查询QCPM-9804供应商

QCPM-9804 Rev. G Feb-8-2000 Preliminary Specification is subject to change without prior notification

捷多邦,专业PCB打样工厂,24小时加急出货

Agilent Technologies Innovating the HP Way

PCS/CDMA/AMPS Dual-Band Tri-Mode Power Amplifier Module

Features

- Operating frequency: PCS: 1850 - 1910 MHz AMPS: 824 - 849 MHz CDMA: 824 - 829 MHz
- Typical Output Power @
 3.4V:
 PCS : 28.5 dBm
- AMPS: 32.5 dBm CDMA: 28.5 dBm
- Internal 50 ohm matching networks for both RF IN/OUT
- 3.4 4.2 V operation (reduced performance at 3V)
- Dynamic bias controls optimize PAE at low output power for PCS and cellular CDMA mode
- 11.5 mm x 11.5 mm SMT RF MultiPak

Package Pin Configuration (Back side)

Applications

- Dual Band CDMA handsets
- Wireless Data terminals
- WLL
- Driver for Base station

Small SMT Multipak

General Description

QCPM-9804

The Dual-Band Tri-Mode Power Amplifier Module (PAM) offers a integrated solution for highly CDMA dual-band tri-mode handsets. The integrated solution leads to improvements in cost, size, performance, and reliability. This PAM also offers several features that will make handset design more flexible and robust. The module contains two power amplifiers (PCS and Cellular PAs), two driver amplifiers with power control and bias circuits.

The cellular power amplifiers provide: 32.5 dBm Pout and 47% Power Added Efficiency (PAE) at 3.4 V in AMPS mode, and 28.5 dBm Pout and 29% PAE at 3.4 V in cellular CDMA mode. While the PCS power amplifier achieves 28.5 dBm Pout and 28 % PAE at 3.4V in PCS mode. The PAM is designed with dynamic bias control to optimize the PAE at low output power in PCS and cellular CDMA mode to maximize the system talk time.

The surface mount RF MultiPak insures cost, size, and high volume manufacturing advantages over other traditional approaches.

QCPM-9804 Absolute Maximum Ratings¹

	Cel	lular	PCS		
Parameter	Min.	Max.	Min.	Max.	
Vcc supply voltage		4.5 V		4.5 V	
Power Dissipation ^{2,3}		2.5 W		2.5 W	
Bias Current		1.5 A		1.5 A	
Amplifier Input RF Power		10 dBm		10 dBm	
Junction temperature		+150 °C		+150 °C	
Storage temperature (case temperature)	-40 °C	+120 °C	-40 °C	+120 °C	

Thermal Resistance² $\theta_{jC} = X \circ W$

Notes:

Depration of this device in excess of any of these limits may cause permanent damage.
 T_{case} = 25 °C

Derate at X mW/°C for T_{case}.>85 °C 3.

Recommended operating range of Vcc = 3.4 to 4.2 V, T_a = - 30 to + 85 °C (reduced performance at 3.0 V and 110 °C)

QCPM-9804 Standard Test Conditions

All test are done in 50 Ω system at 25 °C , unless noted otherwise.

 $V_{CC} = 3.4V$

Channel Power 1.2288MHz the bandin ACPR =30KHz band @±1.25MHz away from Power in a the center of the channel

QCPM-9804 Summary Characterization Information

Parameter	Units	Min	Тур	Max	Comments
PCS Mode					
Frequency Range	MHz	1850		1910	
Gain (P _{out} = 28.5 dBm)	dB	22	24		Vc=2.5V
Gain (P _{out} = 16 dBm)	dB	19	21		Vc=1.8V
Output Power	dBm	28	28.5		
Power Added Efficiency					
$P_{out} = 28.5 \text{ dBm}$	%	TBA	28		
P _{out} = 16 dBm	%	TBA	6		
Input VSWR (P _{out} = 28.5 dBm)			2.0:1		
Input VSWR (P _{out} = 16 dBm)			2.5:1		
Power Down Current	μΑ		40		
ACPR @ ± 1.25 MHz offset	dBc/30kHz	-45	-46		
ACPR @ ± 2.25 MHz offset	dBc/30kHz	-58			
Noise Power @ 80 MHz offset in 1930-1990 MHz)	dBm/Hz		-139		

Stability (Spurious): Load VSWR 5:1	dBc		55		All phases
Harmonics: 2Fo, 3Fo	dBc		-30		
CDMA mode					
Frequency Range	MHz	824		849	
Gain (P _{out} = 28.5 dBm)	dB	27	29		Vc=2.15V
Gain (P _{out} = 16 dBm)	dB	23	25		Vc=1.8V
Output Power	dBm		28.5		
Power Added Efficiency					
P _{out} = 28.5 dBm	%	ТВА	29		
P _{out} = 16 dBm	%	ТВА	6		
Input VSWR (P _{out} = 28.5 dBm)			2.0:1		
Input VSWR (P _{out} = 16 dBm)			2.5:1		
Power Down Current	μΑ		40		
ACPR @ ± 0.885 MHz offset	dBc/30kHz	-45	-47		
ACPR @ ± 1.98 MHz offset	dBc/30kHz	-57			
Noise Power @ 45 MHz offset in 869 - 894 MHz	dBm/Hz	r	-140		
Stability (Spurious): Load VSWR 4:1	dBc		55		All phases
Harmonics: 2Fo, 3Fo	dBc		-30		
AMPS mode					
Frequency Range	MHz	824		849	
Output Power (P _{in} = 7.5 dBm)	dBm	024	32.5	047	
Power Added Efficiency (P _{out} = 32.5 dBm)	%	TBA	47		Vc=2.15V
Noise Power @ 45 MHz offset in RX band (869- 894MHz)	dBm/Hz		-136		
Harmonics: 2Fo, 3Fo	dBc		-30		
Input VSWR			2:1		
Switching Time					
DC ON/OFF	μs		40		
RF ON/OFF	μs		6		

QCPM-9804 Pin Description Table

No.	Mnemonic	Description	Typical Signal	Notes
1	CDMA_IN_A	Input RF for PCS CDMA	RF input	
2		Not connect		
3	CDMA OUT	RF PCS CDMA output	RF Output	
4	CDMA Vcc	Supply voltage for CDMA	DC	
5	AMPS Vcc	Supply voltage for AMPS and cellular CDMA	DC	
6	AMPS OUT	RF AMPS and cellular CDMA output	RF Output	
7		Not connect		
8		Not connect		
9	AMPS IN	RF AMPS and cellular CDMA input	RF	
10	AMPS_Vc	Bias control for AMPS and cellular CDMA PA		
11	Vcc_IC	Supply voltage for control and driver	DC	
12		Not connect		
13	CDMA_Vc	Bias control for PCS CDMA PA		
14	GND	Ground plane (back of the module)		

Figure 1 Internal block diagram with pinout (back side)

4

Land Pattern Recommendation:

Notes:

- 1. All pads are 50 mil pitch with 20 mil spacing
- 2. Module to be centered on the land pattern
- 3. Pins 1, 3, 6, and 9 are 50 Ω
- 4. Pins 1 and 9 are DC shorts

for more information: United States: call your local HP sales office listed in your telephone directory. Ask for a components representative.

Canada: (416) 206-4725

Europe: (44) 276-685783

Asia Pacific / Australia: (65) 290-6360

Japan: (81) 3 3331-6111 Data subject to change

Copyright © December 1998 Hewlett packard Co. Printed in U.S.A.