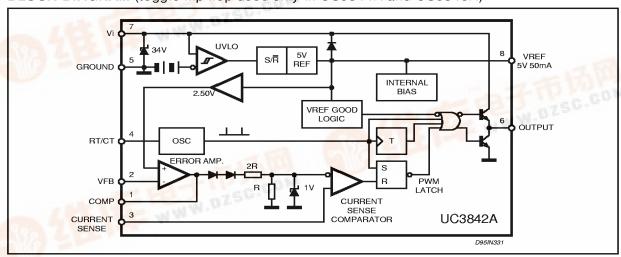


UC2842A/3A/4A/5A UC3842A/3A/4A/5A

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER

- TRIMMED OSCILLATOR DISCHARGE CUR-RENT
- CURRENT MODE OPERATION TO 500kHz
- AUTOMATIC FEED FORWARD COMPENSA-TION
- LATCHING PWM FOR CYCLE-BY-CYCLE CURRENT LIMITING
- INTERNALLY TRIMMED REFERENCE WITH UNDERVOLTAGE LOCKOUT
- HIGH CURRENT TOTEM POLE OUTPUT
- UNDERVOLTAGE LOCKOUT WITH HYSTER-ESIS
- LOW START-UP CURRENT (< 0.5mA)
- DOUBLE PULSE SUPPRESSION


comparatorwhich also provides current limit control, and a totem pole output stage designed to source or sink high peak current. The output stage, suitable for driving N-Channel MOSFETs, is low in the offstate.

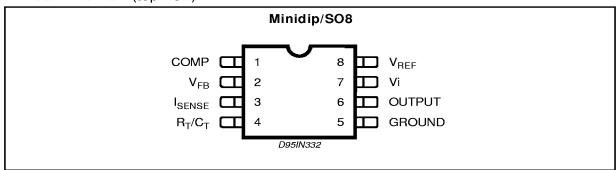
Differences between members of this family are the under-voltage lockout thresholds and maximum duty cycle ranges. The UC3842A and UC3844A have UVLO thresholds of 16V (on) and 10V (off), ideally suited off-line applications The corresponding thresholds for the UC3843A and UC3845A are 8.5 V and 7.9V. The UC3842A and UC3843A can operate to duty cycles approaching 100%. A range of the zero to < 50 % is obtained by the UC3844A and UC3845A by the addition of an internal toggle flip flop which blanks the output off every other clock cycle.

DESCRIPTION

The UC384xA family of control ICs provides the necessary features to implement off-line or DC to DC fixed frequency current mode control schemes with a minimal external parts count. Internally implemented circuits include a trimmed oscillator for precise DUTY CYCLE CONTROL under voltage lock-outfeaturing start-up current less than 0.5mA, a precision reference trimmed for accuracy at the error amp input, logic to insure latched operation, a PWM

BLOCK DIAGRAM (toggle flip flop used only in UC3844A and UC3845A)

March 1999 1/15


UC2842A/3A/4A/5A - UC3842A/3A/4A/5A

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	Supply Voltage (low impedance source)	30	V
Vi	Supply Voltage (li < 30mA)	Self Limiting	
lo	Output Current	±1	Α
Eo	Output Energy (capacitive load)	5	μJ
	Analog Inputs (pins 2, 3)	– 0.3 to 5.5	V
	Error Amplifier Output Sink Current	10	mA
P _{tot}	Power Dissipation at T _{amb} ≤ 25 °C (Minidip)	1.25	W
P _{tot}	Power Dissipation at Tamb ≤ 25 °C (SO8)	800	mW
T _{stg}	Storage Temperature Range	– 65 to 150	°C
T_J	Junction Operating Temperature	– 40 to 150	°C
T∟	Lead Temperature (soldering 10s)	300	°C

^{*} All voltages are with respect to pin 5, all currents are positive into the specified terminal.

PIN CONNECTION (top view)

PIN FUNCTIONS

No	Function	Description
1	COMP	This pin is the Error Amplifier output and is made available for loop compensation.
2	V_{FB}	This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.
3	I _{SENSE}	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.
4	R _T /C _T	The oscillator frequency and maximum Output duty cycle are programmed by connecting resistor $R_{\rm T}$ to Vref and cpacitor $C_{\rm T}$ to ground. Operation to 500kHz is possible.
5	GROUND	This pin is the combined control circuitry and power ground.
6	OUTPUT	This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sunk by this pin.
7	V _{CC}	This pin is the positive supply of the control IC.
8	V_{ref}	This is the reference output. It provides charging current for capacitor C_T through resistor R_T .

ORDERING NUMBERS

S08	Minidip
UC2842AD1; UC3842AD1	UC2842AN; UC3842AN
UC2843AD1; UC3843AD1	UC2843AN; UC3843AN
UC2844AD1; UC3844AD1	UC2844AN; UC3844AN
UC2845AD1; UC3845AD1	UC2845AN; UC3845AN

THERMAL DATA

Symbol	Description	Minidip	S08	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient. max.	100	150	°C/W

ELECTRICAL CHARACTERISTICS ([note 1] Unless otherwise stated, these specifications apply for $-25 \le T_{amb} \le 85^{\circ}\text{C}$ for UC284XA; $0 \le T_{amb} \le 70^{\circ}\text{C}$ for UC384XA; $V_i = 15V$ (note 5); $P_i = 10V$ (note 5); $P_i = 10V$

C	Daware et en		UC284XA			UC384XA			
Symbol	Parameter	Test Conditions		Min. Typ. Max.		Min. Typ. N			Unit
REFERENC									
V_{REF}	Output Voltage	$T_j = 25$ °C $I_0 = 1$ mA	4.95	5.00	5.05	4.90	5.00	5.10	٧
ΔV_{REF}	Line Regulation	$12V \leq V_i \leq 25V$		2	20		2	20	mV
ΔV_{REF}	Load Regulation	$1 \leq l_o \leq 20 mA$		3	25		3	25	mV
$\Delta V_{REF}/\Delta T$	Temperature Stability	(Note 2)		0.2			0.2		mV/°C
	Total Output Variation	Line, Load, Temperature	4.9		5.1	4.82		5.18	٧
en	Output Noise Voltage	$10Hz \le f \le 10KHz T_j = 25$ °C (note 2)		50			50		μV
	Long Term Stability	$T_{amb} = 125$ °C, 1000Hrs (note 2)		5	25		5	25	mV
Isc	Output Short Circuit		-30	-100	-180	-30	-100	-180	mA
OSCILLAT	OR SECTION								
fosc	Frequency	$T_j = 25$ °C	47	52	57	47	52	57	KHz
Δf _{OSC} /ΔV	Frequency Change with Volt.	V_{CC} = 12V to 25V	_	0.2	1	_	0.2	1	%
Δf _{OSC} /ΔT	Frequency Change with Temp.	$T_A = T_{low}$ to T_{high}	_	5	_	_	5	_	%
Vosc	Oscillator Voltage Swing	(peak to peak)	_	1.6	_	-	1.6	ı	٧
l _{dischg}	Discharge Current ($V_{OSC} = 2V$)	$T_J = 25^{\circ}C$	7.8	8.3	8.8	7.8	8.3	8.8	mA
ERROR AN	VIP SECTION								
V ₂	Input Voltage	$V_{PIN1} = 2.5V$	2.45	2.50	2.55	2.42	2.50	2.58	V
l _b	Input Bias Current	V _{FB} = 5V		-0.1	-1		-0.1	-2	μΑ
	Avol	$2V \le V_0 \le 4V$	65	90		65	90		dB
BW	Unity Gain Bandwidth	T _J = 25°C	0.7	1		0.7	1		MHz
PSRR	Power Supply Rejec. Ratio	$12V \leq V_i \leq 25V$	60	70		60	70		dB
lo	Output Sink Current	$V_{PIN2} = 2.7V V_{PIN1} = 1.1V$	2	12		2	12		mA
Ιο	Output Source Current	$V_{PIN2} = 2.3V V_{PIN1} = 5V$	-0.5	-1		-0.5	-1		mA
	V _{OUT} High	$V_{PIN2} = 2.3V;$ R _L = 15K Ω to Ground	5	6.2		5	6.2		V
	V _{OUT} Low	$V_{PIN2} = 2.7V$; $R_L = 15K\Omega$ to Pin 8		8.0	1.1		0.8	1.1	٧
CURRENT	SENSE SECTION								
G∨	Gain	(note 3 & 4)	2.85	3	3.15	2.85	3	3.15	V/V
V ₃	Maximum Input Signal	$V_{PIN1} = 5V$ (note 3)	0.9	1	1.1	0.9	1	1.1	٧
SVR	Supply Voltage Rejection	$12 \leq V_i \leq 25V \text{ (note 3)}$		70			70		dB
l _b	Input Bias Current			-2	-10		-2	-10	μΑ
	Delay to Output			150	300		150	300	ns

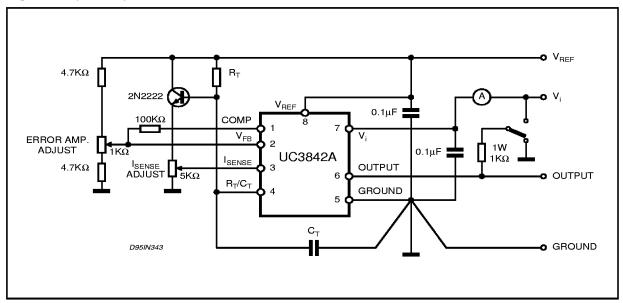
UC2842A/3A/4A/5A - UC3842A/3A/4A/5A

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	UC284XA			UC384XA			Unit
Symbol	Farameter	rest conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Oiiii
OUTPUT S	ECTION								
V_{OL}	Output Low Level	I _{SINK} = 20mA		0.1	0.4		0.1	0.4	٧
		I _{SINK} = 200mA		1.6	2.2		1.6	2.2	٧
V_{OH}	Output High Level	I _{SOURCE} = 20mA	13	13.5		13	13.5		V
		I _{SOURCE} = 200mA	12	13.5		12	13.5		V
V _{OLS}	UVLO Saturation	V _{CC} = 6V; I _{SINK} = 1mA		0.7	1.2		0.7	1.2	٧
t _r	Rise Time	$T_j = 25^{\circ}C C_L = 1nF (2)$		50	150		50	150	ns
t _f	Fall Time	$T_j = 25^{\circ}C C_L = 1nF (2)$		50	150		50	150	ns
UNDER-VO	LTAGE LOCKOUT SECTIO	N							
	Start Threshold	X842A/4A	15	16	17	14.5	16	17.5	٧
		X843A/5A	7.8	8.4	9.0	7.8	8.4	9.0	٧
	Min Operating Voltage	X842A/4A	9	10	11	8.5	10	11.5	V
	After Turn-on	X843A/5A	7.0	7.6	8.2	7.0	7.6	8.2	V
PWM SEC	TION	-							
	Maximum Duty Cycle	X842A/3A	94	96	100	94	96	100	%
		X844A/5A	47	48	50	47	48	50	%
	Minimum Duty Cycle				0			0	%
TOTAL ST	ANDBY CURRENT	•							
I _{st}	Start-up Current	$V_i = 6.5V \text{ for } UCX843A/45A$		0.3	0.5		0.3	0.5	mA
		$V_i = 14V$ for UCX842A/44A		0.3	0.5		0.3	0.5	mΑ
lį	Operating Supply Current	$V_{PIN2} = V_{PIN3} = 0V$		12	17		12	17	mA
V _{iz}	Zener Voltage	$I_i = 25mA$	30	36		30	36		V

Notes: 1. Max package power dissipation limits must be respected; low duty cycle pulse techniques are used during test maintain T_j as close to T_{amb} as possible.

2. These parameters, although guaranteed, are not 100% tested in production.


$$A = \frac{\Delta \ V_{PIN1}}{\Delta \ V_{PIN3}} \quad ; 0 \leq V_{PIN3} \leq 0.8 \ V$$

^{3.} Parameter measured at trip point of latch with $V_{PIN2} = 0$.

^{4.} Gain defined as:

^{5.} Adjust V_i above the start threshold before setting at 15 V.

Figure 1: Open Loop Test Circuit.

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and $5 \, \mathrm{K}\Omega$ potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

Figure 2: Oscillator Frequency vs Timing Resistance

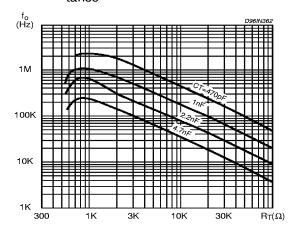
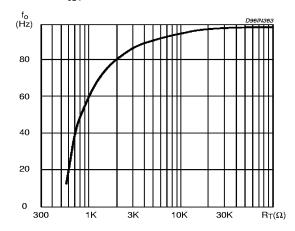
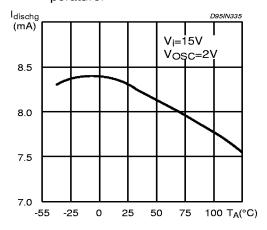
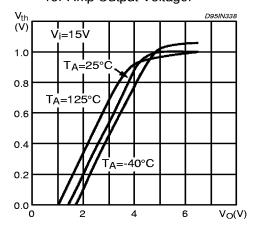




Figure 3: Maximum Duty Cycle vs Timing Resistor



477

Figure 4: Oscillator Discharge Current vs. Temperature.

Figure 6: Current Sense Input Threshold vs. Error Amp Output Voltage.

Figure 8: Reference Short Circuit Current vs. Temperature.

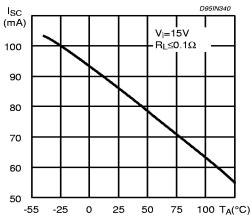
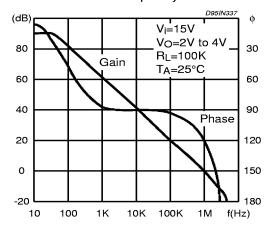
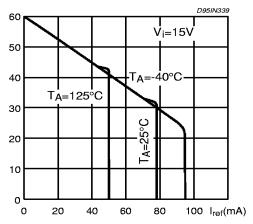




Figure 5: Error Amp Open-Loop Gain and Phase vs. Frequency.

Figure 7: Reference Voltage Change vs. Source Current.

Figure 9: Output Saturation Voltage vs. Load Current.

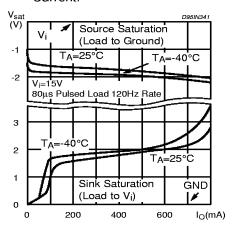


Figure 11: Output Waveform.

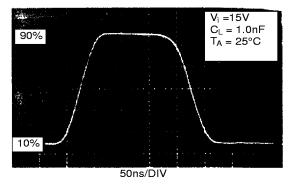
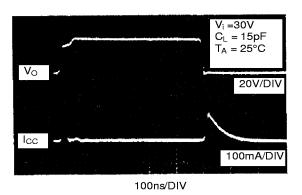



Figure 13: Oscillator and Output Waveforms.

Figure 10: Supply Current vs. Supply Voltage.

Figure 12: Output Cross Conduction

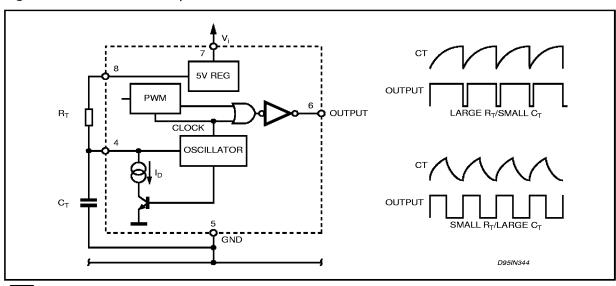


Figure 14: Error Amp Configuration.

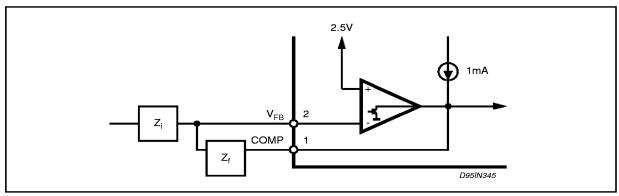


Figure 15: Under Voltage Lockout.

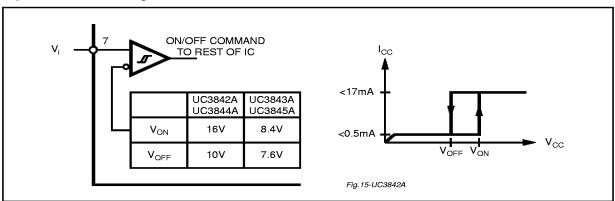
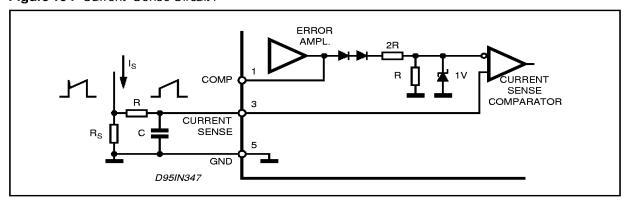



Figure 16: Current Sense Circuit.

Peak current (i_s) is determined by the formula $I_{S \text{ max}} \approx \frac{1.0 \text{ V}}{R_S}$

$$I_{S \text{ max}} \approx \frac{1.0 \text{ V}}{R_{S}}$$

A small RC filter may be required to suppress switch transients.

Figure 17: Slope Compensation Techniques.

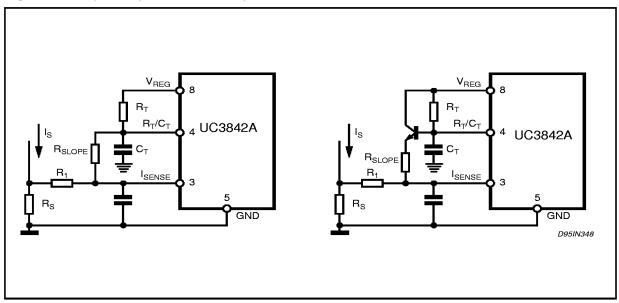
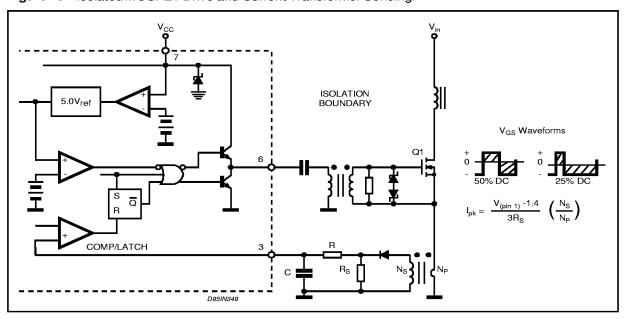



Figure 18: Isolated MOSFET Drive and Current Transformer Sensing.

477

Figure 19: Latched Shutdown.

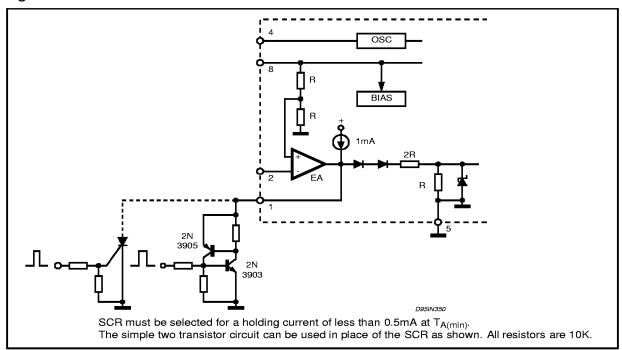


Figure 20: Error Amplifier Compensation

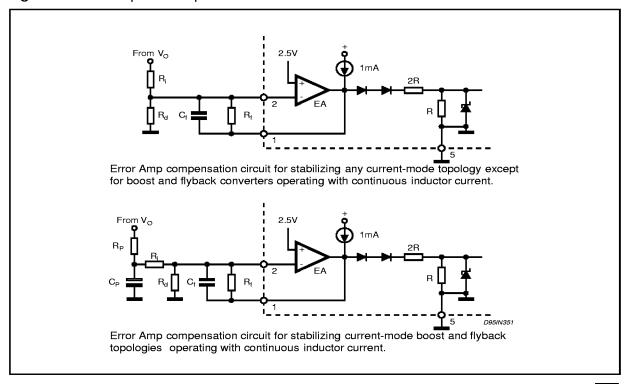


Figure 21: External Clock Synchronization.

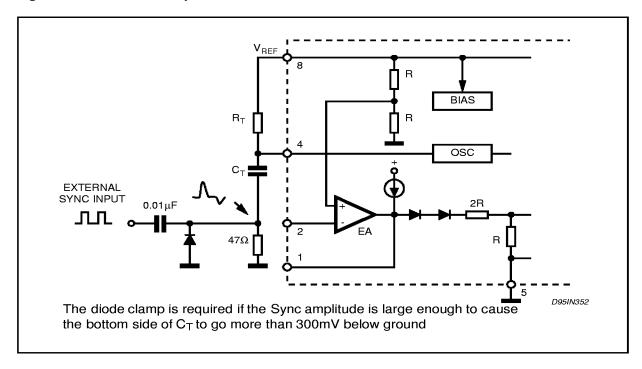
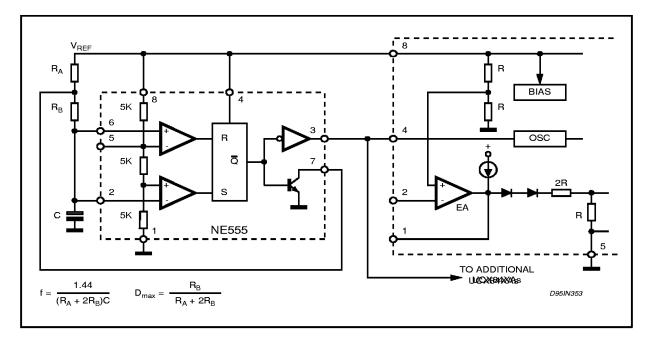



Figure 22: External Duty Cycle Clamp and Multi Unit Synchronization.

477

Figure 23: Soft-Start Circuit

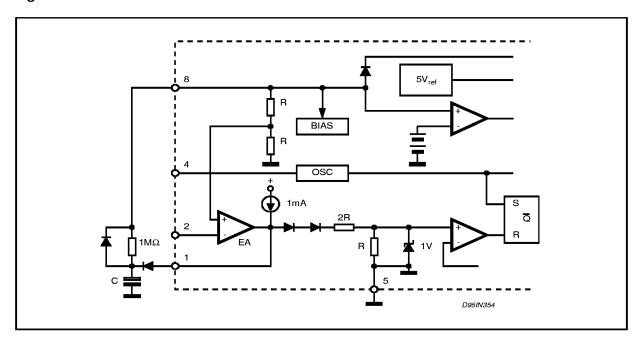
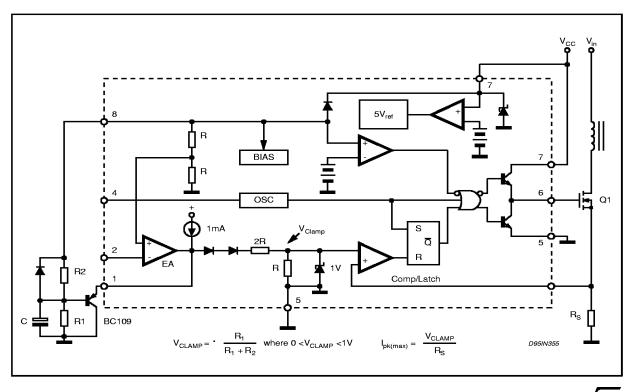
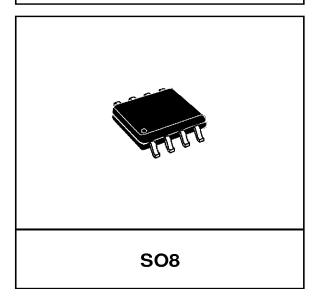
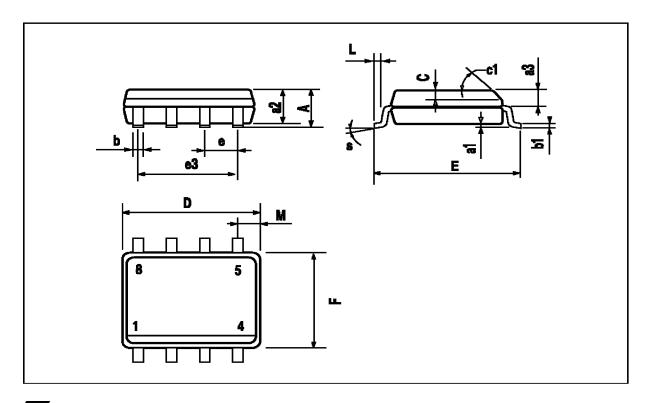
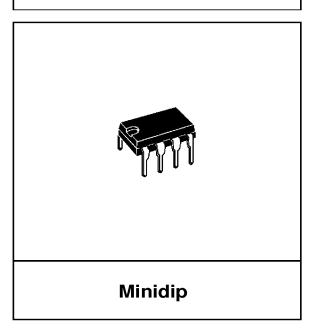




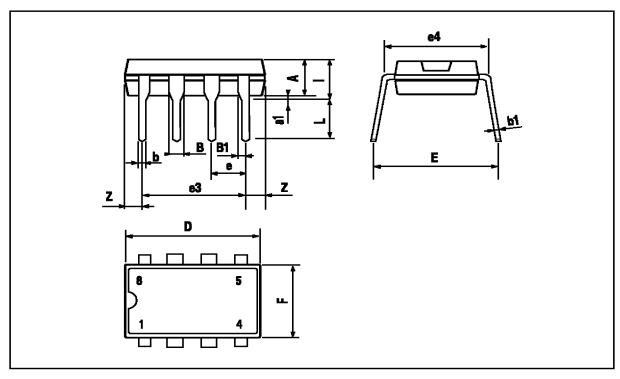
Figure 24: Soft-Start and Error Amplifier Output Duty Cycle Clamp.



DIM.		mm			inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.069		
a1	0.1		0.25	0.004		0.010		
a2			1.65			0.065		
a 3	0.65		0.85	0.026		0.033		
b	0.35		0.48	0.014		0.019		
b1	0.19		0.25	0.007		0.010		
С	0.25		0.5	0.010		0.020		
c1			45° ((typ.)				
D (1)	4.8		5.0	0.189		0.197		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		3.81			0.150			
F (1)	3.8		4.0	0.15		0.157		
L	0.4		1.27	0.016		0.050		
М			0.6			0.024		
S	8° (max.)							

OUTLINE AND MECHANICAL DATA




(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

DIM.	mm			inch			
51141.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
E	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
I			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

OUTLINE AND MECHANICAL DATA

