TOSHIBA Transistor
 Silicon NPN Epitaxial Type（PCT process）Silicon PNP Epitaxial Type（PCT process）

R N 49 A 2

Switching，Inverter Circuit，Interface Circuit and Driver Circuit Applications．

－Including two devices in US6（ultra super mini type with 6 leads）
－With built－in bias resistors
－Simplify circuit design
－Reduce a quantity of parts and manufacturing process

Equivalent Circuit and Bias Resistor Values

Q1

Q1：RN1104F
Weight ：6．8mg
Q2：RN2105F

Marking
 Circuit（top view）

Equivalent

961001EAA1
－TOSHIBA is continually working to improve the quality and the reliability of its products．Nevertheless，semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress．It is the responsibility of the buyer，when utilizing TOSHIBA products，to observe standards of safety，and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life，bodily injury or damage to property．In developing your designs，please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications． Also，please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook．
－The information contained herein is presented only as a guide for the applications of our products．No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use．No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others．
－The information contained herein is subject to change without notice．

Q1 Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Characteristics	Symbol	Rating	Unit
Collector-base voltage	V $_{\text {CBO }}$	50	V
Collector-emitter voltage	VCEO	50	V
Emitter-base voltage	VEBO	10	V
Collector current	IC	100	mA

Q2 Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Collector-base voltage	$\mathrm{V}_{\text {CBO }}$	-50	V
Collector-emitter voltage	$\mathrm{V}_{\text {CEO }}$	-50	V
Emitter-base voltage	$\mathrm{V}_{\text {EBO }}$	-5	V
Collector current	I_{C}	-100	mA

Q1, Q2 Common Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit		
Collector power dissipation	P_{C}				
$($ Note)				$\quad 200$	mW
:---:					
Junction temperature					
Storage temperature range					

Note: Total rating

Q1 Electrical Characteristics ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition	Min	Typ.	Max	Unit
Collector cut-off current	ICBO	$\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	-	100	nA
	ICEO	$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	-	500	
Emitter cut-off current	IEBO	$\mathrm{V}_{\mathrm{EB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	0.082	-	0.15	mA
DC current gain	$h_{\text {FE }}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	80	-	-	
Collector-emitter saturation voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~mA}$	-	0.1	0.3	V
Input voltage (ON)	$\mathrm{V}_{1}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{CE}}=0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$	1.5	-	5.0	V
Input voltage (OFF)	V_{1} (OFF)	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}$	1.0	-	1.5	V
Transition frequency	f_{T}	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$	-	250	-	MHz
Collector output capacitance	$\mathrm{C}_{\text {ob }}$	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$	-	3	6	pF
Input resistor	R1	-	32.9	47	61.1	$k \Omega$
Resistor ratio	R1/R2	-	0.9	1.0	1.1	

Q2 Electrical Characteristics $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Characteristics	Symbol	Test Condition	Min	Typ.	Max	Unit
Collector cut-off current	ICBO	$\mathrm{V}_{\mathrm{CB}}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	-	-100	nA
	ICEO	$\mathrm{V}_{\mathrm{CE}}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	-	-500	
Emitter cut-off current	$\mathrm{I}_{\text {EBO }}$	$\mathrm{V}_{\mathrm{EB}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	-0.078	-	-0.145	mA
DC current gain	$h_{\text {FE }}$	$\mathrm{V}_{\mathrm{CE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	80	-	-	
Collector-emitter saturation voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-0.25 \mathrm{~mA}$	-	-0.1	-0.3	V
Input voltage (ON)	V_{1} (ON)	$\mathrm{V}_{\mathrm{CE}}=-0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$	-0.6	-	-1.1	V
Input voltage (OFF)	V_{1} (OFF)	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{~mA}$	-0.5	-	-0.8	V
Transition frequency	f_{T}	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$	-	200	-	MHz
Collector output capacitance	$\mathrm{C}_{\text {ob }}$	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$	-	3	6	pF
Input resistor	R1	-	1.54	2.2	2.86	$\mathrm{k} \Omega$
Resistor ratio	R1/R2	-	0.0421	0.0468	0.0515	

