCD controller/driver Segment signals: 24 Common signals: 4
- Timer: 4 channels
- Supply voltage: VDD = 1.8 to 5.5 V

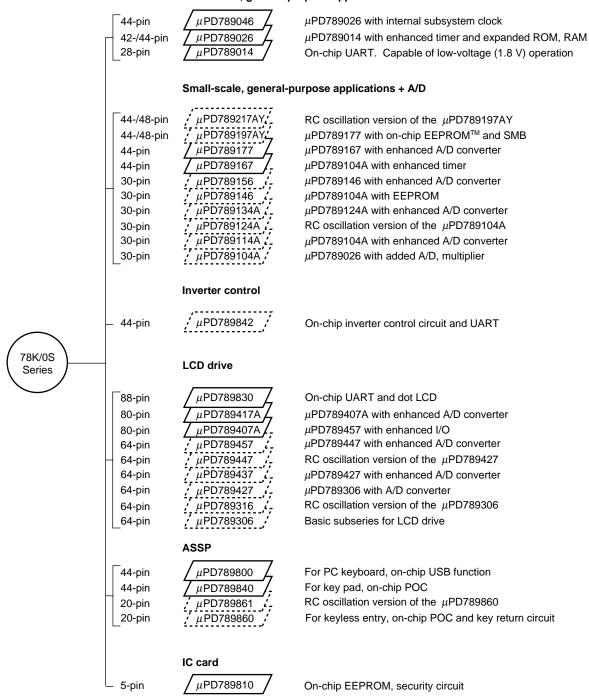
APPLICATIONS

Remote-control devices, healthcare equipment, etc.

ORDERING INFORMATION


Part Number	Package
μPD78F9328GB-8ET	52-pin plastic LQFP (10 mm × 10 mm)

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.



78K/0S SERIES LINEUP

The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

Small-scale, general-purpose applications

The major functional differences among the subseries are listed below.

	Function	ROM		Tin	ner		8-Bit	10-Bit	Serial Interface	I/O	V _{DD} Min.	Remarks
Subseries	Name	Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D			Value	
Small-	μPD789046	16 K	1 ch	1 ch	1 ch	1 ch	-	_	1 ch (UART: 1 ch)	34	1.8 V	-
scale,	μPD789026	4 K to 16 K			_							
general- purpose	μPD789014	2 K to 4 K	2 ch	_						22		
applications												
Small-	μPD789217AY	16 K to 24 K	3 ch	1 ch	1 ch	1 ch	_	8 ch	2 ch UART: 1ch SMB: 1ch	31	1.8 V	RC oscillation version,
scale, general-									(SIVIB: TOT)			on-chip
purpose												EEPROM
applications + A/D	μPD789197AY											On-chip EEPROM
	μPD789177								1 ch (UART: 1 ch)			-
	μPD789167						8 ch	_				
	μPD789156	8 K to 16 K	1 ch		_		_	4 ch		20		On-chip
	μPD789146						4 ch	_				EEPROM
	μPD789134A	2 K to 8 K					_	4 ch				RC oscillation
	μPD789124A						4 ch	_				version
	μPD789114A						_	4 ch				-
	μPD789104A						4 ch	_				
Inverter control	μPD789842	8 K to 16 K	3 ch	Note	1 ch	1 ch	8 ch	_	1 ch (UART: 1 ch)	30	4.0 V	-
LCD drive	μPD789830	24 K	1 ch	1 ch	1 ch	1 ch	-	_	1 ch (UART: 1 ch)	30	2.7 V	=
	μPD789417A	12 K to 24 K	3 ch					7 ch		43	1.8 V	
	μPD789407A						7 ch	_		25		
	μPD789457	16 K to 24 K	2 ch				_	4 ch	2 ch (UART: 1 ch)			RC oscillation
	μPD789447						4 ch	_				version
	μPD789437						_	4 ch				_
	μPD789427						4 ch	_				
	μPD789316	8 K to 16 K					-			23		RC oscillation version
	μPD789306											-
ASSP	μPD789800	8 K	2 ch	1 ch	-	1 ch	ı	_	2 ch (USB: 1 ch)	31	4.0 V	-
	μPD789840						4 ch		1 ch	29	2.8 V	
	μPD789861	4 K		_			_		_	14	1.8 V	RC oscillation version
	μPD789860											_
IC card	μPD789810	6 K	-	_	_	1 ch	-	-	_	1	2.7 V	On-chip EEPROM

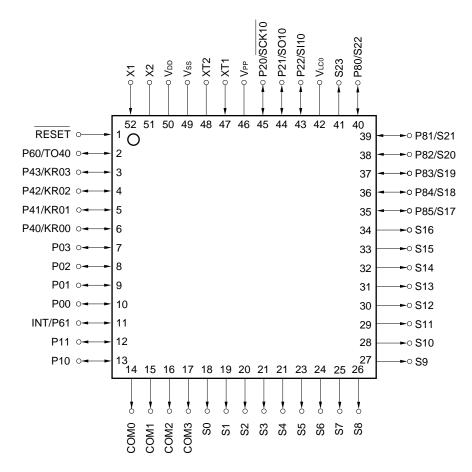
Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTIONS

lte	em	Description				
Internal memory	Flash memory	32 Kbytes				
	High-speed RAM	512 bytes				
	LCD display RAM	24 bytes				
Main system clock (oscillation frequence	у)	Ceramic/crystal resonator (1.0 to 5.0 MHz)				
Subsystem clock (oscillation frequence	y)	Crystal resonator (32.768 kHz)				
Minimum instruction	execution time	0.4 μs/1.6 μs (@5.0-MHz operation with main system clock)				
		122 μs (@32.768-kHz operation with subsystem clock)				
General-purpose rec	gisters	8 bits × 8 registers				
Instruction set		16-bit operationsBit manipulation (set, reset, test) etc.				
I/O ports		Total: 21 CMOS I/O: 21				
Timers		 8-bit timer: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel 				
Timer outputs		1				
Serial interface		3-wire serial I/O mode: 1 channel				
LCD controller/drive	r	Segment signal outputs: 24 Common signal outputs: 4				
Vectored interrupt	Maskable	Internal: 6, External: 2				
sources	Non-maskable	Internal: 1				
Reset		Reset by RESET signal input Internal reset by watchdog timer Reset via power-on-clear circuit				
Supply voltage		V _{DD} = 1.8 to 5.5 V				
Operating ambient to	emperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$				
Package		52-pin plastic LQFP (10 mm × 10 mm)				

CONTENTS

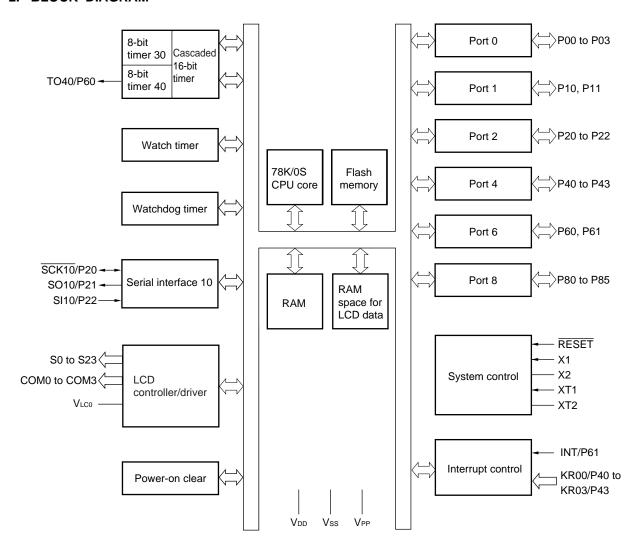
1.	PIN CONFIGURATION (TOP VIEW)	7
2.	BLOCK DIAGRAM	8
3.	PIN FUNCTIONS	g
	3.1 Port Pins	9
	3.2 Non-Port Pins	
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins.	11
4.	CPU ARCHITECTURE	13
	4.1 Memory Space	13
	4.2 Data Memory Addressing	
	4.3 Processor Registers	15
	4.3.1 Control registers	15
	4.3.2 General-purpose registers	
	4.3.3 Special function registers (SFRs)	17
5.	PERIPHERAL HARDWARE FUNCTIONS	19
	5.1 Ports	19
	5.1.1 Port functions	19
	5.1.2 Port configuration	21
	5.1.3 Port function control registers	
	5.2 Clock Generator	25
	5.2.1 Clock generator function	25
	5.2.2 Clock generator configuration	
	5.2.3 Clock generator control registers	
	5.3 8-Bit Timer 30, 40	30
	5.3.1 Functions of 8-bit timer 30, 40	
	5.3.2 Configuration of 8-bit timer 30, 40	
	5.3.3 8-bit timer 30, 40 control registers	
	5.4 Watch Timer	
	5.4.1 Watch timer functions	
	5.4.2 Watch timer configuration	
	5.4.3 Watch timer control register	
	5.5 Watchdog Timer	
	5.5.1 Watchdog timer functions	
	5.5.2 Watchdog timer configuration	
	5.5.3 Watchdog timer control register	
	5.6 Serial Interface 10	
	5.6.1 Functions of serial interface 10	
	5.6.2 Configuration of serial interface 10	
	5.6.3 Control register for serial interface 10	
	5.7 LCD Controller/Driver	
	5.7.1 LCD controller/driver functions	
	5.7.2 LCD controller/driver configuration	49



	5.7.3 LCD controller/driver control registers	52
6.	INTERRUPT FUNCTION	55
	6.1 Interrupt Types	55
	6.2 Interrupt Sources and Configuration	55
	6.3 Interrupt Function Control Registers	58
7.	STANDBY FUNCTION	64
	7.1 Standby Function	64
	7.2 Standby Function Control Register	66
8.	RESET FUNCTION	67
	8.1 Reset Function	67
	8.2 Power Failure Detection Function	69
9.	FLASH MEMORY PROGRAMMING	70
	9.1 Selection of Communication Mode	
	9.2 Flash Memory Programming Functions	71
	9.3 Flashpro III Connection Example	
	9.4 Setting Example Using Flashpro III (PG-FP3)	72
10.	. INSTRUCTION SET OVERVIEW	73
	10.1 Conventions	73
	10.1.1 Operand formats and descriptions	73
	10.1.2 Operation field definitions	74
	10.1.3 Flag operation field definitions	74
	10.2 Operations	75
11.	. ELECTRICAL SPECIFICATIONS	80
ΑP	PPENDIX A. DIFFERENCES BETWEEN μ PD78F9328 AND MASK RC	DM VERSIONS91
ΑP	PPENDIX B. DEVELOPMENT TOOLS	92
ΔΡ	PPENDIX C. RELATED DOCUMENTS	94

1. PIN CONFIGURATION (TOP VIEW)

52-pin plastic LQFP (10 mm \times 10 mm) μ PD78F9328GB-8ET



Caution In normal operation mode, directly connect the VPP pin to Vss.

COM0 to COM3	: Common Output	RESET:	Reset
INT:	Interrupt from Peripherals	S0 to S23:	Segment Output
KR00 to KR03:	Key Return	SCK10:	Serial Clock Input/Output
P00 to P03:	Port 0	SI10:	Serial Data Input
P10, P11:	Port 1	SO10:	Serial Data Output
P20 to P22:	Port 2	VDD:	Power Supply
P40 to P43:	Port 4	VLC0:	Power Supply for LCD
P60, P61:	Port 6	VPP:	Programming Power Supply
P80 to P85:	Port 8	Vss:	Ground
TO40:	Timer Output	X1, X2:	Crystal (Main system clock)
		XT1, XT2:	Crystal (Sabsystem clock)

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P03	I/O	Port 0. This is a 4-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistors can be specified for the whole port using pull-up resistor option register 0 (PU0).	Input	_
P10, P11	I/O	Port 1. This is a 2-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistors can be specified for the whole port using pull-up resistor option register 0 (PU0).	Input	-
P20	I/O	Port 2.	Input	SCK10
P21		This is a 3-bit I/O port. Input/output can be specified in 1-bit units.		SO10
P22		When used as an input port, on-chip pull-up resistors can be specified in 1-bit units using pull-up resistor option register 2 (PUB2).		SI10
P40 to P43	I/O	Port 4. This is a 4-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistors can be specified for the whole port using pull-up resistor option register 0 (PU0), or key return mode register 00 (KRM00).	Input	KR00 to KR03
P60	I/O	Port 6.	Input	TO40
P61		This is a 2-bit I/O port. Input/output can be specified in 1-bit units.		INT
P80 to P85	I/O	Port 8. This is a 6-bit I/O port. Input/output can be specified in 1-bit units.	Low-level output	S22 to S17

3.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INT	Input	External interrupt input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.	Input	P61
KR00 to KR03	Input	Key return signal detection	Input	P40 to P43
TO40	Output	8-bit timer 40 output	Input	P60
SCK10	I/O	Serial clock input/output of serial interface 10	Input	P20
SI10	Input	Serial data input of serial interface 10	Input	P22
SO10	Output	Serial data output of serial interface 10	Input	P21
S0 to S16	Output	LCD controller/driver segment signal outputs	Low-level	-
S17 to S22			output	P85 to P80
S23				-
COM0 to COM3	Output	LCD controller/driver common signal outputs	Low-level output	-
V _{LC0}	-	LCD drive voltage	=	_
X1	Input	Connecting crystal resonator for main system clock oscillation	-	_
X2	-		-	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	-	-
XT2	_		_	
RESET	Input	System reset input	Input	-
V _{DD}	_	Positive power supply	-	
Vss	_	Ground potential	-	
VPP	-	Flash memory programming mode setting. High-voltage application for program write/verify. In normal operation mode, connect directly to Vss.	-	-

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins is shown in Table 3-1. For the input/output circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins

Pin Name	I/O Circuit Type	I/O	Recommend Connection of Unused Pins
P00 to P03	5-A	I/O	Input: Independently connect to VDD or Vss via a resistor.
P10, P11			Output: Leave open.
P20/SCK10	8-A		
P21/SO10	5-A		
P22/SI10	8-A		
P40/KR00 to P43/KR03			
P60/TO40	5		
P61/INT	8		
P80/S22 to P85/S17	17-G		
S0 to S16, S23	17-D	Output	Leave open.
COM0 to COM3	18-B		
V _{LC0}	_	_	
XT1		Input	Connect to Vss.
XT2		-	Leave open.
RESET	2	Input	-
VPP	_	-	Connect directly to Vss.

Figure 3-1. I/O Circuit Type (1/2)

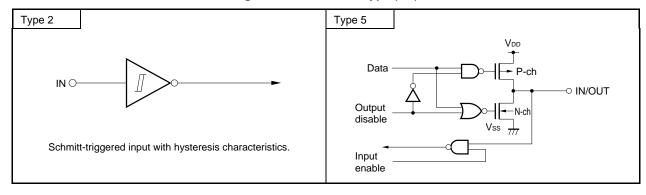
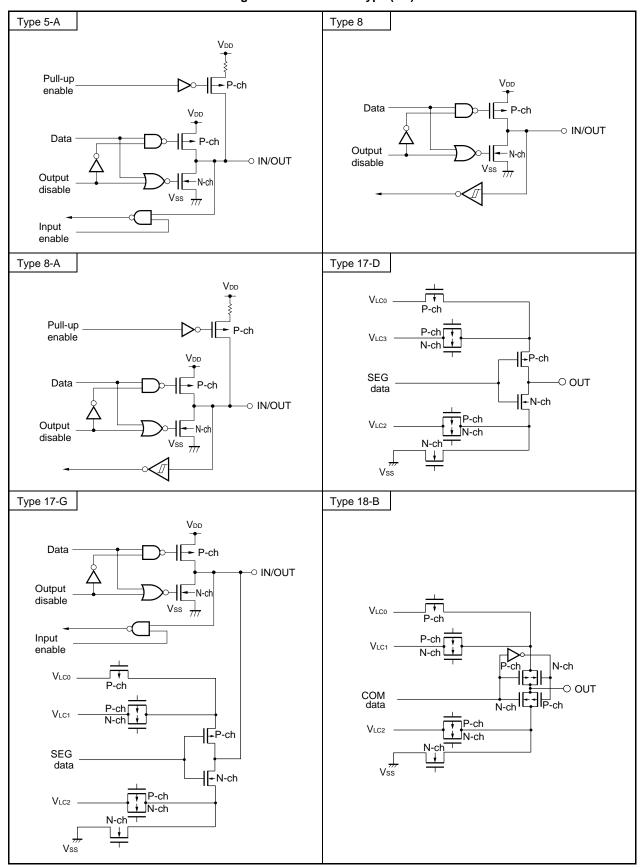



Figure 3-1. I/O Circuit Type (2/2)

Remark VLC1: VLC0 × 2/3, VLC2: VLC0/3

4. CPU ARCHITECTURE

4.1 Memory Space

The μ PD78F9328 is provided with 64 Kbytes of accessible memory space. Figure 4-1 shows the memory map.

FFFFH Special function registers 256×8 bits FF00H FEFFH Internal high-speed RAM 512×8 bits FD00H FCFFH Reserved FA18H FA17H LCD display RAM 24×8 bits Data memory F A 0 0 H F 9 F F H space 7 F F F H Reserved 8000H 7 F F F H Program area 0080H Program Flash memory 007FH 32 $K \times 8$ bits memory space CALLT table area 0040H 003FH Program area 0014H 0013H Vector table area 0000H 0000H

Figure 4-1. Memory Map

4.2 Data Memory Addressing

The μ PD78F9328 is provided with a variety of addressing modes to improve the operability of the memory. In the area that incorporates data memory (FD00H to FFFFH) in particular, specific addressing modes that correspond to the particular functions of an area, such as the special function registers (SFRs), are available. Figure 4-2 shows the data memory addressing modes.

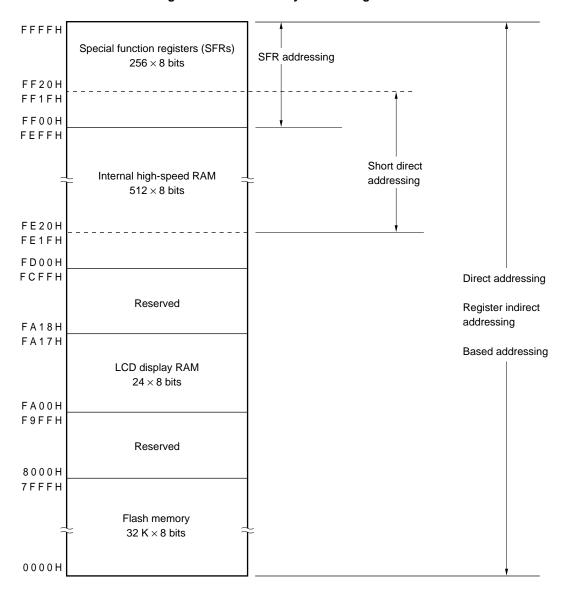
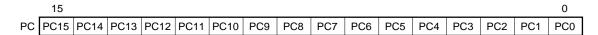


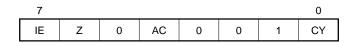
Figure 4-2. Data Memory Addressing Modes


4.3 Processor Registers

4.3.1 Control registers

(1) Program counter (PC)

The PC is a 16-bit register that holds the address information of the next program to be executed.


Figure 4-3. Program Counter Configuration

(2) Program status word (PSW)

The PSW is an 8-bit register that indicates the status of the CPU according to the results of instruction execution.

Figure 4-4. Program Status Word Configuration

(a) Interrupt enable flag (IE)

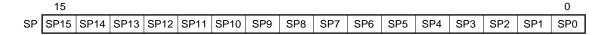
This flag controls the interrupt request acknowledgement of the CPU.

(b) Zero flag (Z)

This flag is set (1) if the result of an operation is zero; otherwise it is reset (0).

(c) Auxiliary carry flag (AC)

AC is set (1) if the result of the operation has a carry from bit 3 or a borrow at bit 3; otherwise it is reset (0).


(d) Carry flag (CY)

CY is used to indicate whether an overflow or underflow has occurred during the execution of a subtract or add instruction.

(3) Stack pointer (SP)

The SP is a 16-bit register that holds the start address of the stack area. Only the internal RAM area (FD00H to FEFFH) can be specified as the stack area.

Figure 4-5. Stack Pointer Configuration

Caution RESET input makes the SP contents undefined, so be sure to initialize the SP before instruction execution.

4.3.2 General-purpose registers

The μ PD78F9328 has eight 8-bit general-purpose registers (X, A, C, B, E, D, L, and H).

These registers can be used either singly as 8-bit registers or in pairs as 16-bit registers (AX, BC, DE, and HL), and can be described in terms of function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL) and absolute names (R0 to R7 and RP0 to RP3).

Figure 4-6. General-Purpose Register Configuration

(a) Absolute register names

16-bit processing	_	8-bit processing
RP3		R7
10.5		R6
RP2		R5
RF2		R4
RP1		R3
IXI I		R2
RP0		R1
RP0		R0
15 (<u> </u>	7 0

(b) Functional register names

16-bit processing	_	8-bit processing
HL		Н
		L
DE		D
		E
ВС		В
ВС		С
AX		А
AA		х
15 (<u>-</u>	7 0

4.3.3 Special function registers (SFRs)

Special function registers are used as peripheral hardware mode registers and control registers, and are mapped in the 256-byte space from FF00H to FFFFH.

Note that the bit number of a bit name that is a reserved word in the RA78K0S and defined under the header file "sfrbit.h" in the CC78K0S appears enclosed in a circle in the register formats. Refer to the register formats in **5. PERIPHERAL HARDWARE FUNCTIONS**.

Table 4-1. Special Function Registers (1/2)

Address	Special Function Register (SFR) Name	Symbol	R/W	Bit Uni	After		
				1 Bit	8 Bits	16 Bits	Reset
FF00H	Port 0	P0	R/W	V	$\sqrt{}$	-	00H
FF01H	Port 1	P1		V	√	_	
FF02H	Port 2	P2		V	√	_	
FF03H	port 4	P4		V	√	-	
FF05H	Port 6	P6		V	√	-	
FF08H	Port 8	P8		V	√	-	
FF20H	Port mode register 0	PM0		V	√	-	FFH
FF21H	Port mode register 1	PM1		V	√	-	
FF22H	Port mode register 2	PM2		V	√	-	
FF24H	Port mode register 4	PM4		V	√	_	
FF26H	Port mode register 6	PM6		V	√	-	
FF28H	Port mode register 8	PM8		V	√	-	
FF32H	Pull-up resistor option register B2	PUB2		V	√	-	00H
FF4AH	Watch timer mode control register	WTM		V	√	_	
FF58H	Port function register 8	PF8		V	√	_	
FF63H	8-bit compare register 30	CR30	W	_	√	_	Undefined
FF64H	8-bit timer counter 30	TM30	R	_	√	-	00H
FF65H	8-bit timer mode control register 30	TMC30	R/W	V	√	-	
FF66H	8-bit compare register 40	CR40	W	1	$\sqrt{}$	_	Undefined
FF67H	8-bit H width compare register 40	CRH40		-	√	-	
FF68H	8-bit timer counter 40	TM40	R	_	√	_	00H
FF69H	8-bit timer mode control register 40	TMC40	R/W	V	√	_	
FF6AH	Carrier generator output control register 40	TCA40	W	V	√	-	
FF72H	Serial operation mode register 10	CSIM10	R/W	V	√	-	
FF74H	Transmission/reception shift register 10	SIO10		√	√	_	Undefined
FFB0H	LCD display mode register 0	LCDM0		√	√	_	00H
FFB2H	LCD clock control register 0	LCDC0		V	V	_	
FFDDH	Power-on-clear register 1	POCF1		V	V	_	00H ^{Note}

Note This value is 04H only after a power-on-clear reset.

Table 4-1. Special Function Registers (2/2)

Address	Special Function Register (SFR) Name	Symbol	R/W	Bit Unit for Manipulation			After
				1 Bit	8 Bits	16 Bits	Reset
FFE0H	Interrupt request flag register 0	IF0	R/W	\checkmark	$\sqrt{}$	-	00H
FFE4H	Interrupt mask flag register 0	MK0		\checkmark	V	-	FFH
FFECH	External interrupt mode register 0	INTM0		-	V	-	00H
FFF0H	Subclock oscillation mode register	SCKM		\checkmark	V	-	
FFF2H	Subclock control register	CSS		\checkmark	\checkmark	-	
FFF5H	Key return mode register 00	KRM00		\checkmark	\checkmark	-	
FFF7H	Pull-up resistor option register 0	PU0		\checkmark	\checkmark	-	
FFF9H	Watchdog timer mode register	WDTM		\checkmark	\checkmark	-	
FFFAH	Oscillation stabilization time selection register	OSTS		-	V	-	04H
FFFBH	Processor clock control register	PCC		\checkmark	V	_	02H

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

5.1.1 Port functions

Various kinds of control operations are possible using the ports provided in the μ PD78F9328. These ports are illustrated in Figure 5-1 and their functions are listed in Table 5-1.

A number of alternate functions are also provided, except for those ports functioning as digital I/O ports. Refer to **3. PIN FUNCTIONS** for details of the alternate function pins.

Figure 5-1. Ports

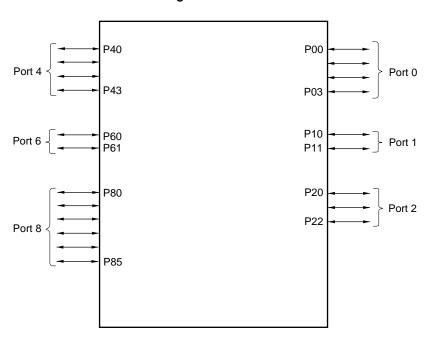
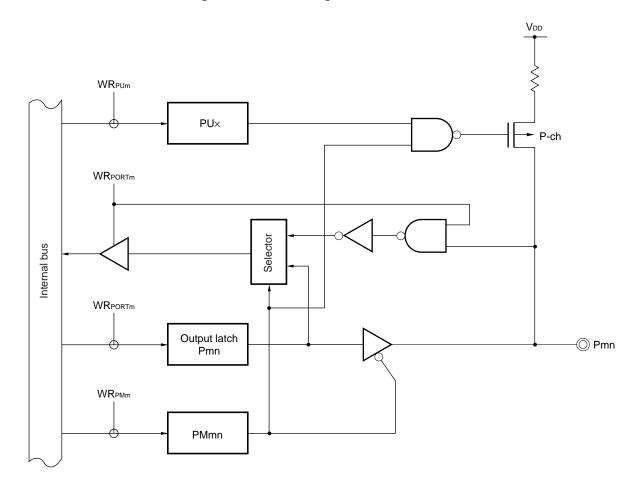


Table 5-1. Port Functions

Port Name	Pin Name	Function
Port 0	P00 to P03	This is an I/O port for which input and output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistors can be specified using pull-up resistor option register 0 (PU0).
Port 1	P10, P11	This is an I/O port for which input and output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistors can be specified using pull-up resistor option register 0 (PU0).
Port 2	P20 to P22	This is an I/O port for which input and output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistors can be specified using pull-up resistor option register B2 (PUB2).
Port 4	P40 to P43	This is an I/O port for which input and output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistors can be specified using pull-up resistor option register 0 (PU0), or key return mode register 00 (KRM00).
Port 6	P60, P61	This is an I/O port for which input and output can be specified in 1-bit units.
Port 8	P80 to P85	This is an I/O port for which input and output can be specified in 1-bit units.


5.1.2 Port configuration

The ports consist of the following hardware.

Table 5-2. Port Configuration

Item	Configuration
Control registers	Port mode registers (PMm: m = 0 to 2, 4, 6, 8) Pull-up resistor option registers (PU0, PUB2) Port function register 8 (PF8)
Ports	Total: 21 (CMOS I/O: 21)
Pull-up resistors	Total: 13 (software control: 13)

Figure 5-2. Basic Configuration of CMOS Port

Caution Figure 5-2 shows the basic configuration of a CMOS I/O port. This configuration differs depending on the functions of alternate function pins. Also, an on-chip pull-up resistor can be connected to port 4 by means of a setting in key return mode register 00 (KRM00).

Remark PU \times : Pull-up resistor option register (\times = 0, B2)

PMmn: Bit n of port mode register m (m = 0 to 2, 4, 6, 8 n = 0 to 5)

Pmn: Bit n of port m

RD: Port read signal

WR: Port write signal

5.1.3 Port function control registers

The ports are controlled by the following three types of registers.

- Port mode registers (PM0 to PM2, PM4, PM6, PM8)
- Pull-up resistor option registers (PU0, PUB2)
- Port function register 8 (PF8)

(1) Port mode registers (PM0 to PM2, PM4, PM6, PM8)

Input and output can be specified in 1-bit units.

These registers can be set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets these registers to FFH.

When using the port pins as their alternate functions, set the output latch as shown in Table 5-3.

Caution Because P61 functions alternately as an external interrupt input, when the output level changes after the output mode of the port function is specified, the interrupt request flag will be inadvertently set. Therefore, be sure to preset the interrupt mask flag (PMK0) before using the port in output mode.

Figure 5-3. Port Mode Register Format

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM0	1	1	1	1	PM03	PM02	PM01	PM00	FF20H	FFH	R/W
									_		
PM1	1	1	1	1	1	1	PM11	PM10	FF21H	FFH	R/W
PM2	1	1	1	1	1	PM22	PM21	PM20	FF22H	FFH	R/W
PM4	1	1	1	1	PM43	PM42	PM41	PM40	FF24H	FFH	R/W
PM6	1	1	1	1	1	1	PM61	PM60	FF26H	FFH	R/W
PM8	1	1	PM85	PM84	PM83	PM82	PM81	PM80	FF28H	FFH	R/W
			•		•	•	•		-		

PMmn	Pmn pin input/output mode selection
	$(m = 0 \text{ to } 2, 4, 6, 8 \ n = 0 \text{ to } 5)$
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Table 5-3. Port Mode Registers and Output Latch Settings When Using Alternate Functions

Pin Name	Alternate Function	PM××	Pxx	
	Name	I/O		
P20	SCK10	Input	1	×
		Output	0	1
P21	SO10	Output	0	1
P22	SI10	Input	1	×
P40 to P43	KR00 to KR03	Input	1	×
P60	TO40	Output	0	0
P61	INT	Input	1	×
P80 to P85	S22 to S17 ^{Note}	Output	×	×

Note When using P80 to P85 pins as S22 to S17, set port function register 8 (PF8) to 3FH.

Remark ×: don't care

PMxx: Port mode register Pxx: Port output latch

(2) Pull-up resistor option register 0 (PU0)

This register sets whether to use on-chip pull-up resistors for ports 0, 1, and 4 on a port by port basis. An on-chip pull-up resistor can be used only for those bits set to the input mode of a port for which the use of the on-chip pull-up resistor has been specified using PU0.

For those bits set to the output mode, on-chip pull-up resistors cannot be used, regardless of the setting of PU0. This also applies to alternate-function pins used as output pins.

PU0 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-4. Format of Pull-Up Resistor Option Register 0

Symbol	7	6	5	<4>	3	2	<1>	<0>	Address	After reset	R/W
PU0	0	0	0	PU04	0	0	PU01	PU00	FFF7H	00H	R/W

PU0m	Port m on-chip pull-up resistor selection (m = 0, 1, 4)
0	An on-chip pull-up resistor is not connected
1	An on-chip pull-up resistor is connected

Caution Always set bits 2, 3, and 5 to 7 to 0.

(3) Pull-up resistor option register B2 (PUB2)

This register sets whether to use on-chip pull-up resistors for P20 to P22 in bit units. An on-chip pull-up resistor can be used only for those bits set to the input mode of a port for which the use of the on-chip pull-up resistor has been specified using PUB2.

For those bits set to the output mode, on-chip pull-up resistors cannot be used, regardless of the setting of PUB2. This also applies to alternate-function pins used as output pins.

PUB2 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-5. Format of Pull-Up Resistor Option Register B2

Symbol	7	6	5	4	3	<2>	<1>	<0>	Address	After reset	R/W
PUB2	0	0	0	0	0	PUB22	PUB21	PUB20	FF32H	00H	R/W

PUB2n	P2n on-chip pull-up resistor selection (n = 0 to 2)							
0	on-chip pull-up resistor is not connected							
1	An on-chip pull-up resistor is connected							

Caution Always set bits 3 to 7 to 0.

(4) Port function register 8 (PF8)

This register sets the port function of port 8 in 1-bit units.

The pins of port 8 are selected as either LCD segment signal outputs or general-purpose port pins according to the setting of PF8.

PF8 can be set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-6. Format of Port Function Register 8

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PF8	0	0	PF85	PF84	PF83	PF82	PF81	PF80	FF58H	00H	R/W

PF8n	P8n port function (n = 0 to 5)
0	Operates as a general-purpose port
1	Operates as an LCD segment signal output

5.2 Clock Generator

5.2.1 Clock generator function

The clock generator generates the clock pulse to be supplied to the CPU and peripheral hardware.

There are two types of system clock oscillators:

- Main system clock oscillator (ceramic/crystal resonator)
 - This circuit generates a frequency of 1.0 to 5.0 MHz. Oscillation can be stopped by executing the STOP instruction or by means of a processor clock control register (PCC) setting.
- Subsystem clock oscillator

This circuit generates a frequency of 32.768 kHz. Oscillation can be stopped using the subclock oscillation mode register (SCKM).

5.2.2 Clock generator configuration

The clock generator consists of the following hardware.

Table 5-4. Clock Generator Configuration

Item	Configuration
Control registers	Processor clock control register (PCC) Subclock oscillation mode register (SCKM) Subclock control register (CSS)
Oscillators	Main system clock oscillator Subsystem clock oscillator

Figure 5-7. Clock Generator Block Diagram

5.2.3 Clock generator control registers

The clock generator is controlled by the following three registers.

- Processor clock control register (PCC)
- Subclock oscillation mode register (SCKM)
- Subclock control register (CSS)

(1) Processor clock control register (PCC)

This register is used to select the CPU clock and set the frequency division ratio.

PCC is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 02H.

Figure 5-8. Format of Processor Clock Control Register

Symbol	<7>	6	5	4	3	2	1	0	Address	After reset	R/W
PCC	мсс	0	0	0	0	0	PCC1	0	FFFBH	02H	R/W

MCC	Main system clock oscillator operation control
0	Operation enabled
1	Operation stopped

CSS0	PCC1	CPU clock (fcpu) selection Note	Minimum instruction execution time: 2fcpu
0	0	fx (0.2 μs)	0.4 μs
0	1	$fx/2^2$ (0.8 μ s)	1.6 μs
1	×	fxτ/2 (61 μs)	122 μs

Note The CPU clock is selected by a combination of flag settings in the PCC and CSS registers. (Refer to 5.2.3 (3) Subclock control register (CSS).)

- Cautions 1. Always set bits 0 and 2 to 6 to 0.
 - 2. MCC can be set only when the subsystem clock is selected as the CPU clock. Setting MCC to 1 while the main system clock is operating is invalid.
- Remarks 1. fx: Main system clock oscillation frequency
 - 2. fxT: Subsystem clock oscillation frequency
 - **3.** The parenthesized values apply to operation at fx = 5.0 MHz or fxT = 32.768 kHz.

(2) Subclock oscillation mode register (SCKM)

This register is used to select a feedback resistor for the subsystem clock and control the oscillation of the clock.

SCKM is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-9. Format of Subclock Oscillation Mode Register

Symbol	7	6	5	4	3	2	1	<0>	Address	After reset	R/W
SCKM	0	0	0	0	0	0	FRC	scc	FFF0H	00H	R/W

	FRC	Feedback resistor selection			
I	0	An on-chip feedback resistor is used			
	1	An on-chip feedback resistor is not used			

SCC	Control of subsystem clock oscillator operation
0	Operation enabled
1	Operation stopped

Caution Always set bits 2 to 7 to 0.

(3) Subclock control register (CSS)

This register is used to specify whether the main system or subsystem clock oscillator is selected and to indicate the operating status of the CPU clock.

CSS is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-10. Format of Subclock Control Register

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
CSS	0	0	CLS	CSS0	0	0	0	0	FFF2H	00H	R/W ^{Note}

CLS	CPU clock operating status	
0	Operating on the output of the (divided) main system clock	
1	Operating on the output of the subsystem clock	

CSS0	Selection of main system clock or subsystem clock oscillator			
0	Main system clock oscillator (divided) output			
1	Subsystem clock oscillator output			

Note Bit 5 is read-only.

Caution Always set bits 0 to 3, 6, and 7 to 0.

5.3 8-Bit Timer 30, 40

5.3.1 Functions of 8-bit timer 30, 40

The 8-bit timer in the μ PD78F9328 has 2 channels (timer 30 and timer 40). The operation modes in the following table are possible by means of mode register settings.

Table 5-5. List of Modes

	Channel	Timer 30	Timer 40
Mode			
8-bit timer counter mode (discrete mode)		√	V
16-bit timer counter mode (cascade connection mode)		1	V
Carrier generator mode		1	V
PWM output mode		-	√

(1) 8-bit timer counter mode (discrete mode)

The timer can be used for the following functions in this mode.

- 8-bit resolution interval timer
- 8-bit resolution square wave output (timer 40 only)

(2) 16-bit timer counter mode (cascade connection mode)

These timers can be used for 16-bit timer operations via a cascade connection.

The timer can be used for the following functions in this mode.

- 16-bit resolution interval timer
- 16-bit resolution square wave output

(3) Carrier generator mode

In this mode the carrier clock generated by timer 40 is output in the cycle set by timer 30.

(4) PWM output mode

In this mode, a pulse with an arbitrary duty ratio, which is set by timer 40, is output.

5.3.2 Configuration of 8-bit timer 30, 40

8-bit timers 30 and 40 consist of the following hardware.

Table 5-6. Configuration of 8-Bit Timer 30, 40

Item	Configuration
Timer counter	8 bits × 2 (TM30, TM40)
Registers	Compare registers: 8 bits × 3 (CR30, CR40, CRH40)
Timer outputs	1 (TO40)
Control registers	8-bit timer mode control register 30 (TMC30) 8-bit timer mode control register 40 (TMC40) Carrier generator output control register 40 (TCA40) Port mode register 6 (PM6)

Figure 5-11. Block Diagram of Timer 30

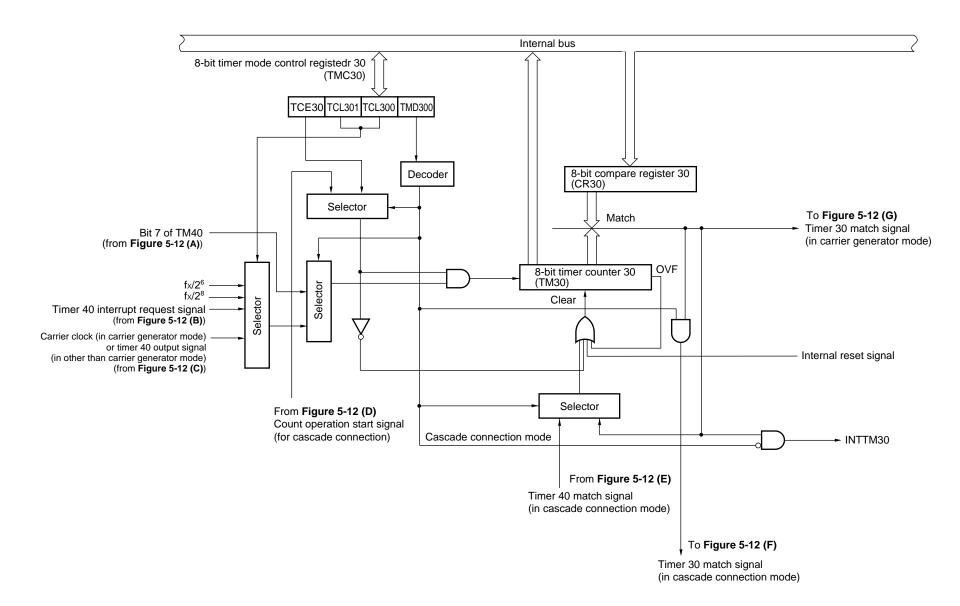
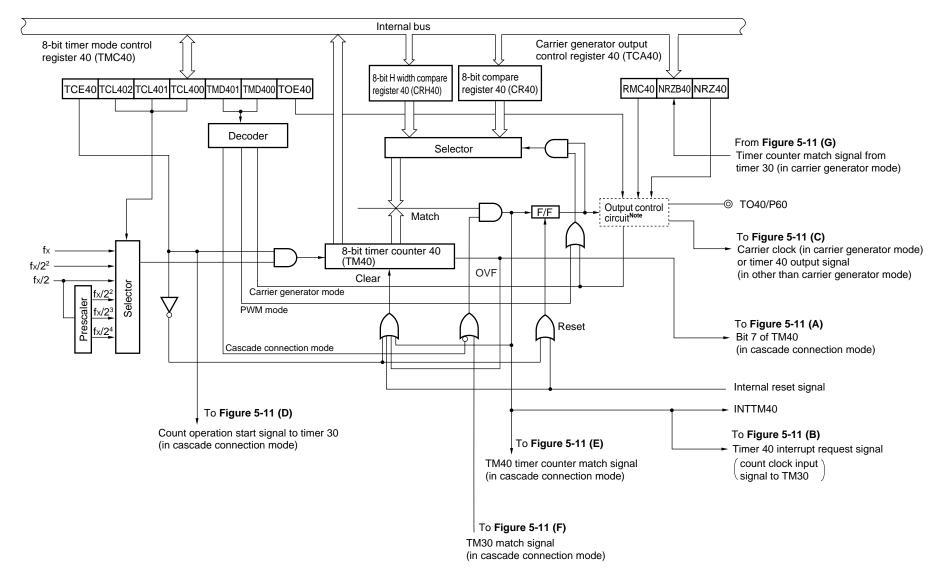



Figure 5-12. Block Diagram of Timer 40

TOE40 RMC40 NRZ40

P60 output latch PM60

Carrier clock (in carrier generator mode) or timer 40 output signal (in other than carrier generator mode)

Carrier generator mode)

Figure 5-13. Block Diagram of Output Control Circuit (Timer 40)

(1) 8-bit compare register 30 (CR30)

A value specified in CR30 is compared with the count value in 8-bit timer counter 30 (TM30), and if they match, an interrupt request (INTTM30) is generated.

CR30 is set using an 8-bit memory manipulation instruction.

RESET input makes this register undefined.

Caution CR30 cannot be used in carrier generator mode or PWM output mode.

(2) 8-bit compare register 40 (CR40)

A value specified in CR40 is compared with the count value in 8-bit timer counter 40 (TM40), and if they match, an interrupt request (INTTM40) is generated. When operating as a 16-bit timer in cascade connection with TM30, an interrupt request (INTTM40) is only generated if both CR30 and TM30, and CR40 and TM40 match simultaneously (INTTM30 is not issued).

CR40 is set using an 8-bit memory manipulation instruction.

RESET input makes this register undefined.

(3) 8-bit H width compare register (CRH40)

In carrier generator mode or PWM output mode, a timer output high-level width can be set by writing a value to CRH40.

CRH40 is set using an 8-bit memory manipulation instruction.

RESET input makes this register undefined.

(4) 8-bit timer counter 30, 40 (TM30, TM40)

This is an 8-bit register for counting the count pulses.

TM30 and TM40 can be read with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets these registers to 00H.

The conditions under which TM30 and TM40 are cleared to 00H are listed below.

(a) Discrete mode

NEC

(i) TM30

- · Upon a reset
- When TCE30 (bit 7 of 8-bit timer mode control register 30 (TMC30)) is cleared to 0
- Upon a match between TM30 and CR30
- If the TM30 count value overflows

(ii) TM40

- · Upon a reset
- When TCE40 (bit 7 of 8-bit timer mode control register 40 (TMC40)) is cleared to 0
- Upon a match between TM40 and CR40
- If the TM40 count value overflows

(b) Cascade connection mode (TM30 and TM40 cleared to 00H simultaneously)

- · Upon a reset
- When the TCE40 flag is cleared to 0
- Upon a simultaneous match between TM30 and CR30, and TM40 and CR40
- If the TM30 and TM40 count values overflow simultaneously

(c) Carrier generator/PWM output mode (TM40 only)

- Upon a reset
- When the TCE40 flag is cleared to 0
- Upon a match between TM40 and CR40
- Upon a match between TM40 and CRH40
- If the TM40 count value overflows

5.3.3 8-bit timer 30, 40 control registers

8-bit timers 30 and 40 are controlled by the following 4 registers.

- 8-bit timer mode control register 30 (TMC30)
- 8-bit timer mode control register 40 (TMC40)
- Carrier generator output control register 40 (TCA40)
- Port mode register 6 (PM6)

(1) 8-bit timer mode control register 30 (TMC30)

This register is used to control the timer 30 count clock and operation mode settings.

TMC30 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-14. Format of 8-Bit Timer Mode Control Register 30

Symbol	<7>	6	5	4	3	2	1	0	Address	After reset	R/W
TMC30	TCE30	0	0	TCL301	TCL300	0	TMD300	0	FF65H	00H	R/W

TCE30	TM30 count control operation Note 1
0	TM30 count value cleared and operation stopped
1	Count operation starts

TCL301	TCL300	Timer 30 count clock selection
0	0	f _x /2 ⁶ (78.1 kHz)
0	1	fx/2 ⁸ (19.5 kHz)
1	0	Timer 40 match signal
1	1	Carrier clock (in carrier generator mode) or timer 40 output signal (in other than carrier generator mode)

TMD300	TMD401	TMD400	Timer 30, timer 40 operation mode selection Note 2				
0	0	0	Discrete mode				
1	0	1	Cascade connection mode				
0	1	1	Carrier generator mode				
0	1	0	PWM output mode				
Other than above			Setting prohibited				

Notes 1. The TCE30 setting will be ignored in cascade mode because in this case the count operation is controlled by TCE40 (bit 7 of TMC40).

2. The operation mode selection is made using a combination of TMC30 and TMC40 register settings.

Caution In cascade connection mode, the timer 40 output signal is forcibly selected for the count clock.

Remarks 1. fx: Main system clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz

(2) 8-bit timer mode control register 40 (TMC40)

This register is used to control the timer 40 count clock and operation mode settings.

TMC40 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-15. Format of 8-Bit Timer Mode Control Register 40

Symbol	<7>	6	5	4	3	2	1	<0>	Address	After reset	R/W
TMC40	TCE40	0	TCL402	TCL401	TCL400	TMD401	TMD400	TOE40	FF69H	00H	R/W

TCE40	TM40 count control operation Note 1
0	TM40 count value cleared and operation stopped (in cascade connection mode, the count value of TM30 is cleared at the same time)
1	Count operation starts (in cascade connection mode, the count operation of TM30 starts at the same time)

TCL402	TCL401	TCL400	Timer 40 count clock selection
0	0	0	fx (5 MHz)
0	0	1	f _x /2 ² (1.25 MHz)
0	1	0	fx/2 (2.5 MHz)
0	1	1	f _x /2 ² (1.25 MHz)
1	0	0	fx/2 ³ (625 kHz)
1	0	1	fx/2 ⁴ (313 kHz)
Other than	n above		Setting prohibited

TMD300	TMD401	TMD400	Timer 30, timer 40 operation mode selection Note 2
0	0	0	Discrete mode
1	0	1	Cascade connection mode
0	1	1	Carrier generator mode
0	1	0	PWM output mode
Other than	above		Setting prohibited

TOE40	Timer output control
0	Output disabled (port mode)
1	Output enabled

Notes 1. The TCE30 setting will be ignored in cascade mode because in this case the count operation is controlled by TCE40 (bit 7 of TMC40).

2. The operation mode selection is made using a combination of TMC30 and TMC40 register settings.

Remarks 1. fx: Main system clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz

(3) Carrier generator output control register 40 (TCA40)

This register is used to set the timer output data in the carrier generator mode.

TCA40 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-16. Format of Carrier Generator Output Control Register 40

Symbol	7	6	5	4	3	<2>	<1>	<0>	Address	After reset	R/W
TCA40	0	0	0	0	0	RMC40	NRZB40	NRZ40	FF6AH	00H	W

RMC40	Remote controller output control
0	When NRZ40 = 1, a carrier pulse is output to the TO40/P60 pin
1	When NRZ40 = 1, a high level is output to the TO40/P60 pin

NRZB40	This bit stores the data that NRZ40 will output next. Data is transferred to NRZ40 upon the generation of a
	timer 30 match signal.

NRZ40	No return, zero data
0	A low level is output (the carrier clock is stopped)
1	A carrier pulse is output

(4) Port mode register 6 (PM6)

This register is used to set port 6 to input or output in 1-bit units.

When the TO40/P60 pin is used as a timer output, set the PM60 and P60 output latches to 0.

PM6 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to FFH.

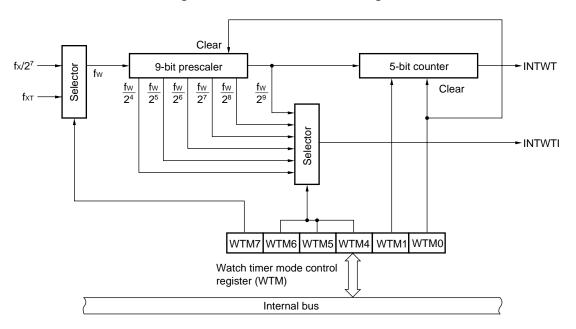
Figure 5-17. Format of Port Mode Register 6

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM6	1	1	1	1	1	1	PM61	PM60	FF26H	FFH	R/W

PM6n	Input/output mode of pin P6n (n = 0, 1)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

5.4 Watch Timer

5.4.1 Watch timer functions


The watch timer has the following functions.

- · Watch timer
- Interval timer

The watch and interval timers can be used at the same time.

Figure 5-18 shows a block diagram of the watch timer.

Figure 5-18. Watch Timer Block Diagram

(1) Watch timer

An interrupt request (INTWT) is generated at 0.5-second intervals using the 4.19-MHz main system clock or 32.768-kHz subsystem clock.

Caution When the main system clock is operating at 5.0 MHz, it cannot be used to generate a 0.5-second interval. In this case, the subsystem clock, which operates at 32.768 kHz, should be used instead.

(2) Interval timer

The interval timer is used to generate an interrupt request (INTWTI) at preset intervals.

Table 5-7. Interval Time of Interval Timer

Interval Time	At fx = 5.0 MHz Operation	At fx = 4.19 MHz Operation	At fxT = 32.768 kHz Operation
2 ⁴ × 1/fw	409.6 μs	488 μs	488 μs
2 ⁵ × 1/fw	819.2 μs	977 μs	977 μs
2 ⁶ × 1/fw	1.64 ms	1.95 ms	1.95 ms
2 ⁷ × 1/fw	3.28 ms	3.91 ms	3.91 ms
2 ⁸ × 1/fw	6.55 ms	7.81 ms	7.81 ms
2 ⁹ × 1/fw	13.1 ms	15.6 ms	15.6 ms

Remarks 1. fw: Watch timer clock frequency $(fx/2^7 \text{ or } fxT)$

2. fx: Main system clock oscillation frequency

3. fxT: Subsystem clock oscillation frequency

5.4.2 Watch timer configuration

The watch timer consists of the following hardware.

Table 5-8. Watch Timer Configuration

Item	Configuration
Counter	5 bits × 1
Prescaler	9 bits × 1
Control register	Watch timer mode control register (WTM)

5.4.3 Watch timer control register

The following register controls the watch timer.

• Watch timer mode control register (WTM)

(1) Watch timer mode control register (WTM)

This register is used to enable/disable the count clock and operation of the watch timer and set the interval time of the prescaler and operation control of the 5-bit counter.

WTM is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-19. Format of Watch Timer Mode Control Register

Symbol	7	6	5	4	3	2	<1>	<0>	Address	After reset	R/W
WTM	WTM7	WTM6	WTM5	WTM4	0	0	WTM1	WTM0	FF4AH	00H	R/W

W	TM7	Watch timer count clock (fw) selection
	0	fx/2 ⁷ (39.1 kHz)
	1	fxt (32.768 kHz)

WTM6	WTM5	WTM4	Prescaler interval time selection
0	0	0	2 ⁴ /fw
0	0	1	2 ⁵ /fw
0	1	0	2 ⁶ /fw
0	1	1	2 ⁷ /fw
1	0	0	2 ⁸ /fw
1	0	1	2 ⁹ /fw
Other than	n above		Setting prohibited

WTM1	5-bit counter operation control
0	Cleared after operation stopped
1	Start

WTM0	Watch timer operation enable
0	Operation stopped (both prescaler and timer cleared)
1	Operation enabled

Remarks 1. fw: Watch timer clock frequency (fx/2⁷ or fxT)

2. fx: Main system clock oscillation frequency

3. fxT: Subsystem clock oscillation frequency

4. The parenthesized values apply to operation at fx = 5.0 MHz or fxT = 32.768 kHz.

5.5 Watchdog Timer

5.5.1 Watchdog timer functions

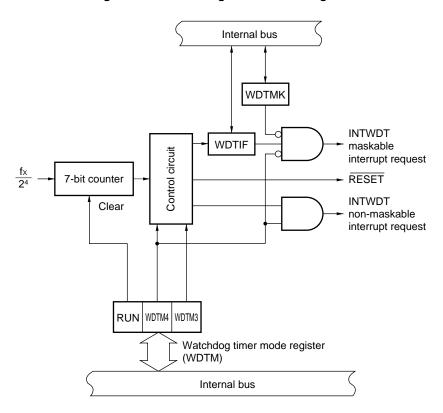
The watchdog timer has the following functions.

(1) Watchdog timer

The watchdog timer is used to detect a program runaway. If a runaway is detected, either a non-maskable interrupt or the RESET signal can be generated.

(2) Interval timer

The interval timer is used to generate interrupts at preset intervals.


5.5.2 Watchdog timer configuration

The watchdog timer consists of the following hardware.

Table 5-9. Watchdog Timer Configuration

Item	Configuration
Control register	Watchdog timer mode register (WDTM)

Figure 5-20. Watchdog Timer Block Diagram

5.5.3 Watchdog timer control register

The watchdog timer is controlled by the following register.

• Watchdog timer mode register (WDTM)

(1) Watchdog timer mode register (WDTM)

This register is used to set the watchdog timer operation mode and whether to enable or disable counting. WDTM is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-21. Format of Watchdog Timer Mode Register

Symbol	<7>	6	5	4	3	2	1	0	Address	After reset	R/W
WDTM	RUN	0	0	WDTM4	WDTM3	0	0	0	FFF9H	00H	R/W

RUN	Watchdog timer operation selection Note 1								
0	Counting stopped								
1	Counter cleared and counting starts								

WDTM4	WDTM3	Watchdog timer operation mode selection Note 2
0	0	Operation stopped
0	1	Interval timer mode (when an overflow occurs, a maskable interrupt is generated) Note 3
1	0	Watchdog timer mode 1 (when an overflow occurs, a non-maskable interrupt is generated)
1	1	Watchdog timer mode 2 (when an overflow occurs, a reset operation is activated)

- **Notes 1.** Once the RUN bit has been set (1), it is impossible to clear it (0) by software. Consequently, once counting begins, it cannot be stopped by any means other than RESET input.
 - 2. Once WDTM3 and WDTM4 have been set (1), it is impossible to clear them (0) by software.
 - 3. The interval timer starts operating as soon as the RUN bit is set to 1.
- Cautions 1. When the RUN bit is set to 1, and the watchdog timer is cleared, the actual overflow time will be up to 0.8% shorter than the time specified by the watchdog timer clock selection register.
 - 2. To use watchdog timer mode 1 or 2, be sure to set WDTM4 to 1 after confirming that WDTIF (bit 0 of interrupt request flag 0 (IF0)) has been set to 0. If WDTIF is 1, selecting watchdog timer mode 1 or 2 causes a non-maskable interrupt to be generated the instant rewriting ends.

5.6 Serial Interface 10

5.6.1 Functions of serial interface 10

Serial interface 10 has the following two modes.

- · Operation stopped mode
- 3-wire serial I/O mode

(1) Operation stopped mode

This mode is used to minimize power consumption when serial transfer is not performed.

(2) 3-wire serial I/O mode (switchable between MSB-first and LSB-first transmission)

This mode is used to transmit 8-bit data, using three lines: a serial clock line (SCK10) and two serial data lines (SI10 and SO10).

As 3-wire serial I/O mode supports simultaneous transmission and reception, the time required for data processing can be reduced.

In 3-wire serial I/O mode, it is possible to select whether 8-bit data transmission begins with the MSB or LSB, allowing serial interface 10 to be connected to any device regardless of whether that device is designed for MSB-first or LSB-first transmission.

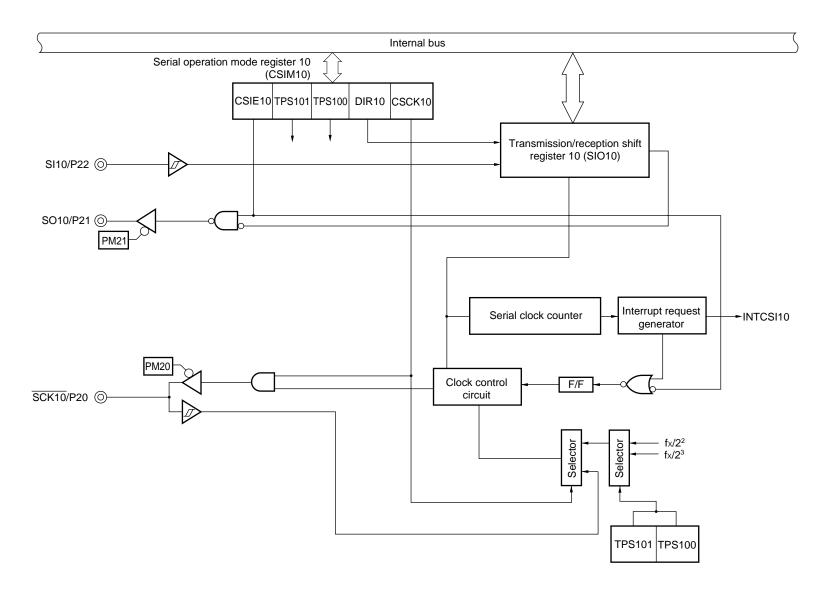
3-wire serial I/O mode is effective for connecting peripheral I/O circuits and display controllers having conventional clock synchronous serial interfaces, such as those of the 75XL, 78K, and 17K Series devices.

5.6.2 Configuration of serial interface 10

Serial interface 10 consists of the following hardware.

Table 5-10. Configuration of Serial Interface 10

Item	Configuration					
Register	Transmission/reception shift register 10 (SIO10)					
Control register	Serial operation mode register 10 (CSIM10)					


(1) Transmission/reception shift register 10 (SIO10)

This is an 8-bit register used for parallel/serial data conversion and for serial transmission or reception in synchronization with the serial clock.

SIO10 is set using an 8-bit memory manipulation instruction.

RESET input makes this register undefined.

Figure 5-22. Block Diagram of Serial Interface 10

5.6.3 Control register for serial interface 10

Serial interface 10 is controlled by the following register.

• Serial operation mode register 10 (CSIM10)

Figure 5-23. Format of Serial Operation Mode Register 10

Symbol	<7>	6	5	4	3	2	1	0	Address	After reset	R/W
CSIM10	CSIE10	0	TPS101	TPS100	0	DIR10	CSCK10	0	FF72H	00H	R/W

CSIE10	3-wire serial I/O mode operation control
0	Operation stopped
1	Operation enabled

TPS101	TPS100	Selection of count clock when internal clock selected
0	0	fx/2 ² (1.25 MHz)
0	1	fx/2 ³ (625 kHz)
Other than above		Setting prohibited

DIR10	First-bit specification
0	MSB
1	LSB

CSCK10	SIO10 clock selection							
0	External clock pulse input to the SCK10 pin							
1	Internal clock selected with TPS100, TPS101							

Cautions 1. Bits 0, 3 and 6 must be fixed to 0.

2. Be sure to switch to operation mode after stopping the serial transmission/reception operation.

Remarks 1. fx: Main system clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.

Table 5-11. Operation Mode Settings for Serial Interface 10

(1) Operation stopped mode

CSIM10		PM22	P22	PM21	P21	PM20	P20	First	Shift	P22/SI10	P21/SO10	P20/SCK10	
CSIE10	DIR10	CSCK10							Bit	Clock	Pin Function	Pin Function	Pin Function
0	×	×	×Note 1	_	-	P22	P21	P20					
Other th	Other than above								Settin	g prohibite	d		

(2) 3-wire serial I/O mode

CSIM10		PM22	P22	PM21	P21	PM20	P20	First Bit	Shift Clock	P22/SI10 Pin Function	P21/SO10 Pin Function	P20/SCK10 Pin Function	
CSIE10	DIR10	CSCK10							DIL	Clock	FIII FUIICIIOII	PIN FUNCTION	PIII FUIICUOII
1	0	0	1 Note 2	×Note 2	0	1	1	×	MSB	External clock	SI10 ^{Note 2}	SO10 (CMOS output)	SCK10 input
		1					0	1		Internal clock			SCK10 output
	1	0					1	×	LSB	External clock			SCK10 input
		1					0	1		Internal clock			SCK10 output
Other tha	Other than above								Settin	g prohibite	d		

Notes 1. Can be used freely as a port

2. Can be used as P22 (CMOS I/O) only when transmitting

Remark ×: don't care

5.7 LCD Controller/Driver

5.7.1 LCD controller/driver functions

The LCD controller/driver incorporated in the μ PD78F9328 has the following features.

- (1) Segment and common signals based on the automatic reading of the display data memory can be automatically output
- (2) Four types of frame frequencies are selectable
- (3) 24 segment signal outputs (S0 to S23), 4 common signal outputs (COM0 to COM3)
- (4) Operation with a subsystem clock is possible

The maximum number of displayable pixels is shown in Table 5-12 below.

Table 5-12. Maximum Number of Display Pixels

Bias Method	Time Division	Common Signals Used	Maximum Number of Display Pixels
1/3	4	COM0 to COM3	96 (24 segments × 4 commons)

Note The LCD panel of the figure \Box consists of 12 rows with 2 segments per row.

5.7.2 LCD controller/driver configuration

The LCD controller/driver consists of the following hardware.

Table 5-13. Configuration of LCD Controller/Driver

Item	Configuration
Display outputs	Segment signals: 24 Common signals: 4
Control registers	LCD display mode register 0 (LCDM0) LCD clock control register 0 (LCDC0) Port function register 8 (PF8)

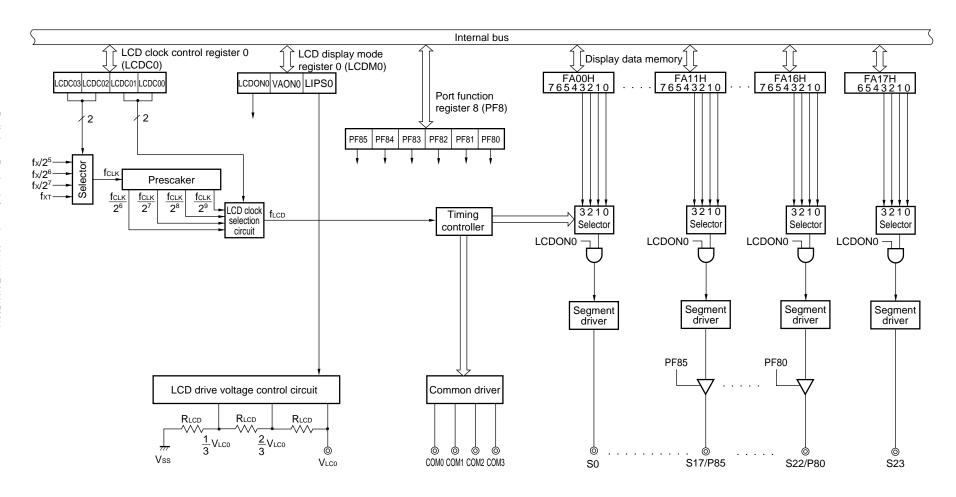

The correspondence with the LCD display RAM is shown in Figure 5-24 below.

Figure 5-24. Correspondence with LCD Display RAM

Address				В	it				Segment
	7	6	5	4	3	2	1	0	_
FA17H	0	0	0	0					→ S23
FA16H	0	0	0	0					→ S22
FA15H	0	0	0	0					→ S21
FA14H	0	0	0	0					→ S 20
FA13H	0	0	0	0					→ S19
FA12H	0	0	0	0					→ S18
FA11H	0	0	0	0					→ S17
FA10H	0	0	0	0					→ S16
FA0FH	0	0	0	0					→ S15
FA0EH	0	0	0	0					→ S14
FA0DH	0	0	0	0					→ S13
FA0CH	0	0	0	0					→ S12
FA0BH	0	0	0	0					→ S11
FA0AH	0	0	0	0					\rightarrow S10
FA09H	0	0	0	0					→ S9
FA08H	0	0	0	0					→ S8
FA07H	0	0	0	0					→ S 7
FA06H	0	0	0	0					\rightarrow S6
FA05H	0	0	0	0					\rightarrow S5
FA04H	0	0	0	0					\rightarrow S4
FA03H	0	0	0	0					\rightarrow S3
FA02H	0	0	0	0					\rightarrow S2
FA01H	0	0	0	0					→ S1
FA00H	0	0	0	0					\rightarrow S0
					\uparrow	\uparrow	\uparrow	\uparrow	
				Common	COM3	COM2	COM1	COM0	

Remark Bits 4 to 7 are fixed to 0.

Figure 5-25. LCD Controller/Driver Block Diagram

5.7.3 LCD controller/driver control registers

The LCD controller/driver is controlled by the following three registers.

- LCD display mode register 0 (LCDM0)
- LCD clock control register 0 (LCDC0)
- Port function register 8 (PF8)

(1) LCD display mode register 0 (LCDM0)

This register is used to enable/disable operation, and set the operation mode and the supply of power for LCD drive.

LCDM0 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-26. Format of LCD Display Mode Register 0

Symbol	<7>	<6>	5	<4>	3	2	1	0	Address	After reset	R/W
LCDM0	LCDON0	VAON0	0	LIPS0	0	0	0	0	FFB0H	00H	R/W

L	.CDON0	LCD display enable/disable
	0	Display off (all segment outputs are unselected for signal output)
	1	Display on

VAON0	LCD controller/driver operation mode Note
0	No internal booster (for 2.7- to 5.5-V display)
1	Internal booster enabled (for 1.8- to 5.5-V display)

LIPS0	Supply of power for LCD drive Note
0	Power not supplied for LCD drive
1	Power supplied for LCD drive

Note To reduce power consumption when the LCD display is not being used, set VAON0 and LIPS0 to 0.

Cautions 1. Always set bits 0 to 3 and 5 to 0.

2. Always manipulate VAON0 after turning off the LCD display by setting LIPS0 and LCDON0 to 0.

(2) LCD clock control register (LCDC0)

This register is used to set the internal and LCD clocks. The frame frequency is determined by the number of LCD clock time divisions.

LCDC0 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-27. Format of LCD Clock Control Register 0

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
LCDC0	0	0	0	0	LCDC03	LCDC02	LCDC01	LCDC00	FFB2H	00H	R/W

LCDC03	LCDC02	Internal clock (fcLK) selection Note
0	0	fxT (32.768 kHz)
0	1	$fx/2^5$ (156.3 kHz)
1	0	fx/2 ⁶ (78.1 kHz)
1	1	$f_{x}/2^{7}$ (39.1 kHz)

LCDC01	LCDC00	LCD clock (flcp) selection
0	0	fclk/2 ⁶
0	1	fcLK/2 ⁷
1	0	fcLK/2 ⁸
1	1	fcLK/2 ⁹

Note Select fx so that a clock of at least 32 kHz is set for the internal clock fclk.

Remarks 1. fx: Main system clock oscillation frequency

2. fxT: Subsystem clock oscillation frequency

3. The parenthesized values apply to operation at fx = 5.0 MHz or fxT = 32.768 kHz

Caution Always set bits 4 to 7 to 0.

Examples of the frame frequencies when the internal clock is fxT (32.768 kHz) are shown in Table 5-14 below.

Table 5-14. Frame Frequency (Hz)

LCD Clock (fLCD) Time Division	fхт/2 ⁹	fхт/2 ⁸	fхт/2 ⁷	fхт/2 ⁶
	(64 Hz)	(128 Hz)	(256 Hz)	(512 Hz)
4	16	32	64	128

(3) Port function register 8 (PF8)

This register is used to select whether S17/P85 to S22/P80 are used as LCD segment signal outputs or general-purpose ports.

PF8 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 5-28. Format of Port Function Register 8

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PF8	0	0	PF85	PF84	PF83	PF82	PF81	PF80	FF58H	00H	R/W

PF8n	Port function of P8n (n = 0 to 5)
0	Operates as a general-purpose port
1	Operates as an LCD segment signal output

6. INTERRUPT FUNCTION

6.1 Interrupt Types

Two types of interrupts are supported.

(1) Non-maskable interrupts

Non-maskable interrupt requests are acknowledged unconditionally, i.e. even when interrupts are disabled.

These interrupts take precedence over all other interrupts and are not subject to interrupt priority control.

A non-maskable interrupt causes the generation of the standby release signal

An interrupt from the watchdog timer is the only non-maskable interrupt source supported in the μ PD78F9328.

(2) Maskable interrupts

Maskable interrupts are subject to mask control. If two or more maskable interrupts occur simultaneously, the default priority listed in Table 6-1 applies.

A maskable interrupt causes the generation of the standby release signal.

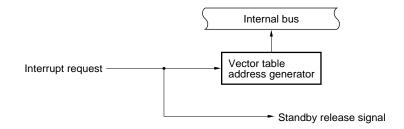
Maskable interrupts from 2 external and 6 internal sources are supported in the μ PD78F9328.

6.2 Interrupt Sources and Configuration

The μ PD78F9328 supports a total of 9 maskable and non-maskable interrupt sources (see **Table 6-1**).

Table 6-1. Interrupt Sources

Interrupt Type	Default		Interrupt Source	Internal/	Vector Table	Basic	
	Priority Note 1	Name	Trigger	External	Address	Configuration Type Note 2	
Non-maskable	_	INTWDT	Watchdog timer overflow (with uatchdog timer mode 1 selected) Internal 0004H		(A)		
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)	
	1	INTP0	Pin input edge detection	External	0006H	(C)	
	2	2	INTCSI10	End of serial interface 10 3-wire SIO transfer reception	Internal	0008H	(B)
	3	INTWT	Watch timer interrupt		000AH		
	4	INTTM30	Generation of 8-bit timer 30 matching signal		000CH		
	5	INTTM40	Generation of 8-bit timer 40 matching signal		000EH		
	6 INTKR00 Key return signal detection		External	0010H	(C)		
	7	INTWTI	Watch timer interval timer interrupt	Internal	0012H	(B)	


- **Notes 1.** Default priority is the priority order when more than one maskable interrupt request is generated at the same time. 0 is the highest priority and 7 is the lowest.
 - 2. Basic configuration types (A), (B), and (C) correspond to (A), (B), and (C) in Figure 6-1.

Remark Only one of the two watchdog timer interrupt sources, non-maskable or maskable (internal), can be selected.

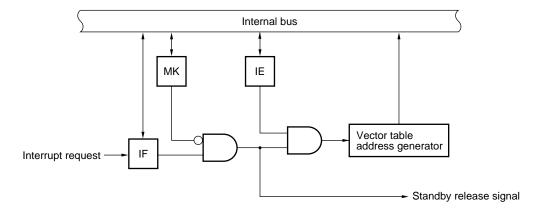
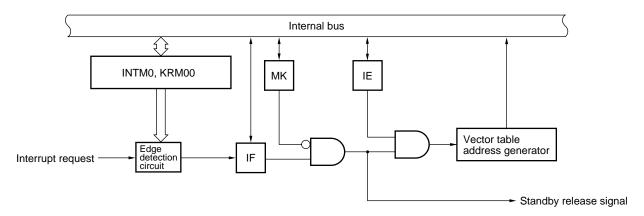


Figure 6-1. Basic Configuration of Interrupt Function


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt

INTM0: External interrupt mode register 0 KRM00: Key return mode register 00

IF: Interrupt request flagIE: Interrupt enable flagMK: Interrupt mask flag

6.3 Interrupt Function Control Registers

Interrupts are controlled by the following five registers.

- Interrupt request flag register 0 (IF0)
- Interrupt mask flag register 0 (MK0)
- External interrupt mode register 0 (INTM0)
- Program status word (PSW)
- Key return mode register 00 (KRM00)

Table 6-2 lists the interrupt requests and the corresponding interrupt request and interrupt mask flags.

Table 6-2. Interrupt Request Signals and Corresponding Flags

Interrupt Request Signal	Interrupt Request Flag	Interrupt Mask Flag
INTWDT	WDTIF	WDTMK
INTP0	PIF0	PMK0
INTCSI0	CSIIF0	CSIMK0
INTWT	WTIF	WTMK
INTTM30	TMIF30	TMMK30
INTTM40	TMIF40	TMMK40
INTKR00	KRIF00	KRMK00
INTWTI	WTIIF	WTIMK

(1) Interrupt request flag register 0 (IF0)

An interrupt request flag is set (1) when the corresponding interrupt request is generated, or when an instruction is executed. It is cleared (0) when the interrupt request is acknowledged, when the RESET signal is input, or when an instruction is executed.

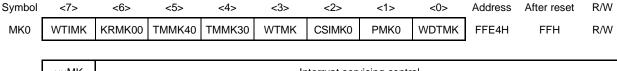
IF0 is set using a 1-bit or 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 6-2. Format of Interrupt Request Flag Register 0

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>	Address	After reset	R/W
IF0	WTIIF	KRIF00	TMIF40	TMIF30	WTIF	CSIIF0	PIF0	WDTIF	FFE0H	00H	R/W

xxlFx	Interrupt request flag						
0	No interrupt request signal generated						
1	An interrupt request signal is generated and an interrupt request made						


- Cautions 1. The WDTIF flag can be read/written only when the watchdog timer is being used as an interval timer. It must be cleared to 0 if the watchdog timer is used in watchdog timer mode 1 or 2.
 - 2. Because P61 functions alternately as an external interrupt, when the output level changes after the output mode of the port function is specified, the interrupt request flag will be inadvertently set. Therefore, be sure to preset the interrupt mask flag (PMK0) before using the port in output mode.

(2) Interrupt mask flag register 0 (MK0)

Interrupt mask flags are used to enable and disable the corresponding maskable interrupts. MK0 is set using a 1-bit or 8-bit memory manipulation instruction. RESET input sets this register to FFH.

Figure 6-3. Format of Interrupt Mask Flag Register 0

××MK	Interrupt servicing control
0	Interrupt servicing enabled
1	Interrupt servicing disabled

- Cautions 1. When the watchdog timer is being used in watchdog timer mode 1 or 2, any attempt to read the WDTMK flag results in an undefined value being detected.
 - 2. Because P61 functions alternately as an external interrupt, when the output level changes after the output mode of the port function is specified, the interrupt request flag will be inadvertently set. Therefore, be sure to preset the interrupt mask flag (PMK0) before using the port in output mode.

(3) External interrupt mode register 0 (INTM0)

This register is used to specify the valid edge for INTP0.

INTM0 is set using an 8-bit memory manipulation instruction.

RESET input sets this register to 00H.

Figure 6-4. Format of External Interrupt Mode Register 0

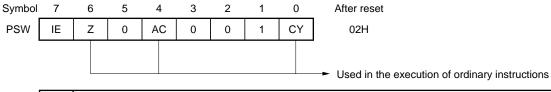
Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
INTM0	0	0	0	0	ES01	ES00	0	0	FFECH	00H	R/W

ES01	ES00	INTP0 valid edge selection
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both rising and falling edges

Cautions 1. Always set bits 0, 1, and 4 to 7 to 0.

2. Before setting INTM0, set (1) the interrupt mask flag (PMK0) to disable interrupts.

To enable interrupts, clear (0) the interrupt request flag (PIF0), then clear (0) the interrupt mask flag (PMK0).


(4) Program status word (PSW)

The program status word is used to hold the instruction execution results and the current status of the interrupt requests. The IE flag, used to enable and disable maskable interrupts, is mapped to the PSW.

The PSW can be read and written in 8-bit units, as well as in 1-bit units by using bit manipulation instructions and dedicated instructions (EI and DI). When a vector interrupt is acknowledged, the PSW is automatically saved to the stack, and the IE flag is reset (0).

RESET input sets the PSW to 02H.

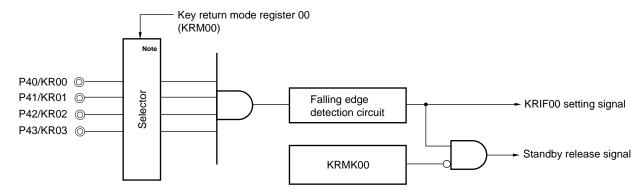
Figure 6-5. Program Status Word Configuration

ΙE	Interrupt acknowledgement enable/disable
0	Disabled
1	Enabled

(5) Key return mode register 00 (KRM00)

This register is used to set the pin that is to detect the key return signal (rising edge of port 4). KRM00 is set using a 1-bit or 8-bit memory manipulation instruction. RESET input sets this register to 00H.

Figure 6-6. Format of Key Return Mode Register 00


Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
KRM00	0	0	0	0	0	0	0	KRM000	FFF5H	00H	R/W

I	KRM000	Key return signal detection control
	0	Key return signal not detected
	1	Key return signal detected (port 4 falling edge detection)

Cautions 1. Always set bits 1 to 7 to 0.

- 2. Before setting KRM00, set (1) bit 6 (KRMK00) of MK0 to disable interrupts. To enable interrupts, clear (0) KRMK00 after clearing (0) bit 6 (KRIF00) of IF0.
- 3. On-chip pull-up resistors are automatically connected in input mode to the pins specified for key return signal detection (P40 to P43). Although these resistors are disconnected when the mode changes to output, key return signal detection continues unchanged.

Figure 6-7. Block Diagram of Falling Edge Detection Circuit

Note For selecting the pin to be used as falling edge input.

7. STANDBY FUNCTION

7.1 Standby Function

A standby function is incorporated to minimize the system's power consumption. There are two standby modes: HALT and STOP.

The HALT and STOP modes are selected using the HALT and STOP instructions.

(1) HALT mode

In this mode, the CPU operating clock is stopped. The average current consumption can be reduced by intermittent operation combining this mode with the normal operation mode.

(2) STOP mode

In this mode, main system clock oscillation is stopped. All operations performed with the main system clock are suspended, thus minimizing power consumption.

Caution When shifting to STOP mode, execute the STOP instruction after first stopping the operation of the hardware.

Table 7-1. Operation Statuses in HALT Mode

Item		on Status During Main ck Operation	HALT Mode Operation Status During Subsystem Clock Operation						
	Subsystem Clock Operating	Subsystem Clock Stopped	Main System Clock Operating	Main System Clock Stopped					
Main system clock	Can be oscillated			Oscillation stopped					
CPU	Operation stopped								
Ports (output latches)	Status before HALT mod	Status before HALT mode setting retained							
8-bit timer 30, 40	Operable	Operable							
Watch timer	Operable	Operable ^{Note 1}	Operable	Operable Note 2					
Watchdog timer	Operable		Operation stopped						
Power-on-clear circuit	Operable								
Key return circuit	Operable								
Serial interface 10	Operable	Operable							
LCD controller/driver	Operable Note 4	Operable Notes 1, 4	Operable Note 4	Operable Notes 2, 4					
External interrupts	Operable Note 5	•	•						

- Notes 1. Operation is enabled when the main system clock is selected
 - 2. Operation is enabled when the subsystem clock is selected
 - 3. Operation is enabled only when an external clock is selected
 - 4. The HALT instruction can be set after display instruction execution
 - 5. Operation is enabled only for a maskable interrupt that is not masked

Table 7-2. Operation Statuses in STOP Mode

Item	STOP Mode Operation Status During Main System Clock Operation						
	Subsystem Clock Operating	Subsystem Clock Stopped					
Main system clock	Oscillation stopped						
CPU	Operation stopped						
Ports (output latches)	Status before STOP mode setting retained						
8-bit timer 30, 40	Operation stopped						
Watch timer	Operable ^{Note 1}	Operation stopped					
Watchdog timer	Operation stopped						
Power-on-clear circuit	Operable						
Key return circuit	Operable						
Serial interface 10	Operable ^{Note 2}						
LCD controller/driver	Operable ^{Note 1}	Operation stopped					
External interrupts	Operable Note 3						

- **Notes 1.** Operation is enabled when the subsystem clock is selected.
 - 2. Operation is enabled only when an external clock is selected.
 - 3. Operation is enabled only for a maskable interrupt that is not masked

7.2 Standby Function Control Register

The oscillation stabilization time selection register (OSTS) is used to control the wait time from the time STOP mode is released by an interrupt request until oscillation stabilizes.

OSTS is set using an 8-bit memory manipulation instruction.

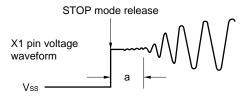

RESET input sets this register to 04H. Note that the time required for oscillation to stabilize after $\overline{\text{RESET}}$ input will be 2^{15} /fx, rather than 2^{17} /fx.

Figure 7-1. Format of Oscillation Stabilization Time Selection Register

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0	FFFAH	04H	R/W

OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection
0	0	0	2 ¹² /fx (819 μs)
0	1	0	2 ¹⁵ /fx (6.55 ms)
1	0	0	2 ¹⁷ /fx (26.2 ms)
Other than above			Setting prohibited

Caution The wait time required after releasing STOP mode does not include the time ("a" in the following figure) required for the clock oscillation to restart after STOP mode is released, regardless of whether STOP mode is released by RESET input or interrupt.

Remarks 1. fx: Main system clock oscillation frequency

2. The parenthesized values apply to operation at fx = 5.0 MHz.

8. RESET FUNCTION

8.1 Reset Function

The μ PD78F9328 can be reset using the following three signals.

- (1) External reset signal input via RESET pin
- (2) Internal reset by watchdog timer runaway time detection
- (3) Internal reset using power-on-clear circuit (POC)

The external and internal reset signals are functionally equivalent. When RESET is input, program execution begins from the addresses written at addresses 0000H and 0001H.

If a low-level signal is applied to the RESET pin, or if the watchdog timer overflows, a reset occurs, causing each item of the hardware to enter the states listed in Table 8-1. While a reset is being applied, or while the oscillation frequency is stabilizing immediately after the end of a reset sequence, each pin remains in the high-impedance state.

If a high-level signal is applied to the \overline{RESET} pin, the reset sequence is terminated, and program execution begins once the oscillation stabilization time ($2^{15}/fx$) has elapsed. A reset sequence caused by a watchdog timer overflow is terminated automatically and again program execution begins upon the elapse of the oscillation stabilization time ($2^{15}/fx$).

Cautions 1. To use an external reset sequence, input a low-level signal to the $\overline{\text{RESET}}$ pin for at least 10 μ s.

When a reset is used to release STOP mode, the data of when STOP mode was entered is retained during the reset sequence, except for the port pins, which are in the high-impedance state.

RESET Reset control circuit

Reset control circuit

Reset signal

Count clock

Watchdog timer

Stop

Figure 8-1. Reset Function Block Diagram

Table 8-1. Status of Hardware After Reset

	Status After Reset	
Program counter (PC) ^N	Contents of reset vector table (0000H, 0001H) set	
Stack pointer (SP)	Undefined	
Program status word (P	02H	
RAM	Data memory	Undefined Note 2
	General-purpose registers	Undefined Note 2
Ports (P0 to P2, P4, P6	, P8) (output latches)	00H
Port mode registers (PN	M0 to PM2, PM4, PM6, PM8)	FFH
Port function register 8	(PF8)	00H
Pull-up resistor option re	egisters (PU0, PUB2)	00H
Processor clock control	register (PCC)	02H
Subclock oscillation mo	00H	
Subclock control registe	00H	
Oscillation stabilization	time selection register (OSTS)	04H
8-bit timer 30, 40	Timer counters (TM30, TM40)	00H
	Compare registers (CR30, CR40, CRH40)	Undefined
	Mode control registers (TMC30, TMC40)	00H
	Carrier generator output control register	00H
Watch timer	Mode control register (WTM)	00H
Watchdog timer	Mode register (WDTM)	00H
Serial interface 10	Serial operation mode register 10 (CSIM10)	00H
	Transmission/reception shift register 10 (SIO10)	Undefined
LCD controller/driver	Display mode register 0 (LCDM0)	00H
	Clock control register 0 (LCDC0)	00H
Power-on-clear circuit	Power-on-clear register 1 (POCF1)	00H ^{Note 3}
Interrupts	Request flag register 0 (IF0)	00H
	Mask flag register 0 (MK0)	FFH
	External interrupt mode register 0 (INTM0)	00H
	Key return mode register 00 (KRM00)	00H

Notes 1. While a reset signal is being input, and during the oscillation stabilization period, only the contents of the PC will be undefined; the remainder of the hardware will be the same state as after reset.

- 2. In standby mode, RAM enters the hold state after reset.
- **3.** The value is 04H only after a power-on-clear reset.

8.2 Power Failure Detection Function

When a reset is generated via the power-on-clear circuit, bit 2 (POCOF1) of the power-on-clear register (POCF1) is set (1). This bit is then cleared (0) by an instruction written to POCF1. After a power-on-clear reset (i.e. after program execution has started from address 0000H), a power failure can be detected by detecting POCOF1.

Figure 8-2. Format of Power-on-Clear Register 1

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
POCF1	0	0	0	0	0	POCOF1	0	0	FFDDH	00H ^{Note}	R/W

POCOF1	Power-on-clear generation status detection
0	Power-on-clear not generated, or cleared by write operation
1	Power-on-clear reset generated

Note The value is 04H only after a power-on-clear reset.

9. FLASH MEMORY PROGRAMMING

The program memory incorporated in the μ PD78F9328 is flash memory.

Writing to flash memory can be performed with the device mounted in the target system (on-board programming). Writing is performed with a dedicated flash memory programmer (Flashpro III (part number: FL-PR3 and PG-FP3)) connected to the host machine and the target system.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

9.1 Selection of Communication Mode

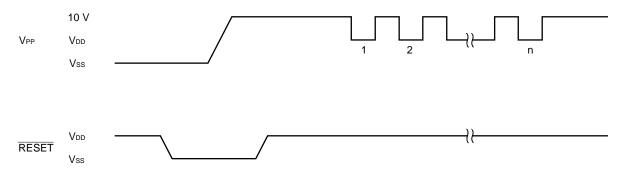

Writing to flash memory is performed via serial communication using Flashpro III. Select one of the communication modes from those in Table 9-1. The selection of the communication mode is made by using the format shown in Figure 9-1. The communication mode is selected by the number of V_{PP} pulses shown in Table 9-1.

Table 9-1. Communication Modes

Communication Mode	Pin Used	Number of VPP Pulses
3-wire serial I/O	SCK10/P20	0
	SO10/P21	
	SI10/P22	

Caution Always select the communication mode using the number of pulses shown in Table 9-1.

Figure 9-1. Communication Mode Selection Format

9.2 Flash Memory Programming Functions

Operations such as writing to flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. Table 9-2 shows the major functions of flash memory programming.

Table 9-2. Major Functions of Flash Memory Programming

Function	Description
Batch erase	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
Data write	Writes to flash memory based on the write start address and the number of data to be written (number of bytes).
Batch verify	Checks the entire memory contents and the input data.

9.3 Flashpro III Connection Example

An example of the connection between the μ PD78F9328 and Flashpro III is shown in Figure 9-2.

 μ PD78F9328 Flashpro III V_{PP}n^{Note} V_{PP} V_{DD} V_{DD} RESET RESET CLK X1 SCK SCK10 SO SI10 SI SO10 **GND** Vss

Figure 9-2. Connection of Flashpro III Using 3-Wire Serial I/O Mode

Note n = 1, 2

9.4 Setting Example Using Flashpro III (PG-FP3)

When using Flashpro III (PG-FP3) to write to flash memory, set as follows.

- <1> Download the parameter file
- <2> Select the serial mode and serial clock with the type command
- <3> A setting example using the PG-FP3 is shown below

Table 9-3. Setting Example Using PG-FP3

Communication Mode	Setting Example Using	Number of V _{PP} Pulses ^{Note}	
3-wire serial I/O mode	COMM PORT	SIO-ch0	0
	CPU CLK	On Target Board	
		In Flashpro	
	On Target Board	4.1943 MHz	
	SIO CLK	1.0 MHz	
	In Flashpro	4.0 MHz	
	SIO CLK	1.0 MHz	

Note The number of VPP pulses supplied from Flashpro III during the initialization of serial communication. The pins to be used in communication are determined by this number.

Remark COMM PORT: Selection of the serial port

SIO CLK: Selection of the serial clock frequency
CPU CLK: Selection of the input CPU clock source

10. INSTRUCTION SET OVERVIEW

The instruction set for the μ PD78F9328 is listed in this section.

10.1 Conventions

10.1.1 Operand formats and descriptions

The description made in the operand field of each instruction conforms to the operand format for the instructions listed below (the details conform to the assembly specification). If more than one operand format is listed for an instruction, one is selected. Uppercase letters, #, !, \$, and brackets [] are used to specify keywords, which must be written exactly as they appear. The meanings of these special characters are as follows:

- #: Immediate data specification
- \$: Relative address specification
- !: Absolute address specification
- []: Indirect address specification

Immediate data should be described using appropriate values or labels. The specification of values and labels must be accompanied by #, !, \$, or [].

Operand registers, expressed as r or rp in the formats, can be described using both functional names (X, A, C, etc.) and absolute names (R0, R1, R2, and other names listed in Table 5-1 below).

Format Description X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7) r AX (RP0), BC (RP1), DE (RP2), HL (RP3) rp sfr Special function register symbol saddr FE20H to FF1FH Immediate data or label saddrp FE20H to FF1FH Immediate data or label (even addresses only) addr16 0000H to FFFFH Immediate data or label (only even addresses for 16-bit data transfer instructions) addr5 0040H to 007FH Immediate data or label (even addresses only) word 16-bit immediate data or label 8-bit immediate data or label byte 3-bit immediate data or label bit

Table 10-1. Operand Formats and Descriptions

Remark For details concerning special function register symbols, refer to Table 4-1 Special Function Registers.

73

10.1.2 Operation field definitions

A: A register (8-bit accumulator)

X: X register

B: B register

C: C register

D: D register

E: E register

H: H register

L: L register

AX: AX register pair (16-bit accumulator)

BC: BC register pair

DE: DE register pair

HL: HL register pair

PC: Program counter

SP: Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

IE: Interrupt request enable flag

NMIS: Flag to indicate that a non-maskable interrupt is being processed

(): Contents of a memory location indicated by a parenthesized address or register name

XH, XL: Higher and lower 8 bits of a 16-bit register

∧: Logical product (AND)

∨: Logical sum (OR)∀: Exclusive OR

: Inverted data

addr16: 16-bit immediate data or label

jdisp8: Signed 8-bit data (displacement value)

10.1.3 Flag operation field definitions

(Blank): No change 0: Clear to 0 1: Set to 1

X: Set or clear according to the resultR: Restore to the previous value

10.2 Operations

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
MOV	r, #byte	3	6	$r \leftarrow byte$	
	saddr , #byte	3	6	(saddr) ← byte	
	sfr, #byte	3	6	sfr ← byte	
	A, r	2	4	$A \leftarrow r$	
	r, A Note 1	2	4	$r \leftarrow A$	
A, saddı	A, saddr	2	4	A ← (saddr)	
	saddr, A	2	4	(saddr) ← A	
	A, sfr	2	4	A ← sfr	
	sfr, A	2	4	sfr ← A	
!addr16 PSW, # A, PSW	A, !addr16	3	8	A ← (addr16)	
	!addr16, A	3	8	(addr16) ← A	
	PSW, #byte	3	6	PSW ← byte	× × ×
	A, PSW	2	4	$A \leftarrow PSW$	
	PSW, A	2	4	PSW ← A	\times \times \times
	A, [DE]	1	6	$A \leftarrow (DE)$	
	[DE], A	1	6	$(DE) \leftarrow A$	
	A, [HL]	1	6	$A \leftarrow (HL)$	
	[HL], A	1	6	$(HL) \leftarrow A$	
	A, [HL + byte]	2	6	$A \leftarrow (HL + byte)$	
	[HL + byte], A	2	6	(HL + byte) ← A	
XCH	A, X	1	4	$A \leftrightarrow X$	
	A, r	2	6	$A \leftrightarrow r$	
	A, saddr	2	6	$A \leftrightarrow (saddr)$	
	A, sfr	2	6	$A \leftrightarrow (sfr)$	
	A, [DE]	1	8	$A \leftrightarrow (DE)$	
	A, [HL]	1	8	$A \leftrightarrow (HL)$	
	A, [HL + byte]	2	8	$A \leftrightarrow (HL + byte)$	
MOVW	rp, #word	3	6	$rp \leftarrow word$	
	AX, saddrp	2	6	$AX \leftarrow (saddrp)$	
	saddrp, AX	2	8	(saddrp) ← AX	
	AX, rp	1	4	$AX \leftarrow rp$	
	rp, AX	1	4	$rp \leftarrow AX$	
XCHW	AX, rp	1	8	$AX \leftrightarrow rp$	

Notes 1. Except when r = A.

2. Except when r = A or X.

3. Only when rp = BC, DE, or HL.

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
ADD	A, #byte	2	4	A, CY \leftarrow A + byte	\times \times \times
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) + byte	\times \times \times
	A, r	2	4	$A, CY \leftarrow A + r$	× × ×
	A, saddr	2	4	$A, CY \leftarrow A + (saddr)$	\times \times \times
	A, !addr16	3	8	$A, CY \leftarrow A + (addr16)$	\times \times \times
	A, [HL]	1	6	$A, CY \leftarrow A + (HL)$	\times \times \times
	A, [HL + byte]	2	6	$A, CY \leftarrow A + (HL + byte)$	\times \times \times
ADDC	A, #byte	2	4	$A, CY \leftarrow A + byte + CY$	\times \times \times
	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) + byte + CY	\times \times \times
	A, r	2	4	$A, CY \leftarrow A + r + CY$	\times \times \times
	A, saddr	2	4	$A, CY \leftarrow A + (saddr) + CY$	\times \times \times
	A, !addr16	3	8	$A, CY \leftarrow A + (addr16) + CY$	\times \times \times
	A, [HL]	1	6	$A, CY \leftarrow A + (HL) + CY$	\times \times \times
	A, [HL + byte]	2	6	$A, CY \leftarrow A + (HL + byte) + CY$	\times \times \times
SUB	A, #byte	2	4	A, $CY \leftarrow A - byte$	\times \times \times
	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) – byte	\times \times \times
	A, r	2	4	$A, CY \leftarrow A - r$	× × ×
	A, saddr	2	4	$A, CY \leftarrow A - (saddr)$	\times \times \times
	A, !addr16	3	8	A, CY ← A − (addr16)	\times \times \times
	A, [HL]	1	6	$A, CY \leftarrow A - (HL)$	\times \times \times
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte)$	\times \times \times
SUBC	A, #byte	2	4	$A, CY \leftarrow A - byte - CY$	\times \times \times
	saddr, #byte	3	6	(saddr), CY ← (saddr) – byte – CY	\times \times \times
	A, r	2	4	$A, CY \leftarrow A - r - CY$	\times \times \times
	A, saddr	2	4	A, CY ← A − (saddr) − CY	\times \times \times
	A, !addr16	3	8	A, CY ← A − (addr16) − CY	× × ×
	A, [HL]	1	6	$A, CY \leftarrow A - (HL) - CY$	\times \times \times
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte) - CY$	\times \times \times
AND	A, #byte	2	4	$A \leftarrow A \land byte$	×
	saddr, #byte	3	6	(saddr) ← (saddr) ∧ byte	×
	A, r	2	4	$A \leftarrow A \wedge r$	×
	A, saddr	2	4	$A \leftarrow A \wedge (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \wedge (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \wedge (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \land (HL + byte)$	×

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×
	A, r	2	4	$A \leftarrow A \lor r$	×
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \vee (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \lor (HL + byte)$	×
XOR	A, #byte	2	4	$A \leftarrow A \ \forall \ byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \ \forall \ byte$	×
	A, r	2	4	$A \leftarrow A \ \forall \ r$	×
	A, saddr	2	4	$A \leftarrow A \ \forall \ (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \ \forall \ (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \ \forall \ (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \ \forall \ (HL + byte)$	×
CMP	A, #byte	2	4	A – byte	× × ×
	saddr, #byte	3	6	(saddr) - byte	× × ×
	A, r	2	4	A – r	× × ×
	A, saddr	2	4	A – (saddr)	× × ×
	A, !addr16	3	8	A – (addr16)	× × ×
	A, [HL]	1	6	A – (HL)	× × ×
	A, [HL + byte]	2	6	A – (HL + byte)	× × ×
ADDW	AX, #word	3	6	$AX, CY \leftarrow AX + word$	× × ×
SUBW	AX, #word	3	6	$AX, CY \leftarrow AX - word$	× × ×
CMPW	AX, #word	3	6	AX – word	× × ×
INC	r	2	4	r ← r + 1	××
	saddr	2	4	(saddr) ← (saddr) + 1	××
DEC	r	2	4	r ← r − 1	× ×
	saddr	2	4	(saddr) ← (saddr) – 1	× ×
INCW	rp	1	4	rp ← rp + 1	
DECW	rp	1	4	rp ← rp − 1	
ROR	A, 1	1	2	$(CY,A_7 \leftarrow A_0,A_{m-1} \leftarrow A_m) \times 1$	×
ROL	A, 1	1	2	$(CY, A_0 \leftarrow A_7, A_{m+1} \leftarrow A_m) \times 1$	×
RORC	A, 1	1	2	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m-1} \leftarrow A_m) \times 1$	×
ROLC	A, 1	1	2	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$	×

Remark The instruction clock cycle is based on the CPU clock (fcpu) specified by the processor clock control register (PCC).

Mnemonic	Operand	Byte	Clock	Operation	-	Flag AC CY
SET1	saddr.bit	3	6	(saddr.bit) ← 1		A0 01
	sfr.bit	3	6	sfr.bit ← 1		
	A.bit	2	4	A.bit ← 1		
	PSW.bit	3	6	PSW bit ← 1	×	× ×
	[HL].bit	2	10	(HL).bit ← 1		
CLR1	saddr.bit	3	6	(saddr.bit) ← 0		
	sfr.bit	3	6	sfr.bit ← 0		
	A.bit	2	4	A.bit ← 0		
	PSW.bit	3	6	PSW.bit ← 0	×	× ×
	[HL].bit	2	10	(HL).bit ← 0		
SET1	CY	1	2	CY ← 1		1
CLR1	CY	1	2	CY ← 0		0
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$		×
CALL	!addr16	3	6	$(SP-1) \leftarrow (PC+3)H, (SP-2) \leftarrow (PC+3)L,$ $PC \leftarrow addr16, SP \leftarrow SP-2$		
CALLT	[addr5]	1	8	$(SP - 1) \leftarrow (PC + 1)_H, (SP - 2) \leftarrow (PC + 1)_L,$ $PC_H \leftarrow (00000000, addr5 + 1),$ $PC_L \leftarrow (00000000, addr5),$ $SP \leftarrow SP - 2$		
RET		1	6	$PC_H \leftarrow (SP + 1), PC_L \leftarrow (SP),$ $SP \leftarrow SP + 2$		
RETI		1	8	$\begin{aligned} & PCH \leftarrow (SP+1), PCL \leftarrow (SP), \\ & PSW \leftarrow (SP+2), SP \leftarrow SP+3, \\ & NMIS \leftarrow 0 \end{aligned}$	R	R R
PUSH	PSW	1	2	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$		
	rp	1	4	$(SP - 1) \leftarrow rpH, (SP - 2) \leftarrow rpL,$ $SP \leftarrow SP - 2$		
POP	PSW	1	4	$PSW \leftarrow (SP),SP \leftarrow SP + 1$	R	R R
	гр	1	6	rp _H ← (SP + 1), rp _L ← (SP), SP ← SP + 2		
MOVW	SP, AX	2	8	$SP \leftarrow AX$		
	AX, SP	2	6	$AX \leftarrow SP$		
BR	!addr16	3	6	PC ← addr16		
	\$addr16	2	6	PC ← PC + 2 + jdisp8		
	AX	1	6	$PCH \leftarrow A, PCL \leftarrow X$		

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
ВС	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 1	
BNC	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$	
BZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$	
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$	
ВТ	saddr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 1	
	sfr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 1$	
	A.bit, \$addr16	3	8	PC ← PC + 3 + jdisp8 if A.bit = 1	
	PSW.bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if PSW.bit = 1	
BF	saddr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 0	
	sfr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 0$	
	A.bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 0$	
	PSW.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + disp8 \text{ if PSW.bit} = 0$	
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0	
	C, \$addr16	2	6	$C \leftarrow C - 1$, then $PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$	
	saddr, \$addr16	3	8	(saddr) ← $(saddr)$ – 1, then PC ← PC + 3 + $jdisp8$ if $(saddr) \neq 0$	
NOP		1	2	No Operation	
EI		3	6	IE ← 1 (Enable Interrupt)	
DI		3	6	IE ← 0 (Disable Interrupt)	
HALT		1	2	Set HALT Mode	
STOP		1	2	Set STOP Mode	

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.3 to +6.5	V
	V _{PP}		-0.3 to +10.5	V
	V _{LC0}		-0.3 to +6.5	V
Input voltage	Vı		-0.3 to V _{DD} + 0.3 ^{Note}	V
Output voltage	Vo ₁	P00 to P03, P10, P11, P20 to P22, P40 to P43, P60, P61	-0.3 to V _{DD} + 0.3 ^{Note}	V
	Vo ₂	COM0 to COM3, S0 to S21, P80/S22 to P85/S17	-0.3 to V _{LC0} + 0.3 ^{Note}	V
Output current, high	Іон	Pin P60/TO40	-30	mA
		Per pin (except P60/TO40)	-10	mA
		Total for all pins (except P60/TO40)	-30	mA
Output current, low	Іоь	Per pin	30	mA
		Total for all pins	80	mA
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	T _{stg}		-65 to +150	°C

Note 6.5 V or lower

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	VDD X2 X1	Oscillation frequency (fx) Note 1		1.0		5.0	MHz
	C2= C1=	Oscillation stabilization time Note 2	After VDD has reached the MIN. oscillation voltage range			4	ms
Crystal resonator	IC X2 X1	Oscillation frequency (fx) ^{Note 1}		1.0		5.0	MHz
	C2= C1=	Oscillation stabilization time Note 2				30	ms
External clock	X2 X1	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
		X1 input high-/low-level width (txH, txL)		85		500	ns

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

81

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	· 	Oscillation frequency (fxr) ^{Note 1}		32	32.768	35	kHz
		Oscillation Note 2	V _{DD} = 4.5 to 5.5 V		1.2	2	s
		stabilization time Note 2				10	
External clock	XT1 XT2	XT1 input frequency (fxr) Note 1		32		35	kHz
	Å	XT1 input high-/low-level width (txth, txtl)		14.3		15.6	μs

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. The time required for oscillation to stabilize after VDD reaches the MIN. oscillation voltage range. Use a resonator to stabilize oscillation during the oscillation wait time.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

DC Characteristics (TA = -20 to +60°C, VDD = 1.8 to 5.5 V) (1/2)

Parameter	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Output current, low	lol	Per pin				10	mA
		Total for all pins				80	mA
Output current, high	Іон	Per pin (except P60/TO40)			-1	mA	
		P60/TO40 V _{DD} = 3.0 V, V	-7	-15	-24	mA	
		Total for all pins (except P6	60/TO40)			-15	mA
Input voltage, high	V _{IH1}	P00 to P03, P10, P11,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.7 V _{DD}		V _{DD}	V
		P21, P22, P60		0.9 V _{DD}		V _{DD}	V
	V _{IH2}	RESET, P20, P40 to P43,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.8 V _{DD}		V _{DD}	V
		P61		0.9 V _{DD}		V_{DD}	٧
	VIH3	X1, X2		V _{DD} - 0.1		V _{DD}	V
	V _{IH4}	XT1, XT2	V _{DD} - 0.1		V _{DD}	V	
Input voltage, low	VIL1	P00 to P03, P10, P11,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.3 V _{DD}	V
		P21, P22, P60		0		0.1 V _{DD}	V
	V _{IL2}	RESET, P20, P40 to P43,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.2 V _{DD}	V
		P61		0		0.1 V _{DD}	٧
	V _{IL3}	X1, X2		0		0.1	٧
	VIL4	XT1, XT2	0		0.1	V	
Output voltage, high	Vон11	P00 to P03, P10, P11, P20 to P22, P40 to P43,	1.8 \leq V _{DD} \leq 5.5 V, Іон = $-100~\mu$ A	V _{DD} - 0.5			V
	V _{OH12}	P61	$1.8 \le V_{DD} \le 5.5 \text{ V},$ $I_{OH} = -500 \ \mu\text{A}$	V _{DD} - 0.7			V
	V _{OH21}	P60/TO40	$1.8 \le V_{DD} \le 5.5 \text{ V},$ $I_{OH} = -400 \ \mu\text{A}$	V _{DD} - 0.5			V
	V _{OH22}		$1.8 \le V_{DD} \le 5.5 \text{ V},$ $I_{OH} = -2 \text{ mA}$	V _{DD} - 0.7			V
	Vонз1	P80/S22 to P85/S17	$1.8 \le V_{DD} \le 5.5 \text{ V},$ $I_{OH} = -100 \ \mu\text{A}$	VLC0 - 0.5			V
	V _{OH32}		$1.8 \le V_{DD} \le 5.5 \text{ V},$ $I_{OH} = -500 \ \mu\text{A}$	VLC0 - 0.7			V
Output voltage, low	VOL11	P00 to P03, P10, P11, P20 to P22, P40 to P43,	$1.8 \le V_{DD} \le 5.5 V$, $I_{OL} = 400 \mu A$			0.5	V
	VOL12	P60, P61	$1.8 \le V_{DD} \le 5.5 \text{ V},$ $I_{OL} = 2 \text{ mA}$			0.7	V
	VOL21	P80/S22 to P85/S17	$1.8 \le V_{LC0} \le 5.5 \text{ V},$ $I_{OL} = 400 \ \mu\text{A}$			0.5	V
	V _{OL22}		$1.8 \le V_{LC0} \le 5.5 \text{ V},$ $I_{OL} = 2 \text{ mA}$			0.7	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

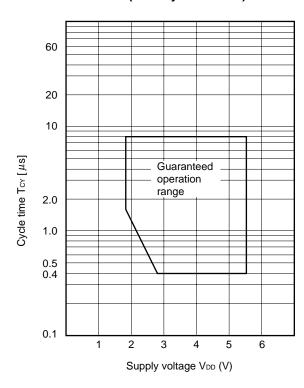
DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$) (2/2)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	VIN = VDD	P00 to P03, P10, P11, P20 to P22, P40 to P43, P60, P61, RESET			3	μΑ
	I _{LIH2}		X1, X2, XT1, XT2			20	μΑ
Input leakage current, low	ILIL1	Vin = 0 V	P00 to P03, P10, P11, P20 to P22, P40 to P43, P60, P61, RESET			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
Output leakage current, high	Ісон	VOUT = VDD				3	μΑ
Output leakage current, low	ILOL	Vоит = 0 V				-3	μΑ
Software pull-up resistors	R ₁	VIN = 0 V	P00 to P03, P10, P11, P20 to P22, P40 to P43	50	100	200	kΩ
Supply current Note 1	I _{DD1}	5.0-MHz crystal oscillation	V _{DD} = 5.5 V ^{Note 2}		5.0	15.0	mA
Ceramic/crystal oscillation		operating mode	V _{DD} = 3.3 V ^{Note 3}		2.0	5.0	mA
Oscillation	I _{DD2}	5.0-MHz crystal oscillation	V _{DD} = 5.5 V		1.2	3.6	mA
		HALT mode	V _{DD} = 3.3 V		0.5	1.5	mA
	I _{DD4}	32.768-kHz crystal	V _{DD} = 5.5 V		25	55	μΑ
		oscillation HALT mode Note 4	V _{DD} = 3.3 V		5	25	μΑ
	I _{DD5}	STOP mode	V _{DD} = 5.5 V		2	30	μΑ
			V _{DD} = 3.3 V		1	10	μΑ

Notes 1. Current flowing through ports (including current flowing through on-chip pull-up resistors) is not included.

- 2. High-speed operation (when the processor clock control register (PCC) is set to 00H).
- 3. Low-speed operation (when PCC is set to 02H)
- 4. When the main system clock is stopped.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.



AC Characteristics

(1) Basic operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Tcy	V _{DD} = 2.7 to 5.5 V	0.4		8.0	μs
(Min. instruction execution time)			1.6		8.0	μs
Interrupt input high-/low-level width	tinth, tintl	INT	10			μs
Key return pin low-level width	tkril	KR00 to KR03	10			μs
RESET low-level width	trsl		10			μs

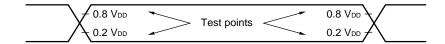
Tcy vs. VDD (Main System Clock)

(2) Serial interface 10 ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

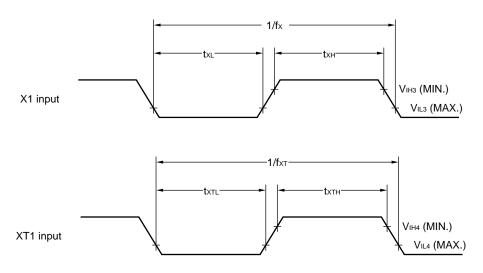
(a) 3-wire serial I/O mode (Internal clock output)

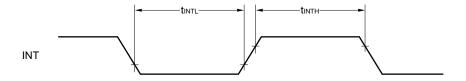
Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tkcy1	V _{DD} = 2.7 to 5.5 V	800			ns	
				3,200			ns
SCK10 high-/low-level	tĸнı,	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
vidth t _r	t KL1		tkcy1/2 - 150			ns	
SI10 setup time	tsıĸı	V _{DD} = 2.7 to 5.5 V		150			ns
(to SCK10 ↑)				500		ns ns ns	ns
SI10 hold time	t KSI1	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK10 ↑)				800			ns
SO10 output delay time	tkso1	$R = 1 \text{ k}\Omega, C = 100 \text{ pF}^{\text{Note}}$	V _{DD} = 2.7 to 5.5 V	0		250	ns
from SCK10 ↓				250		1,000	ns

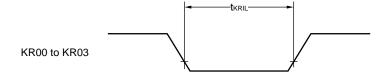
Note R and C are the load resistance and load capacitance of the SO10 output line.

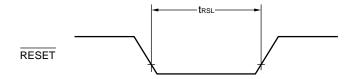

(b) 3-wire serial I/O mode (External clock input)

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tkcy2	V _{DD} = 2.7 to 5.5 V		900			ns
				3,500			ns
SCK10 high-/low-level	t кн2,	V _{DD} = 2.7 to 5.5 V		400			ns
width	t KL2			1,600			ns
SI10 setup time	SI10 setup time tsik2		VDD = 2.7 to 5.5 V				ns
(to SCK10 ↑)				150			ns
SI10 hold time	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK10 ↑)				600			ns
SO10 output delay time	tkso2	$R = 1 \text{ k}\Omega, C = 100 \text{ pF}^{\text{Note}}$	V _{DD} = 2.7 to 5.5 V	0		300	ns
from SCK10 ↓				250		1,000	ns

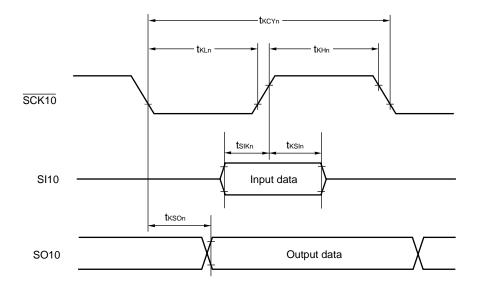

Note R and C are the load resistance and load capacitance of the SO10 output line.


AC Timing Measurement Point (excluding X1, XT1 input)


Clock Timing


Interrupt Input Timing

Key Return Input Timing


RESET Input Timing

Serial Transfer Timing

3-wire serial I/O mode:

Remark n = 1, 2

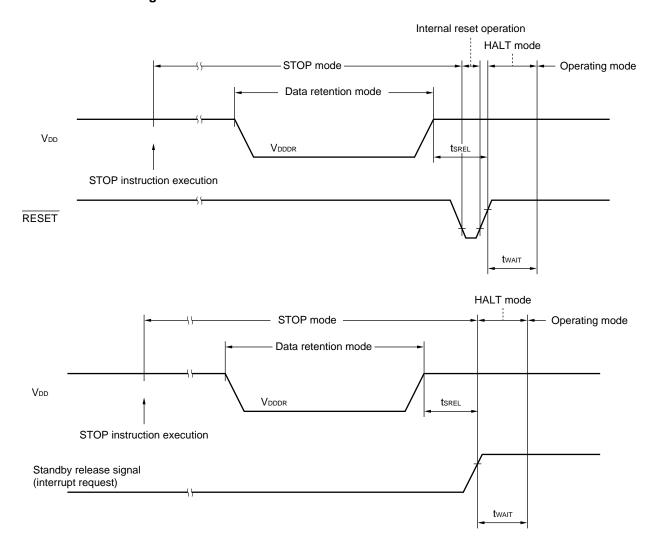
LCD Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{LC0}	VAON0 ^{Note 1} = 1		1.8		5.5	V
		VAON0 ^{Note 1} = 0		2.7		5.5	V
LCD division resistance	RLCD1 Note 2	High resistance		50	100	200	kΩ
	RLCD2 Note 2	Low resistance		5	10	20	kΩ
LCD output voltage differential Note 3 (common)	Vodc	Iο = ±5 μA	1/3 bias	0		±0.2	V
LCD output voltage differential Note 3 (segment)	Vods	Io = ±1 μA	1/3 bias	0		±0.2	V

Notes 1. Bit 6 of LCD display mode register 0 (LCDM0)

- 2. One or the other can be selected when designing
- **3.** The voltage differential is the difference between the output voltage and the ideal value of the segment and common signal outputs.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.8		3.6	V
Low voltage detection (POC) voltage	VPOC	Response time: 2 ms ^{Note 1}	1.8	1.9	2.0	V
Power supply rise time	t Pth	V _{DD} : 0 V → 1.8 V	0.01		100	ms
Release signal set time	tsrel	STOP cancelled by RESET	10			μs
Oscillation stabilization wait time Note 2	t wait	Cancelled by RESET		2 ¹⁵ /fx		s
		Cancelled by interrupt request		Note 3		S

- **Notes 1.** The response time is the time until the output is inverted following detection of voltage by POC, or the time until operation stabilizes after the shift from the operation stopped state to the operating state.
 - 2. The oscillation stabilization time is the amount of time the CPU operation is stopped in order to avoid unstable operation at the start of oscillation. Program operation does not start until both the oscillation stabilization time and the time until oscillation starts have elapsed.
 - **3.** Selection of 2¹²/fx, 2¹⁵/fx, and 2¹⁷/fx is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS) (refer to **7.2 Standby Function Control Register**).

Remark fx: Main system clock oscillation frequency

Data Retention Timing

APPENDIX A. DIFFERENCES BETWEEN μ PD78F9328 AND MASK ROM VERSIONS

The μ PD78F9328 is a product provided with flash memory in place of the internal ROM of the mask ROM versions. Table A-1 shows the differences between the flash memory (μ PD78F9328) and the mask ROM versions.

Table A-1. Differences Between μ PD78F9328 and Mask ROM Versions

	Item	Flash Memory Version	Mask ROM Version				
		μPD78F9328	μPD789322	μPD789324	μPD789326	μPD789627	
Internal memory	ROM	32 Kbytes (flash memory)	4 Kbytes	8 Kbytes	16 Kbytes	24 Kbytes	
	High-speed RAM	512 bytes					
	LCD display RAM	24 bytes					
IC0 pin		Not provided	Provided				
V _{PP} pin		Provided	Not provided				
Electrical	specifications	There may be difference	ces between mask ROM and flash memory versions.				

Caution There are differences in the amount of noise tolerance and noise radiation between flash memory versions and mask ROM versions. When considering changing from a flash memory version to a mask ROM version during the process from experimental manufacturing to mass production, make sure to sufficiently evaluate commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

91

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F9328.

Language Processing Software

RA78K0S ^{Notes 1, 2, 3}	Assembler package common to 78K/0S Series
CC78K0S ^{Notes 1, 2, 3}	C compiler package common to 78K/0S Series
DF789328 Notes 1, 2, 3, 5	Device file for μ PD789328 Subseries
CC78K/0S-L ^{Notes 1, 2, 3}	C compiler library source file common to 78K/0S Series

Flash Memory Writing Tools

Flashpro III (Part number: FL-PR3 ^{Note 4} , PG-FP3)	Dedicated flash memory programmer
FA-52GB ^{Notes 4, 5}	Adapter for writing to flash memory designed for 52-pin plastic LQFP (GB-8ET type)

Debugging Tools

IE-78K0S-NS In-circuit emulator	In-circuit emulator to debug hardware or software when application systems using the 78K/0S Series are developed. The IE-78K0S-NS supports an integrated debugger (ID78K0S-NS). The IE-78K0S-NS is used in combination with an interface adapter for connection to an AC adapter, emulation probe, or host machine.
IE-70000-MC-PS-B AC adapter	AC adapter to supply power from a 100- to 240-V AC outlet.
IE-70000-98-IF-C Interface adapter	Interface adapter required when using a PC-9800 Series computer (except notebook type) as the host machine for the IE-78K0S-NS (C bus supported).
IE-70000-CD-IF-A PC card interface	PC card and interface cable required when a notebook PC is used as the host machine for the IE-78K0S-NS (PCMCIA socket supported).
IE-70000-PC-IF-C Interface adapter	Interface adapter required when using an IBM PC/AT TM or compatible as the host machine for the IE-78K0S-NS (ISA bus supported).
IE-70000-PCI-IF Interface adapter	Interface adapter required when using a PC incorporating a PCI bus as the host machine for the IE-78K0S-NS.
IE-789328-NS-EM1 ^{Note 5} Emulation board	Emulation board to emulate the peripheral hardware specific to the device. The IE-789328-NS-EM1 is used in combination with the in-circuit emulator.
NP-52GB ^{Notes 4, 5}	Board to connect an in-circuit emulator to the target system. This board is dedicated for a 52-pin plastic LQFP (GB-8ET type).
SM78K0S ^{Notes 1, 2}	System simulator common to 78K/0S Series
ID78K0S-NS ^{Notes 1, 2}	Integrated debugger common to 78K/0S Series
DF789328 Notes 1, 2, 5	Device file for μPD789328 Subseries

- **Notes 1.** Based on the PC-9800 series (MS-DOS[™] + Windows[™])
 - 2. Based on IBM PC/AT or compatibles (Japanese/English Windows)
 - 3. Based on the HP9000 series 700™ (HP-UX™), SPARCstation™ (SunOS™, Solaris™), and NEWS™ (NEWS-OS™)
 - **4.** Manufactured by Naito Densei Machida Mfg. Co, Ltd. (+81-44-822-3813). Contact Naito Densei Machida Mfg. Co, Ltd. regarding the purchase of these products.
 - 5. Under development

Remark The RA78K0S, CC78K0S, and SM78K0S are used in combination with the DF789328 device file.

Real-Time OS

MX78K0S ^{Notes 1, 2}	OS for 78K/0S Series
-------------------------------	----------------------

Notes 1. Based on the PC-9800 series (MS-DOS + Windows)

2. Based on IBM PC/AT or compatibles (Japanese/English Windows)

APPENDIX C. RELATED DOCUMENTS

Documents Related to Devices

Document Name	Document No.		
	Japanese English		
μPD789322, 789324, 789326, 789327 Preliminary Product Information	To be prepared	To be prepared	
μPD78F9328 Preliminary Product Information	To be prepared	This document	
μPD789328, 789468 Subseries User's Manual	To be prepared	To be prepared	
78K/0S Series User's Manual Instructions	U11047J	U11047E	

Documents Related to Development Tools (User's Manual)

Document Name	Document No.		
		Japanese	English
RA78K0S Assembler Package	Operation	U11622J	U11622E
	Assembly Language	U11599J	U11599E
	Structured Assembly Language	U11623J	U11623E
CC78K0S C Compiler	Operation	U11816J	U11816E
	Language	U11817J	U11817E
SM78K0S System Simulator Windows Based	Reference	U11489J	U11489E
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J	U10092E
ID78K0S-NS Integrated Debugger Windows Based	Reference	U12901J	U12901E
IE-78K0S-NS In-circuit Emulator	U13549J	U13549E	
IE-789328-NS-EM1 Emulation Board		To be prepared	To be prepared

Documents Related to Embedded Software (User's Manual)

Document Name	Docum	ent No.	
		Japanese	English
78K/0S Series OS MX78K0S Fundamental		U12938J	U12938E

Other Documents

Document Name	Document No.		
	English Japanes		
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X		
Semiconductor Device Mounting Technology Manual	C10535J	C10535E	
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E	
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E	
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E	
Guide to Microcontroller-Related Products by Third Parties	U11416J	_	

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM is a trademark of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

• The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.

- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these circuits,
 software, and information in the design of the customer's equipment shall be done under the full responsibility
 of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
 parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M5 98.8