

Preliminary

RPF08155B

MOS FET Power Amplifier Module for GSM 850/900 and DCS1800/1900 Quad Band Cellular Phone

> REJxxxxxx-xxxxZ Rev.0.7 Oct. 31. 2005

Application

- Quad band amplifier for US/E-GSM (824 to 849MHz, 880 to 915 MHz), DCS1800/1900 (1710 to 1785 MHz, 1850 to 1910 MHz).
- For 3.5 V nominal operation

Features

- Built-in closed loop APC circuit with power detector performs stable power control accuracy under varied supply voltage and temperature.
- The smallest size : $6.0 \times 6.0 \times 1.2$ mm typ. (1.3 mm t Max.) as APC integrated PA module.
- High Gain 3-stage amplifier: 3 dBm typical Input power.
- Superb forward isolation level: -47dBm Typical at 6dBm input power.
- Lead free soldering process available
- GPRS Class 12 compatible

Easy power control design

- 1. Pre-charge procedure from outside is not necessary.
- 2. Wide power control dynamic range is obtained. Thus, power deviation is narrow distribution at MP.
- 3. High efficiency (GSM900_55%, DCS1800_50%)

CONFIDENTIAL Target Specification

Absolute Maximum Ratings (Tc = 25°C)

RPF08155B

Item	Symbol	Rating	Unit	Remark
Supply voltage	Vdd	6.0	V	within 1sec
				at no-operation
		5.0	V	at operation (50 Ω load)
Supply current	Idd _{GSM}	3.5	A	
	Idd _{DCS}	2	А	
Txon voltage	Vtxb	3	V	
Band select voltage	Vband	3	V	
Power control voltage	Vramp	2.2	V	
Input power	Pin	10	dBm	
Operating case temperature	Tc (op)	-30 to +100	°C	
Storage temperature	Tstg	-30 to +100	°C	
Output power	Pout _{GSM}	5	W	
	Pout _{DCS}	3	W	

Note: The maximum ratings shall be valid over both the GSM850/900-band (824 to 849 MHz , 880 to 915 MHz), and the DCS1800/1900-band (1710 to 1785 MHz, 1850 to 1910 MHz).

ltem	Symbol	Min	Тур	Max	Unit	Test Condition
Drain cutoff current	lds	—	0.2	20	μΑ	Vdd = 4.6V, Vramp = 0.2V, Vband = 0.2V, Vtxb=0.2V
Vtxb voltage range (Hi)	Vtxb(Hi)	1.6	1.8	3.0	V	Tx pulse signal required
Vtxb voltage range (Lo)	Vtxb(Lo)	0	0.2	0.5	V	
Vtxb control current	ltxb		25	100	μΑ	Vtxb = 3.0V
Band select range (Hi)	Vband(Hi)	1.6	1.8	3.0	V	Hi : DCS/PCS
Band select range (Lo)	Vband(Lo)	0	0.2	0.5		Lo : GSM,
Band select current	Iband		25	100	μΑ	Vband = 3.0V
Control voltage range	Vramp	0.2	_	2.0	V	
Vramp control current	Iramp		15	25	μA	Vramp = 2V

Electrical Characteristics for DC ($Tc = 25^{\circ}C$)

CONFIDENTIAL

Target Specification

Electrical Characteristics for GSM850 (Tc = 25°C)

Test conditions unless otherwise noted:

f =824 to 849 MHz, Vdd1 =Vdd2 =Vdd_IC=3.5 V, Pin=3dBm, Vband = 0.2V, Vtxb=1.8V, Rg = Rl =50 Ω , Tc = 25°C, Pulse operation for Vramp and Vtxb with pulse width 1154 μ s and duty cycle 2:8 shall be used.

ltem	Symbol	Min	Тур	Мах	Unit	Test Condition
Frequency range	F	824	—	849	MHz	
Band select (GSM active)	Vband	0	0.2	0.5	V	
Input power	Pin	0	3	6	dBm	
Vtxb voltage range	Vtxb	1.6	1.8	3.0	V	Tx pulse signal is required.
Supply voltage	Vdd	3.1	3.5	4.6	V	
Total efficiency	η⊤	45	50	_	%	Max. efficiency point, Pout>= 34.5dBm
2nd harmonic distortion	2nd H.D.	_	-15	-10	dBm	Pout _{GSM} = 6 to 34.5 dBm
3rd harmonic distortion	3rd H.D.	_	-20	-15	dBm	Vramp = controlled
4 to 8th harmonic distortion	4 to 8th H.D.		-30	-15	dBm	-
Input VSWR	VSWR (in)		1.5	3	_	-
Output power (1)	Pout (1)	34.5	_	_	dBm	Vramp = 2.0 V
Output power (2)	Pout (2)	33.0	_	_	dBm	Vdd = 3.1 V, Vramp = 2.0 V, Tc = +85°C
Isolation(1)	Piso(1)	_	-47	-37	dBm	Pin = 6 dBm, Vtxb = 0.2 V
Isolation(2)	Piso(2)	_	-35	-5	dBm	Vramp = 0.15 V (TBD), Vtxb = 1.8 V
Isolation at	_		-25	-18	dBm	Pout $_{GSM}$ = 34.5 dBm,
when GSM is active						
Stability	_	No para	sitic oscil	lation		Vdd = 3.1 to 4.6 V, Pout $_{\text{GSM}} \leq$ 34.5 dBm,
						Vramp $\leq 2.0 \text{ V}$, Rg = 50 Ω , Output VSWR = 6 : 1 All phases
Load VSWR tolerance	_	No degr	radation		—	Vdd = 3.1 to 4.6 V, Pout $_{GSM} \le 34.5 \text{ dBm}$,
						Vramp \leq 2.0 V, Rg = 50 Ω , t = 20 sec. , Output VSWR = 10 : 1 All phases,
						Tc ≤ 85°C
Turn On/Off Time	Tr, Tf		—	8	μS	Pout = 6 to 34.5 dBm
Power control slope	Slope		150	220	dB/V	Pout = 6 to 34.5 dBm
AM output	AM/AM		4	8	%	Added 4% AM to Pin,Pout=6 to 34.5dBm
Power Control Stability	T					
I OWEL CONTROL STADILLY						

Pout ,Vramp adjusted to (at Pin=3dBm, Tc =25°C,f=836.5MHz,Vdd=3.5V)	6 to 14	14 to 32.5	32.5 to 34.0	dBm
Pout Variation (at f=824 to 849MHz,Pin=0 to 6dBm, Tc=25°C,	±3.5	±1.8	±1.0	dB
Vdd=3.1 to 3.9V)				
Pout ,Vramp adjusted to (at Pin=3dBm, Tc =25°C,f=836.5MHz,Vdd=3.5V)	6 to 14	14 to 32.5	32.5 to 33	dBm
Pout Variation (at f=824 to 849MHz,Pin==0 to 6dBm, Tc=-20 to 85°C, Vdd=3.1 to 4.6V)	-5/+4.5	±2.7	±1.3	dB

CONFIDENTIAL

Target Specification

Electrical Characteristics for GSM900 (Tc = 25°C)

Test conditions unless otherwise noted:

f =880 to 915 MHz, Vdd1 =Vdd2 =Vdd_IC=3.5 V, Pin=3dBm, Vband = 0.2V, Vtxb=1.8V, Rg = Rl =50 Ω , Tc = 25°C, Pulse operation for Vramp and Vtxb with pulse width 1154 μ s and duty cycle 2:8 shall be used.

Frequency range F 880 915 MHz Band select (GSM active) Vband 0 0.2 0.5 V Input power Pin 0 3 6 dBm Vtxb voltage range Vtxb 1.6 1.8 3.0 V Tx pulse signal is required. Supply voltage Vdd 3.1 3.5 4.6 V Total efficiency point, Pout>=34.5dBm 2nd harmonic distortion 2nd H.D. - -15 -10 dBm Pout csst = 6 to 34.5 dBm 3rd harmonic distortion 3rd H.D. - -20 -15 dBm Vramp = controlled 1nput VSWR VSWR (in) - 1.5 3 - - Output power (1) Pout (2) 33.0 - - dBm Vramp = 2.0 V Output power (2) Pout (2) 33.0 - - dBm Vramp = 0.15 V (TBD), Vtxb = 1.8 V Isolation(1) Piso(2) - -35 -5 dBm Vramp = 0.15 V (T	ltem	Symbol	Min	Тур	Max	Unit	Test Condition
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Frequency range	F	880	—	915	MHz	
$ \begin{array}{ c c c c c } \hline Input power & Pin & 0 & 3 & 6 & dBm \\ \hline Vtxb voltage range & Vtxb & 1.6 & 1.8 & 3.0 & V & Tx pulse signal is required. \\ \hline Supply voltage & Vdd & 3.1 & 3.5 & 4.6 & V \\ \hline Total efficiency & \eta_T & 50 & 55 & & \% & Max efficiency point, Pout>= 34.5dBm \\ \hline 2nd harmonic distortion & 2nd H.D. & & -15 & -10 & dBm \\ \hline 3rd harmonic distortion & 3rd H.D. & & -20 & -15 & dBm \\ \hline 1nput VSWR & VSWR (in) & & 1.5 & 3 & \\ \hline 0utput power (1) & Pout (1) & 34.5 & & & dBm \\ \hline 0utput power (2) & Pout (2) & 33.0 & & & dBm \\ \hline 1solation(1) & Piso(1) & & -47 & -37 & dBm \\ \hline 1solation(2) & Piso(2) & & -35 & -5 & dBm \\ \hline DCS RF-output & & & & dBm \\ \hline Stability & & & & & & dBm \\ \hline Stability & & & & & & & & $	Band select (GSM active)	Vband	0	0.2	0.5	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input power	Pin	0	3	6	dBm	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vtxb voltage range	Vtxb	1.6	1.8	3.0	V	Tx pulse signal is required.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Supply voltage	Vdd	3.1	3.5	4.6	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total efficiency	ητ	50	55	_	%	Max efficiency point, Pout>= 34.5dBm
3rd harmonic distortion3rd H.D20-15dBmVramp = controlled4 to 8th harmonic distortion4 to 8th H.D30-15dBmInput VSWRVSWR (in)-1.53Output power (1)Pout (1)34.5dBmOutput power (2)Pout (2)33.0dBmIsolation(1)Piso(1)47-37dBmIsolation(2)Piso(2)35-5dBmDCS RF-output25-18dBmMeasured at f = 1760 to 1830 MHzwhen GSM is active-No parasitic oscillation-Load VSWR tolerance-No degradationTurn On/Off TimeTr, Tf8 μ SPower control slopeSlope-150220dB/VPower control slopeSlope-150220dB/V	2nd harmonic distortion	2nd H.D.		-15	-10	dBm	Pout _{GSM} = 6 to 34.5 dBm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3rd harmonic distortion	3rd H.D.		-20	-15	dBm	Vramp = controlled
$ \begin{array}{ c c c c c c c c } \mbox{Input VSWR} & VSWR (in) & & 1.5 & 3 & \\ \hline \mbox{Output power (1)} & \mbox{Pout (1)} & 34.5 & & & dBm & Vramp = 2.0 V \\ \mbox{Output power (2)} & \mbox{Pout (2)} & 33.0 & & & dBm & Vdd = 3.1 V, Vramp = 2.0 V, Tc = +85°C \\ \hline \mbox{Isolation(1)} & \mbox{Piso(1)} & & -47 & -37 & dBm & \mbox{Pin = 6 dBm, Vtxb = 0.2 V} \\ \hline \mbox{Isolation(2)} & \mbox{Piso(2)} & & -35 & -5 & dBm & Vramp = 0.15 V (TBD), Vtxb = 1.8 V \\ \hline \mbox{Isolation at} & & & -25 & -18 & dBm & \mbox{Pout }_{GSM} = 34.5 dBm, \\ \mbox{DCS RF-output} & & & & & & & & & & & & & & & & & & &$	4 to 8th harmonic distortion	4 to 8th H.D.	_	-30	-15	dBm	-
	Input VSWR	VSWR (in)	_	1.5	3		-
Output power (2)Pout (2) 33.0 dBmVdd = 3.1 V , Vramp = 2.0 V , Tc = $+85^{\circ}\text{C}$ Isolation(1)Piso(1) -47 -37 dBmPin = 6 dBm , Vtxb = 0.2 V Isolation(2)Piso(2) -35 -5 dBmVramp = 0.15 V (TBD), Vtxb = 1.8 V Isolation at -25 -18 dBmPout $_{GSM}$ = 34.5 dBm , Measured at f = $1760 \text{ to } 1830 \text{ MHz}$ DCS RF-outputNo parasitic oscillationVdd = $3.1 \text{ to } 4.6 \text{ V}$, Pout $_{GSM} \le 34.5 \text{ dBm}$, Vramp $\le 2.0 \text{ V}$, Rg = 50Ω , Output VSWR = $6 : 1 \text{ All phases}$ StabilityNo degradationVdd = $3.1 \text{ to } 4.6 \text{ V}$, Pout $_{GSM} \le 34.5 \text{ dBm}$, Vramp $\le 2.0 \text{ V}$, Rg = 50Ω , Output VSWR = $6 : 1 \text{ All phases}$ Load VSWR toleranceNo degradationVdd = $3.1 \text{ to } 4.6 \text{ V}$, Pout $_{GSM} \le 34.5 \text{ dBm}$, Vramp $\le 2.0 \text{ V}$, Rg = 50Ω , t = 20 sec. , Output VSWR = $10 : 1 \text{ All phases}$, Tc $\le 85^{\circ}$ CTurn On/Off TimeTr, Tf8 μ SPout= $6 \text{ to } 34.5 \text{ dBm}$ Power control slopeSlope 150 220 dB/VPout = $6 \text{ to } 34.5 \text{ dBm}$	Output power (1)	Pout (1)	34.5	_	_	dBm	Vramp = 2.0 V
$\begin{array}{ c c c c c c } \hline Isolation(1) & Piso(1) & & -47 & -37 & dBm & Pin = 6 dBm, Vtxb = 0.2 V \\ \hline Isolation(2) & Piso(2) & & -35 & -5 & dBm & Vramp = 0.15 V (TBD), Vtxb = 1.8 V \\ \hline Isolation at & & -25 & -18 & dBm & Pout_{GSM} = 34.5 dBm, \\ DCS RF-output & & & & & & & & & & & & & & & & & & &$	Output power (2)	Pout (2)	33.0	_	_	dBm	Vdd = 3.1 V, Vramp = 2.0 V, Tc = +85°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Isolation(1)	Piso(1)		-47	-37	dBm	Pin = 6 dBm, Vtxb = 0.2 V
	Isolation(2)	Piso(2)		-35	-5	dBm	Vramp = 0.15 V (TBD), Vtxb = 1.8 V
Measured at T = 1760 to 1830 MH2Weasured at T = 1760 to 1830 MH2Weasured at T = 1760 to 1830 MH2Stability—No parasitic oscillation—Vdd = 3.1 to 4.6 V, Pout $_{GSM} \le 34.5$ dBm, Vramp ≤ 2.0 V, Rg = 50 Ω , Output VSWR = 6 : 1 All phasesLoad VSWR tolerance—No degradation—Vdd = 3.1 to 4.6 V, Pout $_{GSM} \le 34.5$ dBm, Vramp ≤ 2.0 V, Rg = 50 Ω , t = 20 sec. , Output VSWR = 10 : 1 All phases, Tc $\le 85^{\circ}$ CTurn On/Off TimeTr, Tf—8 μ SPout=6 to 34.5 dBmPower control slopeSlope—150220dB/VPout = 6 to 34.5 dBm	Isolation at	_		-25	-18	dBm	Pout $_{GSM}$ = 34.5 dBm,
	when GSM is active						
$\label{eq:constraint} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Stability	_	No para	sitic oscil	lation	_	Vdd = 3.1 to 4.6 V, Pout $_{\text{GSM}} \! \leq \! 34.5 \text{ dBm},$
$ \begin{array}{cccc} \mbox{Load VSWR tolerance} & & \mbox{No degradation} & & \mbox{Vd} = 3.1 \ to \ 4.6 \ V, \ \mbox{Pout}_{\ GSM} \leq 34.5 \ \mbox{dBm}, \\ & \ \ Vramp \leq 2.0 \ V, \ \ Rg = 50 \ \Omega, \ t = 20 \ \ sec. \ , \\ & \ \ Output \ VSWR = 10 \ : \ 1 \ \ All \ \ phases, \\ & \ \ Tc \ \leq 85^{\circ}C \ \end{array} $							Vramp \leq 2.0 V, Rg = 50 Ω , Output VSWR = 6 : 1 All phases
$Vramp \leq 2.0 \text{ V}, \text{ Rg} = 50 \Omega, \text{ t} = 20 \text{ sec.},$ $Output \text{ VSWR} = 10 : 1 \text{ All phases},$ $Tc \leq 85^{\circ}\text{C}$ $Turn \text{ On/Off Time} Tr, \text{ Tf} 8 \mu\text{S} \text{Pout=6 to } 34.5 \text{ dBm}$ $Power \text{ control slope} \text{Slope} 150 220 \text{dB/V} \text{Pout} = 6 \text{ to } 34.5 \text{ dBm}$	Load VSWR tolerance	_	No degr	adation		_	Vdd = 3.1 to 4.6 V, Pout $_{GSM} \le 34.5 \text{ dBm}$,
$\label{eq:constraint} \begin{array}{c c c c c c c c c } Tc & \leq 85^{\circ}C \\ \hline Turn On/Off Time & Tr, Tf & & 8 & \mu S & Pout=6 \mbox{ to } 34.5 \mbox{ dBm} \\ \hline Power \mbox{ control slope } & Slope & & 150 & 220 & \mbox{ dB/V} & Pout = 6 \mbox{ to } 34.5 \mbox{ dBm} \\ \end{array}$							Vramp ≤ 2.0 V, Rg = 50 Ω , t = 20 sec. , Output VSWR = 10 : 1 All phases,
Turn On/Off Time Tr, Tf — 8 μS Pout=6 to 34.5 dBm Power control slope Slope — 150 220 dB/V Pout = 6 to 34.5 dBm							Tc ≤85°C
Power control slope Slope — 150 220 dB/V Pout = 6 to 34.5 dBm	Turn On/Off Time	Tr, Tf		_	8	μS	Pout=6 to 34.5 dBm
	Power control slope	Slope		150	220	dB/V	Pout = 6 to 34.5 dBm
AM output AM/AM 4 8 % Added 4% AM to Pin,Pout=6 to 34.5dBm	AM output	AM/AM	_	4	8	%	Added 4% AM to Pin,Pout=6 to 34.5dBm
Power Control Stability	Power Control Stability	7					

Pout ,Vramp adjusted to (at Pin=3dBm, Tc =25°C,f=897.5MHz,Vdd=3.5V)	6 to 14	14 to 32.5	32.5 to 34.0	dBm
Pout Variation (at f=880 to 915MHz,Pin=0 to 6dBm, Tc=25°C,	±3.5	±1.8	±1.0	dB
Vdd=3.1 to 3.9V)				
Pout ,Vramp adjusted to (at Pin=3dBm, Tc =25°C,f=897.5MHz,Vdd=3.5V)	6 to 14	14 to 32.5	32.5 to 33	dBm
Pout Variation (at f=880 to 915MHz,Pin=0 to 6dBm, Tc=-20 to 85°C, Vdd=3.1 to 4.6V)	-5/+4.5	±2.7	±1.3	dB

CONFIDENTIAL

Target Specification

Electrical Characteristics for DCS1800 ($Tc = 25^{\circ}C$)

Test conditions unless otherwise noted:

f =1710 to 1785 MHz, Vdd1 =Vdd2 =Vdd_IC=3.5 V, Pin=3dBm, Vband = 1.8V, Vtxb=1.8V, Rg = Rl =50 Ω , Tc = 25°C, Pulse operation for Vramp and Vtxb with pulse width 1154 μ s and duty cycle 2:8 shall be used.

Item	Symbol	Min	Тур	Max	Unit	Test Condition		
Frequency range	F	1710		1785	MHz			
Band select (DCS active)	Vband	1.6	1.8	3.0	V			
Input power	Pin	0	3	6	dBm			
Vtxb voltage range	Vtxb	1.6	1.8	3.0	V	Tx pulse signal is	required.	
Supply voltage	Vdd	3.1	3.5	4.6	V			
Total efficiency	ητ	43	50	_	%	Max. efficiency po	int, Pout>= 32d	Bm
2nd harmonic distortion	2nd H.D.	_	-15	-10	dBm	Pout $_{DCS}$ = 2 to 32	dBm	
3rd harmonic distortion	3rd H.D.		-20	-15	dBm	Vramp = controlle	d	
4 to 8th harmonic distortion	4 to 8th H.D.		-25	-15	dBm			
Input VSWR	VSWR (in)	_	1.5	3	_			
Output power (1)	Pout (1)	32.0	_	_	dBm	Vramp = 2.0 V		
Output power (2)	Pout (2)	30.5	_	_	dBm	Vdd = 3.1 V, Vram	np = 2.0 V, Tc =	+85°C
Isolation(1)	Piso(1)		-38	-35	dBm	Pin = 6 dBm, Vtxb) = 0.2 V	
Isolation(2)	Piso(2)		-35	-5	dBm	Vramp = 0.15 V (T	rBD), Vtxb = 1.8	3 V
Stability		No para	sitic oscilla	ation	_	Vdd = 3.1 to 4.6 V Vramp ≤2.0 V, Rg Output VSWR = 6	/, Pout ≤ 32 dBr = 50 Ω, 6 : 1 All phases	n,
Load VSWR tolerance	—	No degra	adation		_	$Vdd = 3.1 \text{ to } 4.6 \text{ V}$ $Vramp \leq 2.0 \text{ V}, \text{ Rg}$ $Output \text{ VSWR} = 1$ $Tc \leq 85^{\circ}\text{C}$	$f, Pout \le 32 \text{ dBr}$ $f = 50 \Omega, t = 20 \text{ s}$ $0 : 1 \text{ All phases}$	m, sec. , s,
Turn On/Off Time	Tr, Tf	_	_	8	μS	Pout=2 to 32 dBm	1	
Power control slope	Slope		180	220	dB/V	Pout = 2 to 32 dBr	m	
AM output	AM/AM	_	4	8	%	Added 4% AM to I	Pin,Pout=2 to 3	2 dBm
Power Control Stability Pout ,Vramp adjusted to				2 to 4	4 to	14 14 to 30	30 to 31.5	dBm
(at Pin=3dBm,Tc=25°C,f=174	47.5MHz,Vdd=3	5.5V)						
Pout Variation (at f=1710 to Vdd=3.1 to 3.9V)	1785MHz,Pin=0) to 6dBm,	Tc=25°C,	±3.8	±2.8	±1.8	±1.0	dB
Pout ,Vramp adjusted to (at Pin=3dBm, Tc=25°C,f=17	/47.5MHz,Vdd=	3.5V)		2 to 4	4 to	14 14 to 30	30 to 30.5	dBm
Pout Variation (at f=1710 to 7 Tc=-20 to 85°C, Vdd=3.1 to	1785MHz,Pin=0 4.6V)	to 6dBm,		-5/+4.8	3 ±3.8	±2.8	±1.3	dB

CONFIDENTIAL

Target Specification

Electrical Characteristics for PCS1900 ($Tc = 25^{\circ}C$)

Test conditions unless otherwise noted:

f =1850 to 1910 MHz, Vdd1 =Vdd2 =Vdd_IC=3.5 V, Pin=3dBm, Vband = 1.8V, Vtxb=1.8V, Rg = Rl =50 Ω , Tc = 25°C, Pulse operation for Vramp and Vtxb with pulse width 1154 μ s and duty cycle 2:8 shall be used.

Item	Symbol	Min	Тур	Max	Unit	Test Condition		
Frequency range	F	1850	—	1910	MHz			
Band select (DCS active)	Vband	1.6	1.8	3.0	V			
Input power	Pin	0	3	6	dBm			
Vtxb voltage range	Vtxb	1.6	1.8	3.0	V	Tx pulse signal is	required.	
Supply voltage	Vdd	3.1	3.5	4.6	V			
Total efficiency	η⊤	42	50		%	Max. efficiency po	oint, Pout>= 320	dBm
2nd harmonic distortion	2nd H.D.	_	-15	-10	dBm	Pout _{DCS} = 2 to 32	dBm	
3rd harmonic distortion	3rd H.D.	_	-20	-15	dBm	Vramp = controlle	ed	
4 to 8th harmonic distortion	4 to 8th H.D.	_	-25	-15	dBm			
Input VSWR	VSWR (in)	_	1.5	3	_			
Output power (1)	Pout (1)	32	_	_	dBm	Vramp = 2.0 V		
Output power (2)	Pout (2)	30.5	_	_	dBm	Vdd = 3.1 V, Vrar	mp = 2.0 V, Tc =	= +85°C
Isolation(1)	Piso(1)		-39	-35	dBm	Pin = 6 dBm, Vtxl	b = 0.2 V	
Isolation(2)	Piso(2)	_	-35	-5	dBm	Vramp = 0.15 V (TBD), Vtxb = 1.	8 V
Stability	_	No para	sitic oscil	lation	_	Vdd = 3.1 to 4.6 V Vramp ≤2.0 V, Rg Output VSWR =	/, Pout ≤ 32 dBi g = 50 Ω, 6 : 1 All phases	m,
Load VSWR tolerance	_	No degr	adation		_	Vdd = 3.1 to 4.6 V Vramp ≤ 2.0 V, Rg Output VSWR = 7 Tc $\leq 85^{\circ}$ C	√, Pout ≤ 32 dB g = 50 Ω, t = 20 10 : 1 All phases	m, sec. , s,
Turn On/Off Time	Tr, Tf		_	8	μS	Pout=2 to 32 dBn	n	
Power control slope	Slope		180	220	dB/V	Pout = 2 to 32 dB	sm	
AM output	AM/AM		4	8	%	Added 4% AM to	Pin,Pout=2 to 3	32 dBm
Power Control Stability Pout ,Vramp adjusted to (at Pin=3dBm Tc=25°C f=18	, 80MHz Vdd=3.5	SV)		2 to 4	4 to	14 14 to 30	30 to 31.5	dBm
Pout Variation (at f=1850 to $Tc=25^{\circ}C$, Vdd=3.1 to 3.9V)	1910MHz,Pin=() to 6dBm	,	±3.8	±2.8	3 ±1.8	±1.0	dB
Pout ,Vramp adjusted to (at Pin=3dBm, Tc=25°C,f=18	380MHz,Vdd=3.	5V)		2 to 4	4 to	14 14 to 30	30 to 30.5	dBm
Pout Variation (at f=1850 to Tc=-20 to 85°C, Vdd=3.1 to	1910MHz,Pin=0 4.6V)	to 6dBm,		-5/+4.8	3 ±3.8	3 ±2.8	±1.3	dB

Target Specification

RPF08155B

Interface with Battery & B/B IC

CONFIDENTIAL

Target Specification

Pin descriptions

Pin #	Name	Function and Description
1	Pin_GSM850/900	RF input for GSM band through 50 Ω transmission line.
2	GND	
3	Vdd1	Biasing pin to supply battery voltage (Vdd) to RF MOSFET's 1.
4	GND	
5	Pout_GSM850/900	RF output for GSM band to 50 Ω load.
6	GND	
7	Vapc	Vapc input from APC IC (internal one or external APC IC). This pin is next to Verror to connect by phone board pattern layout.
8	GND	
9	Pout_DCS/PCS	RF output for DCS/PCS Band to 50 Ω load.
10	GND	
11	Vdd2	Biasing pin to supply battery voltage (Vdd) to RF MOSFET's 2.
12	Vramp	Power control bias voltage as ramping signal from DAC. A peripheral simple R/C filter is assumed.
13	Pin_DCS/PCS	RE input to DCS/PCS band through 50 Q transmission line.
14	Vtxb	Switch on / Shut down signal for CMOS APC circuit.
15	Vdd IC	Biasing pin to supply battery voltage (Vdd) to CMOS APC IC.
16	Vband	Band select logic pin. Low : GSM active, High : DCS/PCS active.
17	Verror	Output pin of error amp to create APC IC loop. This pin is next to Vapc to connect by phone board pattern layout.
18 to 25	GND	

CONFIDENTIAL

Target Specification

Test fixture

Grass Epoxy Double sided PCB (t = 0.8mm, er = 4.8)

The coefficient of output power losses in the PCB output line are shown as follows;

- 0.14dB ,at GSM850 band,
- 0.17dB ,at GSM900 band,
- 0.24dB ,at DCS1800 band,
- 0.30dB ,at PCS1900 band

CONFIDENTIAL

Target Specification

Recommended timing chart

Target Specification

Package Dimensions

RPF08155B

Side view

1: Pin_GSM850/900 5: Pout_GSM850/900 9: Pout_DCS/PCS 12: Vramp 13: Pin_DCS/PCS 15: Vdd_IC 16: Vband 17.Verror 18-25:GND

CONFIDENTIAL

Target Specification

Recommended foot pattern and solder stencil

Target Specification

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the
possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive,
auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes measures metariale.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
 If these products or technologies are subject to the Japanese superior control restrictions, they must be availed under a license from the Japanese superior control restrictions.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

http://www.renesas.com

Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0

