

PRELIMINARY

CY7C1011

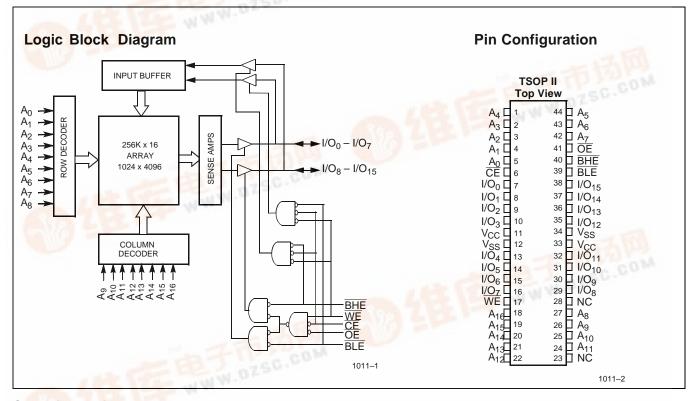
128K x 16 Static RAM

Features

- · High speed
 - $-t_{AA} = 15 \text{ ns}$
- · Low active power
 - -1150 mW (max.)
- Low CMOS standby power (L version)
 - -40 mW (max.)
- 2.0V Data Retention (4 mW at 2.0V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features

Functional Description

The CY7C1011 is a high-performance CMOS static RAM organized as 131,072 words by 16 bits.


Writing to the device is accomplished by taking chip enable (\overline{CE}) and write enable (\overline{WE}) inputs LOW. If byte low enable

 (\overline{BLE}) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If byte high enable (\overline{BHE}) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$).

Reading from the device is accomplished by taking chip enable (\overline{CE}) and output enable (\overline{OE}) LOW while forcing the write enable (\overline{WE}) HIGH. If byte low enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If byte high enable (\overline{BHE}) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this datasheet for a complete description of read and write modes.

The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1011 is available in a standard 44-pin TSOP II package with center power and ground (revolutionary) pinout.

Selection Guide

		7C1011-15	7C1011-20	7C1011-25
Maximum Access Time (ns)		15	20	25
Maximum Operating Current (mA)		230	220	200
Maximum CMOS Standby Current (mA)	Com'l	8	8	8

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied-55°C to +125°C

Supply Voltage on V_{CC} to Relative GND^[1] -0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V CC + 0.5V

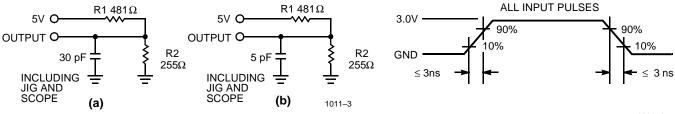
DC Input Voltage $^{[1]}$ -0.5V to V_{CC} + 0.5V Current into Outputs (LOW)...... 20 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	5V ± 0.5

Electrical Characteristics Over the Operating Range

			7C1011-15		7C1	011-20	7C1	011-25	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	$V_{CC} + 0.5$	2.2	$V_{CC} + 0.5$	2.2	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-1	+1	-1	+1	-1	+1	μΑ
l _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$	-1	+1	-1	+1	–1	+1	μΑ
Icc	V _{CC} Operating Supply Current	$V_{CC} = Max$, $f = f_{MAX} = 1/t_{RC}$		230		220		200	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$		40		40		40	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\label{eq:local_local_local_local} \begin{array}{ll} \text{Max. } V_{CC}, \\ \overline{CE} \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V, \\ \text{or } V_{IN} \leq 0.3V, \text{ f=0} \end{array}$		8		8		8	mA


Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1 \text{ MHz}$,	8	pF
Солт	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

Notes:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- 2. TA is the "instant on" case temperature.
- Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT OUTPUT O \sim 0 1.73V

1011-4

Switching Characteristics^[4] Over the Operating Range

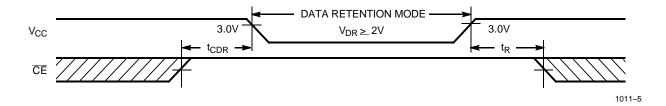
		7C1011-15 7C1011-20		11-20	7C10	11-25			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
READ CYC	LE	1	•	•	•	•	•	•	
t _{RC}	Read Cycle Time	15		20		25		ns	
t _{AA}	Address to Data Valid		15		20		25	ns	
t _{OHA}	Data Hold from Address Change	3		3		3		ns	
t _{ACE}	CE LOW to Data Valid		15		20		25	ns	
t _{DOE}	OE LOW to Data Valid		7		8		10	ns	
t _{LZOE}	OE LOW to Low Z ^[5]	0		0		0		ns	
t _{HZOE}	OE HIGH to High Z ^[5, 6]		7		8		10	ns	
t _{LZCE}	CE LOW to Low Z ^[5]	3		3		5		ns	
t _{HZCE}	CE HIGH to High Z ^[5, 6]		7		8		10	ns	
t _{PU}	CE LOW to Power-Up	0		0		0		ns	
t _{PD}	CE HIGH to Power-Down		15		20		25	ns	
t _{DBE}	Byte Enable to Data Valid		7		8		10	ns	
t _{LZBE}	Byte Enable to Low Z	0		0		0		ns	
t _{HZBE}	Byte Disable to High Z		7		8		10	ns	
WRITE CYC	CLE ^[7,8]	4			1				
t _{WC}	Write Cycle Time	15		20		25		ns	
t _{SCE}	CE LOW to Write End	12		13		15		ns	
t _{AW}	Address Set-Up to Write End	12		13		15		ns	
t _{HA}	Address Hold from Write End	0		0		0		ns	
t _{SA}	Address Set-Up to Write Start	0		0		0		ns	
t _{PWE}	WE Pulse Width	12		13		15		ns	
t _{SD}	Data Set-Up to Write End	8		9		10		ns	
t _{HD}	Data Hold from Write End	0		0		0		ns	
t _{LZWE}	WE HIGH to Low Z ^[5]	3		3		5		ns	
t _{HZWE}	WE LOW to High Z ^[5, 6]		7		8		10	ns	
t _{BW}	Byte Enable to End of Write	12		13		15		ns	

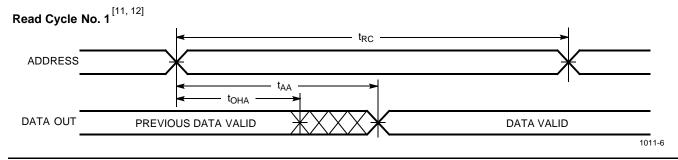
Notes:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified $I_{OL}I_{OH}$ and 30-pF load capacitance.

 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

 The internal write time of the memory is defined by the overlap of \overline{CE} LOW, and \overline{WE} LOW. \overline{CE} and \overline{WE} must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

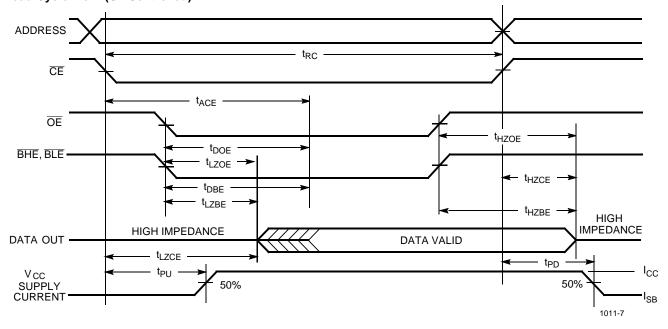

 The minimum write cycle time for Write Cycle no. 3 (WE controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD} .


Data Retention Characteristics Over the Operating Range

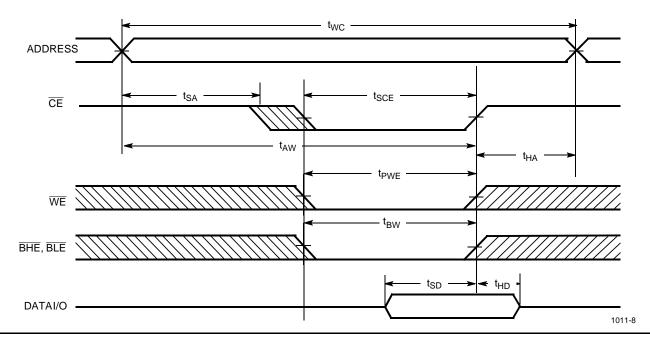
Parameter	Description		Conditions ^[10]	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention			2.0		V
I _{CCDR}	Data Retention Current	Com'l	$\begin{split} & \frac{V_{CC} = V_{DR} = 2.0V,}{CE \ge V_{CC} - 0.3V,} \\ & V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V \end{split}$		2	mA
t _{CDR} ^[3]	Chip Deselect to Data Rete	ention Time		0		ns
t _R ^[9]	Operation Recovery Time			t _{RC}		ns

Data Retention Waveform

Switching Waveforms


Notes:

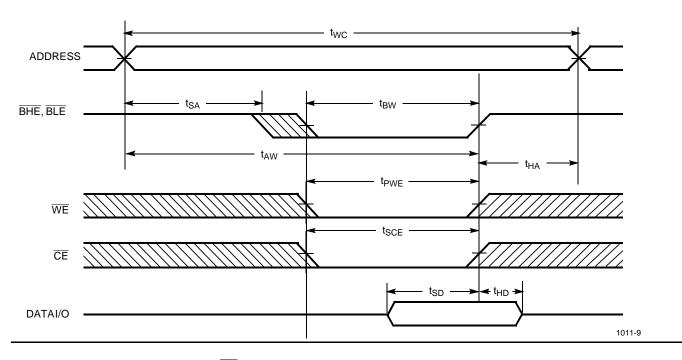
- t_r ≤ 3 ns for the −12 and −15 speeds. t_r ≤ 5 ns for the −20 and slower speeds.
 No input may exceed V_{CC} + 0.5V.
 Device is continuously selected. OE, CE, BHE, and/or BHE = V_{IL}.
 WE is HIGH for read cycle.



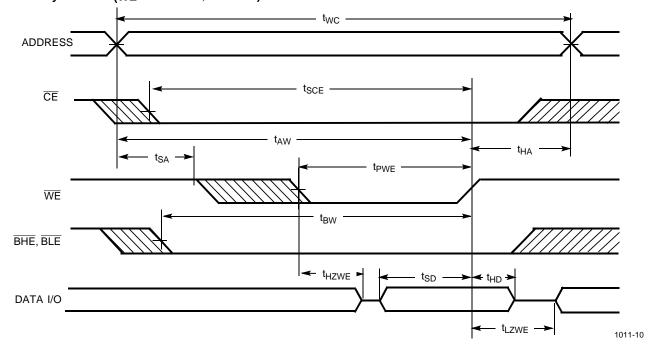
Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled) [12, 13]

Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled) $^{[14, 15]}$


Notes:

- Address valid prior to or coincident with CE transition LOW.
 Data I/O is high impedance if OE or BHE and/or BLE= V_{IH}.
 If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.



Switching Waveforms (continued)

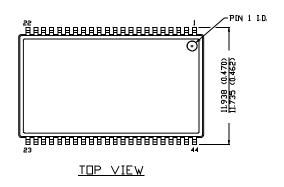
Write Cycle No. 2 (BLE or BHE Controlled)

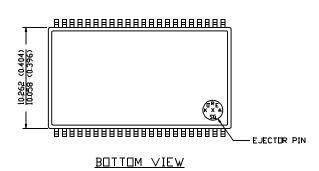
Write Cycle No.3 (WE Controlled, OE LOW)

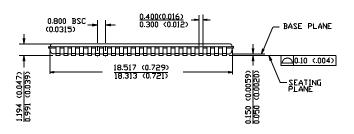
Truth Table

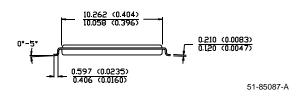
CE	OE	WE	BLE	BHE	I/O ₀ -I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Χ	Χ	Χ	Х	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read Lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write Lower bits only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write Upper bits only	Active (I _{CC})
L	Н	Н	Χ	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C1011-15VC	Z44	44-Lead TSOP Type II	Commercial
20	CY7C1011-20VC	Z44	44-Lead TSOP Type II	
25	CY7C1011-25ZC	Z44	44-Lead TSOP Type II	


Document #: 38-00744


Package Diagram


44-Pin TSOP II Z44

DIMENSION IN MM (INCH)
MAX
MIN.

