
Complexity Hierarchy - Intro

CS3172: Advanced Algorithms

Introduction to Complexity - II

Howard Barringer

Room KB2.20: email: howard.barringer@manchester.ac.uk

March 2006

查询CS3172供应商 捷多邦，专业PCB打样工

厂，24小时加急出货

http://www.dzsc.com/ic/sell_search.html?keyword=CS3172
http://www.jdbpcb.com/J/
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/


Complexity Hierarchy - Intro

Introduction to Complexity - II

Complexity Hierarchy - Intro
Motivation
Some Harder Problems
Non-deterministic Algorithms
The NP Complexity Class
Polynomial Reductions and NP-Completeness
SPACE complexity



Complexity Hierarchy - Intro

Classifying Problems by their Difficulty



Complexity Hierarchy - Intro

Bin Packing

Given bins, each of capacity C , and n objects of sizes s1, s2, . . . , sn
such that 0 ≤ si ≤ C for all i , 0 ≤ i ≤ n.

Decision Problem:
For a given number k, can the n objects be packed into k bins?



Complexity Hierarchy - Intro

Knapsack

Given a knapsack of capacity C (> 0) and n objects of (positive
whole number) sizes s1, s2, . . . , sn with respective (positive whole
number) costs c1, c2, . . . , cn.

Decision Problem:
Given a positive integer k, is there a subset of the objects that fits
in the knapsack and has total cost k?



Complexity Hierarchy - Intro

Subset Sum

Even simpler variant of knapsack ...

Given a capacity C and objects of (positive integer) size
s1, s2, . . . , sn

Decision Problem:
Is there a subset of the given objects whose sizes add to match
exactly the capacity C?



Complexity Hierarchy - Intro

Graph Colouring

Given a graph G = (V ,E ), a colouring of G is a mapping

C : V → S

where S is a finite set (of colours) such that

C (v) 6= C (w) if (v ,w) ∈ E

Decision Problem:
Given G and a positive number k, is there a colouring of G using
at most k colours?



Complexity Hierarchy - Intro

Hamiltonian Paths/Cycles

Given a graph G = (V ,E ), a Hamiltonian path (resp. cycle) is a
path (resp. cycle) that passes through every vertex exactly once.

Decision Problem:
Does a given graph have a Hamiltonian path (or cycle)?



Complexity Hierarchy - Intro

Travelling Salesman

A weighted variant of Hamiltonian paths ...

Given a weighted graph G = (V ,E ) where each edge ei ∈ E has
cost ci .

Decision Problem:
For a given total cost k, does the given graph have a Hamiltonian
path with total cost at most k?



Complexity Hierarchy - Intro

CNF Satisfiability

A literal l is either an atomic proposition or its negation.
A propositional formula is in Conjunctive Normal Form (CNF) if it
is of the form: ∧

i

∨
j∈Ji

lij

for example:

(p ∨ q ∨ r) ∧ (¬p ∨ ¬q) ∧ (p ∨ ¬r)

Decision Problem:
Given a propositional formula ϕ in CNF form, is there a truth
assignment to the proposition symbols of ϕ that will make ϕ true?



Complexity Hierarchy - Intro

Comment ...

The above small sample of decision problems (often presented as
optimisation problems) appear rather straightforward.

Instances (and variants) of such problems have numerous
applications, from transport logistics and scheduling to theorem
proving.

There are, however, no known easy solutions, i.e. have
polynomially time bounded algorithms that solve the problem.

Very intriguing! However ...



Complexity Hierarchy - Intro

A Guessing Game

Consider the subset sum problem given above.

Suppose one makes a guess at a solution, i.e. guesses a particular
subset of objects.

It is very easy to check whether the proposed solution is indeed a
correct solution. Simply sum the individual sizes of the objects and
test whether the total is indeed equal to the desired capacity C .

Each of the above problems can be solved in this way. In particular,
for each, the check is easy in our technical sense, i.e. the algorithm
for doing so is deterministic polynomially time-bounded.
We then say that the problems have non-deterministic polynomial
time bounded algorithms.



Complexity Hierarchy - Intro

Non-deterministic Algorithms for Decision Problems

These can be characterised as having two phases.

• The non-deterministic phase.
An arbitrary string of symbols is written into memory as a
proposed solution. Note, it could be complete gibberish - it
doesn’t matter!

• The deterministic phase.
A deterministic algorithm is executed to determine whether
the proposed solution is indeed correct. It terminates with
answer yes, if so, and no, if it is not.

The time cost of the algorithm is the sum of the costs of each
phase.



Complexity Hierarchy - Intro

Non-deterministic Polynomial Time-bounded Algorithms

A non-deterministic algorithm is polynomially time-bounded if
there is a polynomial function f (n) such that for a given problem
input of size n which as a yes answer, there exists an execution of
the algorithm that yields the answer yes in at most f (n) steps.



Complexity Hierarchy - Intro

The Complexity Class NP

We define the class NP as the set of all (decision) problems that
can be solved using a non-deterministic polynomially time-bounded
algorithm.

Bin-packing, Knapsack, Subset sum, Graph colouring, Hamiltonian
paths/cycles, Travelling Salesman, CNF-satisfiability (or SAT) are
all in the class NP.



Complexity Hierarchy - Intro

Relation between P and NP

Theorem:
P ⊆ NP

Proof:

Each (decision) problem in P has a deterministic polynomial
time-bounded algorithm. A non-deterministic polynomial algorithm
can thus be constructed for each member of Pby using the
deterministic algorithm as the checking phase and ignoring
completely the guessing phase, i.e. do 0 steps.



Complexity Hierarchy - Intro

Beliefs ...

It is unknown whether

• P = NP

• P ⊂ NP

However, it is believed that NP is indeed much bigger than P, but
for no problem established to be in NP has it been proved that the
problem is not in P



Complexity Hierarchy - Intro

Characterising the hardest problems in NP

The above set of problems certainly vary in their deterministic
complexity, e.g.

• Travelling salesman is O(n!)

• CNF-satisfiability is O(2n)

However, in terms of non-deterministic algorithms, amazingly they
are all equally hard.

Indeed, if one finds a deterministic polynomial time algorithm to
solve just one of the problems, then all of them will be solvable in
deterministic polynomial time.

They are all members of the NP-Complete subset of NP.



Complexity Hierarchy - Intro

Reducing one problem to another

To solve problem P1, transform the input for P1 into input for
problem P2 and then solve using known algorithm for P2.



Complexity Hierarchy - Intro

More formally ...

Let T be a function from the input set for (decision) problem Π1

to the input set for (decision) problem Π2. T is a polynomial
reduction from Π1 to Π2 if

1. T can be computed in (deterministic) polynomial-bounded
time

2. For every input x for Π1, the correct answer for Π2 on T (x) is
the same as the correct answer for Π1 on x .

We say that Π1 is polynomially reducible to Π2 if there exists a
polynomial reduction from Π1 to Π2.



Complexity Hierarchy - Intro

Reductions in P

Theorem:

If Π1 is polynomially reducible to Π2 and Π2 is in P, then Π1 is in
P.

Proof: Straightforward. The sum and product of two polynomials
functions are still polynomial.



Complexity Hierarchy - Intro

NP-Complete complexity class

A decision problem Π is said to be NP-complete if it is in NP and
for every other problem Π′ in NP, then Π′ is polynomially reducible
to Π.

Theorem:

If any NP-complete problem is in P, then P = NP.

Theorem: due to Stephen Cook (1971)

The CNF-satisfiability problem is NP-complete.



Complexity Hierarchy - Intro

A Final Word on Space
We define the complexity class DSPACE (f (n)) to contain those problems
whose deterministic algorithms solve in space bounded by f (n)

Similarly, NSPACE (f (n)) are those problems whose nondeterministic
algorithms solve in space bounded by f (n)

Then,

PSPACE =
⋃

i≥1 DSPACE (ni )

NSPACE =
⋃

i≥1 NSPACE (ni )

PSPACE is a huge class, probably way above P and NP

DSPACE (log n is a small class, within P, and very small within PSPACE .

Interestingly, it can be shown that

PSPACE = NSPACE



Complexity Hierarchy - Intro

A small bit of the Complexity Hierarchy

Theorem:

DSPACE (log n) ⊆ P ⊆ NP ⊆ PSPACE

where at least one of the containments is strict, but it is unknown
which it is.

Not unsurprisingly, there are many problems beyond PSPACE .
EXPSPACE , for example, is the class

⋃
i≥1 DSPACE (2ni

).
Recognizing whether two regular expressions (using union,
concatenation, Kleene star and squaring) denote different
languages is an EXPSPACE -complete problem!


