

HIGH-EFFICIENCY STEP-UP DC-DC CONVERTER

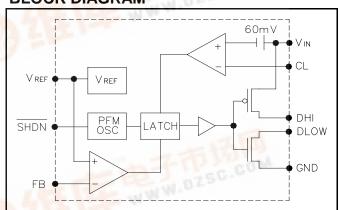
SC1628

January 30, 1998

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

DESCRIPTION

The SC1628 is a high performance step-up DC-DC converter, designed to drive an external power switch to generate programmable positive voltages. In the particularly suitable LCD contrast bias and flash memory programming power supply applications, typical full load efficiencies are 85% to 95%. The 4V to 24V input operation range allows the SC1628 to be powered directly by the battery pack in most batterypowered applications for greater efficiency. The output voltage can be scaled to 40V or greater by two external resistors. A pulse-frequency modulation scheme is employed to maintain high efficiency conversion under wide input voltage ranges. Quiescent current is about 100µA and can be reduced down to 8µA in shutdown mode. With a switching frequency range of 90kHz to 250kHz, small size switching components may be used, which is ideal for battery powered portable equipment such as notebook and palmtop computers.

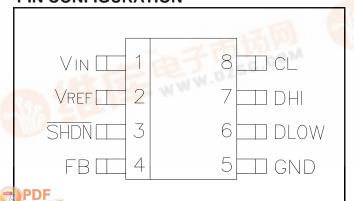

APPLICATIONS

- Flash memory programming power supply
- Positive LCD contrast bias for notebook and palmtop computers
- Step-up DC-DC converter module
- Telecom power supply

FEATURES

- 4V to 24V input voltage operation
- Adjustable output voltage
- Low quiescent current at 100μA
- Pulse-skipping and pulse-frequency modulation maintain high efficiency (max. 95%)
- 90kHz to 250kHz oscillator frequency
- Power-saving shutdown mode (8µA typical)
- Push-pull driver output

BLOCK DIAGRAM


ORDERING INFORMATION

DEVICE ⁽¹⁾	PACKAGE
SC1628CS	SO-8

Note:

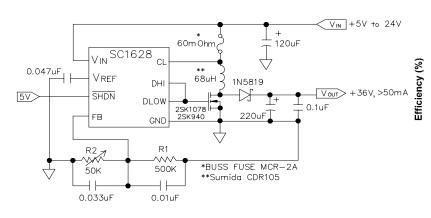
(1) Add suffix 'TR' for tape and reel.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

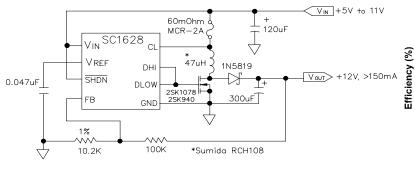
Parameter	Symbol	Maximum	Units	
Supply Voltage	V _{IN}	24	V	
SHDN Voltage	V _{SHDN}	15	V	
Operating Temperature Range	T _A	0 to 70	°C	
Storage Temperature Range	T _{STG}	-65 to 125	°C	

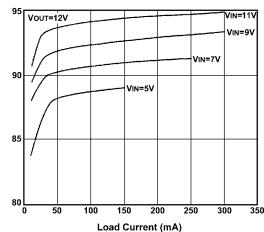
January 30, 1998


ELECTRICAL CHARACTERISTICS

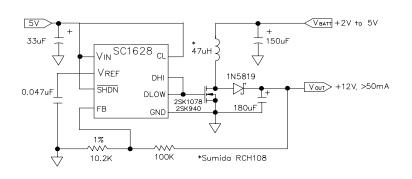
Unless otherwise specified, $T_A = 25^{\circ}C$, $V_{IN} = 13V$

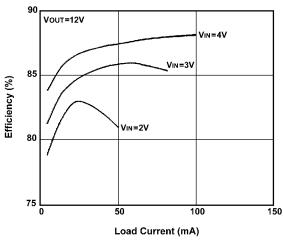
Parameter	Conditions	Min	Тур	Max	Units
Input Voltage		4		24	V
Quiescent Current	V _{FB} = 1.5V		100	200	μA
Shutdown Mode Current	$V_{\overline{SHDN}} = 0V$		8	20	μΑ
V _{REF} Voltage	I _{SOURCE} = 250μA	1.16	1.22	1.28	V
V _{REF} Source Current		250			μA
DLOW "ON Resistance"			15		Ω
DHI "ON Resistance"			10		Ω
CL Threshold	V _{IN} - V _{CL}	45	60	75	mV
Shutdown Threshold		0.8	1.5	2.4	V
Shutdown Input Leakage Current	V _{SHDN} < 15V			1	μΑ


TYPICAL APPLICATIONS

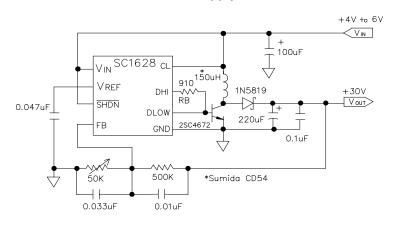

Color LCD Contrast Bias Supply

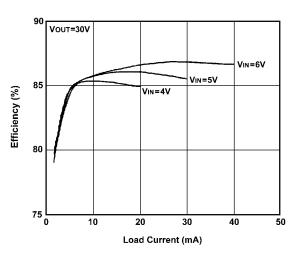
Flash Memory Programming Supply

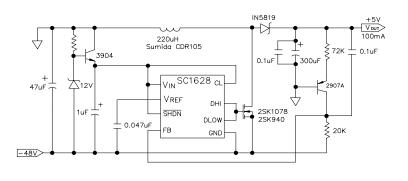


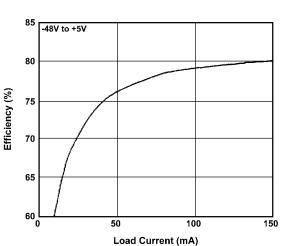


January 30, 1998

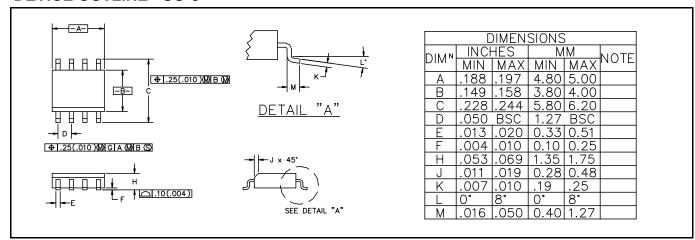

TYPICAL APPLICATIONS (cont.)


2-Cells to +12V Flash Memory Programmer




4-Cells to +30V Low Power Supply

Telecom +5V Supply



January 30, 1998

DEVICE OUTLINE - SO-8

PIN DESCRIPTIONS

PIN 1: V_{IN} 4V to 24V input supply voltage.

PIN 2: V_{REF} 1.22V reference output. Bypass with

a 0.047µF capacitor to GND.

Sourcing capability is guaranteed to

be greater than 250µA.

PIN 3: SHDN Logical input to shutdown the chip:

>1.5V = normal operation,

GND = shutdown.

Cannot be floating or forced greater than 15V. In shutdown mode DLOW

and DHI pins are low.

PIN 4: FB Feedback signal input to comparator.

Connecting a resistance R1 to V_{OUT} and a resistance R2 to GND yields

the output voltage:

$$V_{OUT} = \frac{R1 + R2}{R2} \times V_{REF}$$

(refer to typical application circuit).

PIN 5: GND Power ground.

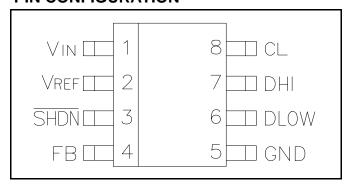
PIN 6: DLOW Driver sinking output. Connected to

the gate of the external N-channel MOSFET or the base of the NPN

bipolar transistor.

PIN 7: DHI Driver sourcing output. Connected to

DLOW when using an external N-channel MOSFET. When using an external NPN bipolar transistor, connect a base resistance $R_{\rm B}$ from this pin to DLOW. $R_{\rm B}$ value depends upon $V_{\rm IN}$, the inductor value and the


NPN current gain.

PIN 8: CL Current-limit input. The threshold

voltage is 60 mV from V_{IN} . This pin clamps the switch peak current under

abnormal conditions.

PIN CONFIGURATION

