Quad Zero－Drift Operational Amplifier

June 2000

feATURES

－Maximum Offset Voltage of $3 \mu \mathrm{~V}$
－Maximum Offset Voltage Drift of $30 \mathrm{nV} /{ }^{\circ} \mathrm{C}$
－Small Footprint，Low Profile GN16 Package
－Single Supply Operation： 2.7 V to 11 V
－Noise： $1.5 \mathrm{H} \mathrm{V}_{\mathrm{p}-\mathrm{p}}(0.01 \mathrm{~Hz}$ to 10 Hz Typ）
－Voltage Gain：140dB（Typ）
－PSRR：130dB（Typ）
－CMRR：130dB（Typ）
－Supply Current： 0.75 mA （Typ）per Amplifier
－Extended Common Mode Input Range
－Output Swings Rail－to－Rail
－Input Overload Recovery Time：2ms（Typ）
－Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

－Thermocouple Amplifiers
－Electronic Scales
－Medical Instrumentation
－Strain Gauge Amplifiers
－High Resolution Data Acquisition
－DC Accurate RC Active Filters
－Low Side Current Sense

DESCRIPTIOn

The LTC ${ }^{\circledR} 2052$ is a quad zero－drift operational amplifier available in the GN16 and S14 packages．It operates from a single 2.7 V supply while still supporting $\pm 5 \mathrm{~V}$ applica－ tions．The current consumption is $750 \mu \mathrm{~A}$ per op amp．
The LTC2052，despite its miniature size，features uncom－ promising DC performance．The typical input offset volt－ age and offset drift are $0.5 \mu \mathrm{~V}$ and $10 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ ．The almost zero DC offset and drift are supported with a power supply rejection ratio（PSRR）and common mode rejection ratio （CMRR）of more than 130dB．
The input common mode voltage ranges from the negative supply up to 1 V from the positive supply．The LTC2052 also has an enhanced output stage capable of driving loads as low as $1 \mathrm{k} \Omega$ to both supply rails．The open－loop gain，loaded with $1 \mathrm{k} \Omega$ ，is in excess of 140 dB ．The LTC2052 also features a $1.5 \mu V_{P-p} D C$ to 10 Hz noise and a 3 MHz gain bandwidth product．
$\overline{\mathbf{\Sigma Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation．

TYPICAL APPLICATION

High Performance Low Cost Instrumentation Amplifier

Input Referred Noise 0．1Hz to 10Hz

LTC2052

ABSOLUTG MAXIMUM RATInGS (Note 1)

Total Supply Voltage (V^{+}to V^{-})LTC2052\qquad7 V
LTC2052HV

\qquad 12V
Input Voltage

\qquad
$\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$
Output Short-Circuit Duration
\qquad Indefinite

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Specified Temperature Range (Note 3).. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

Consult factory for Military grade parts.

ELECTRIAL CHARACTERISTMCS (LTC2052, LTC2052HV) The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 5 \mathrm{~V}$ unless otherwise noted. (Note 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Offset Voltage	(Note 2)			± 0.5	± 3	$\mu \mathrm{V}$
Average Input Offset Drift	(Note 2)	\bullet			± 0.03	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Long-Term Offset Drift				50		$\mathrm{nV} / \sqrt{\mathrm{mo}}$
Input Bias Current (Note 4)	$\begin{aligned} & V_{S}=3 V \\ & V_{S}=3 V \end{aligned}$	\bullet		± 8	$\begin{aligned} & \pm 50 \\ & \pm 100 \end{aligned}$	pA pA
	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V} \end{aligned}$	\bullet		± 25	$\begin{gathered} \pm 75 \\ \pm 150 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
Input Offset Current	$\begin{aligned} & V_{S}=3 V \\ & V_{S}=3 V \end{aligned}$	\bullet			$\begin{aligned} & \pm 100 \\ & \pm 150 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V} \end{aligned}$	\bullet			$\begin{aligned} & \pm 150 \\ & \pm 200 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, 0.01 \mathrm{~Hz}$ to 10 Hz			1.5		$\mu \mathrm{V}_{\text {P-P }}$
Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+}-1.3, V_{S}=3 V \\ & V_{C M}=V^{-} \text {to } V^{+}-1.3, V_{S}=3 V \end{aligned}$	\bullet	$\begin{aligned} & 115 \\ & 110 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+}-1.3, V_{S}=5 \mathrm{~V} \\ & V_{C M}=V^{-} \text {to } V^{+}-1.3, V_{S}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 120 \\ & 115 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 11V	\bullet	$\begin{aligned} & 120 \\ & 115 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

ELECTRICAL CHARACTERISTICS
The - denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 5 \mathrm{~V}$ unless otherwise noted. (Note 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$		120	140		dB
		\bullet	115	140		dB
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		125	140		dB
		\bullet	120	140		dB
Maximum Output Voltage Swing	$\begin{aligned} & R_{L}=2 k \\ & R_{L}=10 \mathrm{k} \end{aligned}$	\bullet	$\mathrm{V}^{+}-0.15$	$\mathrm{V}^{+}-0.06$		V
		\bullet	$\mathrm{V}^{+}-0.05$	$\mathrm{V}^{+}-0.02$		V
Slew Rate				2		$\mathrm{V} / \mathrm{\mu s}$
Gain Bandwidth Product				3		MHz
Supply Current (4 Amplifiers)	No Load, $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$	\bullet		3	4	mA
	No Load, $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$	\bullet		3.5	5	mA
Internal Sampling Frequency				7.5		kHz

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ unless otherwise noted. (Note 3) (LTC2052HV)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Offset Voltage	(Note 2)			± 1	± 3	$\mu \mathrm{V}$
Average Input Offset Drift	(Note 2)	\bullet			± 0.03	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Long-Term Offset Drift				50		$\mathrm{nV} / \sqrt{\mathrm{mo}}$
Input Bias Current (Note 4)		\bullet		± 90	$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$	pA
Input Offset Current		\bullet			$\begin{aligned} & \pm 300 \\ & \pm 500 \end{aligned}$	pA pA
Input Noise Voltage	$\mathrm{R}_{S}=100 \Omega, 0.01 \mathrm{~Hz}$ to 10 Hz			1.5		$\mu \mathrm{V}_{\text {P-P }}$
Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to $\mathrm{V}^{+}-1.3$	\bullet	$\begin{aligned} & 125 \\ & 120 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Power Supply Rejection Ratio	$V_{S}=2.7 \mathrm{~V}$ to 11V	\bullet	$\begin{aligned} & 120 \\ & 115 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		dB dB
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	\bullet	$\begin{aligned} & 125 \\ & 120 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \\ & \hline \end{aligned}$		dB dB
Maximum Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$		$\begin{aligned} & 4.80 \\ & 4.95 \end{aligned}$	$\begin{aligned} & 4.92 \\ & 4.98 \end{aligned}$		V
Slew Rate				2		$\mathrm{V} / \mathrm{\mu s}$
Gain Bandwidth Product				3		MHz
Supply Current (4 Amplifiers)	No Load	\bullet		4	6	mA
Internal Sampling Frequency				7.5		kHz

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: These parameters are guaranteed by design. Thermocouple effects preclude measurements of these voltage levels during automated testing.
Note 3: The LTC2052C, LTC2052HVC is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet these extended temperature limits, but is not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The LTC2052I, LTC2052HVI is guaranteed to meet the extended temperature limits.

Note 4: The bias current measurement accuracy depends on the proximity of the negative supply bypass capacitors to the device under test. Because of this, only the bias current of channels A and B is 100% tested to the data sheet specifications. The bias current of channels C and D is also 100% tested to relaxed limits; however their values are guaranteed by design to meet the data sheet limits.

PACKAGE DESCRIPTION
Dimensions in inches (millimeters) unless otherwise noted.

GN Package
16-Lead Plastic SSOP (Narrow 0.150)
(LTC DWG \# 05-08-1641)

S Package
14-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)
 FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1051/LTC1053	Precision Zero-Drift Op Amp	Dual/Quad
LTC1151	$\pm 15 \mathrm{~V}$ Zero-Drift Op Amp	Dual High Voltage Operation $\pm 18 \mathrm{~V}$
LTC1152	Rail-to-Rail Input and Output Zero-Drift Op Amp	Single Zero-Drift Op Amp with Rail-to-Rail Input and Output and Shutdown
LTC2050	Zero-Drift Op Amp in SOT-23	Single Supply Operation 2.7V to 6V, Shutdown
LTC2051	Dual Zero-Drift Op Amp in 8-Lead MSOP	Supply Operation 2.7V to 11V, Shutdown

