查询CD4015BE供应商

捷多邦,专业PCB打样工厂,24小时加急出货

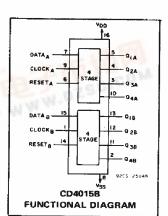
Data sheet acquired from Harris Semiconductor SCHS025

CMOS Dual 4-Stage Static Shift Register

With Serial Input/Parallel Output

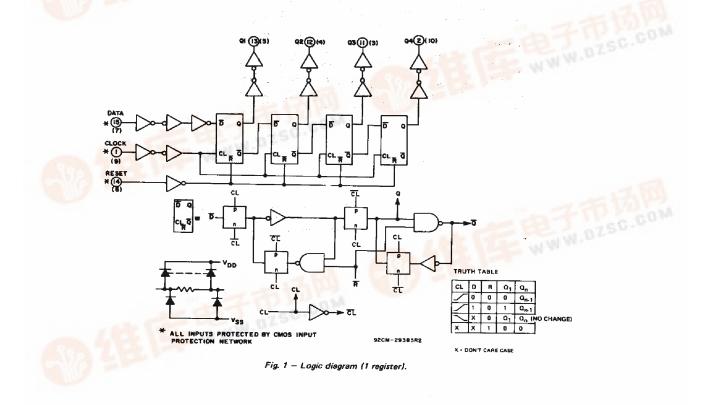
High-Voltage Types (20-Volt Rating)

CD4015B consists of two identical. independent, 4-stage serial-input/paralleloutput registers. Each register has independent CLOCK and RESET inputs as well as a single serial DATA input. "Q" outputs are available from each of the four stages on both registers. All register stages are D-type, master-slave flip-flops. The logic level present at the DATA input is transferred into the first register stage and shifted over one stage at each positive-going clock transition. Resetting of all stages is accomplished by a high level on the reset line. Register expansion to 8 stages using one CD4015B package, or to more than 8 stages using additional CD4015B's is possible.


The CD4015B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic package (E suffix), and in chip form (H suffix).

Features:

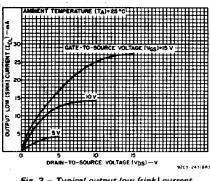
- Fully static operation
- 8 master-slave flip-flops plus input and output buffering
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =
 - 1 V at V_{DD} = 5 V
 - 2 V at V_{DD} = 10 V
 - 2.5 V at V_{DD} = 15 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

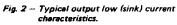

Applications:

- Serial-input/parallel-output data queueing
- Serial to parallel data conversion
- General-purpose register

TERMINAL DIAGRAM

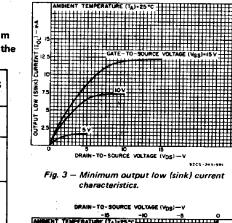
			<u> </u>	\neg		1	
	CLOCK B		1.		16		VDD
	Q4 B		2		15		ÔATA B
	Q3A		3		14	-	RESET B
	Q2 A	_	4		13		Q ! B
	QIA	-	5		12		02.8
÷.,	RESETA		6		- 11	_	Q38
	DATA A	-	7		10		Q4 A
	Vss	_	θ		9		CLOCK A
٠.					,	acs	-24457





CD4015B Types

CD4015B Types


MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to V _{SS} Terminal)0.5V to +	20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V
DC INPUT CURRENT, ANY ONE INPUT	JmA
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$	mŴ
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200	mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	mW
OPERATING-TEMPERATURE RANGE (TA)	5°C
STORAGE TEMPERATURE RANGE (Tstg)65°C to +150	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max	5°C

3

COMMERCIAL CMOS HIGH VOLTAGE ICS

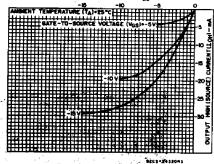


Fig. 4 Typical output high (source) current characteristics.

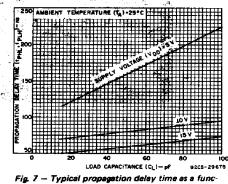
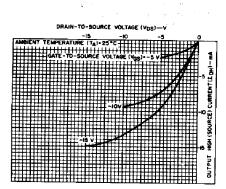
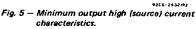




Fig. 7 — Typical propagation delay time as a func-tion of load-capacitance,

RECOMMENDED	OPERATING CONDITIO	NS at T _A =	²⁵⁰ C, Except as Noted. F	or maximum
reliability, nominal	operating conditions shou	Id be selec	ted so that operation is alv	vays within the
following ranges:				-

CHARACTERISTIC		V _{DD}	LIMITS		UNITS
	. (v)	Min.	Max.	1	
Supply-Voltage Range (For T _A Temperature Range)		3	18	v	
Clock Pulse Width,	t _W CL	5 10 15	180 80 50		ns
Clock Rise and Fall Time,	t _r CL, t _f CL	5 10 15		15 6 2	μs
Clock Input Frequency,	fCL	5 10 15	DC	3 6 8.5	MHz
Data Setup Time,	ts∪	5 10 15	70 40 30	-	ns
Reset Pulse Width,	t _W R	5 10 15	200 80 60	-	

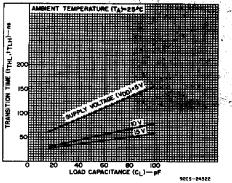
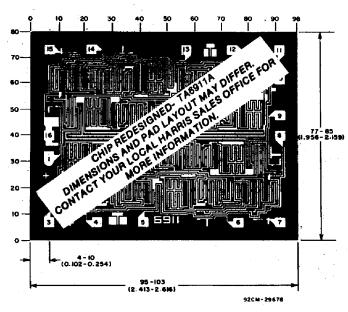
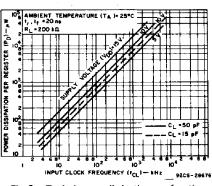



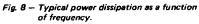
Fig. 6 — Typical transition time as a function of load capacitance.

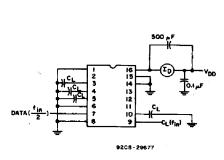
CD4015B Types

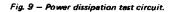
CHARACTER	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (^O C)						1.00			
ISTIC	Vo	VIN	VDD					+25					
	(v)	(V)	(v)	55	-40	+85	+125	Min.	Typ.	Max.			
Quiescent Device	-	0,5	5	5	5	150	150	_	0.04	5	μΑ		
Current,	-	0,10	10	10	10	300	300	-	0.04	10			
IDD Max.	-	0,15	15	20	20	600	600	-	0.04	20			
	· -	0,20	20	100	100	3000	3000	-	0.08	100			
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	t		
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	- 1			
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8		mA		
Output High	4,6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-			
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-			
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-			
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-			
Output Voltage:	_	0,5	5		0	.05		-	0	0.05	.05		
Low-Level, Vol. Max.		0,10	10	0.05			-	0	0.05				
AOF Max.	_	0,15	15		0	.05		-	0	0.05			
Output Voltage:	_	0,5	5	4.95 4.95 5 -				-					
High-Level,		0,10	10		9	.95		9.95	10	-	1		
VOH Min.	-	0,15	15	14.95			14.95	15	-				
Input Low	0.5, 4.5	-	5		1	1.5		-	_	1.5			
Voltage,	1, 9	- •	10			3		-	-	3	1		
VIL Max.	1.5,13.5	-	15			4		-	-	4			
Input High	0.5, 4.5		5		3	3.5		3.5	—		1 V		
Voltage,	1, 9	_	10			7		7	-	- 1			
VIH Min.	1.5,13.5	-	15			11		11		- 1]		
Input Current IIN Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁵	±0.1	Αμ		

STATIC ELECTRICAL CHARACTERISTICS

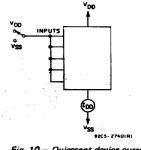

Photograph of Chip Layout for CD4015B.

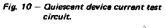

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).


DYNAMIC ELECTRICAL CHARACTERISTICS at TA = 25°C, Input tate = 20 ns,


 $C_{\rm L}$ = 50 pF, $R_{\rm L}$ = 200 k Ω

CHARACTERISTIC	TEST CONDITIONS					
CHARACTERISTIC	V DD (V)	MIN. TYP.		MAX.	UNITS	
CLOCKED OPERATION				.	···	
Propagation Delay Time,	5	—	160	320		
	10	—	80	160		
	15	—	60	120		
	5	_	100	200		
Transition Time, true, true	10	_	50	100	ns	
	15	—	40	80		
Minimum Clock Pulse	5	_	90	180		
Width, twCL	10	_	40	80		
,	15	—	25	50		
Clock Rise and Fall Time,	5	-		15		
t,CL, t _f CL*	10	_		6	μs	
	15	—	- 1	2		
Minimum Data Setup Time,	5		35	70		
tSU	10	-	20	40		
	. 15		15	30 -		
	5	-		0	ns	
Minimum Data Hold Time, t _H	10	—	_	0		
	15	—	·	0		
Maximum Clock Input	5	3	6	-		
Frequency, f _{cL}	10	6	12	_	MHz	
	15	8.5	17	-		
Input Capacitance, CIN	Any Input	_	5	7.5	p۴	
RESET OPERATION						
Propagation Delay Time,	5	_	200	400		
TPHL, TPLH	10		100	200		
	15	_	80	160		
Minimum Reset Pulse Width,	5	_	100	200	ns	
t _w R	10	_	40	80		
	15		30	60		





*If more than one unit is cascaded t_iCL should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

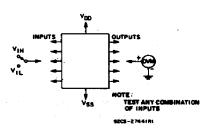


Fig. 11 - Input voltage test circuit.

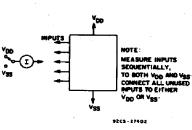


Fig. 12 - Input current test circuit.

3