

CY7C187

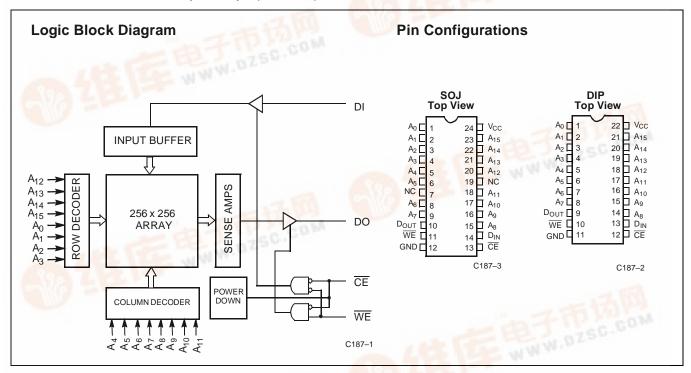
64K x 1 Static RAM

Features

- High speed
 - —15 ns
- · CMOS for optimum speed/power
- Low active power
 - 495 mW
- · Low standby power
 - 220 mW
- TTL compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C187 is a high-performance CMOS static RAM organized as 65,536 words x 1 bit. Easy memory expansion is pro-


vided by an active LOW Chip Enable ($\overline{\text{CE}}$) and three-state drivers. The CY7C187 has an automatic power-down feature, reducing the power consumption by 56% when deselected.

Writing to the device is accomplished when the Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs are both LOW. Data on the input pin (D_{IN}) is written into the memory location specified on the address pins $(A_0$ through A_{15}).

Reading the device is accomplished by taking the Chip Enable (\overline{CE}) LOW, while Write Enable (\overline{WE}) remains HIGH. Under these conditions, the contents of the memory location specified on the address pin will appear on the data output (D_{OUT}) pin.

The output pin stays in high-impedance state when Chip Enable (\overline{CE}) is HIGH or Write Enable (\overline{WE}) is LOW.

The CY7C187 utilizes a die coat to insure alpha immunity.

Selection Guide[1]

FB7 750.0	7C187-15	7C187-20	7C187-25	7C187-35
Maximum Access Time (ns)	15	20	25	35
Maximum Operating Current (mA)	90	80	70	70
Maximum Standby Current (mA)	40/20	40/20	20/20	20/20

Note:

For military specifications, see the CY7C187A datasheet.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied -55°C to +125°C Supply Voltage to Ground Potential (Pin 22 to Pin 11) –0.5V to +7.0V DC Voltage Applied to Outputs in High Z State $^{[2]}$-0.5V to +7.0V

DC Input Voltage ^[2]	0.5V to +7.0V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL–STD–883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range

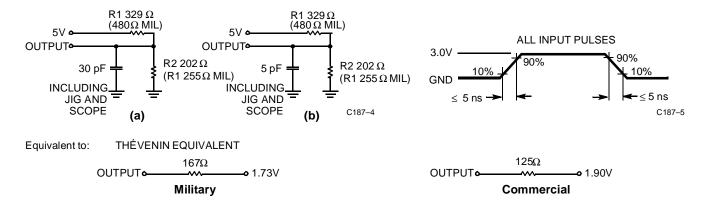
		7C18		87-15	7-15 7C187-20		7C187-25, 35		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} =12.0 mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC}	2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_CC$	-5	+5	- 5	+5	-5	+5	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	-5	+5	- 5	+5	- 5	+5	μА
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-350		-350		-350	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA		90		80		70	mA
I _{SB1}	Automatic CE Power- Down Current ^[4]	Max. V _{CC} , CE ≥ V _{IH}		40		40		20	mA
I _{SB2}	Automatic CE Power-Down Current	$\begin{array}{l} \text{Max. V}_{\text{CC}},\\ \hline \text{CE} \geq \text{V}_{\text{CC}} - 0.3\text{V},\\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V}\\ \text{or V}_{\text{IN}} \leq 0.3\text{V} \end{array}$		20		20		20	mA

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

Notes:

V_{IL} (min.) = -3.0V for pulse durations less than 30 ns.


Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[6]

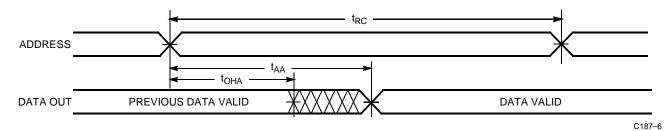
		7C187-15		7C187-20		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE				•	•	
t _{RC}	Read Cycle Time	15		20		ns
t _{AA}	Address to Data Valid		15		20	ns
t _{OHA}	Output Hold from Address Change	3		5		ns
t _{ACE}	CE LOW to Data Valid		15		20	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		5		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		8		8	ns
t _{PU}	CE LOW to Power Up	0		0		ns
t _{PD}	CE HIGH to Power Down		15		20	ns
WRITE CYCLE	[9]			•	•	
t _{WC}	Write Cycle Time	15		20		ns
t _{SCE}	CE LOW to Write End	12		15		ns
t _{AW}	Address Set-Up to Write End	12		15		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	12		15		ns
t _{SD}	Data Set-Up to Write End	10		10		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z	5		5		ns
t _{HZWE}	WE LOW to High Z ^[8]		7		7	ns

Notes:

- 7. 8.
- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} for any given device. t_{HZCE} and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

 The internal write time of the memory is defined by the overlap of \overline{CE} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

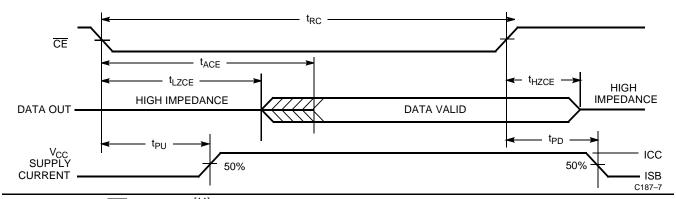


Switching Characteristics Over the Operating Range^[6] (continued)

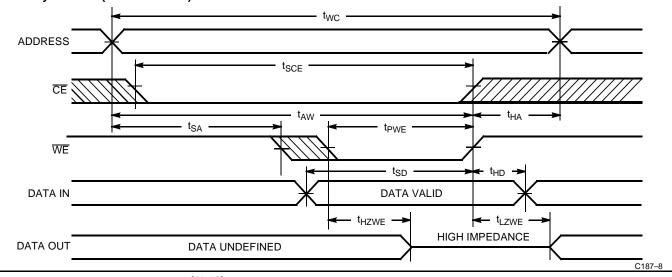
		7C1	87-25	7C187-35		
Parameters	Description	Min.	Max.	Min.	Max.	Units
READ CYCLE		1			•	
t _{RC}	Read Cycle Time	25		35		ns
t _{AA}	Address to Data Valid		25		35	ns
t _{OHA}	Output Hold from Address Change	5		5		ns
t _{ACE}	CE LOW to Data Valid		25		35	ns
t _{LZCE}	CE LOW to Low Z ^[7]	5		5		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		10		15	ns
t _{PU}	CE LOW to Power Up	0		0		ns
t _{PD}	CE HIGH to Power Down		20		20	ns
WRITE CYCLE ^{[9}]		•	•	•	•
t _{WC}	Write Cycle Time	20		25		ns
t _{SCE}	CE LOW to Write End	20		25		ns
t _{AW}	Address Set-Up to Write End	20		25		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	15		20		ns
t _{SD}	Data Set-Up to Write End	10		15		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low	5		5		ns
t _{HZWE}	WE LOW to High Z ^[8]		7		10	ns

Switching Waveforms

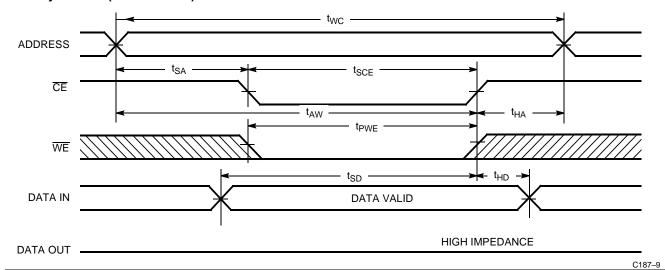
Read Cycle No. 1^[10, 11]



10. WE is HIGH for read cycle.
11. Device is continuously selected, CE = V_{IL}.

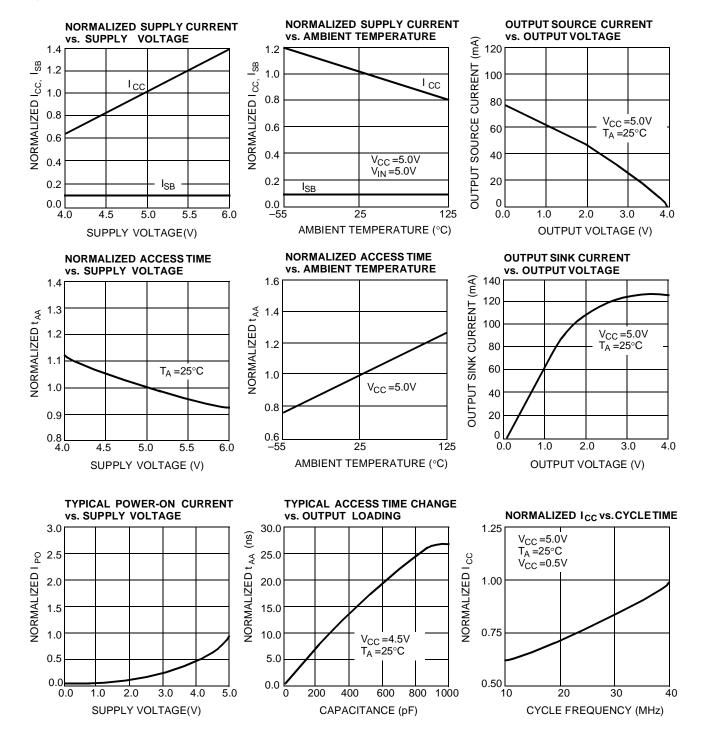


Switching Waveforms


Read Cycle No. 2^[10, 12]

Write Cycle No. 1 (WE Controlled)[11]

Write Cycle No. 2 (CE Controlled)[11, 13]



Notes:

 ^{12.} Address valid prior to or coincident with CE transition LOW.
 13. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Address Designators

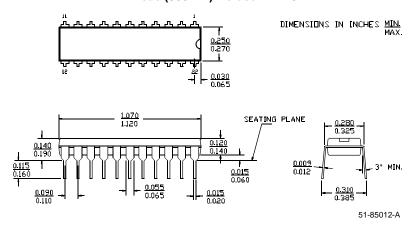
Address Name	Address Function	Pin Number
A0	Х3	1
A1	X4	2
A2	X5	3
A3	X6	4
A4	X7	5
A5	Y7	6
A6	Y6	7
A7	Y2	8
A8	Y3	14
A9	Y1	15
A10	Y0	16
A11	Y4	17
A12	Y5	18
A13	X0	19
A14	X1	20
A15	X2	21

Truth Table

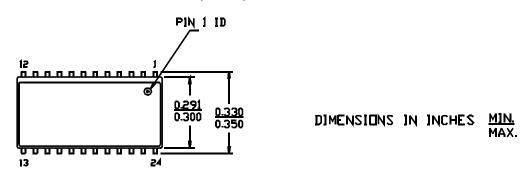
CE	WE	Input/Output	Mode
Н	Χ	High Z	Deselect/Power-Down
L	Н	Data Out	Read
L	L	Data In	Write

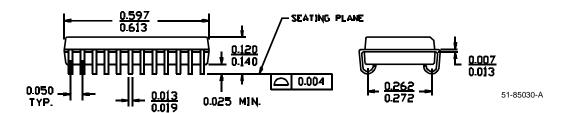
Ordering Information^[14]

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C187-15PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C187-15VC	V13	24-Lead Molded SOJ	
20	CY7C187-20PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C187-20VC	V13	24-Lead Molded SOJ	
25	CY7C187-25PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C187-25VC	V13	24-Lead Molded SOJ	
35	CY7C187-35PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C187-35VC	V13	24-Lead Molded SOJ	


Note:
14. For military variations, see the CY7C187A datasheet.

Document #: 38-00038-K




Package Diagrams

22-Lead (300-Mil) Molded DIP P9

24-Lead (300-Mil) Molded SOJ V13

