oooogoopcBOODOOO02000000

00O Cy7C641130 O O
== = CY7C64013
_E;g PRELIMINARY CY7C64113
CYPRESS

CY/7C64013

CY7C64113
Full-Speed USB (12 Mbps) Function

http://www.dzsc.com/ic/sell_search.html?keyword=CY7C64113
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

CY7C64013

="‘:}’; PRELIMINARY CY7C64113
=% CYPRESS
TABLE OF CONTENTS
1.0 FEATURES oottt e oo oottt et et e o bbb ettt e e ea e eb bbbt e e e e e e 5
2.0 FUNCTIONAL OVERVIEW ...ttt ettt e e e et e e e e bbb eeeeens 6
3.0 PIN CONFIGURATIONS ..ottt ittt ettt e e e h e e e e e e e e e e et ettt e e e e bbb breeeeeens 8
4.0 PRODUCT SUMMARY TABLES ... ittt 9
4.1 PiN ASSIONIMENTS .ottt e e e e e bt e e e e e e et e bttt e e e e e bbbttt eeeea s e bbb e e e e e e e e e e ne e 9
4.2 1/0O REQISTEI SUIMMAIY oottt ettt e e e e e e ea bt e e e e e e et et et e e e e e bbb be e et e e ea s anbbbeeeeeeens 9
4.3 INSTUCTION SEE SUMIMAIY ...eiiiiiiiiiii ittt e e e et e e e e e e e ab bbb e ee e e e e e nasnenee s 11
5.0 PROGRAMMING MODEL ...ooiiiiiiiiiiiitt ettt e e e ee e e 12
5.1 14-Bit Program COUNTET (PC) ..cooiiiiiiiiiiiiee ettt e e e e bbb e ee e e as 12
5.1.1 Program Memory OrganiZatiONcooooiiirmerieiiieeie et ee e e r e e r e e e e e e s n e ereeeee e s 13
5.2 8-Bit ACCUMUIALIOT (AA) ittt e e ettt e e e et e e e e e bbb e e e ee e e s 13
5.3 8-Bit TEMPOrary REGISTEN (X) ..cooiiueriiiiiiieiiiiiiie et e e e e e bbb e e ee e e s 13
5.4 8-Bit Program StacCk POINTEr (PSP)eeiiiiiiiiiiiii ettt 14
5.4.1 Data Memory OrganiZAtiONcoeiiiiiiiiiiiiiiiie et e e e r e s et e e e e e e s s r e e e eeeeeneeas 14
5.5 8-Bit Data Stack POINTEr (DSP) ...cooiiiiiiiiiee et 14
5.6 AUAIESS IMOAES ...oeiiiiiiiiititie ettt e e ekttt e e e e e ettt e e e e e e e et e e e e e bbb e e ee e e s 15
5.6.1 Data (IMMEAIALE)eeiiiiieiii ettt ettt ettt e e e e s e e s s ah e et e e et e e s n s n b reee e eeeeeneeas 15
G0 B 1 =T ot AP TPEPPTTRP PP OP PR 15
SIS T [Yo (=€ o PP PP PP PPRPPUPRRN 15
8.0 CLOCKING .ttt e e ekttt e e oo 4o a ettt e e o4 2 ettt e e e e bbb e e e e e e e 15
O 4 =25 = PO PPPPP 16
7.1 POWEr-ON RESEL (POR) ...ttt ettt e ettt e e e e et e e e e ea bbb r e e ee e e s 16
7.2 WatCh DOQ RESEE (WDR) ...ttt ettt e et e e e e bbb e e ee e e s 16
8.0 SUSPEND MODE ..ottt e ettt e et e e ettt et e e e e et e e e e e e e bbb ree e e s 17
9.0 GENERAL-PURPOSE I/O (GPIO) PORTS ...ttt 17
9.1 GPIO CONFIQUIALION POTT ..eiiiiiiiiiiiieee ettt ettt e et e e e e e bbb r e ee e e s 18
9.2 GPIO INterrupt ENADIE POTTS ..ot 19
L0.0 DAC PORT ottt a ettt oo oottt e et o4 2 bbbttt e e e e e e e ah b e e et e e e e e e e nnae et ee e e e nne 20
10.1 DAC ISINK REGISTEIS ettt e e e e e eb et e e e s e e e e e e ee e e e nnes 20
10.2 DAC POIt INTEITUPTS ittt ettt e e e e e et e e e e e e e ee e e e e n e e 21
11.0 12-BIT FREE-RUNNING TIMERcoiiiiiiiiiiiiiie etttk e e 21
N 10 =T (] =) OO TP UPPPPPPPP 21
R 10 LT (/5] =) TP TP UPPPPPPPP 21
12.0 1°C AND HAPI CONFIGURATION REGISTERouiiuivieieoeeeeeseeeeeeees e eee s 22
13.0 12C CONTROLLER ..ottt ettt 23
14.0 HARDWARE ASSISTED PARALLEL INTERFACE (HAPI) e 24
15.0 PROCESSOR STATUS AND CONTROL REGISTER ...coiiiiiiiiiiiii e 25
16.0 INTERRUPTS ittt ettt e e e e bttt e e e e e s ab bbb e et e e e s e e ea e e be e e ee e e e nnnes 26
(G A o A=t U] o) YA =T g o] = TSP 27
16.2 INTEITUPT LABNCY ..ottt e e e e e e et e e n e e e e eeeeeenne e 28
16.3 USB BUS RESEL INTEITUPT ooeeieiii ittt e e e e eee e e e e 28

16.4 TIMEE INTEITUPT oottt ettt et e e e e e bbbt e e e e e e e e s eb b e e et e e e e e e ee e e ne e e ee e e e nees 29

N CY7C64013

— PRELIMINARY CY7C64113
— YPRESS

il
iy,
@

TABLE OF CONTENTS (continued)

16.5 USB ENAPOINT INTEITUPES .ieiiiiiiiiiiee ettt e e e e st e e e s e e e e ee e e e nees 29
(G G 7N O [1 4T (VT o) PRSP 29
16.7 GPIO/HAPE INTEITUPT oottt e e e e e eb bt e e e e e e e e n e e e eeeeannnes 29
16.8 12C INTEITUDL ..ot ee et n et en e n e 30
17.0 USB OVERVIEW ...ttt ettt a et e e a ke e a2 e et e e e ettt e e eas e e e e e e e e e e neeee e s 30
17.1 USB Serial Interface ENGIiNe (SIE) ...oooiiiiiiiiieiieee et 30
17.2 USB ENUMEIATION ...iiiiiiiiiiiiit ettt ettt e et et e e e e e e s ab bbb e et e e e e e e eas e ne e e ee e e e nnnes 31
17.3 USB Upstream Port Status and CONTIOloooiiiiiiiiiiiiiiiiiiiie e 31
18.0 USB SERIAL INTERFACE ENGINE OPERATION ...oiiiiiiiiiiiiiiie et 32
18.1 USB DEVICE AQUIESS ..oiiiiiiiiiiiit ettt ettt e e e ettt e e e e e s ab bbbttt e e e e e e e e ne e e ee e e e nnnes 32
18.2 USB DEViICE ENUPOINTS ..oiiiiiiiiiiiiiiiiie ettt e e ettt e e e e s e e ee e e s 32
18.3 USB Control ENdpoint MOde REQISTEIoiiiiiiiiiiiiiiiie et 32
18.4 USB Non-Control Endpoint MOde REJISIEISuuiiiiiiiiiiiiiiiiiee e 33
18.5 USB ENdpoint COUNTEr REGISTEIS ...ooiiiiiiiiiiiiieeie ettt e e e ree e e 33
18.6 Endpoint Mode/Count Registers update and Locking Mechanismc.cccciiiiiinniiinns 34
19.0 USB MODE TABLES ...ttt etttk e ettt e e e bbb e e ettt e e e s e e e e e aneeee s 36
20.0 ABSOLUTE MAXIMUM RATINGS ..ottt ettt e e asn e e e s 40
21.0 ELECTRICAL CHARACTERISTICS ...ttt e e 40
22.0 SWITCHING CHARACTERISTICS ..ottt ee e e 42
23.0 ORDERING INFORMATION ...ttt ettt ettt ettt ee e ittt e e et e e e e s s nbeee e e annnbeaennes 45
24.0 PACKAGE DIAGRAMS ..ttt ettt e et e e ookt ee e e ettt e e e ettt e e s e abbee e e annbbeeennes 45

LIST OF FIGURES

Figure 5-1. Program Memory Space with Interrupt Vector Tableccoooiiiiiiiiiii s 13
Figure 6-1. Clock Oscillator ON-Chip CIFCUITiiiiiiiiiiiiei e ee e e 15
Figure 7-1. Watch Dog ReSEet (WDR) ...cooiiiiiiiiiiiie ettt e e e e nees 16
Figure 9-1. Block Diagram Of @ GPIO PiN ..o 17
Figure 9-2. Port O Data OX00 (FE€AA/WIITE)eeeieiiiiie ettt e et e e e annes 18
Figure 9-3. Port 1 Data OX0L (FE€AU/WIITE) .oicuueeiiiiiiie ettt e et ee e e e s annes 18
Figure 9-4. Port 2 Data OX02 (FE€AA/NIITE) ..eeieiiiiiii ettt e et ee e e e annes 18
Figure 9-5. Port 3 Data OX03 (FEAA/NIITE)eeiiiiiiiii ettt e e et ee e e e annes 18
Figure 9-6. GPIO Configuration Register OX08 (re@ad/Write)cccerriieiiiiiiiiiiiieeee e 19
Figure 9-7. Port O Interrupt Enable OX04 (Fe@d/WITtE)oooiiiiiiiiiiiiieiieie et 19
Figure 9-8. Port 1 Interrupt Enable OX05 (Fead/WITt)oooiiiiiiiiiiiiieieiie it 19
Figure 9-9. Port 2 Interrupt Enable OX06 (Fead/WITtE)oooiiiiiiiiiiiiiieiiiaiiie et 19
Figure 9-10. Port 3 Interrupt Enable OX07 (read/WIIte)ooiiiiiiiiiiiiieeiii it 19
Figure 10-1. Block Diagram Of @ DAC PiN ..ottt 20
Figure 10-2. DAC Port Data OX30 (FEAU/MIITE)uuuiiiiieiiiiiiiieei et ae s 20
Figure 10-3. DAC Port Isink 0x38 t0 OX3F (WFt€ ONIY) ..eeriiiiiiiiiiiiieiee e 20
Figure 10-4. DAC Port Interrupt Enable OX31 (Writ€ Only) ..cooviiiiiiiiiiiiiii e 21
Figure 10-5. DAC Port Interrupt Polarity OX32 (Writ€ Only) ...occveiiiiiiiiiiiie e 21
Figure 11-1. Timer Register OX24 (read ONIY) ... 21
Figure 11-2. Timer Register OX25 (read ONIY) ..o 21
Figure 11-3. Timer BIock [DIF=To | = 2 0 E PP PP PPPPPP 22

Figure 12-1. HAPI/I?C Configuration Register 0X09 (read/Writ€)cccvviveveieiiiiiiiiiiieeee e 22

N CY7C64013

= = PRELIMINARY CY7C64113
=7 CYPRESS

!
Wy
@

LIST OF FIGURES (continued)

Figure 13-1. 1°C Data Register 0x29 (separate read/Write regiSters)ccocooveeeecererscererennns 23
Figure 13-2. 1°C Status and Control Register 0X28 (read/WIit€)c..ccoceeeeeevereereseeserecenenan 23
Figure 15-1. Processor Status and Control Register OXFF ... 25
Figure 16-1. Global Interrupt Enable Register OX20 (read/Writ€)cccoouiuimiiiiieiiiiiiiiiiieeeee e 26
Figure 16-2. USB Endpoint Interrupt Enable Register 0X21 (read/Writ€)ccccorviivirieeeneeinnnnnns 26
Figure 16-3. Interrupt Controller Functional DIiagramcooooooiiiiiieeeiiiiiieee e 27
Figure 16-4. Interrupt Vector Register 0X23 (read ONIY) ..o 28
Figure 16-5. GPIO INtEITUPTE SIFUCTUTE .ooiiiiiiiieieie et e e e et e e e e e annes 29
Figure 17-1. USB Status and Control Register OX1F (read/Writ€)cooccuuviiiiiiiiiiiiiiiiieeeee e 31
Figure 18-1. USB Device Address Register 0X10 (read/Writ€)ccueeveeeiriiiiiiiiiiiieiee e 32
Figure 18-2. USB Device Endpoint Zero Mode Register 0x12 (read/Writ€)ccccuvvvereenrriinnnns 32
Figure 18-3. USB Non-Control Device Endpoint Mode Registers

0x14, 0x16, 0x42, OX44, (re@ad/WIite) ..occvveiiieiiieeeeee e 33
Figure 18-4. USB Endpoint Counter Registers 0x11, 0x13, 0x15, 0x41, 0x43 (read/write) 33
Figure 18-5. Token/Data Packet FIOW DIAgramccceeeiiiiiiiiiiiiiiiiiee et 35
FIgure 22-1. CIOCK TIMING oottt e e ettt e e e e e s bbb e et e e e e e e es e e ne e e eeeeannnes 43
Figure 22-2. USB Data Signal TiMINGoooooiiiiiieie et eee e e 43
Figure 22-3. HAPI Read by External Interface from USB Microcontrollerccccooveeeiniininnnn. 43
Figure 22-4. HAPI Write by External Device to USB Microcontrollercccooeeeeinniiiiiiiineinnnns 44

LIST OF TABLES

Table 4-1. PiN ASSIGNIMENTS .ottt e e e e et e et e e e s s ab bbb e e e e e e e e eenanee e 9
Table 4-2. 1/O REQISTEI SUMMIAIY ...ociiiiiiiiiiiiii ettt e e e e e e e e e e e e e e e e e ea s eneb e e eeeeens 9
Table 4-3. INSTrUCtiON St SUMMAIY ..ottt e e ee e e e aen e 11
Table 9-1. Port CONTIQUIATIONSeoiiiiiiiiiii ettt e e ee e e e n e 18
Table 12-1. HAPI POrt CONFIQUIAtIONeeiiiiiiie ettt 22
Table 12-2. 1°C Port CONTIGUIALION ettt e e e e e e e ennes 22
Table 13-1. 1°C Status and Control Register Bit DEfiNitiONSccccocoveeviveveeeeereeeererses s 23
Table 14-1. Port 2 Pin and HAPI Configuration Bit Definitionsccccoviiiieiiiiiiiiie e 25
Table 16-1. Interrupt Vector ASSIGNMENTS ...ooiiiiiiiiiiiii et 28
Table 17-1. Control Bit Definition for UpStream POrtcccveiiiiiiiiiiieeee e 31
Table 18-1. Memory Allocation fOr ENAPOINTS ...ccouuiiiiiiiiiiiee e 32
Table 19-1. USB Register Mode ENCOTING ..ooiiiiiiiiiiiiiiiee ettt 36

Table 19-2. Decode table for Table 19-3: “Details of Modes for Differing Traffic Conditions” ...37
Table 19-3. Details of Modes for Differing Traffic ConditioNScccccoiiiiiiiiiiiiii s 38

——
———
—e—

= I PRELIMINARY

—2 CYPRESS

.0 Features

[EEN

3

CY7C64013
CY7C64113

Full-speed USB Microcontroller

8-bit USB Optimized Microcontroller

— Harvard architecture

— 6-MHz external clock source

—12-MHz internal CPU clock

—48-MHz internal clock

Internal memory

— 256 bytes of RAM

— 8 KB of PROM (CY7C64013, CY7C64113)

Integrated Master/Slave I°C Controller (100 kHz) enabled through General-Purpose I/O (GPIO) pins

Hardware Assisted Parallel Interface (HAPI) for data transfer to external devices

I/O ports

— Three GPIO ports (Port 0 to 2) capable of sinking 7 mA per pin (typical)

— An additional GPIO port (Port 3) capable of sinking 12 mA per pin (typical) for high current requirements: LEDs
—Higher current drive achievable by connecting multiple GPIO pins together to drive a common output

— Each GPIO portcan beconfigured as inputs with internal pull-ups or open drain outputs or traditional CMOS outputs
— A Digital to Analog Conversion (DAC) port with programmable current sink outputs is available on the CY7C64113

devices
— Maskable interrupts on all I/O pins
12-bit free-running timer with one microsecond clock ticks
Watch dog timer (WDT)
Internal power-on reset (POR)
USB Specification Compliance
— Conforms to USB Specification, Version 1.1
— Conforms to USB HID Specification, Version 1.1
— Supports up to five user configured endpoints
Up to four 8-byte data endpoints
Up to two 32-byte data endpoints
—Integrated USB transceivers
Improved output drivers to reduce EMI
Operating voltage from 4.0V to 5.5V DC
Operating temperature from 0 to 70 degrees Celsius
— CY7C64013 available in 28-pin SOIC and 28-pin PDIP packages
— CY7C64113 available in 48-pin SSOP packages
Industry standard programmer support

N CY7C64013

— PRELIMINARY CY7C64113
— YPRESS

2.0 Functional Overview

il
iy,
@

The CY7C64013 and CY7C64113 are 8-bit One Time Programmable microcontrollers that are designed for full-speed USB
applications. The instruction set has been optimized specifically for USB operations, although the microcontrollers can be used

for a variety of non-USB embedded applications.

The CY7C64013 features 19 GPIO pins to support USB and other applications. The I/O pins are grouped into three ports (PO[7:0],
P1[7:0], P3[7,2,0]) where each port can be configured as inputs with internal pull-ups, open drain outputs, or traditional CMOS
outputs. There are 16 GPIO pins (Ports 0 and 1) which are rated at 7 mA typical sink current. Port 3 pins are rated at 12 mA
typical sink current, a current sufficient to drive LEDs. Multiple GPIO pins can be connected together to drive a single output for
more drive current capacity. Additionally, each GPIO can be used to generate a GPIO interrupt to the microcontroller. All of the
GPIO interrupts all share the same “GPIO” interrupt vector.

Thirty-two GPIO pins (P0O[7:0], P1[7:0], P2[7:0], P3[7:0]) and four Digital to Analog Conversion (DAC) pins (P4[7,2:0]) are available
onthe CY7C64113. Every DAC pinincludes an integrated 14-kQ pull-up resistor. When a ‘1’ is written to a DAC 1/O pin, the output
current sink is disabled and the output pin is driven HIGH by the internal pull-up resistor. When a ‘0’ is written to a DAC 1/O pin,
the internal pull-up resistor is disabled and the output pin provides the programmed amount of sink current. A DAC /O pin can
be used as an input with an internal pull-up by writing a ‘1’ to the pin.

The sink current for each DAC I/O pin can be individually programmed to one of 16 values using dedicated Isink registers. DAC
bits P4[1:0] can be used as high-current outputs with a programmable sink current range of 3.2 to 16 mA (typical). DAC bits P4[7,2]
have a programmable current sink range of 0.2 to 1.0 mA (typical). Multiple DAC pins can be connected together to drive a single
output that requires more sink current capacity. Each 1/O pin can be used to generate a DAC interrupt to the microcontroller. Also,
the interrupt polarity for each DAC I/O pin is individually programmable.

The microcontroller uses an external 6-MHz crystal and an internal oscillator to provide a reference to an internal PLL-based
clock generator. This technology allows the customer application to use an inexpensive 6-MHz fundamental crystal that reduces
the clock-related noise emissions (EMI). A PLL clock generator provides the 6-, 12-, and 48-MHz clock signals for distribution
within the microcontroller.

The CY7C64013 and CY7C64113 have 8 KB of PROM. These parts include power-on reset logic, a watch dog timer, and a 12-bit
free-running timer. The power-on reset (POR) logic detects when power is applied to the device, resets the logic to a known state,
and begins executing instructions at PROM address 0x0000. The watch dog timer is used to ensure the microcontroller recovers
after a period of inactivity. The firmware may become inactive for a variety of reasons, including errors in the code or a hardware
failure such as waiting for an interrupt that never occurs.

The microcontroller can communicate with external electronics through the GPIO pins. An I2C interface accommodates a 100-kHz
serial link with an external device. There is also a Hardware Assisted Parallel Interface (HAPI) which can be used to transfer data
to an external device.

The free-running 12-bit timer clocked at 1 MHz provides two interrupt sources, 128-us and 1.024-ms. The timer can be used to
measure the duration of an event under firmware control by reading the timer at the start of the event and after the event is
complete. The difference between the two readings indicates the duration of the event in microseconds. The upper four bits of
the timer are latched into an internal register when the firmware reads the lower eight bits. A read from the upper four bits actually
reads data from the internal register, instead of the timer. This feature eliminates the need for firmware to try to compensate if
the upper four bits increment immediately after the lower eight bits are read.

The microcontroller supports 11 maskable interrupts in the vectored interrupt controller. Interrupt sources include the USB Bus
Reset interrupt, the 128-us (bit 6) and 1.024-ms (bit 9) outputs from the free-running timer, five USB endpoints, the DAC port, the
GPIO ports, and the 12C master mode interface. The timer bits cause an interrupt (if enabled) when the bit toggles from LOW ‘0’
to HIGH ‘1. The USB endpoints interrupt after the USB host has written data to the endpoint FIFO or after the USB controller
sends a packet to the USB host. The DAC ports have an additional level of masking that allows the user to select which DAC
inputs can cause a DAC interrupt. The GPIO ports also have a level of masking to select which GPIO inputs can cause a GPIO
interrupt. For additional flexibility, the input transition polarity that causes an interrupt is programmable for each pin of the DAC
port. Input transition polarity can be programmed for each GPIO port as part of the port configuration. The interrupt polarity can
be rising edge (‘0’ to ‘1) or falling edge (‘1 to ‘0").

= CY7C64013
= .= PRELIMINARY CY7C64113

Logic Block Diagram
6-MHz crystal
il

PLL

48 MHz

Y

Clock 12-MHz

Divider 8-bit <:>
- CPU
12 MHz TT

USB - USB [D+[0] Upstream
SIE [*™|Transceiver < D-[0] USB Port

y
PROM Interrupt
8 KB Controller

T

GPIO .
PORT 0 °

RAM <:>
256 byte

8-bit Bus

T 3f 1T 9T 1T
=

6 MHz GPIO |aw 2O
12-bit <ﬁ> Cles» — — — — — 7
-
Timer PORT 1| ¢ P17:3] |
<>
* | | CY7C64113 only |
| T2 P20,1,7] |
GPIO/ = |
Watch Dog HAPI <> p2[2]: Latch_Empty
Timer | P2[3]; Data_Ready
PORT 2 > P2[4]; STB
> P2[5]; OE
| P2[6]; CS
Power-On
Reset >
* p3[2:0] High Current
. o)
GPIO utputs
@ r-——— — — — — q
- Additional
PORT 3| | b33 hiigh Current
| > Outputs

<\:> DAC
PORT

o
>
@]
N

<‘:> 12C e SCLK
Interface [+ SDATA

*[2C interface enabled by firmware through
P2[1:0] or P1[1:0]

S T PRELIMINARY

CY7C64013
CY7C64113

3.0 Pin Configurations

TOP VIEW

CY7C64013 CY7C64013

28-pin SOIC 28-pin PDIP
XTALOUT [] 1 vzs :| Vee XTALOUT [] 1 vza :| Vee
xtaun [2 27] Pu xTaLN [2 27 [] Pafo]
Veer [3 26 [] Pafo] Veee [] 3 26 [] Paf2
GNp [] 4 25 [] P12 piy) [4 25 [P3[0]
pan] [5 24 [] P[] D [] s 24 [] P32
p+o] [] e 23 [] P32 pa [6 23 [] P22
oo [7 22 |] GND p+o] [7 22 |] GND
p2i3] [8 21 [] P22 oo [s 21 |] P24
pais] [o 20 [] P24 p23] [o 20 [] Parsl
po7] [10 19 [1 p2pe) p2i5] [10 19 J vep
pos] [12 18 | Ve por7] [11 18 |] pofo]
pop] [12 17 |] popo) pois] [12 17] pop
poi] [] 13 16 |] pPop2 po] [13 16 |1 Poa
poe] [14 15 | Popa) po] [14 15 | pofe)

XTALOUT
XTALIN
VRer
P1[3]
P1[5]
P1[7]
P3[1]
D+[0]
D-[0]
P3[3]
GND
P3[5]
P3[7]
P2[1]
P2[3]
GND
P2[5]
P2[7]
DACI7]
PO[7]
PO[S]
PO[3]
PO[1]
DACI[1]

CY7C64113
48-pin SSOP

Oz A 48 [] Vec
02 47] Pam
0 s 46 [] Pafo]
[4 45 [] Pu2
s as [] P14
0s 43] P1le]
O 42] P3[]
O s a1 [] P32l
O e 40 [] onp
O 10 39 |] Pap
0 38 |1 ne
O 12 37 [] P3[e]
O 3 36 [] P2
O 14 35] P2z
O s 34 [] oD
O 1 33 [] Pou
O 17 32 [] P2
O s 31 |] pacio]
O 10 30] Ver
O =20 29 |1 Popo]
[22 28 [] Pop
0 22 27 [] Popa
0 2s 26 [] Pofe)
[24 25 [] pacp

PRELIMINARY

CY7C64013
CY7C64113

4.0 Product Summary Tables
4.1 Pin Assignments
Table 4-1. Pin Assignments
Name 1/0 28-Pin SOIC | 28-Pin PDIP | 48-Pin SSOP | Description
D+[0], D-[0] | /O 6,7 7,8 7,8 Upstream port, USB differential data.
PO 110 PO[7:0] PO[7:0] PO[7:0] GPIO Port 0 capable of sinking 7 mA (typical).
10, 14, 11, 15, | 11, 15,12, 16, | 20, 26, 21, 27,
12, 16, 13,17 | 13,17, 14,18 | 22, 28, 23, 29
P1 110 P1[2:0] P1[2:0] P1[7:0] GPIO Port 1 capable of sinking 7 mA (typical).
25,27, 26 26,4, 27 6, 43, 5, 44,
4,45, 47, 46
P2 110 P2[6:2] P2[6:2] P2[7:0] GPIO Port 2 capable of sinking 7 mA (typical). HAPI
19,9, 20, 8, 20, 10, 21, 18, 32, 17, 33, | is also supported through P2[6:2].
21 9, 23 15, 35, 14, 36
P3 110 P3[2:0] P3[2:0] P3[7:0] GPIO Port 3, capable of sinking 12 mA (typical).
23,5,24 24,6, 25 13, 37, 12, 39,
10, 41,7, 42
DAC 110 DAC[7,2:0] DAC Port with programmable current sink outputs.
19, 25, 24, 31 | DAC[1:0] offer a programmable range of 3.2to 16 mA
typical. DACJ[7,2] have a programmable sink current
range of 0.2 to 1.0 mA typical.
XTAL N IN 6-MHz crystal or external clock input.
XTALoyt ouT 6-MHz crystal out.
Vpp IN 18 19 30 Programming voltage supply, tie to ground during nor-
mal operation.
Vee IN 28 28 48 Voltage supply.
GND IN 4,22 5, 22 11, 16, 34, 40 | Ground.
VREE IN 3 3 3 External 3.3V supply voltage for the differential data
output buffers and the D+ pull-up.
NC 38 No Connect
4.2 I/O Register Summary

I/O registers are accessed via the 1/0 Read (IORD) and I/O Write (IOWR, IOWX) instructions. IORD reads data from the selected
port into the accumulator. IOWR performs the reverse; it writes data from the accumulator to the selected port. Indexed /0O Write
(IOWX) adds the contents of X to the address in the instruction to form the port address and writes data from the accumulator to
the specified port. Specifying address 0 (e.g., IOWX 0h) means the I/O register is selected solely by the contents of X.

All undefined registers are reserved. It is important not to write to reserved registers as this may cause an undefined operation
or increased current consumption during operation. When writing to registers with reserved bits, the reserved bits must be written

with ‘0.

Table 4-2. 1/0 Register Summary

Register Name I/O Address | Read/Write Function Page
Port 0 Data 0x00 R/W GPIO Port 0 Data 18
Port 1 Data 0x01 R/W GPIO Port 1 Data 18
Port 2 Data 0x02 R/W GPIO Port 2 Data 18
Port 3 Data 0x03 R/W GPIO Port 3 Data 18
Port O Interrupt Enable 0x04 w Interrupt Enable for Pins in Port O 19
Port 1 Interrupt Enable 0x05 w Interrupt Enable for Pins in Port 1 19
Port 2 Interrupt Enable 0x06 w Interrupt Enable for Pins in Port 2 19
Port 3 Interrupt Enable 0x07 w Interrupt Enable for Pins in Port 3 19

CY7C64013

iy
y

gCYPRESS PRELIMINARY CY7C64113
Table 4-2. 1/O Register Summary (continued)
Register Name I/O Address | Read/Write Function Page

GPIO Configuration 0x08 R/W GPIO Port Configurations 19
HAPI and 12C Configuration 0x09 R/W HAPI Width and I12C Position Configuration 22
USB Device Address A 0x10 R/W USB Device Address A 32
EP A0 Counter Register 0x11 R/W USB Address A, Endpoint 0 Counter 33
EP A0 Mode Register 0x12 R/W USB Address A, Endpoint 0 Configuration 32
EP Al Counter Register 0x13 R/W USB Address A, Endpoint 1 Counter 33
EP Al Mode Register 0x14 R/W USB Address A, Endpoint 1 Configuration 33
EP A2 Counter Register 0x15 R/W USB Address A, Endpoint 2 Counter 33
EP A2 Mode Register 0x16 R/W USB Address A, Endpoint 2 Configuration 33
USB Status & Control Ox1F R/W USB Upstream Port Traffic Status and Control 31
Global Interrupt Enable 0x20 R/W Global Interrupt Enable 26
Endpoint Interrupt Enable 0x21 R/W USB Endpoint Interrupt Enables 26
Interrupt Vector 0x23 R Pending Interrupt Vector Read / Clear 28
Timer (LSB) 0x24 R Lower 8 Bits of Free-running Timer (1 MHz) 21
Timer (MSB) 0x25 R Upper 4 Bits of Free-running Timer 21
WDT Clear 0x26 w Watch Dog Timer Clear 16
IC Control & Status 0x28 RIW 1°C Status and Control 23
1°C Data 0x29 R/W 1°C Data 23
DAC Data 0x30 R/W DAC Data 20
DAC Interrupt Enable 0x31 w Interrupt Enable for each DAC Pin 21
DAC Interrupt Polarity 0x32 wW Interrupt Polarity for each DAC Pin 21
DAC Isink 0x38-0x3F wW Input Sink Current Control for each DAC Pin 20
Reserved 0x40 Reserved

EP A3 Counter Register 0x41 R/W USB Address A, Endpoint 3 Counter 33
EP A3 Mode Register 0x42 R/W USB Address A, Endpoint 3 Configuration 32
EP A4 Counter Register 0x43 R/W USB Address A, Endpoint 4 Counter 33
EP A4 Mode Register 0x44 R/W USB Address A, Endpoint 4 Configuration 33
Reserved 0x48 Reserved

Reserved 0x49 Reserved

Reserved Ox4A Reserved

Reserved 0x4B Reserved

Reserved 0x4C Reserved

Reserved 0x4D Reserved

Reserved Ox4E Reserved

Reserved Ox4F Reserved

Reserved 0x50 Reserved

Reserved 0x51 Reserved

Processor Status & Control OxFF R/W Microprocessor Status and Control Register 25

CY7C64013

?%%YPRESS PRELIMINARY CY7C64113
4.3 Instruction Set Summary
Refer to the CYASM Assembler User’'s Guide for more details.
Table 4-3. Instruction Set Summary

MNEMONIC operand opcode cycles MNEMONIC operand opcode cycles
HALT 00 7 NOP 20 4
ADD A,expr data 01 4 INC A acc 21 4
ADD A, [expr] direct 02 6 INC X X 22 4
ADD A, [X+expr] index 03 7 INC [expr] direct 23 7
ADC A,expr data 04 4 INC [X+expr] index 24 8
ADC A [expr] direct 05 6 DEC A acc 25 4
ADC A, [X+expr] index 06 7 DEC X X 26 4
SUB A,expr data 07 4 DEC [expr] direct 27 7
SUB A,[expr] direct 08 6 DEC [X+expr] index 28 8
SUB A,[X+expr] index 09 7 IORD expr address 29 5
SBB A,expr data 0A 4 IOWR expr address 2A 5
SBB A,[expr] direct 0B 6 POP A 2B 4
SBB A,[X+expr] index oC 7 POP X 2C 4
OR A,expr data oD 4 PUSH A 2D 5
OR A,[expr] direct OE 6 PUSH X 2E 5
OR A,[X+expr] index OF 7 SWAP A, X 2F 5
AND A, expr data 10 4 SWAP A,DSP 30 5
AND A, [expr] direct 11 6 MOV [expr],A direct 31 5
AND A, [X+expr] index 12 7 MOV [X+expr],A index 32 6
XOR A,expr data 13 4 OR [expr],A direct 33 7
XOR A,[expr] direct 14 6 OR [X+expr],A index 34 8
XOR A,[X+expr] index 15 7 AND [expr],A direct 35 7
CMP A,expr data 16 5 AND [X+expr],A index 36 8
CMP A [expr] direct 17 7 XOR [expr],A direct 37 7
CMP A [X+expr] index 18 8 XOR [X+expr],A index 38 8
MOV A,expr data 19 4 IOWX [X+expr] index 39 6
MOV A, [expr] direct 1A 5 CPL 3A 4
MOV A,[X+expr] index 1B 6 ASL 3B 4
MOV X,expr data 1C 4 ASR 3C 4
MOV X,[expr] direct 1D 5 RLC 3D 4
reserved 1E RRC 3E 4
XPAGE 1F 4 RET 3F 8
MOV A,X 40 4 DI 70 4
MOV X,A 41 4 El 72 4
MOV PSP A 60 4 RETI 73 8
CALL addr 50 - 5F 10 JC addr CO-CF 5
JMP addr 80-8F 5 JNC addr DO-DF 5
CALL addr 90-9F 10 JACC addr EO-EF 7
Jz addr AO0-AF INDEX addr FO-FF 14
JNZ addr BO-BF

CY7C64013
PRELIMINARY CY7C64113

——
———
—e—

——r
—
—
—
———
—
—
—
—

=2 CYPRESS

.0 Programming Model

3

(621

5.1 14-Bit Program Counter (PC)

The 14-bit program counter (PC) allows access to up to 8 KB of PROM available with the CY7C64x13 architecture. The top 32
bytes of the ROM in the 8K part are reserved for testing purposes. The program counter is cleared during reset, such that the
first instruction executed after a reset is at address 0x0000h. Typically, this is a jump instruction to a reset handler that initializes
the application (see Interrupt Vectors on page 27).

The lower eight bits of the program counter are incremented as instructions are loaded and executed. The upper six bits of the
program counter are incremented by executing an XPAGE instruction. As a result, the last instruction executed within a 256-byte
“page” of sequential code should be an XPAGE instruction. The assembler directive “XPAGEON”" causes the assembler to insert
XPAGE instructions automatically. Because instructions can be either one or two bytes long, the assembler may occasionally
need to insert a NOP followed by an XPAGE to execute correctly.

The address of the next instruction to be executed, the carry flag, and the zero flag are saved as two bytes on the program stack
during an interrupt acknowledge or a CALL instruction. The program counter, carry flag, and zero flag are restored from the
program stack during a RETI instruction. Only the program counter is restored during a RET instruction.

The program counter cannot be accessed directly by the firmware. The program stack can be examined by reading SRAM from
location 0x00 and up.

N CY7C64013

Shes - PRELIMINARY CY7C64113
=7 CYPRESS

51.1 Program Memory Organization

’W

after reset Address

14-bit PC 0x0000 |Program execution begins here after a reset

0x0002 USB Bus Reset interrupt vector

0x0004 | 128-ps timer interrupt vector

0x0006 |1.024-ms timer interrupt vector

0x0008 |USB address A endpoint O interrupt vector

0x000A |USB address A endpoint 1 interrupt vector

0x000C |USB address A endpoint 2 interrupt vector

O0x000E |USB address A endpoint 3 interrupt vector

0x0010 |[USB address A endpoint 4 interrupt vector

0x0012 Reserved

0x0014 | DAC interrupt vector

0x0016 | GPIO interrupt vector

0x0018 |[I°C interrupt vector

0x001A [Program Memory begins here

Ox1FDF |8 KB (-32) PROM ends here (CY7C64013, CY7C64113)

Figure 5-1. Program Memory Space with Interrupt Vector Table

5.2 8-Bit Accumulator (A)
The accumulator is the general-purpose register for the microcontroller.

5.3 8-Bit Temporary Register (X)
The “X” register is available to the firmware for temporary storage of intermediate results. The microcontroller can perform indexed
operations based on the value in X. Refer to Section 5.6.3 for additional information.

N CY7C64013

— PRELIMINARY CY7C64113
— YPRESS

54 8-Bit Program Stack Pointer (PSP)

During a reset, the program stack pointer (PSP) is set to 0x00 and “grows” upward from this address. The PSP may be set by
firmware, using the MOV PSP,A instruction. The PSP supports interrupt service under hardware control and CALL, RET, and
RETI instructions under firmware control. The PSP is not readable by the firmware.

During an interrupt acknowledge, interrupts are disabled and the 14-bit program counter, carry flag, and zero flag are written as
two bytes of data memory. The first byte is stored in the memory addressed by the PSP, then the PSP is incremented. The second
byte is stored in memory addressed by the PSP, and the PSP is incremented again. The overall effect is to store the program
counter and flags on the program “stack” and increment the PSP by two.

The return from interrupt (RET]I) instruction decrements the PSP, then restores the second byte from memory addressed by the
PSP. The PSP is decremented again and the first byte is restored from memory addressed by the PSP. After the program counter
and flags have been restored from stack, the interrupts are enabled. The overall effect is to restore the program counter and flags
from the program stack, decrement the PSP by two, and re-enable interrupts.

The call subroutine (CALL) instruction stores the program counter and flags on the program stack and increments the PSP by two.

The return from subroutine (RET) instruction restores the program counter but not the flags from the program stack and decre-
ments the PSP by two.

il
iy,
@

54.1 Data Memory Organization

The CY7C64x13 microcontrollers provide 256 bytes of data RAM. Normally, the SRAM is partitioned into four areas: program
stack, user variables, data stack, and USB endpoint FIFOs. The following is one example of where the program stack, data stack,

and user variables areas could be located.

After reset Address
| 8-bit DSP | 8-bit PSP |4> 0x00 Program Stack Growth

|
I(Move DSPI1)
|

8-bit DSP p user selected Data Stack Growth

User variables

USB FIFO space for five endpoints!?]

OxFF

Notes:

1. Refer to Section 5.5 for a description of DSP.
2. Endpoint sizes are fixed by the Endpoint Size Bit (/O register Ox1F, Bit 7), see Table 18-1.

5.5 8-Bit Data Stack Pointer (DSP)

The data stack pointer (DSP) supports PUSH and POP instructions that use the data stack for temporary storage. A PUSH
instruction pre-decrements the DSP, then writes data to the memory location addressed by the DSP. A POP instruction reads
data from the memory location addressed by the DSP, then post-increments the DSP.

During a reset, the DSP is reset to 0x00. A PUSH instruction when DSP equals 0x00 writes data at the top of the data RAM
(address OxFF). This writes data to the memory area reserved for USB endpoint FIFOs. Therefore, the DSP should be indexed
at an appropriate memory location that does not compromise the Program Stack, user-defined memory (variables), or the USB
endpoint FIFOs.

For USB applications, the firmware should set the DSP to an appropriate location to avoid a memory conflict with RAM dedicated
to USB FIFOs. The memory requirements for the USB endpoints are described in Section 18.2. Example assembly instructions
to do this with two device addresses (FIFOs begin at 0xD8) are shown below:

MOV A,20h ; Move 20 hex into Accumulator (must be D8h or less)
SWAP A DSP ; swap accumulator value into DSP register

CY7C64013

-
YPRESS PRELIMINARY CY7C64113

5.6 Address Modes
The CY7C64013 and CY7C64113 microcontrollers support three addressing modes for instructions that require data operands:
data, direct, and indexed.

il
iy,
@

5.6.1 Data (Immediate)
“Data” address mode refers to a data operand that is actually a constant encoded in the instruction. As an example, consider the
instruction that loads A with the constant 0xD8:

* MOV A,0D8h
This instruction requires two bytes of code where the first byte identifies the “MOV A” instruction with a data operand as the second
byte. The second byte of the instruction is the constant “OxD8". A constant may be referred to by name if a prior “EQU” statement
assigns the constant value to the name. For example, the following code is equivalent to the example shown above:

» DSPINIT: EQU 0D8h

* MOV A,DSPINIT

5.6.2 Direct
“Direct” address mode is used when the data operand is a variable stored in SRAM. In that case, the one byte address of the
variable is encoded in the instruction. As an example, consider an instruction that loads A with the contents of memory address

location 0x10:

* MOV A,[10h]
Normally, variable names are assigned to variable addresses using “EQU” statements to improve the readability of the assembler
source code. As an example, the following code is equivalent to the example shown above:

* buttons: EQU 10h

* MOV A [buttons]

5.6.3 Indexed
“Indexed” address mode allows the firmware to manipulate arrays of data stored in SRAM. The address of the data operand is
the sum of a constant encoded in the instruction and the contents of the “X” register. Normally, the constant is the “base” address
of an array of data and the X register contains an index that indicates which element of the array is actually addressed:

 array: EQU 10h

* MOV X,3

*« MOV A [X+array]
This would have the effect of loading A with the fourth element of the SRAM “array” that begins at address 0x10. The fourth
element would be at address 0x13.

6.0 Clocking

—————————— 7
XTALOUT EZ‘ |

(pin 1))
| |
> |
XTALIN .
(pin 2) to internal PLL |

| 30 pF ~~30 pF |
| @ $ |

Figure 6-1. Clock Oscillator On-Chip Circuit

The XTALIN and XTALOUT are the clock pins to the microcontroller. The user can connect an external oscillator or a crystal to
these pins. When using an external crystal, keep PCB traces between the chip leads and crystal as short as possible (less than
2 cm). A 6-MHz fundamental crystal can be connected to these pins to provide a reference frequency for the internal PLL. A
ceramic resonator does not allow the microcontroller to meet the timing specifications of a full speed USB and therefore a ceramic
resonator is not recommended with these parts.

An external 6-MHz clock can be applied to the XTALIN pin if the XTALOUT pin is left open. Grounding the XTALOUT pin when
driving XTALIN with an oscillator does not work because the internal clock is effectively shorted to ground.

N CY7C64013

— PRELIMINARY CY7C64113
— YPRESS

7.0 Reset

The CY7C64x13 supports two resets: Power-On Reset (POR) and a Watch Dog Reset (WDR). Each of these resets causes:

« all registers to be restored to their default states,

» the USB Device Address to be set to 0,

« all interrupts to be disabled,

» the PSP and Data Stack Pointer (DSP) to be set to memory address 0x00.
The occurrence of a reset is recorded in the Processor Status and Control Register, as described in Section 15.0. Bits 4 and 6
are used to record the occurrence of POR and WDR, respectively. Firmware can interrogate these bits to determine the cause
of a reset.
Program execution starts at ROM address 0x0000 after a reset. Although this looks like interrupt vector 0, there is an important
difference. Reset processing does NOT push the program counter, carry flag, and zero flag onto program stack. The firmware
reset handler should configure the hardware before the “main” loop of code. Attempting to execute a RET or RETI in the firmware
reset handler causes unpredictable execution results.

il
iy,
@

7.1 Power-On Reset (POR)

When V¢ is first applied to the chip, the Power-On Reset (POR) signal is asserted and the CY7C64x13 enters a “semi-suspend”
state. During the semi-suspend state, which is different from the suspend state defined in the USB specification, the oscillator
and all other blocks of the part are functional, except for the CPU. This semi-suspend time ensures that both a valid V¢ level is
reached and that the internal PLL has time to stabilize before full operation begins. When the V¢ has risen above approximately
2.5V, and the oscillator is stable, the POR is deasserted and the on-chip timer starts counting. The first 1 ms of suspend time is
not interruptible, and the semi-suspend state continues for an additional 95 ms unless the count is bypassed by a USB Bus Reset
on the upstream port. The 95 ms provides time for V¢ to stabilize at a valid operating voltage before the chip executes code.

If a USB Bus Reset occurs on the upstream port during the 95-ms semi-suspend time, the semi-suspend state is aborted and
program execution begins immediately from address 0x0000. In this case, the Bus Reset interrupt is pending but not serviced
until firmware sets the USB Bus Reset Interrupt Enable bit (bit O of register 0x20) and enables interrupts with the EI command.

The POR signal is asserted whenever V¢ drops below approximately 2.5V, and remains asserted until V¢ rises above this level
again. Behavior is the same as described above.

7.2 Watch Dog Reset (WDR)

The Watch Dog Timer Reset (WDR) occurs when the internal Watch Dog timer rolls over. Writing any value to the write-only
Watch Dog Restart Register at address 0x26 clears the timer. The timer rolls over and WDR occurs if it is not cleared within
twarchH (8 ms minimum) of the last clear. Bit 6 of the Processor Status and Control Register is set to record this event (the register
contents are set to 010X0001 by the WDR). A Watch Dog Timer Reset lasts for 2 ms, after which the microcontroller begins
execution at ROM address 0x0000.

— =
‘<— twaTcH “—2 ms-—» ‘

Last write to No write to WDT Execution begins at
Watch Dog Timer register, so WDR Reset Vector 0x0000
Register goes HIGH

Figure 7-1. Watch Dog Reset (WDR)

The USB transmitter is disabled by a Watch Dog Reset because the USB Device Address Register is cleared (see Section 18.1).
Otherwise, the USB Controller would respond to all address 0 transactions.

It is possible for the WDR bit of the Processor Status and Control Register (OxFF) to be set following a POR event. The WDR bit
should be ignored If the firmware interrogates the Processor Status and Control Register for a Set condition on the WDR bit and
if the POR (bit 3 of register OxFF) bit is set.

N CY7C64013

-
YPRESS PRELIMINARY CY7C64113

8.0 Suspend Mode

The CY7C64x13 can be placed into a low-power state by setting the Suspend bit of the Processor Status and Control register.
All logic blocks in the device are turned off except the GPIO interrupt logic and the USB receiver. The clock oscillator and PLL,
as well as the free-running and Watch Dog timers, are shut down. Only the occurrence of an enabled GPIO interrupt or non-idle
bus activity at a USB upstream or downstream port wakes the part out of suspend. The Run bit in the Processor Status and
Control Register must be set to resume a part out of suspend.

The clock oscillator restarts immediately after exiting suspend mode. The microcontroller returns to a fully functional state 1 ms
after the oscillator is stable. The microcontroller executes the instruction following the 1/0 write that placed the device into suspend
mode before servicing any interrupt requests.

The GPIO interrupt allows the controller to wake-up periodically and poll system components while maintaining a very low average
power consumption. To achieve the lowest possible current during suspend mode, all I/O should be held at V¢ or Gnd. This also
applies to internal port pins that may not be bonded in a particular package.

Typical code for entering suspend is shown below:

; All GPIO set to low-power state (no floating pins)
; Enable GPIO interrupts if desired for wake-up

il
iy,
@

.rﬁ.ov a, 09h ; Set suspend and run bits
iowr FFh ; Write to Status and Control Register - Enter suspend, wait for USB activity (or GPIO Interrupt)
nop ; This executes before any ISR

; Remaining code for exiting suspend routine

9.0 General-Purpose 1/0 (GPIO) Ports

GPIO
CFG mode
2-bits
A 4
OE Y —O{ }O—‘
'Y

Internal | Data E
Data Bus ¥ »| Out 5
Latch 0—» § 14 kQ
GPIO
Portwrite — 1 PIN
D E;Q
ata
Port Read n 4
2]47 Latch [« ‘
Reg_Bit :D_[A2
STRB N
(Latch is Transparent q 5
except in HAPI mode) P Data P’ ©
Interrupt
Latch
Interrupt é
Enable
Interrupt <
Controller *Port 0,1,2: LOW Igjn

Port 3: ngh Isink

Figure 9-1. Block Diagram of a GPIO Pin

There are up to 32 GPIO pins (PO[7:0], P1[7:0], P2[7:0], and P3[7:0]) for the hardware interface. The number of GPIO pins
changes based on the package type of the chip. Each port can be configured as inputs with internal pull-ups, open drain outputs,
or traditional CMOS outputs. Port 3 offers a higher current drive, with typical current sink capability of 12 mA. The data for each
GPIO port is accessible through the data registers. Port data registers are shown in Figure 9-2 through Figure 9-5, and are set

to 1 on reset.

= CY7C64013
= = PRELIMINARY CY7C64113

7 6 5 4 3 2 1 0

PO[7] PO[6] PO[5] PO[4] PO[3] PO[2] PO[1] PO[0]

Figure 9-2. Port 0 Data 0x00 (read/write)

7 6 5 4 3 2 1 0

P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]

Figure 9-3. Port 1 Data 0x01 (read/write)

7 6 5 4 3 2 1 0
P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] P2[1] P2[0]
Figure 9-4. Port 2 Data 0x02 (read/write)

7 6 5 4 3 2 1 0
P3[7] P3[6] P3[5] P3[4] P3[3] P3[2] P3[1] P3[0]
(see text)

Figure 9-5. Port 3 Data 0x03 (read/write)

Special care should be taken with any unused GPIO data bits. An unused GPIO data bit, either a pin on the chip or a port bit that
is not bonded on a particular package, must not be left floating when the device enters the suspend state. If a GPIO data bit is
left floating, the leakage current caused by the floating bit may violate the suspend current limitation specified by the USB
Specifications. If a ‘1’ is written to the unused data bit and the port is configured with open drain outputs, the unused data bit
remains in an indeterminate state. Therefore, if an unused port bit is programmed in open-drain mode, it must be written with a
‘0.’ Notice that the CY7C64013 part always requires that the data bits P1[7:3], P2[7,1,0], and P3[7:3] be written with a ‘0.’

In normal non-HAPI mode, reads from a GPIO port always return the present state of the voltage at the pin, independent of the
settings in the Port Data Registers. If HAPI mode is activated for a port, reads of that port return latched data as controlled by
the HAPI signals (see Section 14.0). During reset, all of the GPIO pins are set to a high-impedance input state (‘1’ in open drain
mode). Writing a ‘0’ to a GPIO pin drives the pin LOW. In this state, a ‘0’ is always read on that GPIO pin unless an external source
overdrives the internal pull-down device.

9.1 GPIO Configuration Port

Every GPIO port can be programmed as inputs with internal pull-ups, open drain outputs, and traditional CMOS outputs. In
addition, the interrupt polarity for each port can be programmed. With positive interrupt polarity, a rising edge (‘0’ to ‘1’) on an
input pin causes an interrupt. With negative polarity, a falling edge (‘1' to ‘0’) on an input pin causes an interrupt. As shown in the
table below, when a GPIO port is configured with CMOS outputs, interrupts from that port are disabled. The GPIO Configuration
Port register provides two bits per port to program these features. The possible port configurations are detailed in Table 9-1:

Table 9-1. Port Configurations

Port Configuration bits Pin Interrupt Bit Driver Mode Interrupt Polarity
11 0 Resistive Disabled
1 Resistive -
10 0 CMOS Output Disabled
1 Open Drain Disabled
01 0 Open Drain Disabled
1 Open Drain -
00 0 Open Drain Disabled (Default Condition)
(Reset State) 1 Open Drain :

In “Resistive” mode, a 14-kQ pull-up resistor is conditionally enabled for all pins of a GPI1O port. An I/O pin is driven HIGH through
a 14-kQ pull-up resistor when a ‘1’ has been written to the pin. The output pin is driven LOW with the pull-up disabled when a ‘0’
has been written to the pin. An I/O pin that has been written as a ‘1’ can be used as an input pin with the integrated 14-kQ pull-up
resistor. Resistive mode selects a negative (falling edge) interrupt polarity on all pins that have the GPIO interrupt enabled.

CY7C64013
PRELIMINARY CY7C64113

Iy

¥ CYPRESS

In “CMOS” mode, all pins of the GPIO port are outputs that are actively driven. A CMOS port is not a possible source for interrupts.

In “Open Drain” mode, the internal pull-up resistor and CMOS driver (HIGH) are both disabled. An open drain I/O pin that has
been written as a ‘1’ can be used as an input or an open drain output. An I/O pin that has been written as a ‘0’ drives the output
low. The interrupt polarity for an open drain GPIO port can be selected as positive (rising edge) or negative (falling edge).

During reset, all of the bits in the GPIO Configuration Register are written with ‘0’ to select Open Drain output for all GPIO ports
as the default configuration.

il
y

V‘l

7 6 5 4 3 2 1 0
Port 3 Port 3 Port 2 Port 2 Port 1 Port 1 Port O Port O
Config Bit 1 Config Bit 0 Config Bit 1 Config Bit 0 Config Bit 1 Config Bit 0 Config Bit 1 Config Bit 0

Figure 9-6. GPIO Configuration Register 0x08 (read/write)

9.2 GPIO Interrupt Enable Ports

Each GPIO pin can be individually enabled or disabled as an interrupt source. The Port 0-3 Interrupt Enable registers provide
this feature with an interrupt enable bit for each GPIO pin. When HAPI mode (discussed in Section 14.0) is enabled the GPIO
interrupts are blocked, including ports not used by HAPI, so GPIO pins cannot be used as interrupt sources.

During a reset, GPIO interrupts are disabled by clearing all of the GPIO interrupt enable ports. Writing a ‘1’ to a GPIO Interrupt
Enable bit enables GPIO interrupts from the corresponding input pin. All GPIO pins share a common interrupt, as discussed in

Section 16.7.

7 6 5 4 3 2 1 0
PO[7] PO[6] PO[5] PO[4] PO[3] PO[2] PO[1] PO[0]
Figure 9-7. Port O Interrupt Enable 0x04 (read/write)

7 6 5 4 3 2 1 0

P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]
Figure 9-8. Port 1 Interrupt Enable 0x05 (read/write)
7 6 5 4 3 2 1 0
P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] P2[1] P2[0]
Figure 9-9. Port 2 Interrupt Enable 0x06 (read/write)
7 6 5 4 3 2 1 0
reserved - P3[6] P3[5] P3[4] P3[3] P3[2] P3[1] P3[0]
set to zero

Figure 9-10. Port 3 Interrupt Enable 0x07 (read/write)

CY7C64013

==:;%YPRE o PRELIMINARY CY7C64113
0.0 DAC Port
Vee
Internal . | Data DC * O(Q1
Data Bus ¢ »| Out
Latch | syspend
(Bit 3 of Register OxFF)
14 kQ
DAC Write DAC
1/0 Pin
Isink
Register
Internal
Buff
uffer <« _ﬂ_‘
DAC Read <
Interrupt o %
Enable » S
S > Conolier’
Interrupt N %
Polarity =

Figure 10-1. Block Diagram of a DAC Pin

The CY7C64113 features a Digital to Analog Conversion (DAC) port which has programmable current sink on each 1/0 pin. Writing
a‘l’to a DAC I/0 pin disables the output current sink (Isink DAC) and drives the I/0O pin HIGH through an integrated 14-kQ resistor.
When a ‘0’ is written to a DAC 1/O pin, the Isink DAC is enabled and the pull-up resistor is disabled. This causes the Isink DAC to
sink current to drive the output LOW. The amount of sink current for the DAC I/O pin is programmable over 16 values based on
the contents of the DAC Isink Register for that output pin. DAC[1:0] are high-current outputs that are programmable from 3.2 mA
to 16 mA (typical). DAC[7:2] are low-current outputs, programmable from 0.2 mA to 1.0 mA (typical).

When the suspend bit in Processor Status and Control Register (OXFF) is set, the Isink DAC block of the DAC circuitry is disabled.
Special care should be taken when the CY7C64x13 device is placed in the suspend mode. The DAC Port Data Register(0x30)
should normally be loaded with all ‘1's (OxFF) before setting the suspend bit. If any of the DAC bits are set to ‘0’ when the device
is suspended, that DAC input will float. The floating pin could result in excessive current consumption by the device, unless an

external load places the pin in a deterministic state.
When a DAC I/O bit is written as a ‘1’, the 1/0 pin is an output pulled HIGH through the 14-kQ resistor or an input with an internal

14-kQ pull-up resistor. All DAC port data bits are set to ‘1’ during reset.

Low current outputs
0.2 mA to 1.0 mA typical

High current outputs
3.2 mA to 16 mA typical

5

4

3

2

1

0

DACI0]

DAC[5] DAC[4] DAC[3] DAC[2] DAC[1]

Figure 10-2. DAC Port Data 0x30 (read/write)

DACI6]

DAC[7]

10.1 DAC Isink Registers

Each DAC 1/O pin has an associated DAC Isink register to program the output sink current when the output is driven LOW. The
first Isink register (0x38) controls the current for DAC[0], the second (0x39) for DAC[1], and so on until the Isink register at Ox3F
controls the current to DAC[7]. Writing all ‘0’s to the Isink register causes 1/5 of the max. current to flow through the DAC 1/O pin.
Writing all ‘1's to the Isink register provides the maximum current flow through the pin. The other 14 states of the DAC sink current

are evenly spaced between these two values.

Isink Value

7

6

5

4

3

2

1

0

reserved

reserved

reserved

reserved

Isink[3]

Isink[2]

Isink[1]

Isink[0]

Figure 10-3. DAC Port Isink 0x38 to Ox3F (write only)

il
iy,
@

10.2

YPRESS

PRELIMINARY

CY7C64013
CY7C64113

DAC Port Interrupts

A DAC portinterrupt can be enabled/disabled for each pin individually. The DAC Port Interrupt Enable register provides this feature
with an interrupt enable bit for each DAC 1/O pin. Writing a ‘1’ to a bit in this register enables interrupts from the corresponding
bit position. Writing a ‘0’ to a bit in the DAC Port Interrupt Enable register disables interrupts from the corresponding bit position.
All of the DAC Port Interrupt Enable register bits are cleared to ‘0’ during a reset. All DAC pins share a common interrupt, as

explained in Section 16.6.

1 0

7

6

5

4

3

2

DACI0]

DACI[7]

DACI6]

DAC[5]

DAC[4]

DAC[3]

DAC[2]

DACI[1]

Figure 10-4. DAC Port Interrupt Enable 0x31 (write only)

As an additional benefit, the interrupt polarity for each DAC pin is programmable with the DAC Port Interrupt Polarity register.
Writing a ‘0’ to a bit selects negative polarity (falling edge) that causes an interrupt (if enabled) if a falling edge transition occurs
on the corresponding input pin. Writing a ‘1’ to a bit in this register selects positive polarity (rising edge) that causes an interrupt
(if enabled) if a rising edge transition occurs on the corresponding input pin. All of the DAC Port Interrupt Polarity register bits are

cleared during a reset.

5

4

3

2 1 0

DAC[1]

DACI0]

DAC[7]

DACI6]

DAC[5]

DAC[4]

DAC[3]

DAC[2]

Figure 10-5. DAC Port Interrupt Polarity 0x32 (write only)

11.0 12-Bit Free-Running Timer
The 12-bit timer provides two interrupts (128-ps and 1.024-ms) and allows the firmware to directly time events that are up to 4
ms in duration. The lower 8 bits of the timer can be read directly by the firmware. Reading the lower 8 bits latches the upper 4

bits into a temporary register. When the firmware reads the upper 4 bits of the timer, it is accessing the count stored in the
temporary register. The effect of this logic is to ensure a stable 12-bit timer value can be read, even when the two reads are

separated in time.

11.1 Timer (LSB)
7 6 5 4 3 2 1 0
Timer Timer Timer Timer Timer Timer Timer Timer
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Figure 11-1. Timer Register 0x24 (read only)
11.2 Timer (MSB)
7 6 5 4 3 2 1 0
Reserved Reserved Reserved Reserved Timer Timer Timer Timer
Bit 11 Bit 10 Bit 9 Bit 8

Figure 11-2. Timer Register 0x25 (read only)

CY7C64013

PRELIMINARY CY7C64113

1.024-ms Interrupt
128-ps Interrupt

v

v

11 |10 |9 8 7 6 5 4 3 2 1 0 <«— 1-MHz Clock
L []
L3 | L2 |L1 |LO
‘ D3 ‘ D2 ‘ D1 ‘ DO |D7 |D6 |D5 |D4 (D3 |D2 | D1 | DO
P T0 Timer Register
8

Figure 11-3. Timer Block Diagram

12.0 1°C and HAPI Configuration Register

Internal hardware supports communication with external devices through two interfaces: a two-wire 12C, and a HAPI for 1, 2, or
3 byte transfers. The 12C and HAPI functions, discussed in detail in Sections 13.0 and 14.0, share a common configuration register

(see Figure 12-1). All bits of this register are cleared on reset.

7 6 5 4 3 2 1 0
R/W R/W R/W R R R/W R/W
I2C Position Reserved LEMPTY DRDY Latch Empty | Data Ready HAPI Port HAPI Port

Polarity Polarity Width Bit 1 Width Bit O

Figure 12-1. HAPI/I2C Configuration Register 0x09 (read/write)

Bits [7,1:0] of the HAPI/IZC Configuration Register control the pin out configuration of the HAPI and 12C interfaces. Bits [5:2] are
used in HAPI mode only, and are described in Section 14.0. Table 12-1 shows the HAPI port configurations, and Table 12-2 shows
1’c pin location configuration options. These 1’c options exist due to pin limitations in certain packages, and to allow simultaneous

HAPI and 12C operation.
HAPI operation is enabled whenever either HAPI Port Width Bit (Bit 1 or 0) is non-zero. This affects GPIO operation as described
in Section 14.0. 1C must be separately enabled as described in Section 13.0.

Table 12-1. HAPI Port Configuration

Port Width HAPI Port Width
Bits[1:0]
11 24 Bits: P3[7:0], P1[7:0], PO[7:0]
10 16 Bits: P1[7:0], PO[7:0]
01 8 Bits: PO[7:0]
00 No HAPI Interface

Table 12-2. 1°C Port Configuration

1°C Position Port Width
Bit[7] Bit[1] 1°C Position

X 1 I°C on P2[1:0], 0:SCL, 1:SDA

0 0 I°C on P1[1:0], 0:SCL, 1:SDA

1 0 I°C on P2[1:0], 0:SCL, 1:SDA

CY7C64013

PRELIMINARY CY7C64113

YPRESS

13.0 12C Controller

The 12C block provides a versatlle two-wire communication with external devices, supporting master, slave, and multi-master
modes of operation. The 12C block functions by handling the low-level signaling in hardware, and issuing interrupts as needed to
allow firmware to take appropriate action during transactions. While waiting for firmware response, the hardware keeps the 1’c
bus idle if necessary.

The 12C generates an interrupt to the microcontroller at the end of each received or transmitted byte, when a stop bit is detected
by the slave when in receive mode, or when arbitration is lost. Details of the interrupt responses are given in Section 16.8.

The I12C interface consists of two registers, an I2C Data Register (Figure 13-1) and an 12C Status and Control Register (Figure
13-2). The Data Register is implemented as separate read and write registers. Generally, the I2C Status and Control Register
should only be monitored after the 1’c interrupt, as all bits are valid at that time. Polling this register at other times could read
misleading bit status if a transaction is underway.

The 12C SCL clock is connected to bit 0 of GPIO port 1 or GPIO port 2, and the 12C SDA data is connected to bit 1 of GPIO port
1 or GPIO port 2. Refer to Section 12.0 for the bit definitions and functionality of the HAPI/ZC Configuration Register, which is
used to set the locations of the configurable 12c pins. Once the 12c functionality is enabled by setting bit 0 of the |“C Status &
Control Register, the two LSB bits ([1:0]) of the corresponding GPIO port are placed in Open Drain mode, regardless of the
settings of the GPIO Configuration Register.

All control of the I12C clock and data lines is performed by the 12C block.

il
iy,
@

7 6 5 4 3 2 1 0
I°C Data 7 I’CData6 | 1°C Data5 I°’C Data4 | 1°C Data 3 I°C Data 2 I°C Data 1 I°C Data 0
Figure 13-1. I2C Data Register 0x29 (separate read/write registers)
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
MSTR Continue/ Xmit ACK Addr ARB Lost/ | Received Stop 1°c
Mode Busy Mode Restart Enable

Figure 13-2. 12C Status and Control Register 0x28 (read/write)

The I2C Status and Control register bits are defined in Table 13-1, with a more detailed description following.

Table 13-1. 1°C Status and Control Register Bit Definitions

Description
Write to 1 to enable I12C function. When cleared, I2C GPIO pins operate normally.

Reads 1 only in slave receive mode, when 1’C Stop bit detected (unless firmware did not
ACK the last transaction).

Reads 1 to indicate master has lost arbitration. Reads 0 otherwise.
Write to 1 in master mode to perform a restart sequence (also set Continue bit).

Bit Name
0 I°C Enable
1 Received Stop

2 ARB Lost/Restart

3 Addr Reads 1 during first byte after start/restart in slave mode, or if master loses arbitration.
Reads 0 otherwise. This bit should always be written as 0.
4 ACK In receive mode, write 1 to generate ACK, 0 for no ACK.
In transmit mode, reads 1 if ACK was received, 0 if no ACK received.
Xmit Mode Write to 1 for transmit mode, O for receive mode.

Write 1 to indicate ready for next transaction.
Reads 1 when I2C block is busy with a transaction, 0 when transaction is complete.

Write to 1 for master mode, O for slave mode. This bitis cleared if master loses arbitration.
Clearing from 1 to 0 generates Stop bit.

Continue / Busy

7 MSTR Mode

MSTR Mode: Setting this bit causes the 12C to initiate a master mode transaction by sending a start bit and transmitting the first
data byte from the data register (this typically holds the target address and R/W bit). Subsequent bytes are initiated by setting the

Continue hit, as described below.

CY7C64013
PRELIMINARY CY7C64113

Ilt

s

W

I

YPRESS

In master mode, the 12C block generates the clock (SCK), and drives the data line as required depending on transmit or receive
state. The 12C block performs any required arbitration and clock synchronization. The loss of arbitration results in the clearing of
this bit, the setting of the ARB Lost bit, and the generation of an interrupt to the microcontroller. If the chip is the target of an
external master that wins arbitration, then the interrupt is held off until the transaction from the external master is completed.

When MSTR Mode is cleared from 1 to 0 by a firmware write, an 12c Stop bit is generated.

Continue / Busy: This bit is written by the firmware to indicate that the firmware is ready for the next byte transaction to begin.
In other words, the bit has responded to an interrupt request and has completed the required update or read of the data register.
During a read this bit indicates if the hardware is busy and is locking out additional writes to the 12C Status and Control register.
This locking allows the hardware to complete certain operations that may require an extended period of time. Following an 1’c
interrupt, the 12C block does not return to the Busy state until firmware sets the Continue bit. This allows the firmware to make
one control register write without the need to check the Busy bit.

Xmit Mode: This bit is set by firmware to enter transmit mode and perform a data transmit in master or slave mode. Clear this
bit for receive mode. Firmware generally determines the value of this bit from the R/W bit associated with the 12C address packet.
The Xmit Mode bit state is ignored when initially writing the MSTR Mode or the Restart bits, as these cases always cause transmit
mode for the first byte.

ACK: This bit is set or cleared by firmware during receive operation to indicate if the hardware should generate an ACK signal
on the I12C bus. Writing a 1 to this bit generates an ACK (SDA LOW) on the I2C bus at the ACK bit time. During transmits (Xmit
Mode=1), this bit should be cleared.

Addr: This bit is set by the 1°C block during the first byte of a slave receive transaction, after an I°C start or restart. The Addr bit
is cleared when the firmware sets the Continue bit. This bit allows the firmware to recognize when the master has lost arbitration,
and in slave mode it allows the firmware to recognize that a start or restart has occurred.

ARB Lost/Restart: This bitis valid as a status bit (ARB Lost) after master mode transactions. In master mode, set this bit (along
with the Continue and MSTR Mode bits) to perform an 12C restart sequence. The 1’c target address for the restart must be written
to the data register before setting the Continue bit. To prevent false ARB Lost signals, the Restart bit is cleared by hardware during
the restart sequence.

Receive Stop: This bit is set when the slave is in receive mode and detects a stop bit on the bus. The Receive Stop bit is not set

if the firmware terminates the 12C transaction by not acknowledging the previous byte transmitted on the 12C bus, e.g., in receive
mode if firmware sets the Continue bit and clears the ACK bit.

I2C Enable: Set this bit to override GPIO definition with 12C function on the two 12C pins. When this bit is cleared, these pins are
free to function as GPIOs. In 12C mode, the two pins operate in open drain mode, independent of the GPIO configuration setting.

\

14.0 Hardware Assisted Parallel Interface (HAPI)

The CY7C64x13 processor provides a hardware assisted parallel interface for bus widths of 8, 16, or 24 bits, to accommodate
data transfer with an external microcontroller or similar device. Control bits for selecting the byte width are in the HAPI/I2C
Configuration Register (Figure 12-1), bits 1 and 0.

Signals are provided on Port 2 to control the HAPI interface. Table 14-1 describes these signals and the HAPI control bits in the
HAPI/I2C Configuration Register. Enabling HAPI causes the GPIO setting in the GPIO Configuration Register (0x08) to be
overridden. The Port 2 output pins are in CMOS output mode and Port 2 input pins are in input mode (open drain mode with Q3
OFF in Figure 9-1).

CY7C64013
PRELIMINARY CY7C64113

iy
y

Iy

¥ CYPRESS

Table 14-1. Port 2 Pin and HAPI Configuration Bit Definitions

\
\

Pin Name Direction Description (Port 2 Pin)
P2[2] LatEmptyPin Out Ready for more input data from external interface
P2[3] DReadyPin Out Output data ready for external interface
P2[4] STB In Strobe signal for latching incoming data
P2[5] OE In Output Enable, causes chip to output data
P2[6] Ccs In Chip Select (Gates STB and OE)
Bit Name R/W Description (HAPI/I2C Configuration Register)
2 Data Ready R Asserted after firmware writes data to Port 0, until OE driven LOW.
3 Latch Empty R Asserted after firmware reads data from Port 0, until STB driven LOW.
4 DRDY Polarity R/W Determines polarity of Data Ready bit and DReadyPin:
If 0, Data Ready is active LOW, DReadyPin is active HIGH.
If 1, Data Ready is active HIGH, DReadyPin is active LOW.
5 LEMPTY Polarity R/W Determines polarity of Latch Empty bit and LatEmptyPin:
If 0, Latch Empty is active LOW, LatEmptyPin is active HIGH.
If 1, Latch Empty is active HIGH, LatEmptyPin is active LOW.

HAPI Read by External Device from CY7C64x13: In this case (see Figure 22-3), firmware writes data to the GPIO ports. If
16-bit or 24-bit transfers are being made, Port 0 should be written last, since writes to Port 0 asserts the Data Ready bit and the
DReadyPin to signal the external device that data is available.

The external device then drives the OE and CS pins active (LOW), which causes the HAPI data to be output on the port pins.
When OE is returned HIGH (inactive), the HAPI/GPIO interrupt is generated. At that point, firmware can reload the HAPI latches
for the next output, again writing Port O last.

The Data Ready bit reads the opposite state from the external DReadyPin on pin P2[3]. If the DRDY Polarity bit is 0, DReadyPin
is active HIGH, and the Data Ready bit is active LOW.

HAPI Write by External Device to CY7C64x13: In this case (see Figure 22-4), the external device drives the STB and CS pins
active (LOW) when it drives new data onto the port pins. When this happens, the internal latches become full which causes the
Latch Empty bit to be deasserted. When STB is returned HIGH (inactive), the HAPI/GPIO interrupt is generated. Firmware then
reads the parallel ports to empty the HAPI latches. If 16-bit or 24-bit transfers are being made, Port 0 should be read last because
reads from Port 0 assert the Latch Empty bit and the LatEmptyPin to signal the external device for more data.

The Latch Empty bit reads the opposite state from the external LatEmptyPin on pin P2[2]. If the LEMPTY Polarity bit is 0,
LatEmptyPin is active HIGH, and the Latch Empty bit is active LOW.

15.0 Processor Status and Control Register

7 6 5 4 3 2 1 0
R R/W R/W R/W R/W R R/W
IRQ Watch Dog | USB Bus Re- Power-On Suspend Interrupt reserved Run
Pending Reset set Interrupt Reset Enable Sense

Figure 15-1. Processor Status and Control Register OxFF

The Run bit, bit 0, is manipulated by the HALT instruction. When Halt is executed, all the bits of the Processor Status and Control
Register are cleared to 0. Since the run bit is cleared, the processor stops at the end of the current instruction. The processor
remains halted until an appropriate reset occurs (power-on or watch dog). This bit should normally be written as a ‘1.

Bit 1 is reserved and must be written as a zero.

The Interrupt Enable Sense (bit 2) shows whether interrupts are enabled or disabled. Firmware has no direct control over this bit
as writing a zero or one to this bit position has no effect on interrupts. A ‘0’ indicates that interrupts are masked off and a ‘1’
indicates that the interrupts are enabled. This bit is further gated with the bit settings of the Global Interrupt Enable Register (0x20)
and USB End Point Interrupt Enable Register (0x21). Instructions DI, El, and RETI manipulate the state of this bit.

Writing a ‘1’ to the Suspend bit (bit 3) halts the processor and causes the microcontroller to enter the suspend mode that
significantly reduces power consumption. A pending, enabled interrupt or USB bus activity causes the device to come out of
suspend. After coming out of suspend, the device resumes firmware execution at the instruction following the IOWR which put
the part into suspend. An IOWR attempting to put the part into suspend is ignored if non-idle USB bus activity is present. See
Section 8.0 for more details on suspend mode operation.

CY7C64013
PRELIMINARY CY7C64113

iy
y

llln

¥ CYPRESS

The Power-On Reset (bit 4) is set to ‘1’ during a power-on reset. The firmware can check bits 4 and 6 in the reset handler to
determine whether a reset was caused by a power-on condition or a watch dog timeout. Note that a POR event may be followed
by a watch dog reset before firmware begins executing, as explained below.

The USB Bus Reset Interrupt (bit 5) occurs when a USB Bus Reset is received on the upstream port. The USB Bus Reset is a
single-ended zero (SEO) that lasts from 12 to 16 ps. An SEOQ is defined as the condition in which both the D+ line and the D- line
are LOW at the same time. When the SIE detects that this SEO condition is removed, the USB Bus Reset interrupt bit is set in
the Processor Status and Control Register and a USB Bus Reset interrupt is generated.

The Watch Dog Reset (bit 6) is set during a reset initiated by the Watch Dog Timer. This indicates the Watch Dog Timer went for
more than tyarcnH (8 ms minimum) between Watch Dog clears. This can occur with a POR event, as noted below.

The IRQ pending (bit 7), when set, indicates that one or more of the interrupts has been recognized as active. An interrupt remains
pending until its interrupt enable bit is set (registers 0x20 or 0x21) and interrupts are globally enabled. At that point, the internal
interrupt handling sequence clears this bit until another interrupt is detected as pending.

During power-up, the Processor Status and Control Register is set to 00010001, which indicates a POR (bit 4 set) has occurred
and no interrupts are pending (bit 7 clear). During the 96 ms suspend at start-up (explained in Section 7.1), a Watch Dog Reset
also occurs unless this suspend is aborted by an upstream SEO before 8 ms. If a WDR occurs during the power-up suspend
interval, firmware reads 01010001 from the Status and Control Register after power-up. Normally, the POR bit should be cleared
so a subsequent WDR can be clearly identified. If an upstream bus reset is received before firmware examines this register, the
Bus Reset bit may also be set.

During a Watch Dog Reset, the Processor Status and Control Register is set to 01XX0001, which indicates a Watch Dog Reset
(bit 6 set) has occurred and no interrupts are pending (bit 7 clear). The Watch Dog Reset does not effect the state of the POR
and the Bus Reset Interrupt bits.

V‘l

16.0 Interrupts

Interrupts are generated by the GPIO/DAC pins, the internal timers, 12C or HAPI operation, or on various USB traffic conditions.
All interrupts are maskable by the Global Interrupt Enable Register and the USB End Point Interrupt Enable Register. Writing a
‘1’ to a bit position enables the interrupt associated with that bit position. During a reset, the contents the Global Interrupt Enable
Register and USB End Point Interrupt Enable Register are cleared, effectively disabling all interrupts.

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W
Reserved 1°’c GPIO/HAPI DAC Reserved 1.024-ms 128-us USB Bus RST
Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt
Enable Enable Enable Enable Enable Enable

Figure 16-1. Global Interrupt Enable Register 0x20 (read/write)

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W
Reserved Reserved Reserved EPB1 EPBO EPA2 EPA1 EPAO
Interrupt Interrupt Interrupt Interrupt Interrupt
Enable Enable Enable Enable Enable

Figure 16-2. USB Endpoint Interrupt Enable Register 0x21 (read/write)

The interrupt controller contains a separate flip-flop for each interrupt. See Figure 16-3 for the logic block diagram of the interrupt
controller. When an interrupt is generated, it is first registered as a pending interrupt. It stays pending until it is serviced or a reset
occurs. A pending interrupt only generates an interrupt request if it is enabled by the corresponding bit in the interrupt enable
registers. The highest priority interrupt request is serviced following the completion of the currently executing instruction.

When servicing an interrupt, the hardware first disables all interrupts by clearing the Global Interrupt Enable bit in the CPU (the
state of this bit can be read at Bit 2 of the Processor Status and Control Register). Second, the flip-flop of the current interrupt is
cleared. This is followed by an automatic CALL instruction to the ROM address associated with the interrupt being serviced (i.e.,
the Interrupt Vector, see Section 16.1). The instruction in the interrupt table is typically a JMP instruction to the address of the
Interrupt Service Routine (ISR). The user can re-enable interrupts in the interrupt service routine by executing an El instruction.
Interrupts can be nested to a level limited only by the available stack space.

The Program Counter value, as well as the Carry and Zero flags (CF, ZF), are stored onto the Program Stack by the automatic
CALL instruction generated as part of the interrupt acknowledge process. The user firmware is responsible for ensuring that the
processor state is preserved and restored during an interrupt. The PUSH A instruction should typically be used as the first
command in the ISR to save the accumulator value and the POP A instruction should be used to restore the accumulator value

CY7C64013
PRELIMINARY CY7C64113

iy
y

llln

¥ CYPRESS

just before the RETI instruction. The program counter CF and ZF are restored and interrupts are enabled when the RETI
instruction is executed.

The DI and El instructions can be used to disable and enable interrupts, respectively. These instructions affect only the Global
Interrupt Enable bit of the CPU. If desired, EI can be used to re-enable interrupts while inside an ISR, instead of waiting for the
RETI that exists the ISR. While the global interrupt enable bit is cleared, the presence of a pending interrupt can be detected by
examining the IRQ Sense bit (Bit 7 in the Processor Status and Control Register).

V‘l

16.1 Interrupt Vectors

The Interrupt Vectors supported by the USB Controller are listed in Table 16-1. The lowest-numbered interrupt (USB Bus Reset
interrupt) has the highest priority, and the highest-numbered interrupt (I C interrupt) has the lowest priority. Although Reset is not
an interrupt, the first instruction executed after a reset is at PROM address 0x0000h—which corresponds to the first entry in the
Interrupt Vector Table. Because the JMP instruction is 2 bytes long, the interrupt vectors occupy 2 bytes.

I USB Reset Clear
CLR Interrupt » To CPU
Vector
1—Ip Q USB Reset IRQ
Enable [0] 128-ps CLR |- — — — — — — —
(Reg 0x20) |12 IRQ —» IRQ Sense

USB —| CLK
Reset —1-ms CLR

Int 1-ms IRQ

AddA EPO CLR
AddA EPO IRQ

AddA EP1 CLR
AddA EP1 IRQ

|
|
|
|
|
AddA EP2 CLR |
AddA EP2 IRQ Global
Enable [2] AddA EP3 CLR | | interrupt It Enable
|
|
|
|
|
|

IRQout

o]
(e}

IRQ

]
(e}

N

CLR

N
W)
O

(Reg 0x21) —— AddA EP3 IRQ Enable

AddA EP4 CLR Bit
AddA EP4 IRQ

AddA—{ CLK
ENP2
Int

Controlled by DI, El, and
CLR RETI Instructions

e}
[e]

Interrupt
Acknowledge

DAC CLR
DAC IRQ

——GPIOCLR
——{GPIO IRQ

12C CLR

[e]
[e]

CLR

1—p © Enable [6]
(Reg 0x20) Interrupt
1°’C — cLK Priority
Int Encoder

12C IRQ

Figure 16-3. Interrupt Controller Functional Diagram

CY7C64013
PRELIMINARY CY7C64113

iy
y

Iy

¥ CYPRESS

Table 16-1. Interrupt Vector Assignments

\
\

Interrupt Vector Number ROM Address Function
Not Applicable 0x0000 Execution after Reset begins here

1 0x0002 USB Bus Reset interrupt
2 0x0004 128-us timer interrupt
3 0x0006 1.024-ms timer interrupt
4 0x0008 USB Address A Endpoint 0 interrupt
5 0x000A USB Address A Endpoint 1 interrupt
6 0x000C USB Address A Endpoint 2 interrupt
7 0x000E USB Address A Endpoint 3 interrupt
8 0x0010 USB Address A Endpoint 4 interrupt
9 0x0012 Reserved
10 0x0014 DAC interrupt
11 0x0016 GPIO / HAPI interrupt
12 0x0018 12C interrupt

A pending address can be read from the Interrupt Vector Register (Figure 16-4). The value read from this register is only valid if
the Global Interrupt bit has been disabled, by executing the DI instruction or in an Interrupt Service Routine before interrupts have
been re-enabled. The value read from this register is the interrupt vector address; for example, a 0x06 indicates the 1 ms timer

interrupt is the highest priority pending interrupt.

7 6 5 4 3 2 1 0
R R R R R
Reserved Reserved Reserved Interrupt Interrupt Interrupt Interrupt Reads ‘0’
Vector Bit 4 Vector Bit 3 Vector Bit 2 Vector Bit 1

Figure 16-4. Interrupt Vector Register 0x23 (read only)

16.2 Interrupt Latency

Interrupt latency can be calculated from the following equation:

Interrupt latency = (Number of clock cycles remaining in the current instruction) + (10 clock cycles for the CALL instruction) +
(5 clock cycles for the JMP instruction)

For example, if a 5 clock cycle instruction such as JC is being executed when an interrupt occurs, the first instruction of the
Interrupt Service Routine executes a minimum of 16 clocks (1+10+5) or a maximum of 20 clocks (5+10+5) after the interrupt is
issued. For a 12-MHz internal clock (6-MHz crystal), 20 clock periods is 20/ 12 MHz = 1.667 ps.

16.3 USB Bus Reset Interrupt

The USB Controller recognizes a USB Reset when a Single Ended Zero (SEOQ) condition persists on the upstream USB port for
12-16 ps (the Reset may be recognized for an SEO as short as 12 s, but is always recognized for an SEO longer than 16 ps).
SEO is defined as the condition in which both the D+ line and the D- line are LOW. Bit 5 of the Status and Control Register is set
to record this event. The interrupt is asserted at the end of the Bus Reset. If the USB reset occurs during the start-up delay
following a POR, the delay is aborted as described in Section 7.1. The USB Bus Reset Interrupt is generated when the SEO state

is deasserted.
A USB Bus Reset clears the following registers:
SIE Section:USB Device Address Registers (0x10, 0x40)

N CY7C64013

— PRELIMINARY CY7C64113
— YPRESS

16.4 Timer Interrupt

There are two periodic timer interrupts: the 128-us interrupt and the 1.024-ms interrupt. The user should disable both timer
interrupts before going into the suspend mode to avoid possible conflicts between servicing the timer interrupts first or the suspend
request first.

il
iy,
@

16.5 USB Endpoint Interrupts

There are five USB endpoint interrupts, one per endpoint. A USB endpoint interrupt is generated after the USB host writes to a
USB endpoint FIFO or after the USB controller sends a packet to the USB host. The interrupt is generated on the last packet of
the transaction (e.g., on the host's ACK during an IN, or on the device ACK during on OUT). If no ACK is received during an IN
transaction, no interrupt is generated.

16.6 DAC Interrupt

Each DAC 1/O pin can generate an interrupt, if enabled. The interrupt polarity for each DAC 1/O pin is programmable. A positive
polarity is a rising edge input while a negative polarity is a falling edge input. All of the DAC pins share a single interrupt vector,
which means the firmware needs to read the DAC port to determine which pin or pins caused an interrupt.

If one DAC pin has triggered an interrupt, no other DAC pins can cause a DAC interrupt until that pin has returned to its inactive
(non-trigger) state or the corresponding interrupt enable bit is cleared. The USB Controller does not assign interrupt priority to
different DAC pins and the DAC Interrupt Enable Register is not cleared during the interrupt acknowledge process.

16.7 GPIO/HAPI Interrupt

Each of the GPIO pins can generate an interrupt, if enabled. The interrupt polarity can be programmed for each GPIO port as
part of the GPIO configuration. All of the GPIO pins share a single interrupt vector, which means the firmware needs to read the
GPIO ports with enabled interrupts to determine which pin or pins caused an interrupt. A block diagram of the GPIO interrupt
logic is shown in Figure 16-5. Refer to Sections 9.1 and 9.2 for more information of setting GPIO interrupt polarity and enabling
individual GPIO interrupts.

If one port pin has triggered an interrupt, no other port pins can cause a GPIO interrupt until that port pin has returned to its
inactive (non-trigger) state or its corresponding port interrupt enable bit is cleared. The USB Controller does not assign interrupt
priority to different port pins and the Port Interrupt Enable Registers are not cleared during the interrupt acknowledge process.

Port
Configuration GPIO Interrupt
Register OR Gate Flip Flop
(1 input per
GPIO pin) b @ Interrupt —>» IRQout
-) Priority
‘ B/I — Encoder [—® Interrupt
GPIO * Vector
pin 2 X jj =/ s
1 =Enable Port Interrupt
0 = Disable Enable Register
IRA
Global
1=Enable GPIO Interrupt [
0 = Disable Enable

(Bit 5, Register 0x20)

Figure 16-5. GPIO Interrupt Structure

When HAPI is enabled, the HAPI logic takes over the interrupt vector and blocks any interrupt from the GPIO bits, including
ports/bits not being used by HAPI. Operation of the HAPI interrupt is independent of the GPIO specific bit interrupt enables, and
is enabled or disabled only by bit 5 of the Global Interrupt Enable Register (0x20) when HAPI is enabled. The settings of the GPIO
bit interrupt enables on ports/bits not used by HAPI still effect the CMOS mode operation of those ports/bits. The effect of

CY7C64013
PRELIMINARY CY7C64113

W

iy
)

¥ CYPRESS

modifying the interrupt bits while the Port Config bits are set to “10” is shown in Table 9-1. The events that generate HAPI interrupts
are described in Section 14.0.

16.8 I12C Interrupt
The I1°C interrupt occurs after various events on the 12C bus to signal the need for firmware interaction. This generally involves
reading the 12C Status and Control Register (Figure 13-2) to determine the cause of the interrupt, loading/reading the 1“C Data
Register as appropriate, and finally writing the Status and Control Reglster to initiate the subsequent transaction. The |nterrupt
indicates that status bits are stable and it is safe to read and write the 12C registers. Refer to Section 13.0 for details on the 1’C
registers.
When enabled, the 12C state machines generate interrupts on completion of the following conditions. The referenced bits are in
the I12C Status and Control Register.
1. In slave receive mode, after the slave receives a byte of data. The Addr bit is set if this is the first byte since a start or restart
signal was sent by the external master. Firmware must read or write the data register as necessary, then set the ACK, Xmit
Mode, and Continue bits appropriately for the next byte.
. In slave receive mode, after a stop bit is detected. The Received Stop bit is set. If the stop bit follows a slave receive transaction
where the ACK bit was cleared to 0, no stop bit detection occurs.
. In slave transmit mode, after the slave transmits a byte of data. The ACK bit indicates if the master that requested the byte
acknowledged the byte. If more bytes are to be sent, firmware writes the next byte into the Data Register and then sets the
Xmit Mode and Continue bits as required.
In master transmit mode, after the master sends a byte of data. Firmware should load the Data Register if necessary, and set
the Xmit Mode, MSTR Mode, and Continue/Busy bits appropriately. Clearing the MSTR Mode bit issues a stop signal to the
I°C bus and return to the idle state.
. In master receive mode, after the master receives a byte of data. Firmware should read the data and set the Ack and
Continue/Busy bits appropriately for the next byte. Clearing the Master bit at the same time causes the master state machine
to issue a stop signal to the 12C bus and leave the I12C hardware in the idle state.

6. When the master loses arbltratlon This condition clears the Master bit and sets the Arbitration Lost bit immediately and then
walits for a stop signal on the 12C bus to generate the interrupt.

The Continue/Busy bitis cleared by hardware prior to interrupt conditions 1 to 4. Once the Data Register has been read or written,

firmware should configure the other control bits and set the Continue bit for subsequent transactions.

Following an interrupt from master mode, firmware should perform only one write to the Status and Control Register that sets the
Continue bit, without checking the value of the Busy bit. The Busy bit may otherwise be active and 1’c register contents may be
changed by the hardware during the transaction, until the 12c interrupt occurs.

N

w

e

[

17.0 USB Overview

The USB hardware consists of the logic for a full-speed USB Port. The full-speed serial interface engine (SIE) interfaces the
microcontroller to the USB bus. An external series resistor (Reqy) must be placed in series with the D+ and D- lines, as close to
the corresponding pins as possible, to meet the USB driver requirements of the USB specifications.

17.1 USB Serial Interface Engine (SIE)

The SIE allows the CY7C64x13 microcontroller to communicate with the USB host. The SIE simplifies the interface between the
microcontroller and USB by incorporating hardware that handles the following USB bus activity independently of the microcon-

troller:
« Bit stuffing/unstuffing
» Checksum generation/checking
ACK/NAK/STALL
» Token type identification
» Address checking
Firmware is required to handle the following USB interface tasks:
» Coordinate enumeration by responding to SETUP packets
* Fill and empty the FIFOs
» Suspend/Resume coordination
 Verify and select DATA toggle values

N CY7C64013

— PRELIMINARY CY7C64113
— YPRESS

17.2 USB Enumeration

The USB device is enumerated under firmware control. The following is a brief summary of the typical enumeration process of
the CY7C64x13 by the USB host. For a detailed description of the enumeration process, refer to the USB specification.

In this description, ‘Firmware’ refers to embedded firmware in the CY7C64x13 controller.

. The host computer sends a SETUP packet followed by a DATA packet to USB address 0 requesting the Device descriptor.

. Firmware decodes the request and retrieves its Device descriptor from the program memory tables.

. The host computer performs a control read sequence and Firmware responds by sending the Device descriptor over the USB
bus, via the on-chip FIFOs.

. After receiving the descriptor, the host sends a SETUP packet followed by a DATA packet to address 0 assigning a new USB
address to the device.

. Firmware stores the new address in its USB Device Address Register after the no-data control sequence completes.

. The host sends a request for the Device descriptor using the new USB address.

. Firmware decodes the request and retrieves the Device descriptor from program memory tables.

. The host performs a control read sequence and Firmware responds by sending its Device descriptor over the USB bus.

. The host generates control reads from the device to request the Configuration and Report descriptors.

10.0nce the device receives a Set Configuration request, its functions may now be used.

il
iy,
@

w N P

N

© 00 N O O

17.3 USB Upstream Port Status and Control

USB status and control is regulated by the USB Status and Control Register, as shown in Figure 17-1. All bits in the register are
cleared during reset.

7 6 5 4 3 2 1 0
R/W R/W R R R/C R/W R/W R/W
Endpoint Endpoint D+ D- Bus Activity Control Control Control
Size Mode Upstream Upstream Bit 2 Bit 1 Bit 0

Figure 17-1. USB Status and Control Register Ox1F (read/write)

The three control bits allow the upstream port to be driven manually by firmware. For normal USB operation, all of these bits must
be cleared. Table 17-1 shows how the control bits affect the upstream port.

Table 17-1. Control Bit Definition for Upstream Port

Control Bits Control Action
000 Not Forcing (SIE Controls Driver)
001 Force D+[0] HIGH, D-[0] LOW
010 Force D+[0] LOW, D—[0] HIGH
011 Force SEO; D+[0] LOW, D—[0] LOW
100 Force D+[0] LOW, D—[0] LOW
101 Force D+[0] HiZ, D—{0] LOW
110 Force D+[0] LOW, D—[0] HizZ
111 Force D+[0] HizZ, D—{0] HiZ

Bus Activity (bit 3) is a “sticky” bit that indicates if any non-idle USB event has occurred on the upstream USB port. Firmware
should check and clear this bit periodically to detect any loss of bus activity. Writing a ‘0’ to the Bus Activity bit clears it, while
writing a ‘1’ preserves the current value. In other words, the firmware can clear the Bus Activity bit, but only the SIE can set it.
The Upstream D- and D+ (bits 4 and 5) are read only. These give the state of each upstream port pin individually: 1=HIGH,
0=LOW.

Endpoint Mode (bit 6) and Endpoint Size (bit 7) are used to configure the number and size of USB endpoints. See Section 18.2
for a detailed description of these bits.

CY7C64013

PRELIMINARY CY7C64113

YPRESS

USB Serial Interface Engine Operation

il
iy,
@

18.0

USB Device Address A includes up to five endpoints: EPAOQ, EPAL, EPA2, EPA3, and EPA4. Endpoint (EPAO) allows the USB host
to recognize, set-up, and control the device. In particular, EPAQ is used to receive and transmit control (including set-up) packets.

18.1 USB Device Address

The USB Controller provides one USB Device Address with five endpoints. The USB Device Address Register contents are
cleared during a reset, setting the USB device address to zero and marking this address as disabled. Figure 18-1 shows the
format of the USB Address Registers.

7 6 5 4 3 2 1 0
Device Device Device Device Device Device Device Device
Address Address Address Address Address Address Address Address

Enable Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Figure 18-1. USB Device Address Register 0x10 (read/write)

Bit 7 (Device Address Enable) in the USB Device Address Register must be set by firmware before the SIE can respond to USB
traffic to this address. The Device Addresses in bits [6:0] are set by firmware during the USB enumeration process to the non-zero
address assigned by the USB host.

18.2 USB Device Endpoints

The CY7C64x13 controller supports one USB device address and five endpoints for communication with the host. The configu-
ration of these endpoints, and associated FIFOs, is controlled by bits [7,6] of the USB Status and Control Register (Ox1F). Bit 7
controls the size of the endpoints and bit 6 controls the number of endpoints. These configuration options are detailed in Table
18-1. The “unused” FIFO areas in the following table can be used by the firmware as additional user RAM space.

Table 18-1. Memory Allocation for Endpoints

[0,0] [1,0] [0,1] [1,1]
I/Ostatus Start Start Start Start
[7,6] Label | Address | Size | Label | Address | Size | Label | Address | Size | Label | Address | Size
unused 0xD8 8 unused O0xA8 8 EPA4 0xD8 8 EPA4 0xA8 8
unused OxEO 8 unused 0xBO 8 EPA3 OxEO 8 EPA3 0xBO 8
EPA2 OxE8 8 EPAO 0xB8 8 EPA2 OxE8 8 EPAO 0xB8 8
EPA1 OxFO 8 EPAl 0xCO0 32 EPAl 0xFO0 8 EPA1 0xCO 32
EPAO OxF8 8 EPA2 OxEO 32 EPAO 0xF8 8 EPA2 OxEO 32

When the SIE writes data to a FIFO, the internal data bus is driven by the SIE; not the CPU. This causes a short delay in the CPU
operation. The delay is three clock cycles per byte. For example, an 8-byte data write by the SIE to the FIFO generates a delay
of 2 us (3 cycles/byte * 83.33 ns/cycle * 8 bytes).

18.3 USB Control Endpoint Mode Register

All USB devices are required to have a control endpoint 0 (EPAOQ) that is used to initialize and control each USB address. Endpoint
0 provides access to the device configuration information and allows generic USB status and control accesses. Endpoint 0 is
bidirectional to both receive and transmit data. The other endpoints are unidirectional, but selectable by the user as IN or OUT
endpoints.

The endpoint mode register is cleared during reset. The endpoint zero EPAO mode register uses the format shown in Figure 18-2.

7 6 5 4 3 2 1 0
Endpoint 0 Endpoint 0 Endpoint 0 ACK Mode Mode Mode Mode
SETUP IN ouT Bit 3 Bit 2 Bit 1 Bit 0
Received Received Received

Figure 18-2. USB Device Endpoint Zero Mode Register 0x12 (read/write)

CY7C64013
PRELIMINARY CY7C64113

iy
y

Iy

¥ CYPRESS

Bits[7:5] in the endpoint 0 mode registers are status bits that are set by the SIE to report the type of token that was most recently
received by the corresponding device address. These bits must be cleared by firmware as part of the USB processing.

The ACK bit (bit 4) is set whenever the SIE engages in a transaction to the register’'s endpoint that completes with an ACK packet.

The SETUP PID status (bit 7) is forced HIGH from the start of the data packet phase of the SETUP transaction until the start of
the ACK packet returned by the SIE. The CPU is prevented from clearing this bit during this interval, and subsequently, until the
CPU first does an IORD to this endpoint 0 mode register.

Bits[6:0] of the endpoint 0 mode register are locked from CPU write operations whenever the SIE has updated one of these bits,
which the SIE does only at the end of the token phase of a transaction (SETUP... Data... ACK, OUT... Data... ACK, or IN... Data...
ACK). The CPU can unlock these bits by doing a subsequent read of this register. Only endpoint 0 mode registers are locked
when updated. The locking mechanism does not apply to the mode registers of other endpoints.

Because of these hardware locking features, firmware must perform an IORD after an IOWR to an endpoint O register. This verifies
that the contents have changed as desired, and that the SIE has not updated these values.

While the SETUP bit is set, the CPU cannot write to the endpoint zero FIFOs. This prevents firmware from overwriting an incoming
SETUP transaction before firmware has a chance to read the SETUP data. Refer to Table 18-1 for the appropriate endpoint zero
memory locations.

The Mode bits (bits [3:0]) control how the endpoint responds to USB bus traffic. The mode bit encoding is shown inTable 19-1.
Additional information on the mode bits can be found inTable 19-2 and Table 19-3.

V‘l

18.4 USB Non-Control Endpoint Mode Registers
The format of the non-control endpoint mode register is shown in Figure 18-3.

7 6 5 4 3 2 1 0
STALL Reserved Reserved ACK Mode Mode Mode Mode
Bit 3 Bit 2 Bit 1 Bit 0

Figure 18-3. USB Non-Control Device Endpoint Mode Registers 0x14, 0x16, 0x42, 0x44, (read/write)

The mode bits (bits [3:0]) of the Endpoint Mode Register control how the endpoint responds to USB bus traffic. The mode bit
encoding is shown in Table 19-1.

The ACK bit (bit 4) is set whenever the SIE engages in a transaction to the register’'s endpoint that completes with an ACK packet.

If STALL (bit 7) is set, the SIE stalls an OUT packet if the mode bits are set to ACK-IN, and the SIE stalls an IN packet if the mode
bits are set to ACK-OUT. For all other modes, the STALL bit must be a LOW.

Bits 5 and 6 are reserved and must be written to zero during register writes.

18.5 USB Endpoint Counter Registers

There are five Endpoint Counter registers, with identical formats for both control and non-control endpoints. These registers
contain byte count information for USB transactions, as well as bits for data packet status. The format of these registers is shown

in Figure 18-4:

7 6 5 4 3 2 1 0
Data 0/1 Data Valid Byte Count Byte Count Byte Count Byte Count Byte Count Byte Count
Toggle Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Figure 18-4. USB Endpoint Counter Registers 0x11, 0x13, 0x15, 0x41, 0x43 (read/write)

The counter bits (bits [5:0]) indicate the number of data bytes in a transaction. For IN transactions, firmware loads the count with
the number of bytes to be transmitted to the host from the endpoint FIFO. Valid values are 0 to 32, inclusive. For OUT or SETUP
transactions, the count is updated by hardware to the number of data bytes received, plus 2 for the CRC bytes. Valid values are
2 to 34, inclusive.

Data Valid bit 6 is used for OUT and SETUP tokens only. Data is loaded into the FIFOs during the transaction, and then the Data
Valid bit is set if a proper CRC is received. If the CRC is not correct, the endpoint interrupt occurs, but Data Valid is cleared to a
zero.

Data 0/1 Toggle bit 7 selects the DATA packet’s toggle state: 0 for DATAO, 1 for DATAL. For IN transactions, firmware must set this
bit to the desired state. For OUT or SETUP transactions, the hardware sets this bit to the state of the received Data Toggle bit.

Whenever the count updates from a SETUP or OUT transaction on endpoint 0, the counter register locks and cannot be written
by the CPU. Reading the register unlocks it. This prevents firmware from overwriting a status update on incoming SETUP or OUT

CY7C64013
PRELIMINARY CY7C64113

Iy

¥ CYPRESS

transactions before firmware has a chance to read the data. Only endpoint O counter register is locked when updated. The locking
mechanism does not apply to the count registers of other endpoints.

il
y

\
\

18.6 Endpoint Mode/Count Registers update and Locking Mechanism

The contents of the endpoint mode and counter registers are updated, based on the packet flow diagram in Figure 18-5. Two
time points, UPDATE and SETUP, are shown in the same figure. The following activities occur at each time point:

UPDATE:
1. Endpoint Mode Register - All the bits are updated (except the SETUP bit of the endpoint 0 mode register).

2. Counter Registers - All bits are updated.
3. Interrupt - If an interrupt is to be generated as a result of the transaction, the interrupt flag for the corresponding endpoint is
set at this time. For details on what conditions are required to generate an endpoint interrupt, refer to Table 19-2.

4. The contents of the updated endpoint 0 mode and counter registers are locked, except the SETUP bit of the endpoint 0 mode
register which was locked earlier.

SETUP:
The SETUP bit of the endpoint 0 mode register is forced HIGH at this time. This bit is forced HIGH by the SIE until the end of the

data phase of a control write transfer. The SETUP bit can not be cleared by firmware during this time.
The affected mode and counter registers of endpoint 0 are locked from any CPU writes once they are updated. These registers
can be unlocked by a CPU read, only if the read operation occurs after the UPDATE. The firmware needs to perform a register

read as a part of the endpoint ISR processing to unlock the effected registers. The locking mechanism on mode and counter
registers ensures that the firmware recognizes the changes that the SIE might have made since the previous IO read of that

register.

CY7C64013

PRELIMINARY CY7C64113
CYPRESS
1. IN Token
D e «— —>
a)
s aAlelc] |s]|% =1 [s]a
Y|l |D[N]|R YT Y| ¢
NIN|D|D]|C N A data (13 N | g
C RIP|5 Cl|y 5 C
Token Packet Data Packet H/S Pkt T
update
4> 47
b)
S A|lE|C S
Yy|!|DIN|R Y | NAK/
N|{Nfp|b|c N [STALL
C R|IP|5 C D
Token Packet T H/S Pkt
H update E
O 2. OUT or SETUP Token without CRC error \
S —_— <« |
Tl Is|Clale]c s|P C s| ack, | |C
Y $ D[N]|R Y .'}‘ 2 Y | NAK
N[X[p|bp]|c N data N ’ E
clsetlr|p |5 cl|A 1 c | sTALL
up 1 6
Token Packet T Data Packet T H/S Pkt
Setup update
3. OUT or SETUP Token with CRC error
4> 47
S 8 Alelc S 2 g
Y DIN|[R YT
N S}t plp|c N o data (13
e
C - R|IP|5 Cl7 5
Token Packet Data Packet
update only if FIFO is
Written (see Table 20-3)

Figure 18-5. Token/Data Packet Flow Diagram

N CY7C64013

— PRELIMINARY CY7C64113
= YPRESS

19.0 USB Mode Tables
Table 19-1. USB Register Mode Encoding

il
iy,
@

Mode Encoding Setup In Out Comments
Disable 0000 ignore ignore ignore | Ignore all USB traffic to this endpoint
Nak In/Out 0001 accept NAK NAK Forced from Set-up on Control endpoint, from modes other
than 0000
Status Out Only 0010 accept stall check | For Control endpoints
Stall In/Out 0011 accept stall stall For Control endpoints
Ignore In/Out 0100 accept ignore ignore | For Control endpoints
Isochronous Out 0101 ignore ignore always | For Isochronous endpoints
Status In Only 0110 accept T™XO0 stall For Control Endpoints
Isochronous In 0111 ignore TX cnt ignore | For Isochronous endpoints
Nak Out 1000 ignore ignore NAK | An ACK from mode 1001 --> 1000
Ack Out(sTALLEI=0) 1001 ignore ignore ACK | This mode is changed by SIE on issuance of ACK --> 1000
Ack Out(STALLEB=1) 1001 ignore ignore stall
Nak Out - Status In 1010 accept T™XO0 NAK | An ACK from mode 1011 --> 1010
Ack Out - Status In 1011 accept T™XO0 ACK | This mode is changed by SIE on issuance of ACK --> 1010
Nak In 1100 ignore NAK ignore | An ACK from mode 1101 --> 1100
Ack IN(STALLEI=0) 1101 ignore TX cnt ignore | This mode is changed by SIE on issuance of ACK --> 1100
Ack IN(STALLBI=1) 1101 ignore stall ignore
Nak In - Status Out 1110 accept NAK check | An ACK from mode 1111 --> 111 Ack In - Status Out
Ack In - Status Out 1111 accept TX cnt check | This mode is changed by SIE on issuance of ACK -->1110

Note:
3. STALL bitis bit 7 of the USB Non-Control Device Endpoint Mode registers. For more information, refer to Section 18.4.

The ‘In’ column represents the SIE’s response to the token type.
A disabled endpoint remains disabled until it is changed by firmware, and all endpoints reset to the disabled state.

Any SETUP packet to an enabled endpoint with mode set to accept SETUPs is changed by the SIE to 0001 (NAKing). Any mode
set to accept a SETUP, ACKs a valid SETUP transaction.

Most modes that control transactions involving an ending ACK, are changed by the SIE to a corresponding mode which NAKs
subsequent packets following the ACK. Exceptions are modes 1010 and 1110.

A Control endpoint has three extra status bits for PID (Setup, In and Out), but must be placed in the correct mode to function as
such. Non-Control endpoints should not be placed into modes that accept SETUPSs.

A ‘check’ on an Out token during a Status transaction checks to see that the Out is of zero length and has a Data Toggle (DTOG)
of ‘1". Ifthe DTOG bit is set and the received Out Packet has zero length, the Out is ACKed to complete the transaction. Otherwise,
the Out is STALLed.

N CY7C64013
= PRELIMINARY CY7C64113

——r
—
—
—
——
—
—
—
—

—2 CYPRESS

X3

Table 19-2. Decode table for Table 19-3: “Details of Modes for Differing Traffic Conditions”

Properties of incoming packet
What the SIE does to Mode bits

Encoding Status bits
PID Status bits L Interrupt?
¢ + End Point
End Point Mode Mode
[s 2 12 o Jroken Jcount buffer dval | DTOG DVAL COUNT [setup |in Jou Jack [3 2 1 o] Response|int |

Setup

In

Out

The validity of the received data
The quality status of the DMA buffer
The number of received bytes Acknowledge phase completed
Legend: UC: unchanged TX: transmit TXO0: transmit 0-length packet

x: don't care RX: receive

l I available for Control endpoint only

The response of the SIE can be summarized as follows:

1. The SIE only responds to valid transactions and ignores non-valid ones.
2. The SIE generates an interrupt when a valid transaction is completed or when the FIFO is corrupted. FIFO corruption occurs
during an OUT or SETUP transaction to a valid internal address that ends with a non-valid CRC.

3. An incoming Data packet is valid if the count is < Endpoint Size + 2 (includes CRC) and passes all error checking.

4. An IN is ignored by an OUT configured endpoint and vice versa.
5. The IN and OUT PID status is updated at the end of a transaction.

6. The SETUP PID status is updated at the beginning of the Data packet phase.

7. The entire Endpoint 0 mode register and the count register are locked from CPU writes at the end of any transaction to that
endpoint in which either an ACK is transferred or the mode bits have changed. These registers are only unlocked by a CPU
read of these registers, and only if that read happens after the transaction completes. This represents about a 1-us window in
which the CPU is locked from register writes to these USB registers. Normally, the firmware should perform a register read at
the beginning of the Endpoint ISRs to unlock and get the mode register information. The interlock on the Mode and Count
registers ensures that the firmware recognizes the changes that the SIE might have made during the previous transaction.

CY7C64013
PRELIMINARY CY7C64113

Ilt

il

= CYPRESS

Table 19-3. Details of Modes for Differing Traffic Conditions (see Table 19-2 for the decode legend)

V‘l

End Point Mode PID Set End Point Mode

3 I 2 I 1 I 0 I token I count I buffer I dval I DTOG I DVAL I COUNT | Setup I In I Out I ACK 3 I 2| ll OI response I int
Setup Packet (if accepting)

See Table 19-1 | Setup | <= 10 | data valid updates | 1 updates | 1 uc (uc |1 0 I 0| 0| 1| ACK yes
See Table 19-1 | Setup | > 10 junk X updates | updates | updates | 1 uc (uUC | ucC NoChange | ignore yes
See Table 19-1 | Setup | x junk invalid updates | O updates | 1 uc [(uUC | ucC NoChange | ignore yes
Disabled

0 | 0 | 0 | 0 | X | X | uc | X uc | uc | uc | uc | uc | uc | uc | NoChange | ignore no
Nak In/Out

O[O0 |0 |1 [Out X ucC X ucC ucC ucC ucC uc |1 ucC NoChange | NAK yes
O[O0 |0 |1 |In X ucC X ucC ucC ucC ucC 1 ucC ucC NoChange | NAK yes
Ignore In/Out

0 (1 |0 |0 |Out X uc X uc uc uc uc Uuc |UC |uUC NoChange | ignore no
0|1 |0]|0 [In X uc X uc uc uc uc uc [(UC | ucC NoChange | ignore no
Stall In/Out

0|0 |1 |1 |Out X uc X uc uc uc uc uc (1 uc NoChange | Stall yes
0|0 |2 |1 |In X uc X uc uc uc uc 1 uc | uc NoChange | Stall yes

Control Write

Normal Out/premature status In

1 (o121 [ou <=10 | data valid updates | 1 updates | UC uc |1 1 1 | 0| 1| o] ACK yes
0O [1 (1 |OQut > 10 junk X updates | updates | updates | UC uc |1 uc NoChange | ignore yes
1 ({0 |11 |Out X junk invalid updates | O updates | UC uc |1 uc NoChange | ignore yes
110 (|21 (In X ucC X ucC ucC ucC ucC 1 ucC 1 NoChange | TXO0 yes
NAK Out/premature status In
1 (0|1 |0 |Out <=10 | UC valid uc uc uc uc uc (1 uc NoChange | NAK yes
110 |1 |0 |Out > 10 uc X uc uc uc uc Uuc |UC |uUC NoChange | ignore no
110 |1 |0 |Out X uc invalid uc uc uc uc Uuc |UC |uUcC NoChange | ignore no
110 |20 (In X ucC X ucC ucC ucC ucC 1 ucC 1 NoChange | TXO0 yes
Status In/extra Out
o1 1o [ou <=10 | UC valid uc uc uc uc uc [1 uc 0[of1]1] stal yes
0O (1 |10 |Out > 10 uc X uc uc uc uc Uuc |UC |uUC NoChange | ignore no
0O (1 |10 |Out X uc invalid uc uc uc uc Uuc |UC |uUC NoChange | ignore no
Of(1 |21]0 |In X ucC X ucC ucC ucC ucC 1 ucC 1 NoChange | TXO0 yes

Control Read

Normal In/premature status Out

1 ({1 |11 |Out 2 uc valid 1 1 updates | UC uc |1 1 NoChange | ACK yes
1 ({1 |11 |OQut 2 uc valid 0 1 updates | UC uc (1 uc 00|11 Stall yes
1 ({1 |11 |Out 1=2 uc valid updates | 1 updates | UC uc |1 uc 00|11 Stall yes
1 ({1 |11 |OQut > 10 uc X uc uc uc uc uc [(uUC | ucC NoChange | ignore no
1 ({1 |11 |OQut X uc invalid uc uc uc uc Uuc [(uUC | ucC NoChange | ignore no
1122]m X uc X uc uc uc uc 1 uc |1 1 | 1| 1| 0| ACK (back) yes
Nak In/premature status Out

1 (1|10 |Out 2 uc valid 1 1 updates | UC uc (1 1 NoChange | ACK yes
1 ({1 |1|0 |Out 2 uc valid 0 1 updates | UC uc (1 uc 00|11 Stall yes
1 ({1 |1|0 |Out 1=2 uc valid updates | 1 updates | UC uc (1 uc 00|11 Stall yes
1 ({1 |10 |Out > 10 uc X uc uc uc uc uc [(uUC | ucC NoChange | ignore no
1 (1|10 |Out X uc invalid uc uc uc uc uc [(uUC | ucC NoChange | ignore no
1121|2120 (In X ucC X ucC ucC ucC ucC 1 ucC ucC NoChange | NAK yes
Status Out/extra In

0|0 |1 |0 |Out 2 uc valid 1 1 updates | UC uc (1 1 NoChange | ACK yes
0|0 |1]|0 |Out 2 uc valid 0 1 updates | UC uc (1 uc 00|11 Stall yes
0|0 |1]|0 |Out 1=2 uc valid updates | 1 updates | UC uc (1 uc 00|11 Stall yes

CY7C64013
PRELIMINARY CY7C64113

iy
y

CYPRESS

Table 19-3. Details of Modes for Differing Traffic Conditions (see Table 19-2 for the decode legend) (continued)

V‘l

End Point Mode PID Set End Point Mode

312 |1 |0 |token | count | buffer dval DTOG DVAL COUNT | Setup | In Out | ACK 3 I 2| ll 0| response int
0|0 |1]0 |Out > 10 uc X uc uc uc uc uc |uc |uc NoChange | ignore no
0O (0 |1 |0 |Out X uc invalid uc uc uc uc 1 uc | ucC NoChange | ignore no
ofof1]o [m X uc X uc uc uc uc 1 |uc [uc ofof1]1] stal yes

Out endpoint

Normal Out/erroneous In

1 lofo1 [ou <=10 | data valid updates | 1 updates | UC uc |1 1 1 | 0| 0| o] ACK yes
1 0|1 [Out > 10 junk X updates | updates | updates | UC uc |1 uc NoChange | ignore yes
1 ({0 |0 |1 |OQut X junk invalid updates | O updates | UC uc |1 uc NoChange | ignore yes
1 ({0 (0|1 |In X uc X uc uc uc uc uc (uUC | ucC NoChange | ignore no
(STALLEI = 0)
1 ({0 |01 |In X uc X uc uc uc uc Uuc [(uUC | ucC NoChange | Stall no
(STALLBI = 1)
NAK Out/erroneous In
0 (0|0 |Out <=10 | UC valid uc uc uc uc uc (1 uc NoChange | NAK yes
0 |0 |0 |Out > 10 uc X uc uc uc uc Uuc |UC |uUC NoChange | ignore no
0 |0 |0 |Out X uc invalid uc uc uc uc Uuc |UC |uUC NoChange | ignore no
0[O0 ([0 |In X uc X uc uc uc uc Uuc [(uUC | ucC NoChange | ignore no
Isochronous endpoint (Out)
0|1 |0 |1 |Out X updates | updates | updates | updates | updates | UC uc |1 1 NoChange | RX yes
0|1 |0 |1 |In X uc X uc uc uc uc Uuc [(uUC | ucC NoChange | ignore no
In endpoint
Normal In/erroneous Out
1|1 |0 |1 |Out X uc X uc uc uc uc Uuc |UC |uUC NoChange | ignore no
(STALLBI = 0)
1 ({1 |0 (|1 |OQut X uc X uc uc uc uc uc (uUC | ucC NoChange | stall no
(STALLBI = 1)
11 lof2 [m X uc X uc uc uc uc 1 |uc [1 1 | 1| 0| 0| ACK (back) | yes
NAK In/erroneous Out
1|1 |0 |0 |Out X uc X uc uc uc uc Uuc | UC |uUC NoChange | ignore no
112 |00 (|In X ucC X ucC ucC ucC ucC 1 ucC ucC NoChange | NAK yes
Isochronous endpoint (In)
0O (1 |11 |Out X uc X uc uc uc uc Uuc |UC |uUC NoChange | ignore no

Of(1 |21 |In X ucC X ucC ucC ucC ucC 1 ucC ucC NoChange | TX yes

N CY7C64013

— PRELIMINARY CY7C64113
= YPRESS

20.0 Absolute Maximum Ratings

il
iy,
@

Y (o = To [T L= g] o1=T = VUL PO URPURPUPPRPIN —65°C to +150°C
Ambient Temperature With POWET APPIEAt reeaeaeeaeaeaasas e s s ettt tn e aneaeaeeaeeees 0°C to +70°C
Supply VOItage 0N Voo FEIALIVE 10 VGG . uuiiiriiiiiiiieiitiie ettt e are e e nnas —-0.5V to +7.0V
DC INPUE VOIAGE ... e bbb —0.5V to +V+0.5V
DC Voltage Applied to Outputs in High Z State
Power Dissipationcccceeeeeieviinnns

Static Discharge Voltage
(o] S o I O 1 = o | SO RPSUSPRUUP TSR

Max Output Sink Current into Port 0, 1, 2, 3, and DAC[L:0] PiNS ...uuiuiiiiiiieiiieieee et nr e re e e e e e aeaesas e s s seeeeneneaeaes 60 mA
Max Output SINK CUreNt iINtO DAC7:2] PiNS .oiiiii ittt et e e e e ee e e e es e s e s e st ts s tataeaeaeaaetaeaaaeaasaseananansnsnsnennnsanans 10 mA

21.0 Electrical Characteristics

fosc = 6 MHz; Operating Temperature = 0 to 70°C, V¢ = 4.0 to 5.25 Volts

Parameter Min. Max. Unit Conditions
General
VREE Reference Voltage 3.15 3.45 \Y, 3.3V +5%
Vop Programming Voltage (disabled) -0.4 0.4 Vv
lec V¢ Operating Current 50 mA No GPIO source current
lsg1 Supply Current—Suspend Mode 50 HA
et Vreg Operating Current 30 mA Note 5
L Input Leakage Current 1 HA any pin
USB Interface
Vi Differential Input Sensitivity 0.2 \% | (D+)—(D-) |
Vem Differential Input Common Mode Range 0.8 2.5 \%
Vse Single Ended Receiver Threshold 0.8 2.0 \
Cin Transceiver Capacitance 20 pF
lo Hi-Z State Data Line Leakage -10 10 MA 0V <V,<33V
Rext External USB Series Resistor 19 21 Q In series with each USB pin
Ruup External Upstream USB Pull-up Resistor | 1.425 | 1.575 kQ 1.5 kQ £5%, D+ to VReg
Power On Reset
tyces Vcc Ramp Rate 0 100 ms linear ramp OV to Vcc[4]
USB Upstream
VUoH Static Output High 2.8 3.6 \ 15 kQ +5% to Gnd
VuoL Static Output Low 0.3 \ 1.5 kQ 5% to VRer
Zo USB Driver Output Impedance 28 44 Q Including Rey; Resistor
General Purpose 1/0 (GPIO)
Rup Pull-up Resistance (typical 14 kQ) 8.0 24.0 kQ
ViTH Input Threshold Voltage 20% 40% Vee | All ports, LOW to HIGH edge
Vh Input Hysteresis Voltage 2% 8% Vee | All ports, HIGH to LOW edge
VoLo Port 0,1,2 Output Low Voltage 0.4 \Y loL =3 mA
2.0 \Y oL =5 mA
Vors Port 3 Output Low Voltage 0.4 \ loL =3 mA
2.0 \Y loL =8 mA
VoH Output High Voltage 2.4 mA lon = 1.9 mA (all ports 0,1,2,3)

= CY7C64013
= = PRELIMINARY CY7C64113

Parameter Min. Max. Unit Conditions

DAC Interface
Rup DAC Pull-up Resistance (typical 14 kQ) 8.0 24.0 kQ
lsinko(0) DAC[7:2] Sink current (0) 0.1 0.3 mA Vout = 2.0V DC
lsinko(F) DAC[7:2] Sink current (F) 0.5 15 mA Vout = 2.0V DC
lsink1(0) DAC[1:0] Sink current (0) 1.6 4.8 mA | Vgut = 2.0V DC
lsink1(F) DACI1:0] Sink current (F) 8 24 mA | Vgt = 2.0V DC
lrange Programmed Isink Ratio: max/min 4 6 Vout = 2.0V Dclé]
Tratio Tracking Ratio DAC[1:0] to DAC[7:2] 14 22 Vout = 2.0V
lsinkbAC DAC Sink Current 1.6 4.8 mA Vout = 2.0V DC
liin Differential Nonlinearity 0.6 LSB | DAC Portl®

4. Power-on Reset occurs whenever the voltage on V¢ is below approximately 2.5V.

5. This is based on transitions every 2 full-speed bit times on average.

6. Irange: Isinkn(15)/ Isinkn(0) for the same pin.

7. Tratio = Isink1[1:0](n)/Isink0[7:2](n) for the same n, programmed.

8. |, measured as largest step size vs. nominal according to measured full scale and zero programmed values.

N CY7C64013

— PRELIMINARY CY7C64113
= YPRESS

22.0 Switching Characteristics (fosc = 6.0 MHz)

il
iy,
@

Parameter Description Min. Max. Unit

Clock Source

fosc Clock Rate 6 +0.25% MHz

teye Clock Period 166.25 167.08 ns

tcH Clock HIGH time 0.45 tcyc ns

teL Clock LOW time 0.45 teye ns

USB Full Speed Signaling!®!

trts Transition Rise Time 4 20 ns

tits Transition Fall Time 4 20 ns

trfmfs Rise / Fall Time Matching; (t,/tf) 90 111 %

taratefs Full Speed Date Rate 12 +0.25% Mb/s
DAC Interface

tsink Current Sink Response Time 0.8 ps

HAPI Read Cycle Timing

trRD Read Pulse Width 15 ns

toED OE LOW to Data Valid!0 1] 40 ns

toez OE HIGH to Data High-z!] 20 ns

toEDR OE LOW to Data_Ready Deasserted['%- 11 0 60 ns

HAPI Write Cycle Timing

twr Write Strobe Width 15 ns

tosTB Data Valid to STB HIGH (Data Set-up Time)™1] 5 ns

tsTaz STB HIGH to Data High-Z (Data Hold Time)'!] 15 ns

tsTRLE STB LOW to Latch_Empty Deasserted!10: 1] 0 50 ns
Timer Signals

twatch WatchDog Timer Period 8.192 14.336 ms

Notes:

9. Per Table 7-6 of revision 1.1 of USB specification.
10. For 25-pF load.
11. Assumes chip select CS is asserted (LOW).

CY7C64013

== CYPRESS PRELIMINARY CY7C64113

4+— lcyc———p
— tci—

CLOCK _/ \—//1

<4— lcL—p

Figure 22-1. Clock Timing

D+

90% 90%

10%

10%

Figure 22-2. USB Data Signal Timing

Interrupt Generated

CS (P2.6, input) \

OE (P2.5, input)

e
|
T

DATA (output)

D[23:0]

«— togp —»

tO EZ

STB (P2.4, input)

—> tOEDR
DReadyPin (P2.3, output) (Ready)

(Shown for DRDY Polarity=0)
Internal Write

Internal Addr ><Port0><

Figure 22-3. HAPI Read by External Interface from USB Microcontroller

N CY7C64013

= = PRELIMINARY CY7C64113
==# CYPRESS
Interrupt Generated Int
CS (P2.6, input) \ /7
< tWR > /

STB (P2.4, input)

—lgrp,—

DATA (input) SR D[23:0]
— lpgig—»

OE (P2.5, input)

—» lstRiE

LEmptyPin (P2.2, output) (not empty) /
(Shown for LEMPTY Polarity=0) il

Internal Read

Internal Addr ><Port0><

Figure 22-4. HAPI Write by External Device to USB Microcontroller

CY7C64013

PRELIMINARY CY7C64113
23.0 Ordering Information
PROM Package Operating
Ordering Code Size Name Package Type Range
CY7C64013-SC 8 KB S21 28-Pin (300-Mil) SOIC Commercial
CY7C64013-PC 8 KB P21 28-Pin (300-Mil) PDIP Commercial
CY7C64113-PVC 8 KB 048 48-Pin (300-Mil) SSOP Commercial

Document #: 38-00626-D

24.0 Package Diagrams

48-Lead Shrunk Small Outline Package 048

XN XA AT AR ATRD
®
0.395
5420
8535 DIMENSIONS IN INCHES MIN.
MAX.
IR
e 48
‘ 0.630
poss | \ .$ SEATING PLANE 01 / 2\
no D_?-?i GAUGE _PL ANE I _J\ /k
J 1_‘\;,1 L o024
} . 0°-8° 0.040 51-85061-B
28-Lead (300-Mil) Molded DIP P21
ﬁ‘rﬂ‘ﬁﬁﬁﬁﬁﬁﬁrﬂwﬂ‘ﬁﬁi‘_r DIMENSIONS IN INCHES MIN
iy .
Lllg'Hr'Lu"HJ"Lu"HJ"LuJLu"Lu"Lu"HJ"LuJLuJ:bs" iy
| 0030
0.080
SEATING PLANE
£
3° MIN.
20|

0.385
51-85014-B

s

CY7C64013
CY7C64113

PRELIMINARY

CYPRESS

Package Diagrams (continued)

N

28-Lead (300-Mil) Molded SOIC S21

PIN 1 ID

IARAARAAARAARAAL -
g .

D_-ZL.l 834% DIMENSIONS IN INCHES MIN.

0.300 MAX.
W_L
15 _39| 0.026 -

0.032

SEATING PLANE

0.713
i
0.092
{ 0105 j %\ i
0.050 Pt (=] 0004 | 015 __I L [00091 «
.05 0013 0.004 x e 0.0125
: 0.019 0.0118 : 51-85026-A

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize

