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This application note covers the following topics: (1) a general
discussion of complex programmable logic devices (CPLDs),
(2) an overview of the FLASH370i™ family of CPLDs, and (3)
using the WarpZD VHDL Compiler for the FLASH370i family.

Overview of CPLDs

CPLDs extend the concept of the PLD to a higher level of
integration to improve system performance, use less board
space, improve reliability, and reduce cost. Instead of making
the PLD bigger with more input terms and product terms, a
CPLD architecture is composed of multiple PLDs or logic
blocks (LABs) connected together with a programmable inter-
connect matrix (PIM). Multiple Logic Array Blocks (LABS) pro-
vide comparable speed to a PLD because the basic propaga-
tion path is through one LAB and each LABs product term
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array is comparable to a PLD array. Multiple LABs provide the
higher integration. The number of LABs in a CPLD is typically
between 2 for the smaller CPLDs and 16 for the larger ones.
In addition to LABs interconnected by the PIM, are the in-
put/output macrocells and the dedicated input macrocells.
Figures 1 and 2 show the CPLD generic block diagram and
the logic block diagram respectively.
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Figure 1. Generic Block Diagram

Figure 2. Logic Block Diagram

The architectural components of the LAB are: (1) the product
term array, (2) the product term allocator, and (3) the macro-
cell. The product term array is the same in the CPLD as in the
PLD except that the inputs into the array can now also come
from the PIM. The product term allocator is a new concept in
the CPLD where product terms are not fixed to a macrocell
with its associated input/output pin but can be routed to dif-
ferent macrocells depending on where they are needed. The
result is a more efficient allocation of product terms and high-
er integration. Implementation of the product term allocator
varies across CPLD vendors which is more fully discussed in
the section describing the features of the FLASH370i family.

The macrocell accepts the single output of the product term
allocator which is the ORing of a variable number of product
terms. In some macrocells this input feeds into a two input
XOR gate with the other input potentially carrying the Q feed-
back. This configures the D flip flop to a T flip flop which can
provide an improvement in capacity for certain designs such
as counters. After the XOR gate, the macrocell is configurable
as registered, combinatorial, and in some cases latched.
There are two kinds of macrocells which are input/output ded-
icated and buried. Dedicated macrocells output to the in-
put/output macrocell and also provide feedback into the prod-
uct term array. Buried macrocells only provide feedback into
the product term array.

The function of the PIM is to distribute the needed fraction of
the total available resources, all outputs from the LAB and
possibly also dedicated inputs and inputs/outputs, to the ap-
propriate LAB. There are two common methods of PIM imple-
mentation: array based interconnect and mux based intercon-
nect.

Figure 3 shows the data path of communication between two
LABs using the array based interconnect. In the array based
interconnect, each output of the LAB can potentially connect
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Figure 3. Array-Based Interconnect

to any number of PIM input terms through a memory element.
Each PIM input term is assigned to a specific LAB and func-
tions as an input term into the LABs product term array. In this
example only four PIM input terms are shown two going to
LABL1 and two going to LAB2. There is a sense amp per input
term to detect the logic level, buffer the signal, and drive it into
the LAB. The true and complement of the PIM signal feed into
the product term array (not shown in the figure). Since every
LAB output can connect to any PIM input, the interconnect is
considered 100 percent routable. It never limits the ability of
the device to fit logic. A macrocell output can connect to one
or multiple PIM input terms. The major drawback from using
a memory element as an interconnect is the slower propaga-
tion delay than the muxed based interconnect.

Figure 4 shows the data path of communication between two
LABs using the muxed based interconnect. In the muxed
based interconnect a mux chooses one of a number of poten-
tial PIM input terms into the LAB. The PIM input terms differ
from the array based interconnect in that they are output from
a 1 of n (where “n” is the number of inputs of the mux) mux
instead of the output of a wired nor memory array. The inputs
into the muxes are all the outputs of the LABs as well as

dedicated inputs and input/output pins. Figure 3 shows two
PIM input terms output from two 4-to-1 muxes. In this exam-
ple, macrocell 2 from LAB1 and macrocell 2 from LAB2 both
show 2 chances to route into the muxes with other inputs
having only 1 chance. The wider the mux (the number of in-
puts into the mux) the more likely all desired inputs into each
LAB will be successfully routed and the more chances each
signal gets to route into a LAB. The disadvantage of larger
muxes is a larger slower propagation delay through the PIM
and increased die size. Implementations of mux-based inter-
connect vary in the size of the mux.

Features of the F LASH370i CPLDs

The FLASH370i family of CPLDs offers densities from 2 to 8
LABs. Figure 5 shows the block diagram of the CY7C374i/5i
with 8 LABs. The even numbers of the family (372i,374i) bury
half of the macrocells for maximum integration with the same
pinout as the (371i,373i,375i) respectively. Table 1 shows the
family members offered.
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Table 1. FLASH370i Family Members.

Feature CY7C371i CY7C372i/3i CY7C374i/5i
Macrocells 32 64 128
Dedicated Inputs 6 6 6
I/0 pins 32 32/64 64/128
Dedicated Inputs Usable as Clocks 2 2/4 4/4
Speed (tpp) 8.5ns 10 ns 12 ns
Primary Packages 44-PLCC 44/84-PLCC 84-PLCC

100-TQFP 100/160-TQFP

Figures 6 and 7 show the product term array, product term
allocator, macrocells, and input/output macrocells for the
FLASH370i family. Each LAB features 36 inputs, which can
adequately handle 32-bit operations plus control signals with
one pass through the LAB. The product term array features
the true and complement polarities of each PIM output signal

for a total of 72 inputs. 80 standard product terms are provid-
ed to the product term allocator which allocates from 0 to 16
product terms to each of the 16 macrocells. Additionally, 6
special product terms are also generated in the product term
array. They are an asynchronous preset, asynchronous reset,
and two groups of 2 bank output enable product terms.
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Figure 6. Logic Block for CY7C372i and CY7C374i (Register Intensive)
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The output macrocell (Figure 8) provides a selection of four
output controlling options: (1) control from one output enable,
(2) control from a second output enable, (3) permanently en-
abled, or (4) permanently disabled. Each LAB contains 4 out-
put enable product terms, 2 for the upper 8 macrocells and 2
for the lower 8 macrocells.

The state macrocell (Figure 8) contains options to register,
latch, or send data through combinatorially. For the input/out-
put macrocell there is an additional output polarity mux to
improve capacity before the signal goes to the input/output
macrocell. For buried macrocells there is an additional mux
which can configure the state register as an input register. If
the buried macrocell is configured as an input, zero product
terms will be allocated from the array. In Figure 8 architecture
bit C7 can choose the feedback from the input/output pin as
the input into the register instead of from the product term
array.

There is one asynchronous preset and reset product term for
each LAB. There are polarity muxes for the clocks, preset and
reset. Each macrocell can choose among two clocking op-
tions for the CY7C371i/372i and four clocking options for the
CY7C373i/374i/375i. All macrocells in a LAB receive the
same polarity of the clock, set and reset. Polarities are con-
figurable per LAB. Figure 8 shows the input/output macrocell
and input/output plus buried macrocell.

Figures 9 and 10 show the input/clock and input macrocells.
The input macrocell provides the flexibility to let the input en-
ter combinatorially, latched, single registered, or double reg-
istered (for maximum metastability performance). For the
CY7C371i/372i there are two input/clocks pins and four input
pins. For the CY7C373i/374i/375i there are four input/clock
pins and two input pins. For added flexibility, each clock can
be configurable for either positive or negative polarity.

In order to fully understand the operation of the FLASH370i
product term allocator, two important aspects of product term
allocator design need to be introduced: product term steering
and product term sharing. Steering refers to the assignment
of a product term resource to a macrocell. In the traditional
PLD there is no steering flexibility. Each macrocell has as-
signed product terms that can only be used by that macrocell.
In many designs each macrocell requires a different number
of product terms putting an emphasis on the ability to allocate
product terms individually on an as needed basis. Product
term sharing refers to a product term being used by multiple
macrocells. The logic equations for different macrocells
sometimes contain the same minterm. Instead of generating
this same minterm multiple times, it is generated on only one
product term and shared across macrocells, thereby improv-
ing capacity.

Figure 11 is a conceptual representation of the FLASH370i
product term allocator. The product term allocator functions
like a segmented OR array by ORing from 0 to 16 product
terms for each macrocell. Product terms can be steered and
shared on an individual basis. This architecture has several
advantages over other implementations that steer product
terms away from one macrocell to serve another.
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Figure 12is a conceptual representation of the MACHO prod- route to only one macrocell. The product terms are routed in
uct term allocator. It shows no ability to share product terms groups of four which is a much higher granularity of product
across macrocells. Each cluster of four product terms can term allocation and not as efficient.
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To demonstrate this inefficiency, consider a macrocell that
needs five product terms to implement its logic. Two product
term clusters with a total of eight available product terms are
needed. This wastes the resources of three product terms
from the borrowed cluster since these product terms can not
be rerouted to another macrocell.

The MAX7000™ product term allocator representation (Fig-
ure 13) shows the use of expander terms. Expander terms
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/
4 Parallel Logic

Expanders

5 \
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Figure 13. MAX Product Term Allocator
Representation

allow two passes through the array which can produce very
high capacity. These expanders are also shared among all
product terms in the LAB. The problem with using the expand-
ers is in the additional propagation delay of two passes
through the array. This complicates the timing model and links
the performance of the device to the use of the expander
product terms. As with the MACH product term allocator, the
MAX7000 allocator also has five product term clusters. It
therefore suffers from the same problem of product term
wasting when more than one cluster is routed to a macrocell.

The FLASH370i product term allocator provides the most ef-
fective method of steering and sharing product terms. The
propagation of signals through the product term allocator is
independent of the number of product terms allocated to each
macrocell. Additionally the flexibility of this product term allo-
cator, with the PIM, enables a change in the design without a
modification to the external pinout of the device. There is no
need for input and output switch matrices, which add extra
delay and degrade performance.

The timing model of the FLASH370i family is far simpler than
for other CPLD solutions for two reasons. First, all input sig-
nals into the LAB pass through the PIM. This includes all in-
put/outputs, feedbacks from macrocell outputs, and dedicat-

ed inputs. Secondly, the propagation time through the product
term allocator is independent of the number of product terms
allocated to a macrocell. As a result, there are no expander
delays, no dedicated versus input/output pin delays, no pen-
alties for using up to 16 product terms, or no delay penalties
for steering and or sharing product terms. The FLASH370i
family of products provides timing as predictable as PLDs like
the 22V10.

The PIM in the FLASH370i was designed to approach the 100
percent routability of the array based interconnect but not
made so wide that performance and die size suffered.

Using Warp™ to Design with the F LASH370i

Development software is extremely important for ease of use
and efficiency of resource allocation when designing with
CPLDs. Cypress offers two software packages that will fully
support the FLASH370i family of products as well as all other
PLDs and state machine PROMs. WarpZ2 provides full VHDL
language support which is becoming the industry standard for
describing hardware design. A functional simulator is also
provided. Warp3D additionally includes schematic capture
and exact timing simulation capability.

The simplified timing model of the FLASH370i often makes
exact timing simulation unnecessary because performance
can be predicted directly from the datasheet. Therefore the
functional simulator of Warp2 may be a cost effective design
solution. With Warp no manual intervention for fitting the de-
signs into the devices are necessary. In addition to Warp,
customers also have third party support from a variety of ven-
dors.

Warp products take in VHDL designs and automatically fit
them into the chosen device. The following section explains
how to exploit the special features of the FLASH370i with
VHDL. A thorough treatment of VHDL constructs is found in
the Warp2 Reference Manual. Topics covered here are: (1)
using the single/double registered options for the dedicated
inputs, and registering signals from the 10 pins, (2) using the
clock polarity mux feature, (3) describing registered versus
latched versus combinatorial outputs, (4) using the output en-
able feature, (5) using the asynchronous preset/reset feature,
and (6) Using the buried registers as for the (372/4/6).

To register the dedicated inputs one or two signals must be
defined to represent the additional nodes for one and two
registers respectively. Appendix A demonstrates how to use
single and double registered inputs for a 4 bit loadable
counter. In proc2, RESET1 and RESET2 are the outputs of
the first and second registers. It requires 2 passes through
proc2 to activate RESET2. Signal RESET?2 is then used in
procl to perform the reset. Proc2 additionally registers the
data to be loaded with the statement regin <=temp.dat

The signal REGIN is then used in process Procl to load the
counter with the statement temp.cnt <= regin . If the
same clock is used for the inputs as for the state registers,
then the statements in process proc2 could be incorporated
into proc1 and only one process is needed. The assignment
of the entity output pins is handled by the instantiation of the
bufoe component (called in the statement use work.rtlp-

kg.all ), which takes the signal TEMP.CNT as input and
transfers it to the output (in this case called COUNT) when
the output enable control (called OUTEN) is HIGH. Register-
ing the inputs from the input/output pins is better suited for the
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372/374/376 members of the family since the signal does not
need to go through the PIM and logic block.

Clocking on the falling instead of the rising edge of the clock
is simply done by changing the statement wait until

(clkk =17 to wait until (clk = '0’) . Events
occurring on the rising and falling edge of a clock can be
incorporated into the same design by defining a separate pro-
cess for the event, provided that sufficient logic blocks are
available.

VHDL describing combinatorial and registered outputs is
identical to other part implementations as with the FLASH370i.
The registered equations must be inserted inside a process
and after a wait until clock= statement.

Appendix B shows an example of how to implement the com-
binatorial macrocell option with maximum usage of output en-
able flexibility for the CY7C371. A total of eight different input
signals control the output enable functionality. The entire
function is handled by the bufoe component where the input
into the buffer is the external input pin. No signals are neces-
sary.

The latch option is unique to the FLASH370i family. Appendix
C shows an example of how to latch a signal using the
IF-THEN-ELSE construct. In this example the signal is
latched when the clock is HIGH by setting the signal value to
itself with the statements signala <= signala and sig-
nalb <= signalb . When the clock is LOW the path is
combinatorial and the signal value gets the input. This is han-
dledin the code ifclk="0"then signala<=inputa;

signalb <= inputb . Two signals are defined, SIGNALA
and SIGNALB, to latch the data when the clock is in the right
polarity (in this case HIGH).

Appendix D shows the full registered configuration. As in Ap-
pendix C, the signals SIGNALA and SIGNALB are defined
and the function of the register is defined within a process. On
the rising edge of the clock, SIGNALA gets INPUTA and SIG-
NALB gets INPUTB.

Appendix E uses latches for the output enable control. Sig-
nals need to be generated from the array and are passed as
the output enable parameter into the triout component. This
function behaves similarly to the bufoe but does not include
the feedback parameter.

Appendix F shows how to use the buried registers to imple-
ment the least significant bits in a counter. A bit vector signal
is defined to represent all the register states. Those states
that are needed as outputs are assigned to the entity output
pins outside of the process with the statement count (0 to

11) <= fullent (4 to 15) . If output enable control is
desired then this last statement is omitted and the signal to
output assignment is handled with the bufoe component.

Appendix G is the same as Appendix F except that the regis-
ters are reset asynchronously. The format of the process is
much different from Appendix F but functions exactly the
same except for the asynchronous instead of synchronous
reset. The process uses a “sensitivity list” that includes all the
parameters that will activate the process. The synchronous
part of the process is initiated by the statement clk’'event
and clk="1" instead of waituntil clk="1" . The asyn-
chronous preset/reset is similar to other Cypress PLDs ex-
cept for the additional polarity mux feature that enables active
HIGH or LOW. To specify clock polarity, the VHDL construct
for active HIGH is if reset = ‘1’ then and for active
LOW is if reset = '0’ then
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Appendix A. inregent

-- The bufoe port map parameters are:

-- bufoe port map(signal going to the input of the tristateable buffer,
-- tristate control signal,

-- the output signal that is the entity output pin,

-- the feedback signal from the entity input/output pin)

-- In this example the last entry is “open” meaning no feedback.

USE work.bv_math.all; -- necessary for inc_bv();
USE work.rtlpkg.all; -- necessary for bufoe

ENTITY inregcent IS
PORT (clk, clkin, reset, load, outen: IN bit;
count: INOUT x01z_VECTOR(0 TO 3));
END inregcnt;

ARCHITECTURE behavior OF inregcnt IS
TYPE bufRec IS -- record for bufoe
RECORD -- inputs and feedback
cnt: bit_vector(0 TO 3);
dat: bit_vector(0 TO 3);
END RECORD;
SIGNAL temp: bufRec;
SIGNAL regin: bit_vector(0 to 3);-- for registering input loaded data
SIGNAL resetl, reset2:bit;  -- for registering the reset input
CONSTANT counterSize: integer := 3;
BEGIN
gl: FOR i IN O TO counterSize GENERATE
bx: bufoe PORT MAP(temp.cnt(i), outen, count(i), temp.dat(i));
END GENERATE;
procl: PROCESS
BEGIN
WAIT UNTIL (clk ='17);
IF reset2 ='1’ THEN -- uses the double registered signal
temp.cnt <= “0000";
ELSIF load ='1' THEN
temp.cnt <= regin; -- uses the single registered signal
ELSE
temp.cnt <= inc_bv(temp.cnt); -- increment bit vector
END IF;
END PROCESS;
-- Proc?2 single registers the load operation and double registers the reset -- oper-
ation. Note the two clkin’s are needed for the double register.
proc2: PROCESS
BEGIN
WAIT UNTIL (clkin ='1");
regin <= temp.dat; --single register for data load
resetl <= reset; --single register the reset signal
reset2 <= resetl;--double register the reset signal
END PROCESS;
END behavior;
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Appendix B. usecomb

--uses the full functionality of the oe features of the 371.
--macrocell is in combinatorial mode

USE work.rtlpkg.all;

ENTITY usecomb IS

PORT (outenl, outen2, outen3, outen4, outen5, outen6, outen7,
outen8; IN bit; inputa, inputb: IN bit_vector(0 to 1);
outa,outb: INOUT x01z_vector(0 to 7));

END usecomb;

ARCHITECTURE behavior OF usecomb IS

BEGIN

gl: FORiIN O TO 1 GENERATE

bx1:
bx2:
bx3:
bx4:
bx5:
bx6:
bx7:
bx8:

bufoe PORT MAP(inputa(i), outenl, outa(i), open);

bufoe PORT MAP(inputa(i), outen2, outa(i+2), open);
bufoe PORT MAP(inputa(i), outen3, outa(i+4), open);
bufoe PORT MAP(inputa(i), outen4, outa(i+6), open);
bufoe PORT MAP(inputh(i), outen5, outb(i), open);

bufoe PORT MAP(inputh(i), outen6, outb(i+2), open);
bufoe PORT MAP(inputh(i), outen7, outb(i+4), open);
bufoe PORT MAP(inputh(i), outen8, outb(i+6), open);

END GENERATE;

END behavior;
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Appendix C. uselatch

--uses the full functionality of the oe features of the 371.
--macrocell in latched mode

USE work.rtlpkg.all;

ENTITY uselatch IS
PORT (clk, outenl, outen2, outen3, outen4, outen5, outen6, outen?,
outen8: IN bit;
inputa, inputb: IN bit_vector(0 to 1);
outa,outb: INOUT x01z_vector(0 to 7));
END uselatch;

ARCHITECTURE behavior OF uselatch IS
SIGNAL signala, signalb: bit_vector(0 to 1);
BEGIN
gl: FORiIN O TO 1 GENERATE
bx1: bufoe PORT MAP(signala(i), outenl, outa(i), open);
bx2: bufoe PORT MAP(signala(i), outen2, outa(i+2), open);
bx3: bufoe PORT MAP(signala(i), outen3, outa(i+4), open);
bx4: bufoe PORT MAP(signala(i), outen4, outa(i+6), open);
bx5: bufoe PORT MAP(signalb(i), outen5, outb(i), open);
bx6: bufoe PORT MAP(signalb(i), outen6, outb(i+2), open);
bx7: bufoe PORT MAP(signalb(i), outen7, outb(i+4), open);
bx8: bufoe PORT MAP(signalb(i), outen8, outh(i+6), open);
END GENERATE;--the clk input is an active low latch enable
--the if then construct must be within a process.
PROCESS
BEGIN
IF clk="0" then
signala <= inputa;
signalb <= inputb;
ELSE
signala <= signala;
signalb <= signalb;
END IF;
END PROCESS;
END behavior;
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Appendix D. usereg

--macrocell in registered mode

ENTITY usereg IS
PORT (clk, outenl, outen2, outen3, outen4, outen5, outen6, outen?,
outen8: IN bit; inputa, inputb: IN bit_vector(0 to 1);
outa,outb: INOUT x01z_vector(0 to 7));
END usereg;

ARCHITECTURE behavior OF usereg IS
SIGNAL signala, signalb: bit_vector(0 to 1);
BEGIN
gl: FORiIN O TO 1 GENERATE
bx1: bufoe PORT MAP(signala(i), outenl, outa(i), open);
bx2: bufoe PORT MAP(signala(i), outen2, outa(i+2), open);
bx3: bufoe PORT MAP(signala(i), outen3, outa(i+4), open);
bx4: bufoe PORT MAP(signala(i), outen4, outa(i+6), open);
bx5: bufoe PORT MAP(signalb(i), outen5, outb(i), open);
bx6: bufoe PORT MAP(signalb(i), outen6, outb(i+2), open);
bx7: bufoe PORT MAP(signalb(i), outen7, outb(i+4), open);
bx8: bufoe PORT MAP(signalb(i), outen8, outh(i+6), open);
END GENERATE; --the clk input is a rising edge triggered clock for
--the register
--the wait until construct must be within a process.
PROCESS
BEGIN
WAIT UNTIL clk="1";
signala <= inputa;
signalb <= inputb;
END PROCESS;
END behavior;
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Appendix E. uselatch2

--This file shows the use of the triout component to perform the
--output enable function.

--COMPONENT triout

-- port (

- X: IN bit; -- input to buffer

-- oe: IN bit; -- output enable
-- y: OUT bit); -- output
--END component

--The oe control is a function of the dedicated inputs and is latch

--controlled.

USE work.rtlpkg.all;

ENTITY uselatch2 IS
PORT (clk1, clk2, in_oel, in_oe2: IN bit;
inputa, inputb: IN bit_vector(0 to 1);
outa,outb: INOUT x01z_vector(0 to 7));
END uselatch?2;

ARCHITECTURE behavior OF uselatch2 IS
SIGNAL signala, signalb: bit_vector(0 to 1);
SIGNAL sig_en1, sig_en2, sig_en3, sig_en4: bit;

BEGIN

gl: FORIiINOTO 1 GENERATE

bx1:
bx2:
bx3:
bx4:
bx5:
bx6:
bx7:
bx8:

triout PORT MAP(signala(i), sig_en1, outa(i));

triout PORT MAP(signala(i), sig_en2, outa(i+2));
triout PORT MAP(signala(i), sig_en3, outa(i+4));
triout PORT MAP(signala(i), sig_en4, outa(i+6));
triout PORT MAP(signalb(i), sig_enl, outa(i));

triout PORT MAP(signalb(i), sig_en2, outa(i+2));
triout PORT MAP(signalb(i), sig_en3, outa(i+4));
triout PORT MAP(signalb(i), sig_en4, outa(i+6));

END GENERATE;

--The clock latches the data when high and is combinatorial when low

oecontrol: PROCESS

BEGIN
IF clk1="0" then
sig_enl <= not(in_oe2) and not(in_oel);
sig_en2 <= not(in_oe2) and in_oel;
sig_en3 <=in_oe2 and not(in_oel);
sig_en4 <=in_oe2 and in_oel,;
ELSE
sig_enl <= sig_enl;
sig_en2 <= sig_en2;
sig_en3 <= sig_eng3;
sig_en4 <= sig_en4;
END IF;
END PROCESS;

latch: PROCESS

--to instantiate triout component
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Appendix E. uselatch2 (continued)

BEGIN
IF clk2="0" then
signala <= inputa;
signalb <= inputb;
ELSE
signala <= signala;
signalb <= signalb;
END IF;
END PROCESS;
END behavior;
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Appendix F. buriedreg

-- The purpose of this example is to show how to use the
-- buried registers to create a 16 bit counter. The 12

-- most significant bits are assigned to i/o registers

-- and the 4 least significant bits go to the buried registers.

USE work.bv_math.all; -- necessary for inc_bv();

ENTITY buriedreg IS
PORT (clk, reset: IN BIT;
count: INOUT bit_vector(0 TO 11));
END buriedreg;

ARCHITECTURE behavior OF buriedreg IS
SIGNAL fullent : bit_vector(0 to 15);

BEGIN
PROCESS
BEGIN
WAIT UNTIL (clk ="1");
IF reset ='1’ THEN -- synchronous reset
FORIiINOTO 15 LOOP
fullent(i) <="07;
END LOOP;
ELSE
fullent <= inc_bv(fullcnt);
END IF;

END PROCESS;
count(0 to 11) <= fullent(4 to 15);
END behavior;
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Appendix G. buriedreg2

-- The purpose of this example is to show how to use the

-- buried registers to create a 16 bit counter. The 12

-- most significant bits are assigned to i/o registers

-- and the 4 least significant bits go to the buried registers.

-- This example also demonstrates how to do an asynchronous reset.

USE work.bv_math.all; -- necessary for inc_bv();

ENTITY buriedreg2 IS
PORT (clk, reset: IN BIT;
count: inout bit_vector(0 TO 11));
END buriedreg2;

ARCHITECTURE behavior OF buriedreg2 IS
SIGNAL fullent : bit_vector(0 to 15);

BEGIN
PROCESS(clk,reset)--sensitivity list
BEGIN
IF reset ='1' THEN
fullcnt <= x“0000";-- asychronous reset, the x stands for hex
ELSIF (clk’event and clk ='1") then
fullent <= inc_bv(fullcnt);-- synchronous count
END IF;
END process;
count(0 to 11) <= fullcnt(4 to 15); -- assignssignals to entity outputs

-- and defines buried registers
END behavior;
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