

FAIRCHILD

SEMICONDUCTOR

CD4015BC Dual 4-Bit Static Shift Register

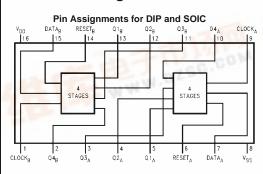
General Description

The CD4015BC contains two identical, 4-stage, serial-input/parallel-output registers with independent "Data", "Clock," and "Reset" inputs. The logic level present at the input of each stage is transferred to the output of that stage at each positive-going clock transition. A logic high on the "Reset" input resets all four stages covered by that input. All inputs are protected from static discharge by a series resistor and diode clamps to V_{DD} and V_{SS} .

October 1987 Revised January 1999

Features

- Wide supply voltage range: 3.0V to 18V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL: Fan out of 2 driving 74L compatibility: or 1 driving 74LS
- Medium speed operation: 8 MHz (typ.) clock rate
- Fully static design: @V_{DD} V_{SS} = 10V

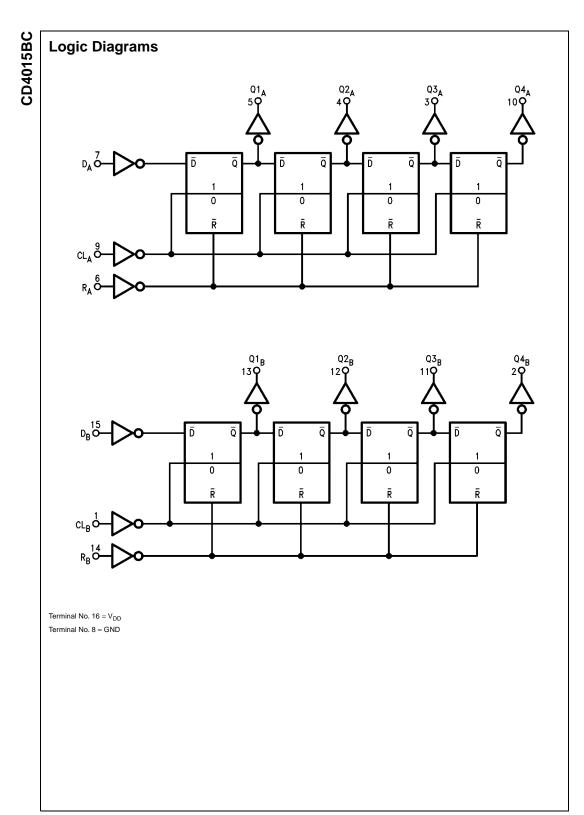

Applications

- Serial-input/parallel-output data queueing
- Serial to parallel data conversion
- General purpose register

Ordering Code:

Order Number	Package Number	Package Description	-			
CD4015BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
CD4015BCN N16E 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide						
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

Connection Diagram


Truth Table

CL (Note 1)	D	R	Q ₁	Q _n	
~	0	0	0	Q_{n-1}	
~	1	0	1	Q_{n-1}	
~	Х	0	Q ₁	Qn	(No change)
х	Х	1	0	0	

X = Don't Care Case

Note 1: Level Change

pdf.dzsc.com

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

(Note 3)

,	
DC Supply Voltage (V _{DD})	-0.5 to $+18$ V _{DC}
Input Voltage (V _{IN})	–0.5 to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions

DC Supply Voltage (V_{DD}) Input Voltage (V_{IN}) Operating Temperature Range (T_A)

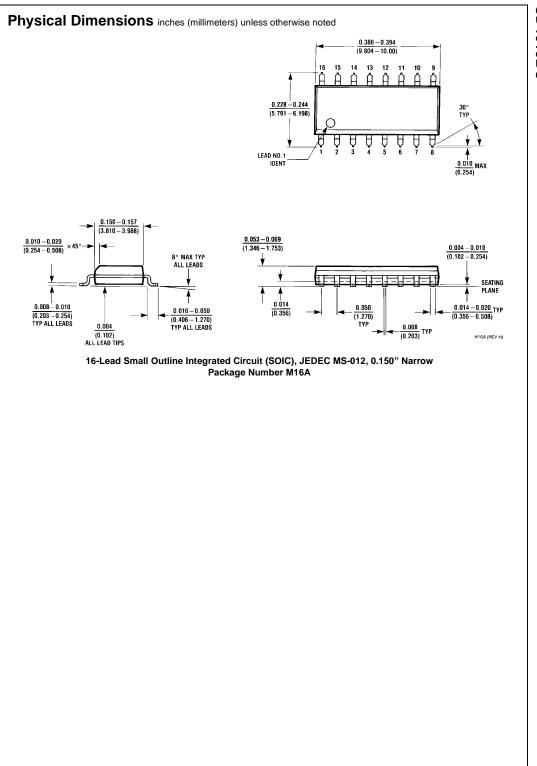
+3 to +15 V_{DC} 0 to $V_{\text{DD}}\,V_{\text{DC}}$

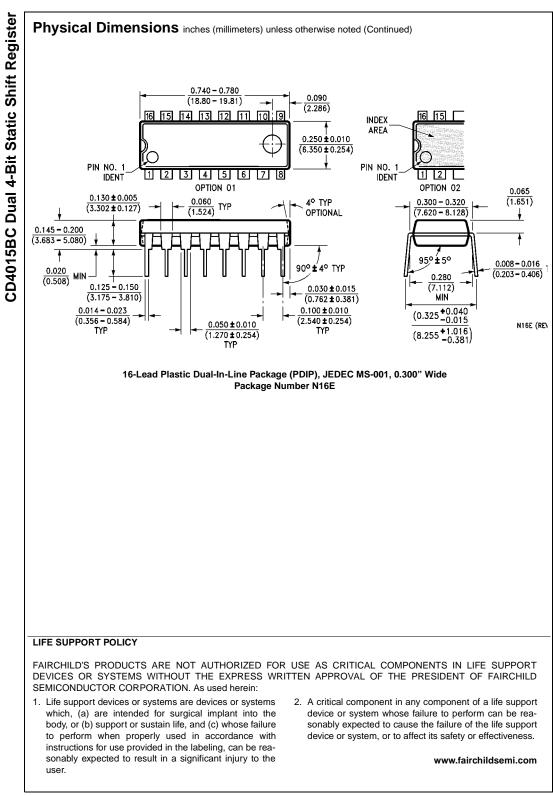
 $-40^\circ C$ to $+85^\circ C$

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recom-mended Operating Conditions" and "Electrical Characteristics" provide con-ditions for actual device operation.

Note 3: V_{SS} = 0V unless otherwise specified.

DC Electrical Characteristics (Note 3)


Symbol	Parameter	Conditions	-40	-40°C		+25°C			+85°C	
Gynnbol	raiameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		20		0.005	20		150	μA
	Current	V_{DD} = 10V, V_{IN} = V_{DD} or V_{SS}		40		0.010	40		300	μΑ
		V_{DD} = 15V, V_{IN} = V_{DD} or V_{SS}		80		0.015	80		600	μΑ
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
	Output Voltage	$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		V
VIL	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	V
	Input Voltage	V_{DD} = 10V, V_{O} = 1.0V or 9.0V		3.0		4.50	3.0		3.0	V
		V_{DD} = 15V, V_{O} = 1.5V or 13.5V		4.0		6.75	4.0		4.0	V
VIH	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		V
	Input Voltage	V_{DD} = 10V, V_{O} = 1.0V or 9.0V	7.0		7.0	5.50		7.0		V
		V_{DD} = 15V, V_{O} = 1.5V or 13.5V	11.0		11.0	8.25		11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μΑ


Note 4: I_{OH} and I_{OL} are tested one output at a time.

CD4015BC

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CLOCK OPERATI	ION					
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		230	350	ns
		$V_{DD} = 10V$		80	160	ns
		V _{DD} = 15V		60	120	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WL} , t _{WM}	Minimum Clock	$V_{DD} = 5V$		160	250	ns
	Pulse-Width	$V_{DD} = 10V$		60	110	ns
		$V_{DD} = 15V$		50	85	ns
t _{rCL} , t _{fCL}	Clock Rise and	$V_{DD} = 5V$			15	μs
	Fall Time	$V_{DD} = 10V$			15	μs
		$V_{DD} = 15V$			15	μs
t _{SU}	Minimum Data	$V_{DD} = 5V$		50	100	μs
	Set-Up Time	$V_{DD} = 10V$		20	40	μs
		$V_{DD} = 15V$		15	30	μs
f _{CL}	Maximum Clock	$V_{DD} = 5V$	2	3.5		MHz
	Frequency	$V_{DD} = 10V$	4.5	8		MHz
		$V_{DD} = 15V$	6	11		MHz
C _{IN}	Input Capacitance	Clock Input		7.5	10	pF
		Other Inputs		5	7.5	pF
RESET OPERATION	ON	•		•		
t _{PHL(R)}	Propagation Delay Time	$V_{DD} = 5V$		200	400	ns
		$V_{DD} = 10V$		100	200	ns
		$V_{DD} = 15V$		80	160	ns
t _{WH(R)}	Minimum Reset	$V_{DD} = 5V$		135	250	ns
	Pulse Width	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		30	60	ns

Note 5: AC Parame eters are guaranteed by DC correlated testing

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.