TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC74ACT280P, TC74ACT280F, TC74ACT280FN

9 - BIT PARITY GENERATOR / CHECKER

The TC74ACT280 is an advanced high speed CMOS 9 - BIT PARITY GENERATOR fabricated with silicon gate and double - layer metal wiring C2MOS technology.

It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

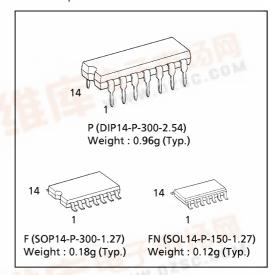
This device may be used as a level converter for interfacing TTL or NMOS to High Speed CMOS. The inputs are compatible with TTL, NMOS and CMOS output voltage levels. The TC74ACT280 is composed of nine data inputs (A thru I) and odd/even parity outputs (Σ ODD and Σ EVEN).

The odd parity output is high when an odd number of data inputs are high. The even parity output is high when an even number of data inputs are high.

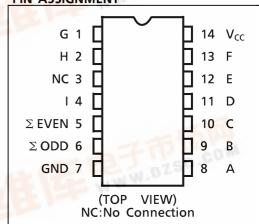
The word-length capability is easily expanded by cascading. All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES:

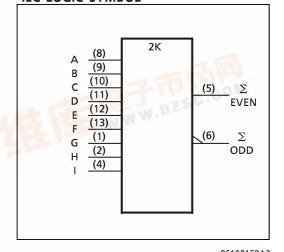
- High Speed------tpd = 9.2ns(typ.) at V_{CC} = 5V
- Compatible with TTL outputs.....V_{IL} = 0.8V (Max.)


 $V_{IH} = 2.0V (Min.)$

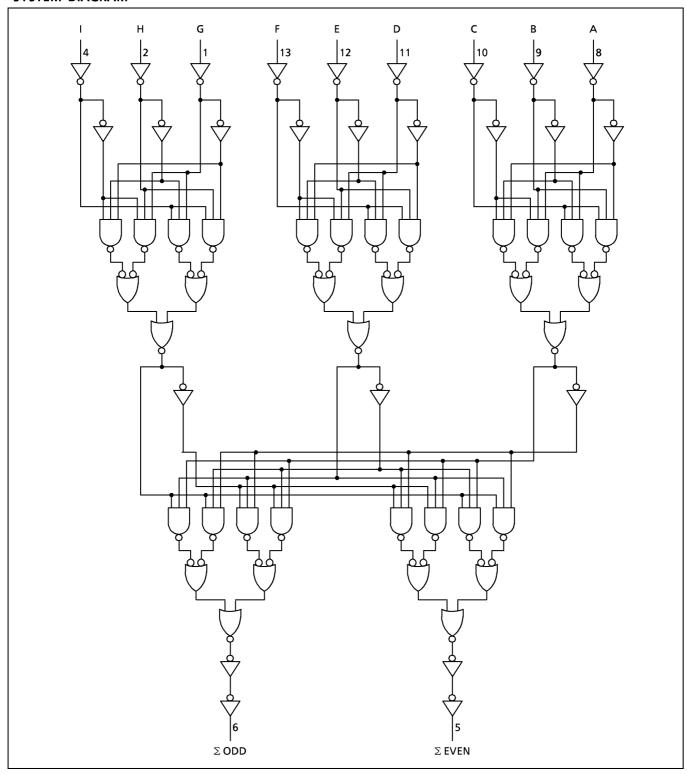
- Symmetrical Output Impedance… | I_{OH} | = I_{OL} = 24mA(Min.) Capability of driving 50Ω
 - transmission lines.
- Balanced Propagation Delays ····· t_{oLH} ≃ t_{oHL}
- Pin and Function Compatible with 74F280


TRUTH TABLE

Land Living Williams								
Number of inputs	Outputs							
A through I that are High	Σ EVEN	ΣODD						
0, 2, 4, 6, 8	Н							
1, 3, 5, 7, 9	- 42.6	Вн						
SHE WWW.	ZSC.CC	164						


(Note) The JEDEC SOP (FN) is not available in Japan.

PIN ASSIGNMENT



IEC LOGIC SYMBOL

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

SYSTEM DIAGRAM

961001EBA2'

 [■] The products described in this document are subject to foreign exchange and foreign trade control laws.
■ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
■ The information contained herein is subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V_{CC}	-0.5~7.0	V
DC Input Voltage	V _{IN}	$-0.5 \sim V_{CC} + 0.5$	V
DC Output Voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	I _{IK}	± 20	mA
Output Diode Current	I _{OK}	± 50	mA
DC Output Current	I _{OUT}	± 50	mA
DC V _{CC} /Ground Current	I _{cc}	± 100	mA
Power Dissipation	P _D	500 (DIP)* / 180 (SOP)	mW
Storage Temperature	T _{stg}	−65~150	°C

*500mW in the range of Ta = -40° C ~65°C. From Ta = 65°C to 85°C a derating factor of -10mW/°C should be applied up to 300mW.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V_{CC}	4.5~5.5	٧
Input Voltage	V _{IN}	0∼V _{cc}	٧
Output Voltage	V _{OUT}	0~V _{cc}	V
Operating Temperature	T _{opr}	−40~85	°C
Input Rise and Fall Time	dt/dV	0~10	ns / V

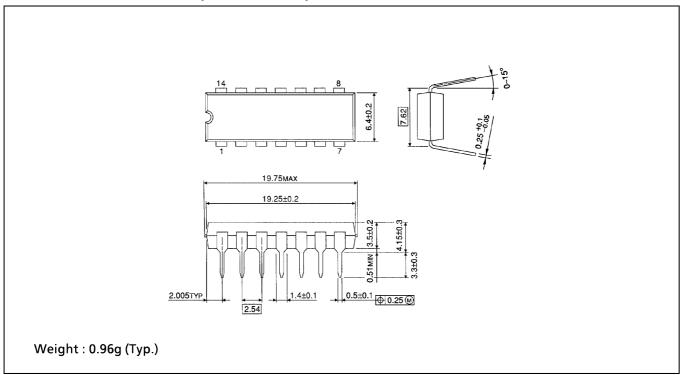
DC ELECTRICAL CHARACTERISTICS

PARAMETER SYMB		TEST CONDITION		V _{CC}	Т	Ta = 25°C		Ta = -40~85°C		UNIT
PARAIVIETER	AMETER SYMBOL TEST CONDITION		(V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
High - Level Input Voltage	VIH			4.5 \$ 5.5	2.0	-	-	2.0	_	>
Low - Level Input Voltage	VIL			4.5 \$ 5.5	-	-	0.8	_	0.8	>
High - Level Output Voltage	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -50 \mu A$ $I_{OH} = -24 m A$ $I_{OH} = -75 m A^*$	4.5 4.5 5.5	4.4 3.94 —	4.5 — —		4.4 3.80 3.85	_ _ _	>
Low - Level Output Voltage	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 50 \mu A$ $I_{OL} = 24 m A$ $I_{OL} = 75 m A*$	4.5 4.5 5.5	111	0.0 - -	0.1 0.36 —	111	0.1 0.44 1.65	V
Input Leakage Current	I _{IN}	$V_{IN} = V_{CC}$ or GND		5.5	1	1	± 0.1	_	± 1.0	
	I _{cc}	$V_{IN} = V_{CC}$ or GND		5.5	_		8.0	_	80.0	μ A
Quiescent Supply Current	I _C	PER INPUT : V _I OTHER INPUT	5.5	_	_	1.35	_	1.5	mA	

^{*:} This spec is indicates the capability of driving 50Ω transmission lines. One output should be tested at a time for a 10ms maximum duration.

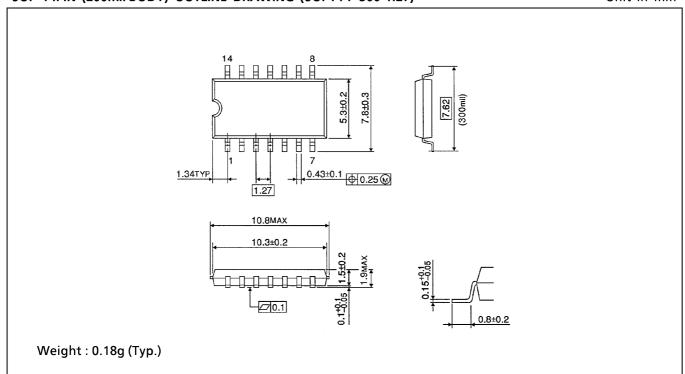
AC ELECTRICAL CHARACTERISTICS ($C_L = 50_p F$, $R_L = 500 \Omega$, Input $t_r = t_f = 3 n s$)

PARAMETER	SYMBOL	TEST CONDITION		Ta = 25°C			Ta = -40~85°C		UNIT
PARAIVIETER			V _{cc} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	
Propagation Delay Time	t _{pLH} t _{pHL}		5.0 ± 0.5	_	9.9	14.5	1.0	16.5	ns
Input Capacitance	C _{IN}			_	5	10	_	10	
Power Dissipation Capacitance	C _{PD} (1)			_	78	_	_	_	pF

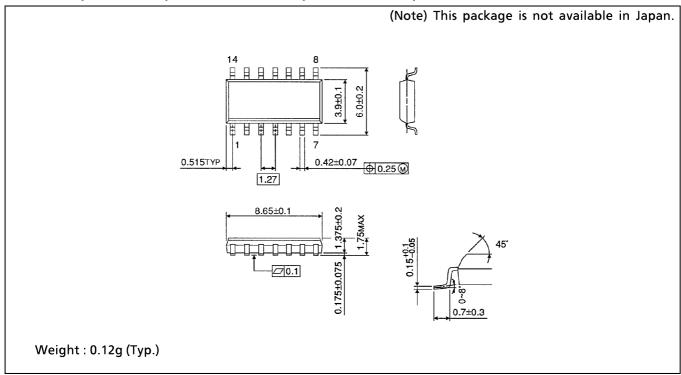

Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$


DIP 14PIN OUTLINE DRAWING (DIP14-P-300-2.54)

Unit in mm


SOP 14PIN (200mil BODY) OUTLINE DRAWING (SOP14-P-300-1.27)

Unit in mm

SOP 14PIN (150mil BODY) OUTLINE DRAWING (SOL14-P-150 -1.27)

Unit in mm

