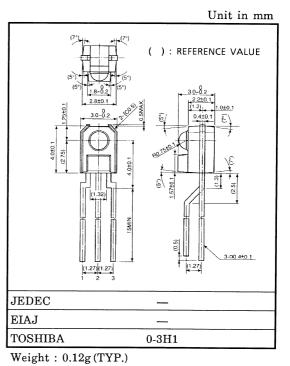


Preliminary

TOSHIBA Photo IC Silicon Epitaxial Planar

T P S 8 2 0

Photo-Electric Switches


Copiers, Printers, and Facsimiles

Luminosity Adjustment for Various Types of Equipment

The TPS820 is a linear output photo-IC (current output type) which incorporates a photodiode and a current amp circuit in a single chip.

The sensitivity is superior to that of a phototransistor and its illuminance output linearity is excellent.

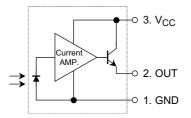
- High sensitivity: $I_L = 2.5 \text{ mA} (typ.) @E = 0.1 \text{ mW/cm}^2$
- Little fluctuation in light current
- Output linearity of illuminance is excellent.
- Low current consumption: ICC = 1 μA (max) at VCC = 5 V
- Housed in compact side-view epoxy resin package
- Black package impermeable to visible light
- The TPS820 is suitable for use in combination with the TLN117 infrared LED lamp whose package size is the same.

Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	-0.5~7	V	
Output voltage	Vo	$\leq V_{CC}$	V	
Light current	١L	10	mA	
Power dissipation	Р	250	mW	
Power dissipation derating	∆P/°C	-3.33	mW/°C	
Operating temperature range	T _{opr}	-25~85	°C	
Storage temperature range	T _{stg}	-40~100	°C	
Soldering temperature (5 s) (Note1)	T _{sol}	260	°C	

Note1: At the location of 1.3 mm from the resin package bottom

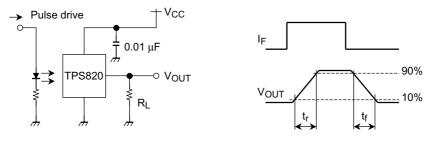
961001EAA1


TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TCOUPDED TOTION of the total stress of the st

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

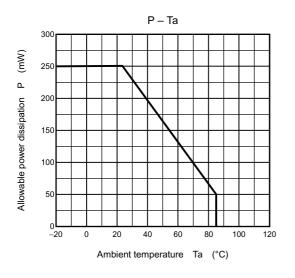
• The information contained herein is subject to change without notice.

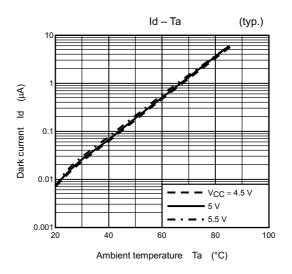
TOSHIBA

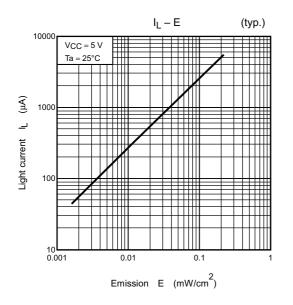

Pin Configuration

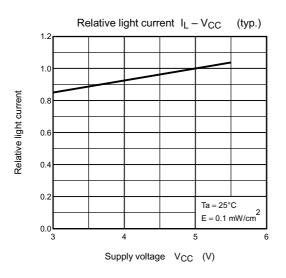
Optical and Electrical Characteristics ($Ta = 25^{\circ}C$, $V_{CC} = 5 V$)

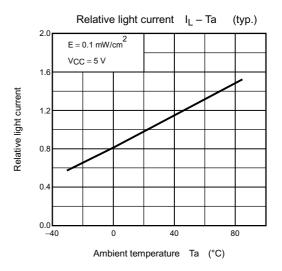
Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Current consumption	ICC	$E = 0$, I_L must be open between pins	_	0.017	1	μA
Light current (1)	I _L (1)	$E = 0.01 \text{ mW/cm}^2 \qquad (\text{Note2})$	100	250	400	μA
Light current (2)	I _L (2)	$E = 0.1 \text{ mW/cm}^2 \qquad (\text{Note2})$	1	2.5	4	mA
Output linearity	$I_{L}(2)/I_{L}(1)$	_	8	10	12	_
Saturation output voltage	V _{OUT(sat)}	$E = 0.1 \text{ mW/cm}^2 $ (Note2) R _L = 10 kΩ	4.1	4.2	_	V
Dark current	I _D	E = 0	_		0.5	μA
Peak sensitivity wavelength	λ _p	_		870		nm
Rise time	tr	V _{OUT} = 2.5 V		250		μs
Fall time	t _f	$R_L = 10 \ k\Omega$ (Note3)	_	700	_	μs

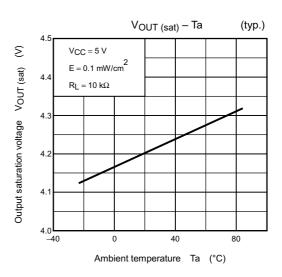

Note2:The light used is a CIE standard A light source (a standard tungsten bulb with a color temperature of 2856K)Note3:Switching time measurement circuit and waveform

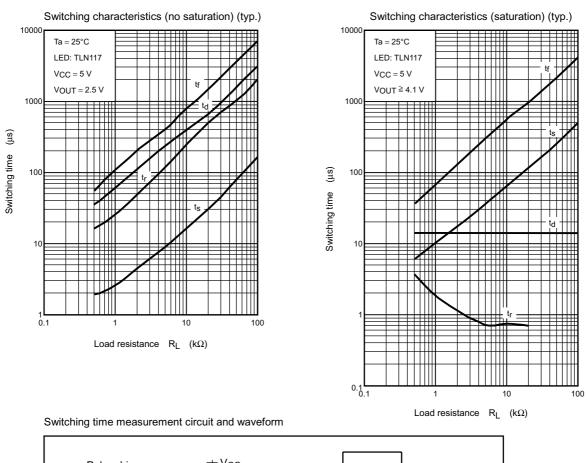


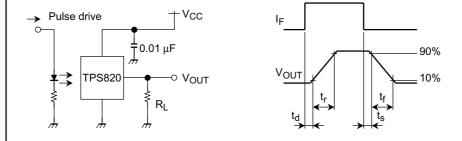

Precautions

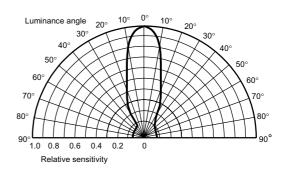

- When this device is used in combination with an LED lamp, the lamp must be an infrared LED lamp.
- To stabilize the power line, insert a bypass capacitor of up to 0.01 μF between VCC and GND, close to the device.
- When the power is turned on, the output value will fluctuate for 1 ms as the internal circuit stabilizes.

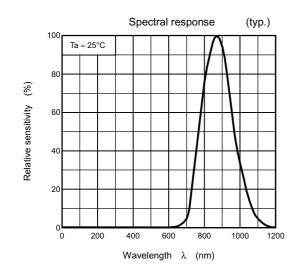

TOSHIBA








TOSHIBA



Ta = 25°C

