PCS／C DMA／AMPS Dual－B and Tri－Mode Power Amplifier Module

Features

－Operating frequency：
PCS：1850－1910 MHz
AMPS： $824-849 \mathrm{MHz}$
CDMA：824－829 MHz
－Typical Output Power＠ 3．4V：
PCS ： 28.5 dBm
AMPS： 32.5 dBm
CDMA： 28.5 dBm
－Internal 50 ohm matching networks for both RF IN／OUT
－3．4－4．2 V operation（reduced performance at 3V）
－Dynamic bias controls optimize PAE at low output power for PCS and cellular CDMA mode
－ $11.5 \mathrm{~mm} \times 11.5 \mathrm{~mm}$ SMT RF MultiPak

Package Pin Configuration

（Back side）

QCPM－9804

General Description

The Dual－Band Tri－Mode Power Amplifier Module（PAM）offers a highly integrated solution for CDMA dual－band tri－mode handsets．The integrated solution leads to improvements in cost， size，performance，and reliability． This PAM also offers several features that will make handset design more flexible and robust． The module contains two power amplifiers（PCS and Cellular PAs）， two driver amplifiers with power control and bias circuits．

The cellular power amplifiers provide： 32.5 dBm Pout and 47\％ Power Added Efficiency（PAE）at 3.4 V in AMPS mode，and 28.5 dBm Pout and 29% PAE at 3.4 V in cellular CDMA mode．While the PCS power amplifier achieves 28.5 dBm Pout and 28 \％PAE at 3.4 V in PCS mode．The PAM is designed with dynamic bias control to optimize the PAE at low output power in PCS and cellular CDMA mode to maximize the system talk time．

The surface mount RF MultiPak insures cost，size，and high volume manufacturing advantages over other traditional approaches．

QCPM-9804 Rev. G Feb-8-2000 Preliminary
Specification is subject to change without prior notification

QCPM-9804 Absolute Maximum Ratings ${ }^{1}$

	Cellular		PCS	
Parameter	Min.	Max.	Min.	Max.
Vcc supply voltage		4.5 V		4.5 V
Power Dissipation2,3		2.5 W		2.5 W
Bias Current		1.5 A		1.5 A
Amplifier Input RF Power		10 dBm		10 dBm
Junction temperature		$+150^{\circ} \mathrm{C}$		$+150^{\circ} \mathrm{C}$
Storage temperature (case temperature)	$-40^{\circ} \mathrm{C}$	$+120^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$+120^{\circ} \mathrm{C}$

Thermal Resistance ${ }^{2} \theta_{\mathrm{jc}}=X{ }^{\circ} / \mathrm{W}$
Notes:

1. Operation of this device in excess of any of these limits may cause permanent damage.
2. $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$
3. Derate at $\mathrm{X} \mathrm{mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\text {case }}>85^{\circ} \mathrm{C}$

Recommended operating range of $\mathrm{Vcc}=3.4$ to $4.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-30$ to $+85^{\circ} \mathrm{C}$ (reduced performance at 3.0 V and $110^{\circ} \mathrm{C}$)

QCPM-9804 Standard Test Conditions

All test are done in 50Ω system at $25^{\circ} \mathrm{C}$, unless noted otherwise.
$V_{\text {cC }}=3.4 \mathrm{~V}$
$A C P R=\frac{\text { Channel Power in the } 1.2288 \mathrm{MHz} \text { band }}{\text { Power in a } 30 \mathrm{KHz} \text { band @ } \pm 1.25 \mathrm{MHz} \text { away from the center of the channel }}$

QCPM-9804 Summary C haracterization Information

Parameter	Units	Min	Typ	Max	Comments
PCS Mode					
Frequency Range	MHz	1850		1910	
Gain (P out $=28.5 \mathrm{dBm})$	dB	22	24		$\mathrm{Vc}=2.5 \mathrm{~V}$
Gain (P out $=16 \mathrm{dBm})$	dB	19	21		Vc $=1.8 \mathrm{~V}$
Output Power	dBm	28	28.5		
Power Added Efficiency					
$\mathrm{P}_{\text {out }}=28.5 \mathrm{dBm}$	$\%$	TBA	28		
$\mathrm{P}_{\text {out }}=16 \mathrm{dBm}$	$\%$	TBA	6		
Input VSWR (P out $=28.5$ dBm)			$2.0: 1$		
Input VSWR (Pout $=16 \mathrm{dBm})$			$2.5: 1$		
Power Down Current	$\mu \mathrm{A}$		40		
ACPR @ $\pm 1.25 \mathrm{MHz}$ offset	$\mathrm{dBc} / 30 \mathrm{kHz}$	-45	-46		
ACPR @ $\pm 2.25 \mathrm{MHz}$ offset	$\mathrm{dBc} / 30 \mathrm{kHz}$	-58			
Noise Power @ 80 MHz offset in $1930-1990 \mathrm{MHz})$	$\mathrm{dBm} / \mathrm{Hz}$		-139		

QCPM-9804 Rev. G Feb-8-2000 Preliminary
Specification is subject to change without prior notification

Stability (Spurious): Load VSWR 5:1	dBc		55		All phases
Harmonics: 2Fo, 3Fo	dBc		-30		-
CDMA mode					\bigcirc
Frequency Range	MHz	824		849	
Gain ($\mathrm{P}_{\text {out }}=28.5 \mathrm{dBm}$)	dB	27	29		$\mathrm{Vc}=2.15 \mathrm{~V}$
Gain ($\mathrm{P}_{\text {out }}=16 \mathrm{dBm}$)	dB	23	25		$\mathrm{Vc}=1.8 \mathrm{~V}$
Output Power	dBm		28.5		
Power Added Efficiency					
$\mathrm{P}_{\text {out }}=28.5 \mathrm{dBm}$	\%	TBA	29		
$\mathrm{P}_{\text {out }}=16 \mathrm{dBm}$	\%	TBA	6		
$\begin{aligned} & \text { Input VSWR }\left(P_{\text {out }}=28.5\right. \\ & \mathrm{dBm}) \end{aligned}$		\checkmark	2.0:1		
Input VSWR ($\mathrm{P}_{\text {out }}=16 \mathrm{dBm}$)			2.5:1		
Power Down Current	$\mu \mathrm{A}$		40		
ACPR @ $\pm 0.885 \mathrm{MHz}$ offset	$\mathrm{dBC} / 30 \mathrm{kHz}$	-45	-47		
ACPR @ $\pm 1.98 \mathrm{MHz}$ offset	$\mathrm{dBC} / 30 \mathrm{kHz}$	-57			
Noise Power @ 45 MHz offset in 869-894 MHz	$\mathrm{dBm} / \mathrm{Hz}$		-140		
Stability (Spurious): Load VSWR 4:1	$\overline{\mathrm{dBC}}$		55		All phases
Harmonics: 2Fo, 3Fo	dBc		-30		
-					
$\square>$					
$\square{ }^{+}$					
AMPS mode					
Frequency Range	MHz	824		849	
Output Power ($\mathrm{P}_{\text {in }}=7.5$ dBm)	dBm		32.5		
$\begin{aligned} & \text { Power Added Efficiency (} P_{\text {out }} \\ & =32.5 \mathrm{dBm} \text {) } \end{aligned}$	\%	TBA	47		$\mathrm{Vc}=2.15 \mathrm{~V}$
Noise Power @ 45 MHz offset in RX band (869894 MHz)	dBm/Hz		-136		
Harmonics: 2Fo, 3Fo	dBc		-30		
Input VSWR			2:1		
Switching Time					
DC ON/OFF	$\mu \mathrm{S}$		40		
RF ON/OFF	$\mu \mathrm{s}$		6		

QCPM-9804 Rev. G Feb-8-2000 Preliminary
Specification is subject to change without prior notification

QC PM-9804 Pin Description Table

No.	Mnemonic		Description	Typical Signal
1	CDMA_IN_A	Input RF for PCS CDMA	RF input	
2		Not connect		
3	CDMA OUT	RF PCS CDMA output	RF Output	
4	CDMA VCC	Supply voltage for CDMA	DC	
5	AMPS VCC	Supply voltage for AMPS and cellular CDMA	DC	
6	AMPS OUT	RF AMPS and cellular CDMA output	RF Output	
7		Not connect		
8		Not connect	RF	
9	AMPS IN	RF AMPS and cellular CDMA input		
10	AMPS Vc	Bias control for AMPS and cellular CDMA PA	DC	
11	Vcc_IC	Supply voltage for control and driver		
12		Not connect		
13	CDMA_Vc	Bias control for PCS CDMA PA		
14	GND	Ground plane (back of the module)		

Figure 1 Internal block diagram with pinout (back side)

QCPM-9804 Rev. G Feb-8-2000 Preliminary
Specification is subject to change without prior notification

Part Number Ordering Information

Part Number	No. of Devices	Container
QCPM-9804		

Package Dimensions Small MultiPak-16 Package (in inches)

DETAIL NOT TO SCALE

QCPM-9804 Rev. G Feb-8-2000 Preliminary
Specification is subject to change without prior notification

Land Pattern Recommendation:

Notes:

1. All pads are 50 mil pitch with 20 mil spacing
2. Module to be centered on the land pattern
3. Pins $1,3,6$, and 9 are 50Ω
4. Pins 1 and 9 are DC shorts
for more information:
United States: call your local HP sales office
listed in your telephone directory. Ask for a components representative.

Canada: (416) 206-4725
Europe: (44) 276-685783
Asia Pacific / Australia: (65) 290-6360
J apan: (81) 3 3331-6111
Data subject to change
Copyright © December 1998 Hewlett packard Co.
Printed in U.S.A.

