HM628512 Series

524288－word $\times 8$－bit High Speed CMOS Static RAM HITACHI

ADE－203－236F（Z）
Rev． 6.0
Jun．9， 1995

Description

The Hitachi HM628512 is a 4－Mbit static RAM organized 512 －kword $\times 8$－bit．It realizes higher density， higher performance and low power consumption by employing $0.5 \mu \mathrm{~m} \mathrm{Hi}$－CMOS process technology．The device，packaged in a $525-\mathrm{mil}$ SOP（foot print pitch width）or 400 －mil TSOP TYPE II or $600-\mathrm{mil}$ plastic DIP， is available for high density mounting．LP－version is suitable for battery backup system．

Features

－High speed：Fast access time：
－55／65／70 ns（max）
－Low power
－Standby： $10 \mu \mathrm{~W}$（typ）（L／L－SL version）
－Operation： 75 mW （typ）（f $=1 \mathrm{MHz}$ ）
－Single 5 V supply
－Completely static memory
No clock or timing strobe required
－Equal access and cycle times
－Common data input and output：Three state output
－Directly TTL compatible：All inputs and outputs
－Capability of battery backup operation（L／L－SL version）

HM628512 Series

Ordering Information

Type No.	Access Time	Package
HM628512P-5	55 ns	600 -mil 32-pin plastic DIP (DP-32)
HM628512P-7	70 ns	
HM628512LP-5	55 ns	
HM628512LP-7A	65 ns	
HM628512LP-7	70 ns	
HM628512LP-5SL	55 ns	
HM628512LP-7SL	70 ns	
HM628512FP-5	55 ns	525-mil 32-pin plastic SOP (FP-32D)
HM628512FP-7	70 ns	
HM628512LFP-5	55 ns	
HM628512LFP-7A	65 ns	
HM628512LFP-7	70 ns	
HM628512LFP-5SL	55 ns	
HM628512LFP-7SL	70 ns	
HM628512LTT-5	55 ns	400-mil 32-pin plastic TSOP II (TTP-32D)
HM628512LTT-7A	65 ns	
HM628512LTT-7	70 ns	
HM628512LTT-5SL	55 ns	
HM628512LTT-7SL	70 ns	
HM628512LRR-5	55 ns	400-mil 32-pin plastic TSOP II reverse (TTP-32DR)
HM628512LRR-7A	65 ns	
HM628512LRR-7	70 ns	
HM628512LRR-5SL	55 ns	
HM628512LRR-7SL	70 ns	

Pin Arrangement

Pin Description

Pin name	Function
$\mathrm{A} 0-\mathrm{A} 18$	Address
$\mathrm{I} / \mathrm{O0}-\mathrm{I} / \mathrm{O} 7$	Input/output
$\overline{\mathrm{CS}}$	Chip select
$\overline{\mathrm{OE}}$	Output enable
$\overline{\mathrm{WE}}$	Write enable
V_{cC}	Power supply
V_{ss}	Ground

HM628512 Series

Block Diagram

Function Table

$\overline{\text { WE }}$	$\overline{\mathbf{C S}}$	$\overline{\mathrm{OE}}$	Mode	\mathbf{V}_{cC} Current	Dout Pin	Ref. Cycle
X	H	X	Not selected	$\mathrm{I}_{\mathrm{SB}}, \mathrm{I}_{\mathrm{SB} 1}$	High-Z	-
H	L	H	Output disable	I_{CC}	High-Z	-
H	L	L	Read	I_{cC}	Dout	Read cycle
L	L	H	Write	I_{cc}	Din	Write cycle (1)
L	L	L	Write	I_{CC}	Din	Write cycle (2)
Note:	X: H or L					

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to $\mathrm{V}_{\mathrm{SS}}{ }^{*}{ }^{\circ}$	V_{T}	$-0.5^{\circ 2}$ to +7.0	V
Power dissipation	P_{T}	1.0	W
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage temperature under bias	Tbias	-10 to +85	${ }^{\circ} \mathrm{C}$
Notes: 1. Relative to V_{Ss}			
2. -3.0 V for pulse half-width $\leq 30 \mathrm{~ns}$			

Recommended DC Operating Conditions ($\mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{SS}}$	0	0	0	V
Input high (logic 1) voltage	V_{H}	2.2	-	6.0	V
Input low (logic 0) voltage	V_{LL}	$-0.3^{* 1}$	-	0.8	V

Note: 1. -3.0 V for pulse half-width $\leq 30 \mathrm{~ns}$

HM628512 Series

DC Characteristics ($\mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Parameter		Symbol	Min	Typ ${ }^{4}$	Max	Unit	Test Conditions
Input leakage current		\| ${ }_{\text {LI }} \mid$	-	-	1	$\mu \mathrm{A}$	$\mathrm{Vin}=\mathrm{V}_{\mathrm{ss}}$ to $\mathrm{V}_{\text {cc }}$
Output leakage current		$\mathrm{IL}_{\text {LO }} \mid$	-	-	1	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{H}} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{HH}} \text { or } \\ & \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{VO}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
Operating power supply current: DC		$\mathrm{I}_{\text {CC READ }}$	-	15	25	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{H}} \\ & \text { others }=\mathrm{V}_{\mathrm{IH}} V_{\mathrm{LL}}, \mathrm{I}_{/ / \mathrm{O}}=0 \mathrm{~mA} \end{aligned}$
		$\mathrm{I}_{\text {cc Write }}$	-	20	45	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{LI}} \\ & \text { others }=\mathrm{V}_{\mathrm{IH}} / V_{\mathrm{IL}}, \mathrm{I}_{\mathrm{IIO}}=0 \mathrm{~mA} \end{aligned}$
Operating power supply current	-5/7A	$\mathrm{I}_{\mathrm{CC} 1}$	-	70	100	mA	Min cycle, duty $=100 \%$
	-7	$\mathrm{I}_{\mathrm{CC} 1}$	-	60	90	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{L}}, \text { others }=\mathrm{V}_{\mathrm{HH}} / \mathrm{V}_{\mathrm{L}} \\ & \mathrm{I}_{\mathrm{VO}}=0 \mathrm{~mA} \end{aligned}$
Operating power supply current		$\mathrm{I}_{\mathrm{CC2}}$	-	15	30	mA	$\begin{aligned} & \text { Cycle time }=1 \mu \mathrm{~s}, \\ & \text { duty }=100 \% \\ & \mathrm{I}_{\mathrm{JO}}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq 0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}} \leq 0.2 \\ & \mathrm{~V} \end{aligned}$
Standby power supply current: DC		$\mathrm{I}_{\text {SB }}$	-	1	3	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{H}}$
Standby power supply current (1): DC		$\mathrm{I}_{\text {SB1 }}$	-	0.02	2	mA	$\mathrm{Vin} \geq 0 \mathrm{~V}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$
			-	2	100^{2}	$\mu \mathrm{A}$	
			-	2	$50^{* 3}$	$\mu \mathrm{A}$	
Output low voltage		$\mathrm{V}_{\text {oL }}$	-	-	0.4	V	$\mathrm{I}_{\mathrm{oL}}=2.1 \mathrm{~mA}$
Output high voltage		$\mathrm{V}_{\text {OH }}$	2.4	-	-	V	$\mathrm{I}_{\text {OH }}=-1.0 \mathrm{~mA}$

Notes: 1. Typical values are at $\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$ and specified loading, and not guaranteed.
2. This characteristics is guaranteed only for L version.
3. This characteristics is guaranteed only for L-SL version.

Capacitance ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Typ	Max	Unit	Test Conditions
Input capacitance ${ }^{* 1}$	Cin	-	8	pF	$\mathrm{Vin}=0 \mathrm{~V}$
Input/output capacitance ${ }^{* 1}$	C_{10}	-	10	pF	$\mathrm{V}_{10}=0 \mathrm{~V}$

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics ($\mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, unless otherwise noted.)

Test Conditions

- Input pulse levels: 0.8 V to 2.4 V
- Input rise and fall time: 5 ns
- Input and output timing reference levels: 1.5 V
- Output load: 1 TTL Gate $+\mathrm{C}_{\mathrm{L}}(100 \mathrm{pF})(\mathrm{HM} 628512-7 \mathrm{~A} / 7)$

1 TTL Gate $+\mathrm{C}_{\mathrm{L}}(50 \mathrm{pF})(\mathrm{HM} 628512-5)$
(Including scope \& jig)

Read Cycle

HM628512									
	-5			-7A		-7		Unit	Notes
Parameter	Symbol	Min	Max	Min	Max	Min	Max		
Read cycle time	t_{RC}	55	-	65	-	70	-	ns	
Address access time	$\mathrm{t}_{\text {AA }}$	-	55	-	60	-	70	ns	
Chip select access time	t_{co}	-	55	-	65	-	70	ns	
Output enable to output valid	$\mathrm{t}_{\text {OE }}$	-	25	-	30	-	35	ns	
Chip selection to output in low-Z	t_{12}	10	-	10	-	10	-	ns	2
Output enable to output in low-Z	$\mathrm{t}_{\mathrm{OLZ}}$	5	-	5	-	5	-	ns	2
Chip deselection to output in high-Z	t_{Hz}	0	20	0	20	0	25	ns	1,2
Output disable to output in high-Z	$\mathrm{t}_{\mathrm{OHz}}$	0	20	0	20	0	25	ns	1,2
Output hold from address change	t_{OH}	10	-	10	-	10	-	ns	

[^0]
HM628512 Series

Read Timing Waveform ${ }^{*}$

Note: 1. $\overline{\mathrm{WE}}$ is high for read cycle.

Write Cycle

HM628512

HM628512									
	-5			-7A		-7			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	$\mathrm{t}_{\text {wc }}$	55	-	55	-	70	-	ns	
Chip selection to end of write	t_{cw}	50	-	50	-	60	-	ns	2
Address setup time	$\mathrm{t}_{\text {As }}$	0	-	0	-	0	-	ns	3
Address valid to end of write	$\mathrm{t}_{\text {AW }}$	50	-	50	-	60	-	ns	
Write pulse width	t_{wp}	40	-	40	-	50	-	ns	1,8
Write recovery time	$\mathrm{t}_{\text {wr }}$	5	-	5	-	5	-	ns	4
$\overline{\text { WE }}$ to output in high-Z	$\mathrm{t}_{\text {WHz }}$	0	20	0	20	0	25	ns	5, 6, 7
Data to write time overlap	t_{bw}	25	-	25	-	30	-	ns	
Data hold from write time	t_{DH}	0	-	0	-	0	-	ns	
Output active from output in high-Z	$\mathrm{t}_{\text {ow }}$	5	-	5	-	5	-	ns	6
Output disable to output in high-Z	$\mathrm{t}_{\mathrm{OHz}}$	0	20	0	20	0	25	ns	5,6

Notes: 1. A write occurs during the overlap (t_{wp}) of a low $\overline{\mathrm{CS}}$ and a low $\overline{\mathrm{WE}}$. A write begins at the later transition of $\overline{C S}$ going low or $\overline{W E}$ going low. A write ends at the earlier transition of $\overline{\mathrm{CS}}$ going high or $\overline{W E}$ going high. t_{wp} is measured from the beginning of write to the end of write.
2. t_{cw} is measured from $\overline{\mathrm{CS}}$ going low to the end of write.
3. t_{AS} is measured from the address valid to the beginning of write.
4. $t_{\text {WR }}$ is measured from the earlier of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CS}}$ going high to the end of write cycle.
5. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
6. This parameter is sampled and not 100% tested.
7. $t_{w H Z}$ is defined as the time at which the outputs acheive the open circuit conditons and is not referred to output voltage levels.
8. In the write cycle with $\overline{O E}$ low fixed, $t_{\text {wp }}$ must satisfy the following equation to avoid a problem of data bus contention. $t_{w P} \geq \mathrm{t}_{\mathrm{DW}} \min +\mathrm{t}_{\mathrm{WHz}} \max$

HM628512 Series

Write Timing Waveform (1) ($\overline{\mathrm{OE}}$ Clock)

Write Timing Waveform (2) ($\overline{\mathrm{OE}}$ Low Fixed)

Notes: 1. If the $\overline{\mathrm{CS}}$ low transition occurs simultaneously with the $\overline{\mathrm{WE}}$ low transition or after the $\overline{\mathrm{WE}}$ transition, the output remain in a high impedance state.
2. Dout is the same phase of the write data of this write cycle.
3. Dout is the read data of next address.
4. If CS is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.

HM628512 Series

Low \mathbf{V}_{CC} Data Retention Characteristics ($\mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$)
This characteristics is guaranteed only for L/L-SL version.

Parameter	Symbol	Min	Typ	Max	Unit	${\text { Test } \text { Conditions }^{* 3}}^{\mathrm{V}_{\mathrm{CC}} \text { for data retention }}$
Vata retention current	V_{DR}	2	-	-	V	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{Vin} \geq 0 \mathrm{~V}$
	-	$1^{* 4}$	$50^{\circ 1}$	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{Vin} \geq 0 \mathrm{~V}$	
Chip deselect to data retention time	$\mathrm{t}_{\mathrm{CDR}}$	0	-	-	ns	See retention waveform
Operation recovery time	t_{R}	5	-	-	ms	

Notes: 1. For L-version and $20 \mu \mathrm{~A}$ (max.) at $\mathrm{Ta}=0$ to $40^{\circ} \mathrm{C}$.
2. For SL-version and $3 \mu \mathrm{~A}$ (max.) at $\mathrm{Ta}=0$ to $40^{\circ} \mathrm{C}$.
3. $\overline{\mathrm{CS}}$ controls address buffer, $\overline{\mathrm{WE}}$ buffer, $\overline{\mathrm{OE}}$ buffer, and Din buffer. In data retention mode, Vin levels (address, $\overline{W E}, \overline{O E}, I / O$) can be in the high impedance state.
4. Typical values are at $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ and specified loading, and not guaranteed.

Low \mathbf{V}_{CC} Data Retention Timing Waveform ($\overline{\mathrm{CS}}$ Controlled)

HM628512 Series

Package Dimensions

HM628512 Series

HM628512 Series

[^0]: Notes: 1. t_{HZ} and $\mathrm{t}_{\mathrm{OHZ}}$ are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.
 2. This parameter is sampled and not 100% tested.

