

PRELIMINARY

CY7C1512

64K x 8 Static RAM

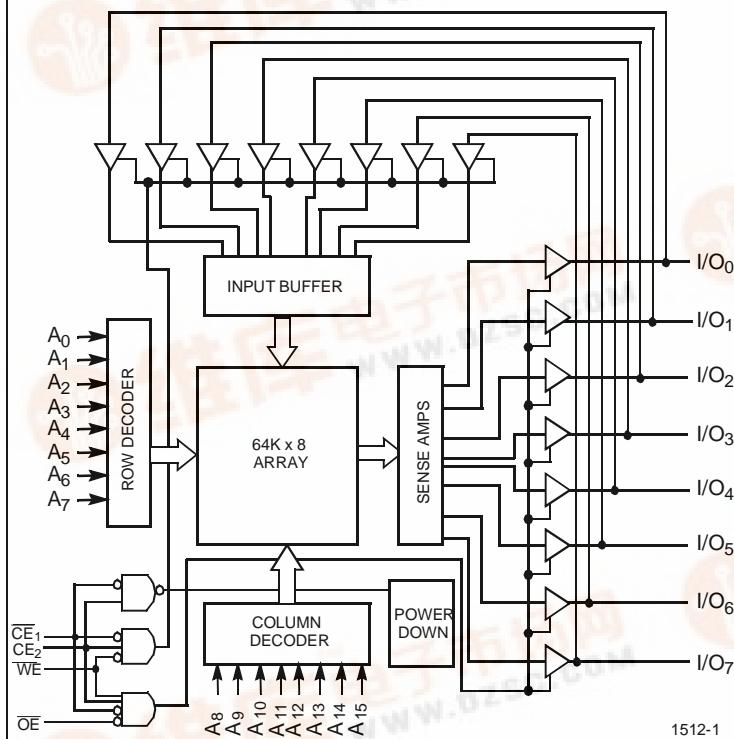
Features

- High speed
 - $t_{AA} = 15$ ns
- CMOS for optimum speed/power
- Low active power
 - 770 mW
- Low standby power
 - 28 mW
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} options

Functional Description

The CY7C1512 is a high-performance CMOS static RAM organized as 65,536 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (\overline{CE}_1), an active HIGH chip enable (CE_2), an active LOW output enable (\overline{OE}),

and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.


Writing to the device is accomplished by taking chip enable one (\overline{CE}_1) and write enable (\overline{WE}) inputs LOW and chip enable two (CE_2) input HIGH. Data on the eight I/O pins (I/O_0 through I/O_7) is then written into the location specified on the address pins (A_0 through A_{15}).

Reading from the device is accomplished by taking chip enable one (\overline{CE}_1) and output enable (OE) LOW while forcing write enable (\overline{WE}) and chip enable two (CE_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O_0 through I/O_7) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or CE_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, CE_2 HIGH, and \overline{WE} LOW).

The CY7C1512 is available in standard TSOP type I and 450-mil-wide plastic SOIC packages.

Logic Block Diagram

Pin Configurations

SOIC
Top View

NC	1	32	V _{CC}
NC	2	31	\overline{A}_{15}
A_{14}	3	30	CE_2
A_{12}	4	29	WE
A_7	5	28	A_{13}
A_6	6	27	A_8
A_5	7	26	A_9
A_4	8	25	A_{11}
A_3	9	24	\overline{OE}
A_2	10	23	A_{10}
A_1	11	22	\overline{CE}_1
A_0	12	21	I/O_7
I/O_0	13	20	I/O_6
I/O_1	14	19	I/O_5
I/O_2	15	18	I/O_4
GND	16	17	I/O_3

1512-2

TSOP I
Top View
(not to scale)

A_{11}	1	\overline{OE}
A_9	2	A_{10}
A_3	3	CE_1
A_{13}	4	I/O_7
WE	5	I/O_6
CE_2	6	I/O_5
V_{CC}	7	I/O_4
NC	8	I/O_3
NC	9	GND
A_{10}	10	I/O_2
A_{14}	11	I/O_1
A_{12}	12	I/O_0
A_7	13	A_0
A_6	14	A_1
A_5	15	A_2
A_4	16	A_3

Selection Guide

		7C1512-15	7C1512-20	7C1512-25	7C1512-35	7C1512-70
Maximum Access Time (ns)		15	20	25	35	70
Maximum Operating Current (mA)	Commercial	140	130	120	110	110
Maximum CMOS Standby Current (mA)	Commercial	5	5	5	5	5

PRELIMINARY

CY7C1512

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -55°C to $+125^{\circ}\text{C}$

Supply Voltage on V_{CC} to Relative GND^[1] ... -0.5V to $+7.0\text{V}$

DC Voltage Applied to Outputs
in High Z State^[1] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

DC Input Voltage^[1] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

Current into Outputs (LOW)..... 20 mA

Static Discharge Voltage $>2001\text{V}$
(per MIL-STD-883, Method 3015)

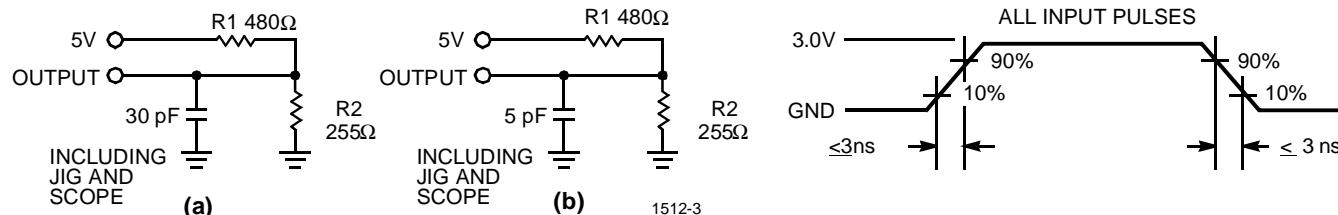
Latch-Up Current..... >200 mA

Operating Range

Range	Ambient Temperature ^[2]	V_{CC}
Commercial	0°C to $+70^{\circ}\text{C}$	$5\text{V} \pm 10\%$
Industrial	-40°C to $+85^{\circ}\text{C}$	$5\text{V} \pm 10\%$

Electrical Characteristics Over the Operating Range^[3]

Parameter	Description	Test Conditions	7C1512-15		7C1512-20		7C1512-25		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$V_{\text{CC}} = \text{Min.}$, $I_{\text{OH}} = -4.0\text{ mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{\text{CC}} = \text{Min.}$, $I_{\text{OL}} = 8.0\text{ mA}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$V_{\text{CC}} + 0.3$	2.2	$V_{\text{CC}} + 0.3$	2.2	$V_{\text{CC}} + 0.3$	V
V_{IL}	Input LOW Voltage ^[1]		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\text{GND} \leq V_{\text{I}} \leq V_{\text{CC}}$	-1	+1	-1	+1	-1	+1	μA
I_{OZ}	Output Leakage Current	$\text{GND} \leq V_{\text{I}} \leq V_{\text{CC}}$, Output Disabled	-5	+5	-5	+5	-5	+5	μA
I_{OS}	Output Short Circuit Current ^[4]	$V_{\text{CC}} = \text{Max.}$, $V_{\text{OUT}} = \text{GND}$		-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$V_{\text{CC}} = \text{Max.}$, $I_{\text{OUT}} = 0\text{ mA}$, $f = f_{\text{MAX}} = 1/t_{\text{RC}}$		140		130		120	mA
I_{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $\overline{\text{CE}}_1 \geq V_{\text{IH}}$ or $\text{CE}_2 \leq V_{\text{IL}}$, $V_{\text{IN}} \geq V_{\text{IH}}$ or $V_{\text{IN}} \leq V_{\text{IL}}$, $f = f_{\text{MAX}}$		40		30		30	mA
I_{SB2}	Automatic CE Power-Down Current —CMOS Inputs	Max. V_{CC} , $\overline{\text{CE}}_1 \geq V_{\text{CC}} - 0.3\text{V}$, or $\text{CE}_2 \leq 0.3\text{V}$, $V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}$, or $V_{\text{IN}} \leq 0.3\text{V}$, $f = 0$		5		5		5	mA


Parameter	Description	Test Conditions	7C1512-35		7C1512-70		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$V_{\text{CC}} = \text{Min.}$, $I_{\text{OH}} = -4.0\text{ mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{\text{CC}} = \text{Min.}$, $I_{\text{OL}} = 8.0\text{ mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$V_{\text{CC}} + 0.3$	2.2	$V_{\text{CC}} + 0.3$	V
V_{IL}	Input LOW Voltage ^[1]		-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\text{GND} \leq V_{\text{I}} \leq V_{\text{CC}}$	-1	+1	-1	+1	μA
I_{OZ}	Output Leakage Current	$\text{GND} \leq V_{\text{I}} \leq V_{\text{CC}}$, Output Disabled	-5	+5	-5	+5	μA
I_{OS}	Output Short Circuit Current ^[4]	$V_{\text{CC}} = \text{Max.}$, $V_{\text{OUT}} = \text{GND}$		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$V_{\text{CC}} = \text{Max.}$, $I_{\text{OUT}} = 0\text{ mA}$, $f = f_{\text{MAX}} = 1/t_{\text{RC}}$		110		110	mA
I_{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $\overline{\text{CE}}_1 \geq V_{\text{IH}}$ or $\text{CE}_2 \leq V_{\text{IL}}$, $V_{\text{IN}} \geq V_{\text{IH}}$ or $V_{\text{IN}} \leq V_{\text{IL}}$, $f = f_{\text{MAX}}$		25		25	mA
I_{SB2}	Automatic CE Power-Down Current —CMOS Inputs	Max. V_{CC} , $\overline{\text{CE}}_1 \geq V_{\text{CC}} - 0.3\text{V}$, or $\text{CE}_2 \leq 0.3\text{V}$, $V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}$, or $V_{\text{IN}} \leq 0.3\text{V}$, $f = 0$		5		5	mA

Notes:

1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
2. T_A is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

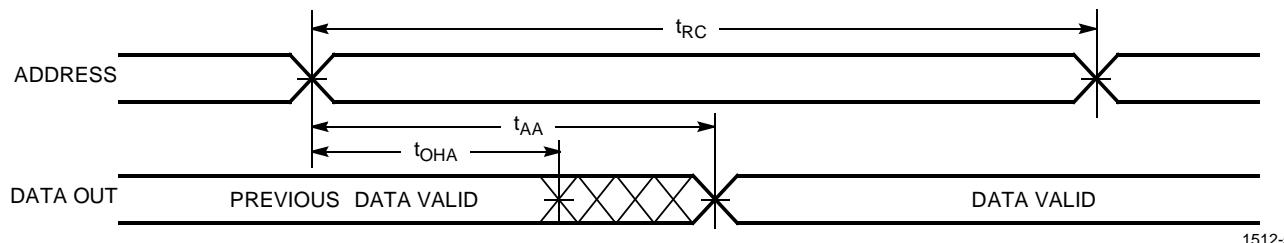
Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^\circ C$, $f = 1$ MHz, $V_{CC} = 5.0V$	9	pF
C_{OUT}	Output Capacitance		9	pF

AC Test Loads and Waveforms

1512-4

Equivalent to: THVENIN EQUIVALENT
 167Ω
 OUTPUT $\text{---} 1.73V$

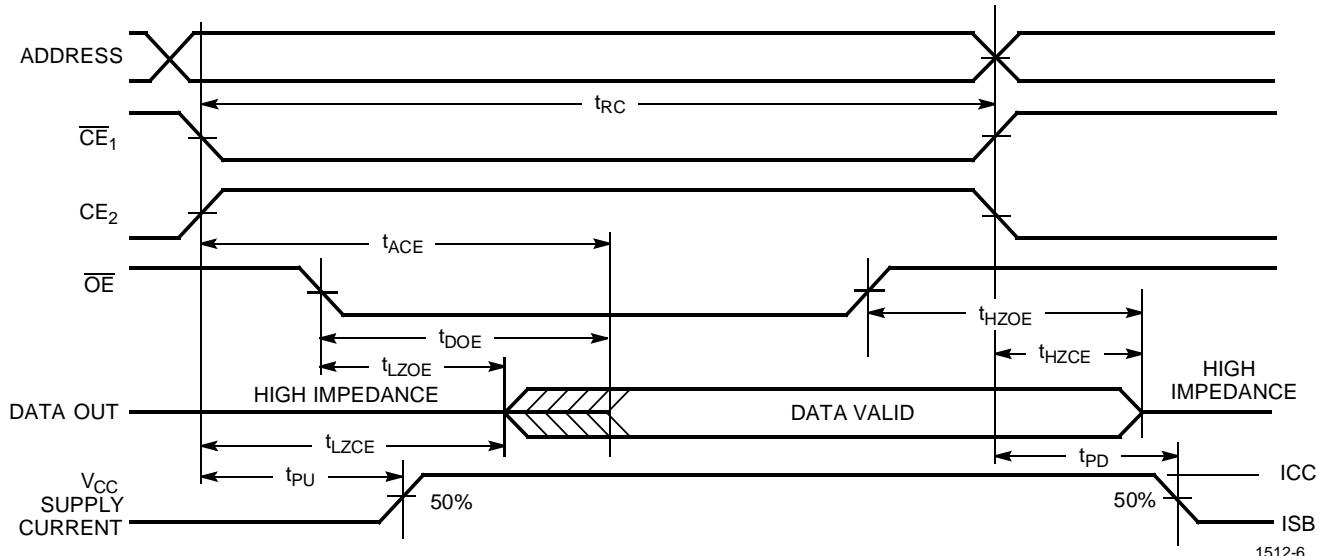
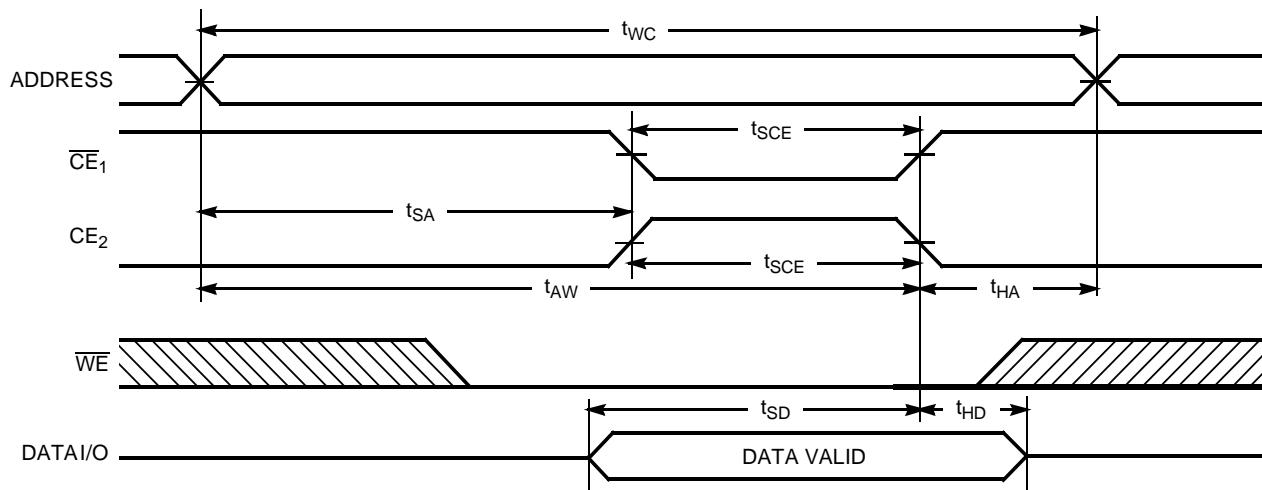

Switching Characteristics^[3, 6] Over the Operating Range

Parameter	Description	7C1512-15		7C1512-20		7C1512-25		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	15		20		25		ns
t_{AA}	Address to Data Valid		15		20		25	ns
t_{OHA}	Data Hold from Address Change	3		3		5		ns
t_{ACE}	\overline{CE}_1 LOW to Data Valid, CE_2 HIGH to Data Valid		15		20		25	ns
t_{DOE}	\overline{OE} LOW to Data Valid		7		8		10	ns
t_{LZOE}	\overline{OE} LOW to Low Z	0		0		0		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[7, 8]		7		8		10	ns
t_{LZCE}	\overline{CE}_1 LOW to Low Z, CE_2 HIGH to Low Z ^[8]	3		3		5		ns
t_{HZCE}	\overline{CE}_1 HIGH to High Z, CE_2 LOW to High Z ^[7, 8]		7		8		10	ns
t_{PU}	\overline{CE}_1 LOW to Power-Up, CE_2 HIGH to Power-Up	0		0		0		ns
t_{PD}	\overline{CE}_1 HIGH to Power-Down, CE_2 LOW to Power-Down		15		20		25	ns
WRITE CYCLE^[9]								
t_{WC}	Write Cycle Time	15		20		25		ns
t_{SCE}	\overline{CE}_1 LOW to Write End, CE_2 HIGH to Write End	12		15		20		ns
t_{AW}	Address Set-Up to Write End	12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
t_{PWE}	\overline{WE} Pulse Width	12		15		20		ns
t_{SD}	Data Set-Up to Write End	8		10		15		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t_{LZWE}	\overline{WE} HIGH to Low Z ^[8]	3		3		5		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[7, 8]		7		8		10	ns

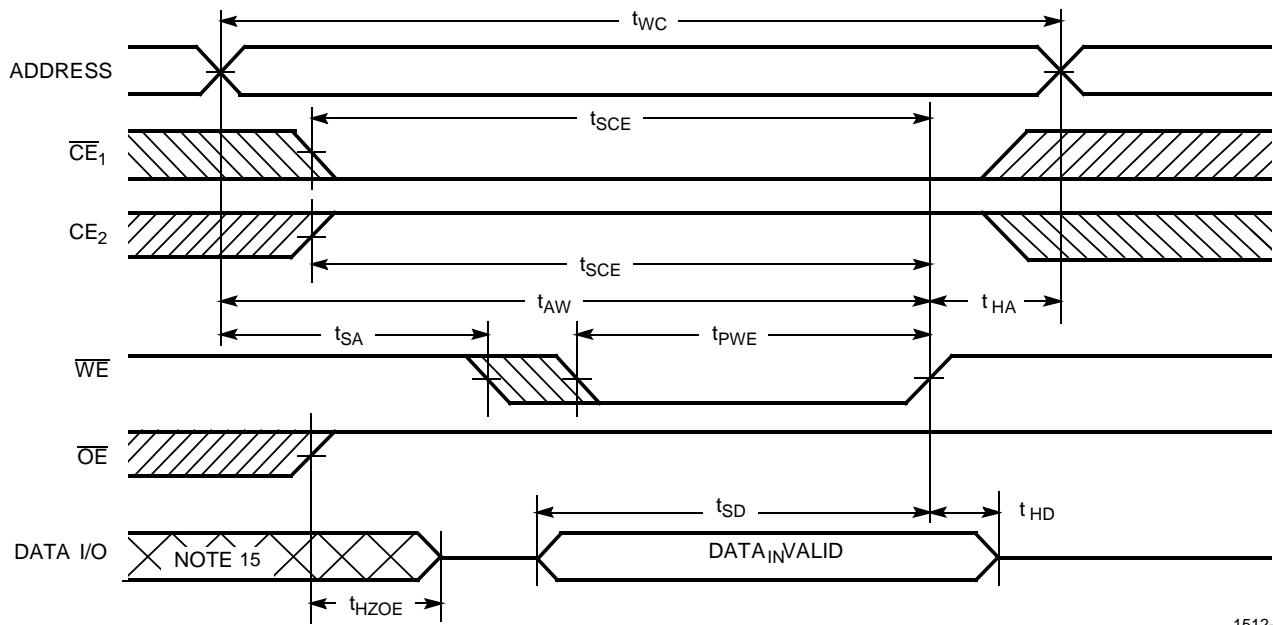
5. Tested initially and after any design or process changes that may affect these parameters.
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified 10U_OH and 30-pF load capacitance.
7. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
9. The internal write time of the memory is defined by the overlap of \overline{CE}_1 LOW, CE_2 HIGH, and WE LOW. CE_1 and WE must be LOW and CE_2 HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Switching Characteristics^[3, 6] Over the Operating Range (continued)

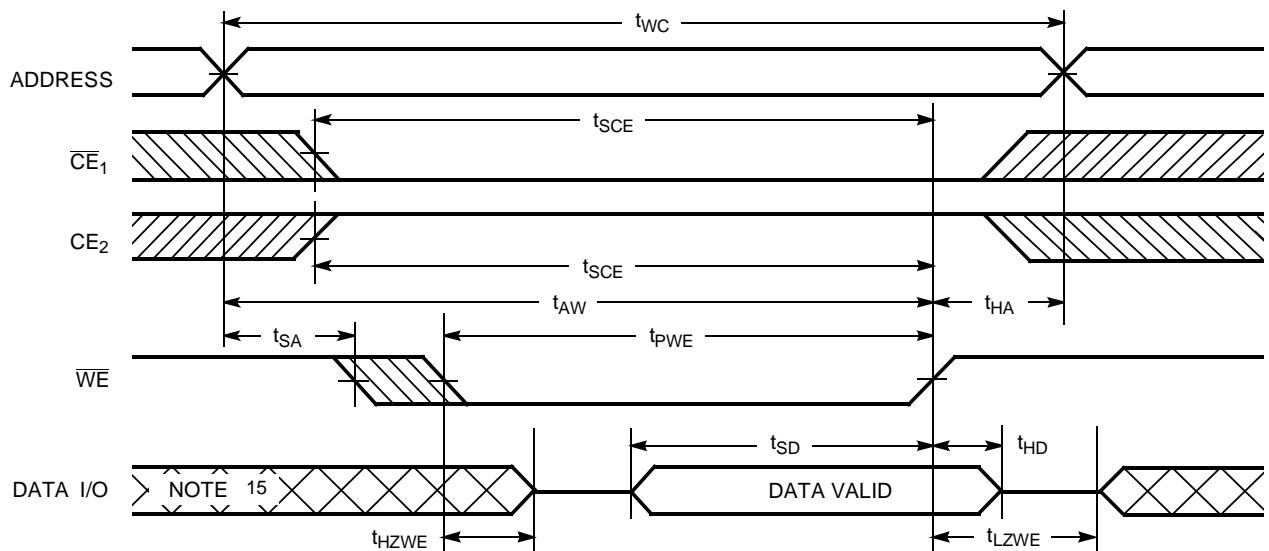
Parameter	Description	7C1512-35		7C1512-70		Unit
		Min.	Min.	Min.	Min.	
READ CYCLE						
t_{RC}	Read Cycle Time	35		70		ns
t_{AA}	Address to Data Valid		35		70	ns
t_{OHA}	Data Hold from Address Change	5		5		ns
t_{ACE}	\overline{OE} LOW to Data Valid, CE_1 HIGH to Data Valid		35		70	ns
t_{DOE}	OE LOW to Data Valid		15		15	ns
t_{LZOE}	\overline{OE} LOW to Low Z	0		0		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[7, 8]		15		15	ns
t_{LZCE}	\overline{CE}_1 LOW to Low Z, CE_2 HIGH to Low Z ^[8]	5		5		ns
t_{HZCE}	\overline{CE}_1 HIGH to High Z, CE_2 LOW to High Z ^[7, 8]		15		15	ns
t_{PU}	\overline{CE}_1 LOW to Power-Up, CE_2 HIGH to Power-Up	0		0		ns
t_{PD}	\overline{CE}_1 HIGH to Power-Down, CE_2 LOW to Power-Down		35		70	ns
WRITE CYCLE^[9]						
t_{WC}	Write Cycle Time	35		70		ns
t_{SCE}	\overline{CE}_1 LOW to Write End, CE_2 HIGH to Write End	25		60		ns
t_{AW}	Address Set-Up to Write End	25		60		ns
t_{HA}	Address Hold from Write End	0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		ns
t_{PWE}	\overline{WE} Pulse Width	25		60		ns
t_{SD}	Data Set-Up to Write End	20		55		ns
t_{HD}	Data Hold from Write End	0		0		ns
t_{LZWE}	\overline{WE} HIGH to Low Z ^[8]	5		5		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[7, 8]		15		15	ns



Switching Waveforms
Read Cycle No. 1^[10, 11]

1512-5


Notes:

10. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
11. \overline{WE} is HIGH for read cycle.


Switching Waveforms (continued)

Read Cycle No. 2 (\overline{OE} Controlled) [11, 12]

Write Cycle No. 1 (\overline{CE}_1 or CE_2 Controlled) [13, 14]

Notes:

12. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.
13. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
14. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Read Cycle No. 2 (\overline{WE} Controlled, \overline{OE} HIGH During Write)^[13, 14]

1512-8

Write Cycle No. 3 (\overline{WE} Controlled, \overline{OE} LOW)^[14]

1512-9

Note:

15. During this period the I/Os are in the output state and input signals should not be applied.

PRELIMINARY

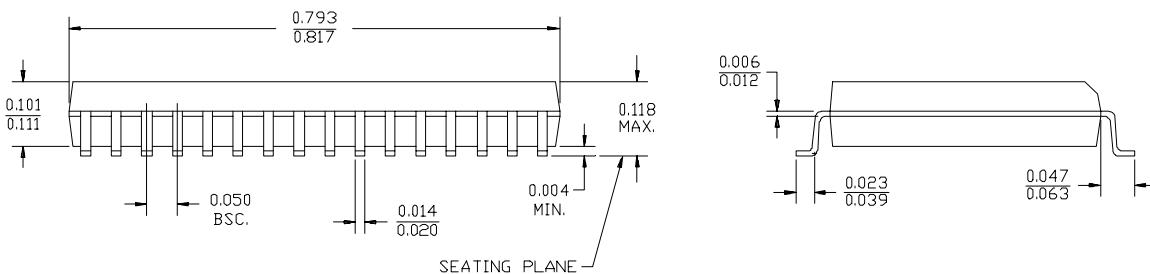
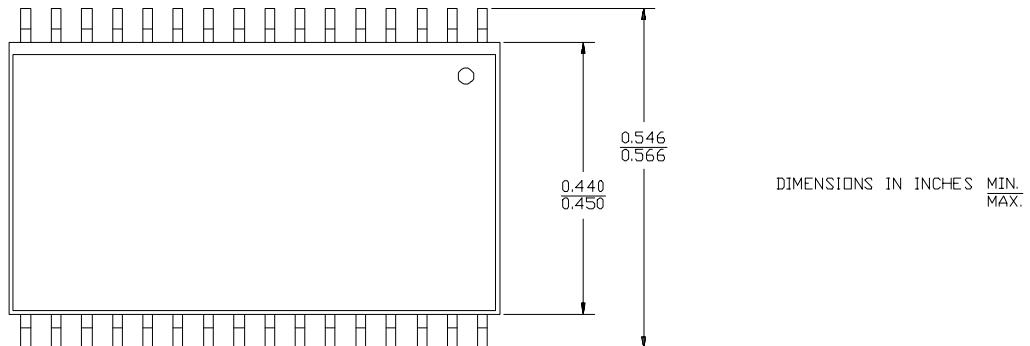
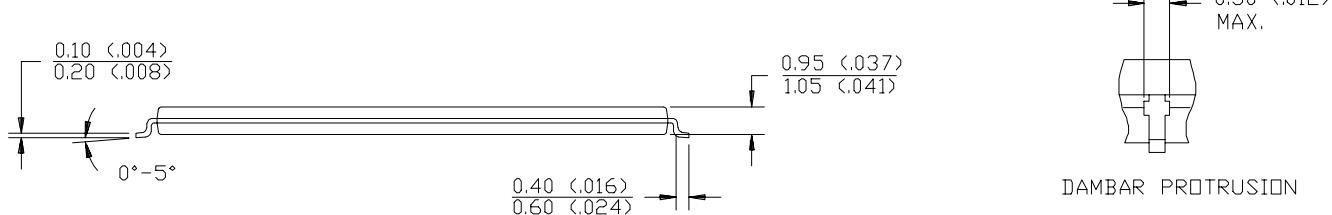
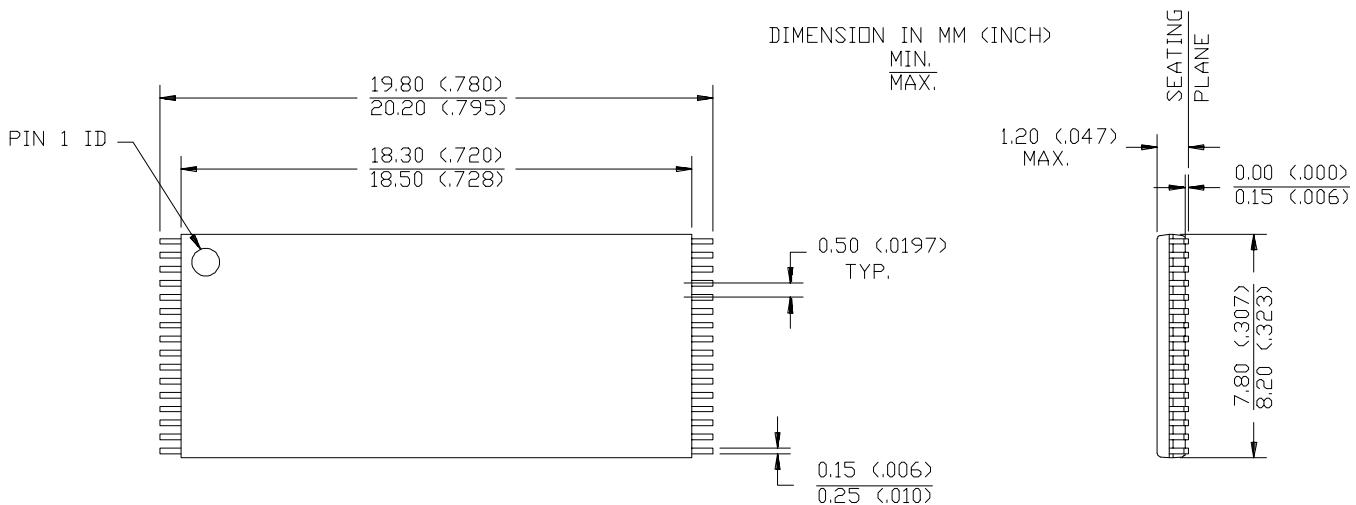
CY7C1512

Truth Table

CE ₁	CE ₂	OE	WE	I/O ₀ – I/O ₇	Mode	Power
H	X	X	X	High Z	Power-Down	Standby (I _{SB})
X	L	X	X	High Z	Power-Down	Standby (I _{SB})
L	H	L	H	Data Out	Read	Active (I _{CC})
L	H	X	L	Data In	Write	Active (I _{CC})
L	H	H	H	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C1512-15SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY7C1512-15ZC	Z32	32-Lead TSOP Type I	
	CY7C1512-20ZI	Z32	32-Lead TSOP Type I	Industrial
20	CY7C1512-20SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY7C1512-20ZC	Z32	32-Lead TSOP Type I	
	CY7C1512-20ZI	Z32	32-Lead TSOP Type I	Industrial
25	CY7C1512-25SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY7C1512-25ZC	Z32	32-Lead TSOP Type I	
	CY7C1512-25ZI	Z32	32-Lead TSOP Type I	Industrial
35	CY7C1512-35SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
70	CY7C1512-70SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY7C1512-70ZC	Z32	32-Lead TSOP Type I	
	CY7C1512-70ZI	Z32	32-Lead TSOP Type I	Industrial





Shaded areas contain advanced information.

Document #: 38-00522-A

PRELIMINARY

CY7C1512

Package Diagrams
32-Lead (450 -Mil) Molded SOIC S34

32-Lead Thin Small Outline Package Z32
