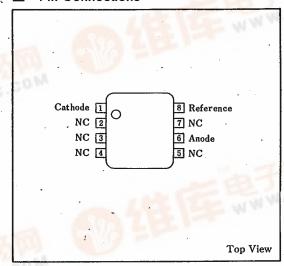
IR9431/IR9431N

T-58-11-23

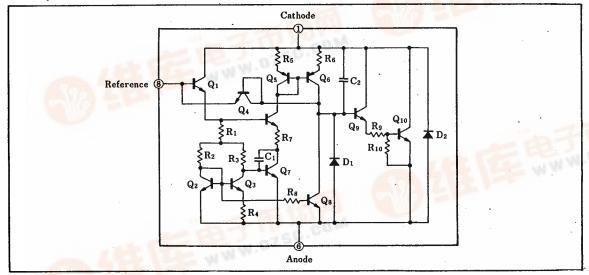
IR9431/IR9431N

Adjustable Precision Shunt Regulator


Description

The IR9431/IR9431N is a shunt regulator IC which adjusts output voltages from 2.5 to 36V through external resistors over the entire operating temperature range. It has a typical dynamic output impedances of 0.2Ω . Active output circuitry provides a very sharp turn-on characteristics making it excellent replacemens for zener diodes in many applications.

Features


- 1. Temperature stability 50ppm/℃ (TYP.)
- 2. Adjustable output voltage
- 3. Fast turn-on response
- 4. Low dynamic output impedance 0.2Ω (TYP.)
- 5. Low output noise voltage
- 8-pin dual-in-line package (IR9431)
 8-pin small-outline package (IR9431N)

Pin Connections

Equivalent Circuit

SHARP

Absolute Maximum Ratings

Parameter	Symbol	Condition		Rating	Unit	
Cathode voltage	V _K			37	V	
Cathode current	I _K			-100~+150	mA	
Reference input current	I _{REF}			+0.05~+10	mA	
Power dissipation	P _D	Ta≦25℃	IR9431	750	mW	
			IR9431N	500		
P _D derating ratio	ΔP _D /C	Ta>25℃	IR9431	6	mW/℃	
			IR9431N	4		
Operating temperature	Topr			-20~+100	С	
Storage temperature	T _{stg}			-65~+150	ဗ	

Recommended Operating Conditions

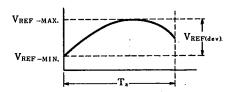
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Cathode voltage	V _K		V _{REF}		36	V
Cathode current	Iĸ		1		100	mA

Electrical Characteristics

(Ta=25℃)

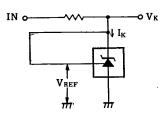
Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Reference voltage	V _{REF}	$V_K = V_{REF}$, $I_K = 10$ mA		2,458	2,495	2,532	mV
Temperature change of reference voltage	V _{REF(dev)}	$V_K = V_{REF}$, $I_K = 10$ mA Ta=full range			8	17	mV
Voltage fluctuation of reference voltage	$\frac{\Delta V_{RE}}{\Delta V_{K}}$	I _K =10mA	$\Delta V_{K}=10V-V_{REF}$		-1.4	-2.7	mV/V
			ΔV _K =36V-10V		-1	-2	
Reference input current	I _{REF}	$I_{K}=10\text{mA}, R_{1}=10\text{k}\Omega, R_{2}=\infty$			2	4	μA
Temperature change of reference current	I _{REF(dev)}	$I_K=10\text{mA}, R_1=10\text{k}\Omega, R_2=\infty$ Ta=full range			0.4	1.2	μA
Minimum cathode current	I _{MIN}	$V_{K} = V_{REF}$			0.4	1	mA
OFF-state cathode current	I _{OFF}	$V_{K=36V}$, $V_{REF}=0V$			0.1	1	μA
Dynamic impedance	Z _{KA}	$V_K = V_{REF}$, $I_K = 1 \sim 10 \text{mA}$ f < 1 kHz			0.2	0.5	Ω

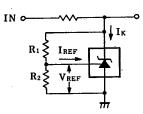
Refer to the figure to the right.


$$|\alpha V_{REF}| = \frac{\frac{V_{REF(dev)}}{V_{REF}@25^{\circ}C} 10^{6}}{\Delta Ta} \quad (ppm/^{\circ}C)$$

If the temperature coefficient of reference voltage V_{REF(dev)}=8mV (equation),

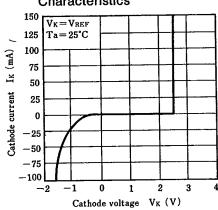
$$|\alpha V_{REF}| = \frac{\frac{8mV}{2,495mV} 10^6}{70^{\circ}} = 46 \text{ (ppm/°C)}$$


dynamic impedance is defined by the following equation.

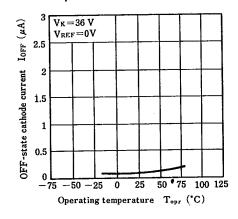

$$\mid Z_{KA}\mid = \frac{\Delta\,V_K}{\Delta\,I_K}$$

Test Circuit

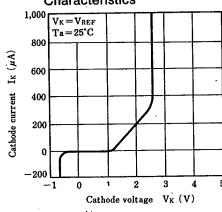
$$V_K = V_{REF}(1 + \frac{R_1}{R_2}) + I_{REF} \cdot R_1$$

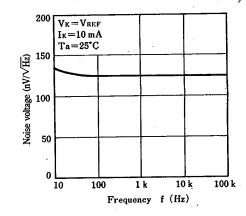

$$|Z| = \frac{\Delta V}{\Delta I} = |Z_K|(1 + \frac{R_1}{R_2})$$

IN O V K


(3) I_{OFF}

■ Electrical Characteristic Curves


Cathode current —Cathode voltage Characteristics


OFF-state cathode current — Operating temperature Characteristics

Cathode current — Cathode voltage Characteristics

Noise voltage — Frequency Characteristics

