查询HA541供应商

捷多邦,专业PCB打样**SN54条H054**集共**SN**74AHC541 OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCLS261M - DECEMBER 1995 - REVISED JULY 2003

SN54AHC541 ... J OR W PACKAGE

SN74AHC541 . . . DB, DGV, DW, N, NS, OR PW PACKAGE

(TOP VIEW)

• Operating Range 2-V to 5.5-V V_{CC}

 Latch-Up Performance Exceeds 250 mA Per JESD 17

description/ordering information

The 'AHC541 octal buffers/drivers are ideal for driving bus lines or buffer memory address registers. These devices feature inputs and outputs on opposite sides of the package to facilitate printed circuit board layout.

The 3-state control gate is a two-input AND gate with active-low inputs so that if either output-enable ($\overline{OE1}$ or $\overline{OE2}$) input is high, all corresponding outputs are in the high-impedance state. The outputs provide noninverted data when they are not in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54AHC541 ... FK PACKAGE (TOP VIEW)

	A2	A1 0F1	OEZ	
A3 A4 A5 A6 A7] 4] 5] 6] 7] 8 _9		18 17 16 15 14 3	Y1 Y2 Y3 Y4 Y5

	TA	PACKAGET		PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	-	PDIP – N		SN74AHC541N	SN74AHC541N	1		
	A 195 1	SOIC - DW	Tube	SN74AHC541DW	AHC541			
	-40°C to 85°C	SOIC - DW	Tape and reel	SN74AHC541DWR	AHC541			
-		SOP – NS	Tape and reel	SN74AHC541NSR	AHC541	-		
		SSOP – DB	Tape and reel	SN74AHC541DBR	HA541	1077		
		TSSOP – PW	Tube	SN74AHC541PW	HA541	CO1		
		1330P - PW	Tape and reel	SN74AHC541PWR	HA541	200		
		TVSOP – DGV	Tape and reel	SN74AHC541DGVR	HA541			
		CDIP – J	Tube	SNJ54AHC541J	SNJ54AHC541J			
	–55°C to 125°C CFP – W		Tube	SNJ54AHC541W	SNJ54AHC541W			
	- 15	LCCC – FK	Tube	SNJ54AHC541FK	SNJ54AHC541FK			

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

roduction Data information is current as of publication date. roducts conform to specifications per the terms of Texas Instruments

Copyright © 2003, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other production processing does not necessarily include testing of all parameters.

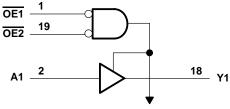
	FUNCTION TABLE (each buffer/driver)									
	INPUTS		OUTPUT							
OE1	OE2	Α	Y							
L	L	L	L							
L	L	н	н							

Х

Х

Ζ

Ζ


Х

н

Н

Х

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

DW package N package NS package PW package	$\begin{array}{c} -0.5 \ \text{V to 7 V} \\ -0.5 \ \text{V to V}_{\text{CC}} + 0.5 \ \text{V} \\ -20 \ \text{mA} \\ \pm 20 \ \text{mA} \\ \pm 25 \ \text{mA} \\ \pm 25 \ \text{mA} \\ \pm 75 \ \text{mA} \\ 70^{\circ}\text{C/W} \\ 92^{\circ}\text{C/W} \\ 58^{\circ}\text{C/W} \\ 69^{\circ}\text{C/W} \\ 60^{\circ}\text{C/W} \\ 83^{\circ}\text{C/W} \end{array}$
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN54AHC541, SN74AHC541 **OCTAL BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS SCLS261M – DECEMBER 1995 – REVISED JULY 2003

			SN54A	HC541	SN74A	HC541	UNIT	
			MIN	MAX	MIN	MIN MAX		
VCC	Supply voltage		2	5.5	2	5.5	V	
		$V_{CC} = 2 V$	1.5		1.5			
VIH	High-level input voltage	$V_{CC} = 3 V$	2.1		2.1		V	
		V _{CC} = 5.5 V	3.85		3.85			
		$V_{CC} = 2 V$		0.5		0.5		
V_{IL}	Low-level input voltage	$V_{CC} = 3 V$		0.9		0.9	V	
		V _{CC} = 5.5 V		1.65		1.65		
٧ _I	Input voltage		0	5.5	0	5.5	V	
Vo	Output voltage		0	VCC	0	VCC	V	
		$V_{CC} = 2 V$		-50		-50	μΑ	
ЮН	High-level output current	V_{CC} = 3.3 V ± 0.3 V		-4		-4	mA	
		V_{CC} = 5 V ± 0.5 V		-8		-8	mA	
		$V_{CC} = 2 V$		50		50	μA	
IOL	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4		4	~ ^	
		V_{CC} = 5 V ± 0.5 V		8		8	mA	
A + / A		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100		100	n n//	
$\Delta t / \Delta v$	Input transition rise or fall rate	V_{CC} = 5 V ± 0.5 V		20		20	ns/V	
TA	Operating free-air temperature		-55	125	-40	85	°C	

recommended operating conditions (see Note 3)

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical	characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise	noted)					-	•	•

	TEST CONDITIONS	Vaa	Τį	ן = 25°C	;	SN54AHC541		SN74AHC541		UNIT
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9	2		1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		2.9		
VOH		4.5 V	4.4	4.5		4.4		4.4		V
	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		
		2 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1		0.1		0.1	
VOL		4.5 V			0.1		0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.5		0.44	
	I _{OL} = 8 mA	4.5 V			0.36		0.5		0.44	
Ц	VI = 5.5 V or GND	0 V to 5.5 V			±0.1		±1*		±1	μA
loz†	$V_O = V_{CC}$ or GND, $V_I (\overline{OE}) = V_{IL}$ or V_{IH}	5.5 V			±0.25		±2.5		±2.5	μΑ
Icc	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			4		40		40	μA
C _i	$V_{I} = V_{CC}$ or GND	5 V		2	10				10	pF
Co	$V_{O} = V_{CC}$ or GND	5 V		4						pF

* On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0$ V.

 † For input and ouput, IOZ includes the input leakage current.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

FROM			Т	λ = 25°C	;	SN54A	HC541	SN74A	HC541	UNIT	
(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	AX	
^	v	Ci = 15 pE		5*	7*	1*	8.5*	1	8.5	ns	
A	I	0L = 15 pr		5*	7*	1*	8.5*	1	8.5	115	
1	v	Ci = 15 pE		6*	10.5*	1*	11*	1	11	ns	
OE	T	CL = 15 pF		6*	10.5*	1*	11*	1	11	115	
OE	v	Ci = 15 pE		7*	11*	1*	12*	1	12	ns	
	I	0L = 13 pr		7*	11*	1*	12*	1	12	115	
۵	۸	v	$C_{\rm L} = 50 \rm pE$		7.5	10.5	1	12	1	12	ns
A	I	CL = 30 pr		7.5	10.5	1	12	1	12	115	
	v	$C_{\rm L} = 50 \rm pE$		8	14	1	16	1	16	ns	
OE	I	r $C_{L} = 50 pF$		8	14	1	16	1	16	115	
ŌĒ	v	$C_{\rm L} = 50 \rm pE$		9	15.4	1	17.5	1	17.5	20	
	ſ	CL = 50 pF		9	15.4	1	17.5	1	17.5	ns	
		C _L = 50 pF			1.5**				1.5	ns	
	(INPUT) A OE OE A OE	(INPUT) (OUTPUT) A Y OE Y	(INPUT) (OUTPUT) CAPACITANCE A Y $C_L = 15 pF$ \overline{OE} Y $C_L = 50 pF$	(INPUT)(OUTPUT)CAPACITANCEMINAY $C_L = 15 \text{ pF}$	$ \begin{array}{c c c c c c c } \mbox{(OUTPUT)} & \mbox{CAPACITANCE} & \mbox{MIN} & \mbox{TYP} \\ \hline \mbox{A} & \mbox{Y} & \mbox{C}_L = 15 \mbox{ pF} & \mbox{5^*} \\ \hline \mbox{OE} & \mbox{Y} & \mbox{C}_L = 15 \mbox{ pF} & \mbox{6^*} \\ \hline \mbox{OE} & \mbox{Y} & \mbox{C}_L = 15 \mbox{ pF} & \mbox{7^*} \\ \hline \mbox{OE} & \mbox{Y} & \mbox{C}_L = 50 \mbox{ pF} & \mbox{7.5} \\ \hline \mbox{OE} & \mbox{Y} & \mbox{C}_L = 50 \mbox{ pF} & \mbox{8} \\ \hline \mbox{OE} & \mbox{Y} & \mbox{C}_L = 50 \mbox{ pF} & \mbox{8} \\ \hline \mbox{OE} & \mbox{Y} & \mbox{C}_L = 50 \mbox{ pF} & \mbox{8} \\ \hline \mbox{OE} & \mbox{Y} & \mbox{C}_L = 50 \mbox{ pF} & \mbox{9} \\ \hline \mbox{9} & \mbox{9} \\ \hline \mbox{OE} & \mbox{Y} & \mbox{C}_L = 50 \mbox{ pF} & \mbox{9} \\ \hline \mbox{9} & \mbox{9} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} & \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1} \\ \hline \mbox{1} & \mbox{1}$	$ \begin{array}{c c c c c c c } (INPUT) & (OUTPUT) & CAPACITANCE & MIN & TYP & MAX \\ \hline \\ \hline \\ A & Y & C_L = 15 pF & 5^* & 7^* \\ \hline \hline & 5^* & 5^* & 7^* \\ \hline & 6^* & 10.5^* \\ \hline & 6^* & 10.5^* \\ \hline & 6^* & 10.5^* \\ \hline \hline & 6^* & 10.5^* \\ \hline \hline & 6^* & 10.5^* \\ \hline \hline & 7^* & 11^* \\ \hline \hline & Y & C_L = 15 pF & 7^* & 11^* \\ \hline \hline & Y & C_L = 50 pF & 7.5 & 10.5 \\ \hline & 7 & 8 & 14 \\ \hline & \overline{OE} & Y & C_L = 50 pF & 9 & 15.4 \\ \hline \hline & \overline{OE} & Y & C_L = 50 pF & 9 & 15.4 \\ \hline \end{array} $	$ \begin{array}{c c c c c c c } \mbox{(NPUT)} & (OUTPUT) & CAPACITANCE & MIN & TYP & MAX & MIN \\ \hline A & Y & C_L = 15 pF & 5^* & 7^* & 1^* \\ \hline & 5^* & 10.5^* & 1^* \\ \hline & 6^* & 10.5^* & 1^* \\ \hline & 7^* & 11^* & 1^* \\ \hline & 0E & Y & C_L = 15 pF & 7^* & 11^* & 1^* \\ \hline & 7^* & 11^* & 1^*$	$\begin{array}{c c c c c c c c } (\text{INPUT}) & (\text{OUTPUT}) & \text{CAPACITANCE} & \text{MIN} & \text{TYP} & \text{MAX} & \text{MIN} & \text{MAX} \\ \hline A & Y & & & \\ P & & & \\ \hline CL = 15 \text{pF} & & & \\ \hline 5^* & 7^* & 1^* & 8.5^* \\ \hline 5^* & 7^* & 1^* & 8.5^* \\ \hline 5^* & 7^* & 1^* & 8.5^* \\ \hline 5^* & 7^* & 1^* & 1^* & 8.5^* \\ \hline \hline 0E & Y & & \\ \hline OE & Y & & \\ \hline OE & Y & & \\ \hline CL = 15 \text{pF} & & \\ \hline 6^* & 10.5^* & 10.5^* & 1^* & 11^* \\ \hline 6^* & 10.5^* & 10.5^* & 11^* & 11^* \\ \hline 0E & Y & & \\ \hline CL = 50 \text{pF} & & \\ \hline 7.5 & 10.5 & 1 & 12 \\ \hline OE & Y & & \\ \hline OE & Y & & \\ \hline OE & Y & & \\ \hline OE & Y & \\ \hline CL = 50 \text{pF} & & \\ \hline 8 & 14 & 1 & 16 \\ \hline OE & Y & & \\ \hline OE & Y & & \\ \hline CL = 50 \text{pF} & & \\ \hline 9 & 15.4 & 1 & 17.5 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

** On products compliant to MIL-PRF-38535, this parameter does not apply.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

	FROM	то	LOAD	T,	₄ = 25°C	;	SN54A	HC541	SN74A	HC541	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	А	Y	C _I = 15 pF		3.5*	5*	1*	6*	1	6	ns
^t PHL	A	Т	CL = 15 pr		3.5*	5*	1*	6*	1	6	115
^t PZH	OE	Y	C _I = 15 pF		4.7*	7.2*	1*	8.5*	1	8.5	ns
^t PZL	OE	I	CL = 13 pr		4.7*	7.2*	1*	8.5*	1	8.5	115
^t PHZ	OE	Y	C _I = 15 pF		5*	7.5*	1*	8*	1	8	ns
^t PLZ		E I	0L = 13 pi		5*	7.5*	1*	8*	1	8	115
^t PLH	А	Y	Y C _L = 50 pF		5	7	1	8	1	8	ns
^t PHL	A				5	7	1	8	1	8	115
^t PZH	<u> </u>	Y	C _I = 50 pF		6.2	9.2	1	10.5	1	10.5	200
^t PZL	ŌĒ	I	CL = 30 pr		6.2	9.2	1	10.5	1	10.5	ns
^t PHZ	OE	Y	C _I = 50 pF		6	8.8	1	10	1	10	
^t PLZ	UE	T	0L = 50 pr		6	8.8	1	10	1	10	ns
^t sk(o)			C _L = 50 pF			1**				1	ns

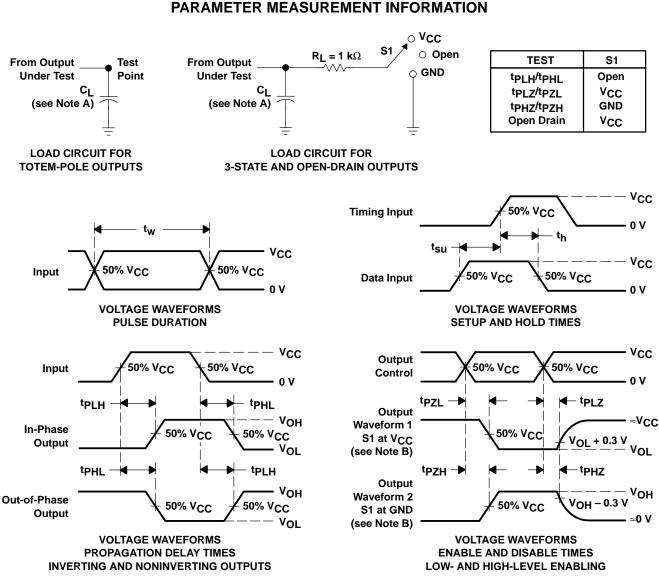
* On products compliant to MIL-PRF-38535, this parameter is not production tested.

** On products compliant to MIL-PRF-38535, this parameter does not apply.

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25 $^{\circ}\text{C}$ (see Note 4)

	PARAMETER SN				
VOL(P)	Quiet output, maximum dynamic V _{OL}		0.8	V	
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.8	V	
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}	4.7		V	
VIH(D)	High-level dynamic input voltage	3.5		V	
VIL(D)	Low-level dynamic input voltage		1.5	V	

NOTE 4: Characteristics are for surface-mount packages only.


operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER		ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	12	рF

SN54AHC541, SN74AHC541 OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCLS261M – DECEMBER 1995 – REVISED JULY 2003

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_Q = 50 Ω, t_f ≤ 3 ns, t_f ≤ 3 ns.

- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

13-Mar-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finis	n MSL Peak Temp ⁽³⁾
5962-9685701Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9685701QRA	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
5962-9685701QSA	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type
SN74AHC541DBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74AHC541DBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DBRE4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DBRG4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DGVRE4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DGVRG4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541N	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74AHC541NE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74AHC541NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541NSRG4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541PWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541PWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541PWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI
SN74AHC541PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541PWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC541PWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

13-Mar-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SNJ54AHC541FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54AHC541J	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54AHC541W	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

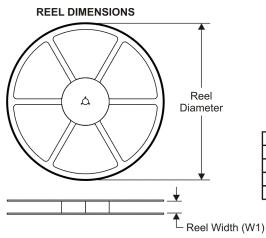
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

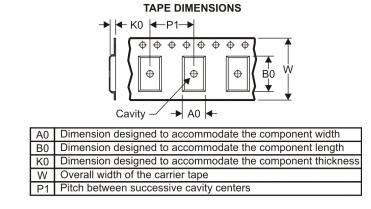
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

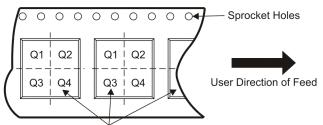
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.





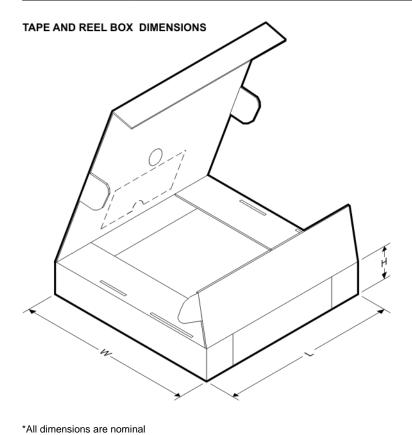
PACKAGE MATERIALS INFORMATION


11-Mar-2008

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

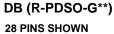
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC541DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74AHC541DGVR	TVSOP	DGV	20	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
SN74AHC541DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
SN74AHC541PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

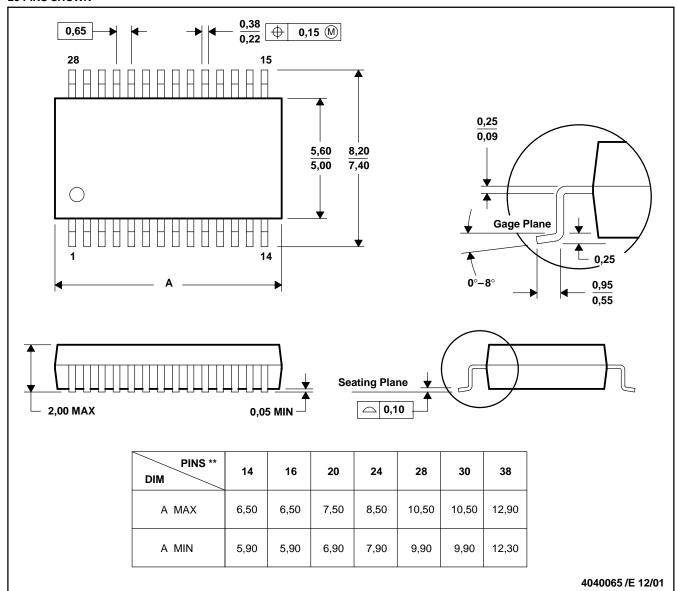


*All dimensions are nominal

PACKAGE MATERIALS INFORMATION

11-Mar-2008




i dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC541DBR	SSOP	DB	20	2000	346.0	346.0	33.0
SN74AHC541DGVR	TVSOP	DGV	20	2000	346.0	346.0	29.0
SN74AHC541DWR	SOIC	DW	20	2000	346.0	346.0	41.0
SN74AHC541PWR	TSSOP	PW	20	2000	346.0	346.0	33.0

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

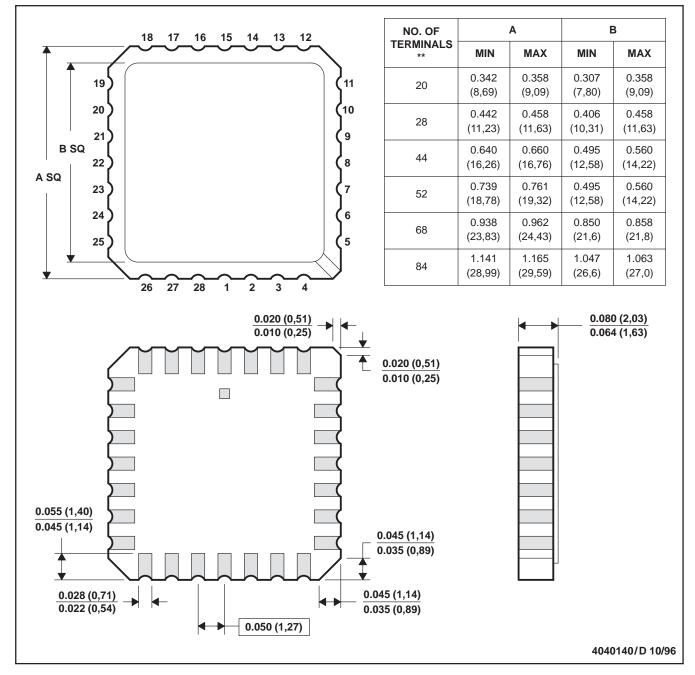
PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150



MLCC006B - OCTOBER 1996

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

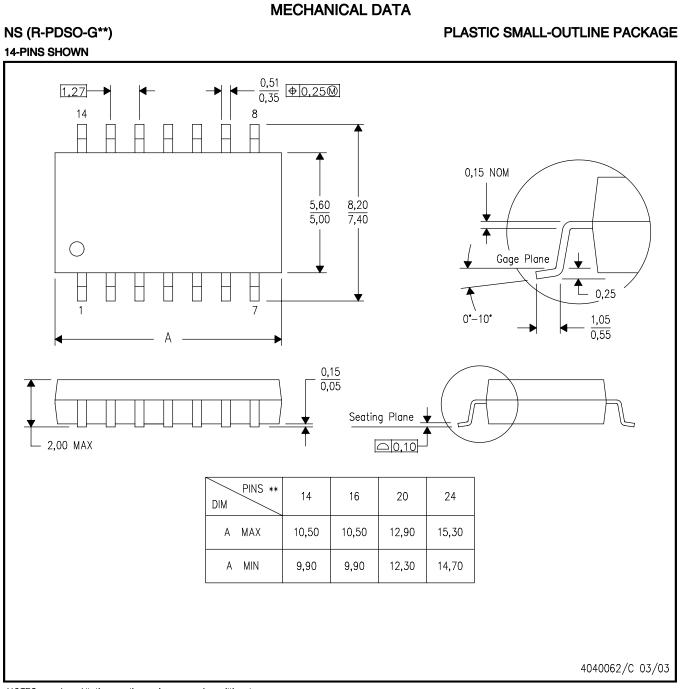
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

J (R-GDIP-T**) 14 LEADS SHOWN

PINS ** 14 16 20 18 DIM 0.300 0.300 0.300 0.300 В Α (7,62) (7,62) (7,62) (7,62) BSC BSC BSC BSC 14 8 0.785 .840 0.960 1.060 B MAX (19, 94)(21, 34)(24,38) (26, 92)B MIN С 0.300 0.300 0.310 0.300 C MAX (7, 62)(7, 62)(7, 87)(7, 62)7 0.245 0.245 0.220 0.245 0.065 (1,65) C MIN (6, 22)(6,22) (5, 59)(6,22) 0.045 (1,14) 0.060 (1,52) ← 0.005 (0,13) MIN A 0.015 (0,38) 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.026 (0,66) 0.014 (0,36) 0'-15' 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040083/F 03/03

CERAMIC DUAL IN-LINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

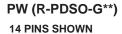
B. This drawing is subject to change without notice.

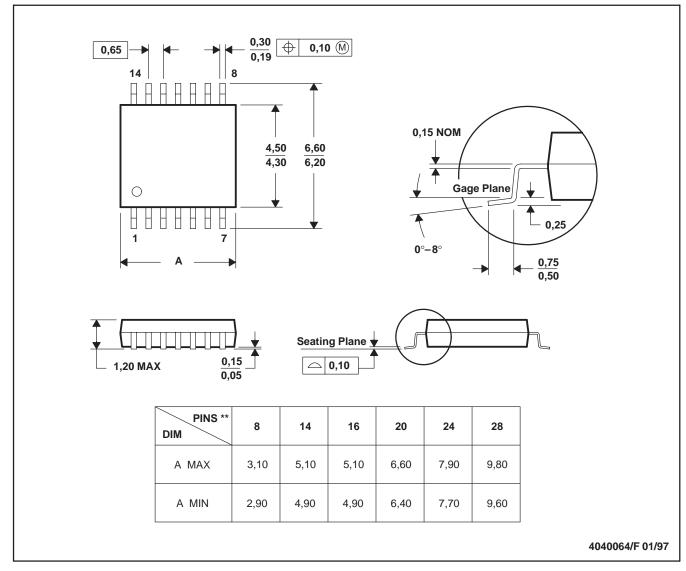
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.

E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



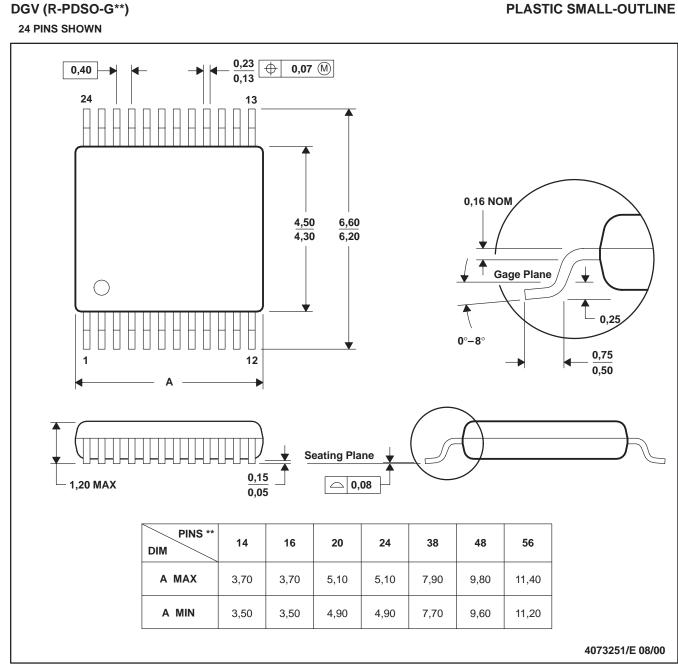
MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

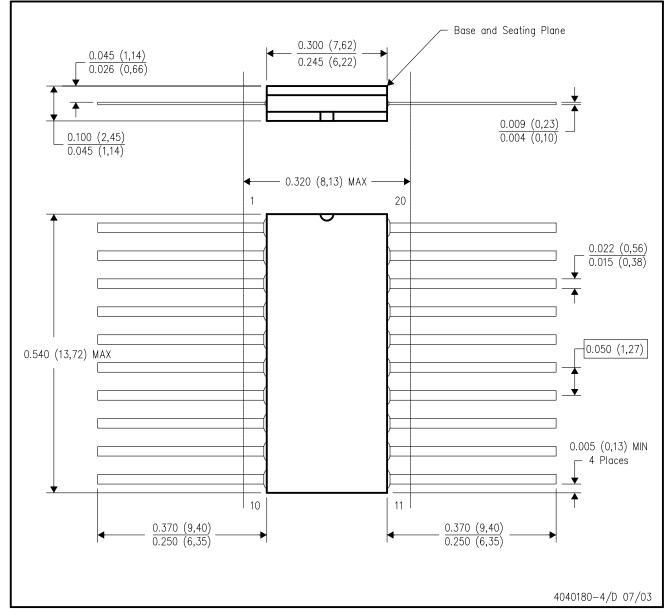
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.


D. Falls within JEDEC MO-153

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

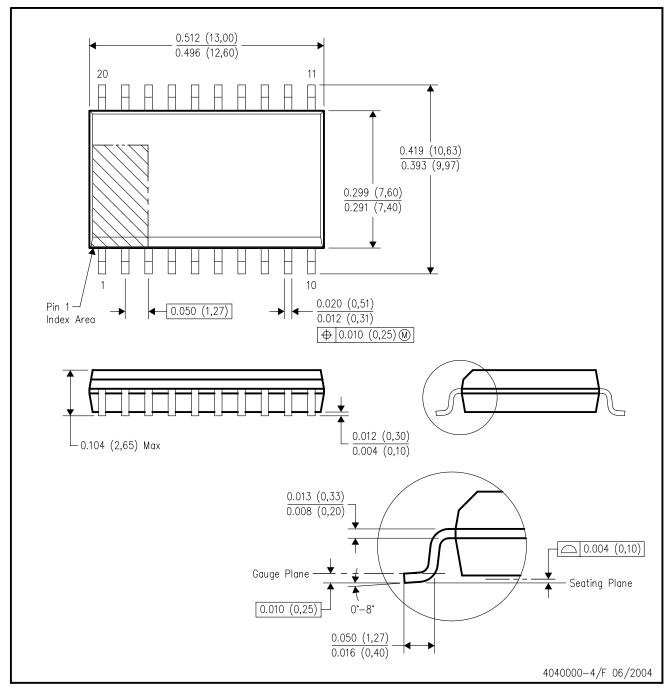

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153
 - 14/16/20/56 Pins MO-194

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

NOTES:

S: A. All linear dimensions are in inches (millimeters).

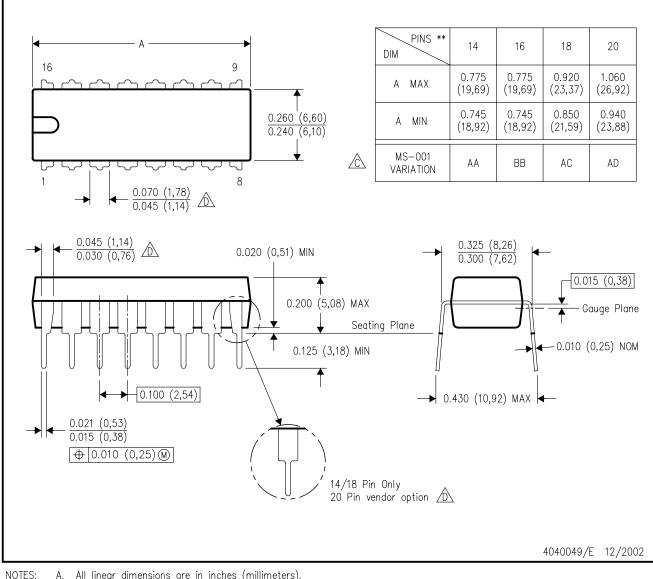

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within Mil-Std 1835 GDFP2-F20

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.



N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.

🖄 Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	ampli
Data Converters	datac
DSP	dsp.ti
Clocks and Timers	www.
Interface	interfa
Logic	logic.
Power Mgmt	powe
Microcontrollers	<u>micro</u>
RFID	www.
RF/IF and ZigBee® Solutions	www.

mplifier.ti.com ataconverter.ti.com sp.ti.com www.ti.com/clocks nterface.ti.com ogic.ti.com ower.ti.com nicrocontroller.ti.com www.ti-fid.com www.ti.fid.com

Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony

Video & Imaging

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/security www.ti.com/video www.ti.com/video www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated

Wireless

