
PRELIMINARY

CY7C64013
 CY7C64113

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
February 4, 2000

1

CY7C64013
CY7C64113
Full-Speed USB (12 Mbps) Function

查询CY7C64113供应商 捷多邦，专业PCB打样工厂，24小时加急出货

http://www.dzsc.com/ic/sell_search.html?keyword=CY7C64113
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

CY7C64013
 CY7C64113PRELIMINARY

2

TABLE OF CONTENTS

1.0 FEATURES ...5

2.0 FUNCTIONAL OVERVIEW ...6

3.0 PIN CONFIGURATIONS ...8

4.0 PRODUCT SUMMARY TABLES ..9

4.1 Pin Assignments ...9
4.2 I/O Register Summary ...9
4.3 Instruction Set Summary ..11

5.0 PROGRAMMING MODEL ...12

5.1 14-Bit Program Counter (PC) ..12
5.1.1 Program Memory Organization ...13

5.2 8-Bit Accumulator (A) ..13
5.3 8-Bit Temporary Register (X) ..13
5.4 8-Bit Program Stack Pointer (PSP) ..14

5.4.1 Data Memory Organization ..14
5.5 8-Bit Data Stack Pointer (DSP) ...14
5.6 Address Modes ..15

5.6.1 Data (Immediate) ...15
5.6.2 Direct ...15
5.6.3 Indexed ..15

6.0 CLOCKING ..15

7.0 RESET ...16

7.1 Power-On Reset (POR) ..16
7.2 Watch Dog Reset (WDR) ...16

8.0 SUSPEND MODE ..17

9.0 GENERAL-PURPOSE I/O (GPIO) PORTS ...17

9.1 GPIO Configuration Port ...18
9.2 GPIO Interrupt Enable Ports ...19

10.0 DAC PORT ..20

10.1 DAC Isink Registers ..20
10.2 DAC Port Interrupts ...21

11.0 12-BIT FREE-RUNNING TIMER ...21

11.1 Timer (LSB) ..21
11.2 Timer (MSB) ..21

12.0 I2C AND HAPI CONFIGURATION REGISTER ...22

13.0 I2C CONTROLLER ..23

14.0 HARDWARE ASSISTED PARALLEL INTERFACE (HAPI) ...24

15.0 PROCESSOR STATUS AND CONTROL REGISTER ...25

16.0 INTERRUPTS ..26

16.1 Interrupt Vectors ..27
16.2 Interrupt Latency ...28
16.3 USB Bus Reset Interrupt ...28
16.4 Timer Interrupt ...29

CY7C64013
 CY7C64113PRELIMINARY

3

TABLE OF CONTENTS (continued)

16.5 USB Endpoint Interrupts ...29
16.6 DAC Interrupt ...29
16.7 GPIO/HAPI Interrupt ..29
16.8 I2C Interrupt ..30

17.0 USB OVERVIEW ...30

17.1 USB Serial Interface Engine (SIE) ..30
17.2 USB Enumeration ..31
17.3 USB Upstream Port Status and Control ..31

18.0 USB SERIAL INTERFACE ENGINE OPERATION ..32

18.1 USB Device Address ...32
18.2 USB Device Endpoints ..32
18.3 USB Control Endpoint Mode Register ...32
18.4 USB Non-Control Endpoint Mode Registers ...33
18.5 USB Endpoint Counter Registers ..33
18.6 Endpoint Mode/Count Registers update and Locking Mechanism34

19.0 USB MODE TABLES ..36

20.0 ABSOLUTE MAXIMUM RATINGS ...40

21.0 ELECTRICAL CHARACTERISTICS ...40

22.0 SWITCHING CHARACTERISTICS ...42

23.0 ORDERING INFORMATION ...45

24.0 PACKAGE DIAGRAMS ..45

LIST OF FIGURES
Figure 5-1. Program Memory Space with Interrupt Vector Table .. 13
Figure 6-1. Clock Oscillator On-Chip Circuit ... 15
Figure 7-1. Watch Dog Reset (WDR) .. 16
Figure 9-1. Block Diagram of a GPIO Pin ..17
Figure 9-2. Port 0 Data 0x00 (read/write) ... 18
Figure 9-3. Port 1 Data 0x01 (read/write) ... 18
Figure 9-4. Port 2 Data 0x02 (read/write) ... 18
Figure 9-5. Port 3 Data 0x03 (read/write) ... 18
Figure 9-6. GPIO Configuration Register 0x08 (read/write) ...19
Figure 9-7. Port 0 Interrupt Enable 0x04 (read/write) ... 19
Figure 9-8. Port 1 Interrupt Enable 0x05 (read/write) ... 19
Figure 9-9. Port 2 Interrupt Enable 0x06 (read/write) ... 19
Figure 9-10. Port 3 Interrupt Enable 0x07 (read/write) ... 19
Figure 10-1. Block Diagram of a DAC Pin ..20
Figure 10-2. DAC Port Data 0x30 (read/write) ...20
Figure 10-3. DAC Port Isink 0x38 to 0x3F (write only) .. 20
Figure 10-4. DAC Port Interrupt Enable 0x31 (write only) .. 21
Figure 10-5. DAC Port Interrupt Polarity 0x32 (write only) .. 21
Figure 11-1. Timer Register 0x24 (read only) .. 21
Figure 11-2. Timer Register 0x25 (read only) .. 21
Figure 11-3. Timer Block Diagram .. 22
Figure 12-1. HAPI/I2C Configuration Register 0x09 (read/write) ... 22

CY7C64013
 CY7C64113PRELIMINARY

4

LIST OF FIGURES (continued)

Figure 13-1. I2C Data Register 0x29 (separate read/write registers) ... 23
Figure 13-2. I2C Status and Control Register 0x28 (read/write) .. 23
Figure 15-1. Processor Status and Control Register 0xFF .. 25
Figure 16-1. Global Interrupt Enable Register 0x20 (read/write) ... 26
Figure 16-2. USB Endpoint Interrupt Enable Register 0x21 (read/write) 26
Figure 16-3. Interrupt Controller Functional Diagram .. 27
Figure 16-4. Interrupt Vector Register 0x23 (read only) ... 28
Figure 16-5. GPIO Interrupt Structure .. 29
Figure 17-1. USB Status and Control Register 0x1F (read/write) .. 31
Figure 18-1. USB Device Address Register 0x10 (read/write) ...32
Figure 18-2. USB Device Endpoint Zero Mode Register 0x12 (read/write) 32
Figure 18-3. USB Non-Control Device Endpoint Mode Registers

0x14, 0x16, 0x42, 0x44, (read/write) ...33
Figure 18-4. USB Endpoint Counter Registers 0x11, 0x13, 0x15, 0x41, 0x43 (read/write) 33
Figure 18-5. Token/Data Packet Flow Diagram ... 35
Figure 22-1. Clock Timing ... 43
Figure 22-2. USB Data Signal Timing ...43
Figure 22-3. HAPI Read by External Interface from USB Microcontroller 43
Figure 22-4. HAPI Write by External Device to USB Microcontroller ..44

LIST OF TABLES
Table 4-1. Pin Assignments ..9
Table 4-2. I/O Register Summary ..9
Table 4-3. Instruction Set Summary ...11
Table 9-1. Port Configurations ...18
Table 12-1. HAPI Port Configuration ..22
Table 12-2. I2C Port Configuration ...22
Table 13-1. I2C Status and Control Register Bit Definitions ..23
Table 14-1. Port 2 Pin and HAPI Configuration Bit Definitions ...25
Table 16-1. Interrupt Vector Assignments ...28
Table 17-1. Control Bit Definition for Upstream Port ...31
Table 18-1. Memory Allocation for Endpoints ..32
Table 19-1. USB Register Mode Encoding ..36
Table 19-2. Decode table for Table 19-3: “Details of Modes for Differing Traffic Conditions” ...37
Table 19-3. Details of Modes for Differing Traffic Conditions ...38

CY7C64013
 CY7C64113PRELIMINARY

5

1.0 Features

• Full-speed USB Microcontroller
• 8-bit USB Optimized Microcontroller

— Harvard architecture

— 6-MHz external clock source

— 12-MHz internal CPU clock

— 48-MHz internal clock
• Internal memory

— 256 bytes of RAM

— 8 KB of PROM (CY7C64013, CY7C64113)
• Integrated Master/Slave I2C Controller (100 kHz) enabled through General-Purpose I/O (GPIO) pins
• Hardware Assisted Parallel Interface (HAPI) for data transfer to external devices
• I/O ports

— Three GPIO ports (Port 0 to 2) capable of sinking 7 mA per pin (typical)

— An additional GPIO port (Port 3) capable of sinking 12 mA per pin (typical) for high current requirements: LEDs

— Higher current drive achievable by connecting multiple GPIO pins together to drive a common output

— Each GPIO port can be configured as inputs with internal pull-ups or open drain outputs or traditional CMOS outputs

— A Digital to Analog Conversion (DAC) port with programmable current sink outputs is available on the CY7C64113
devices

— Maskable interrupts on all I/O pins
• 12-bit free-running timer with one microsecond clock ticks
• Watch dog timer (WDT)
• Internal power-on reset (POR)
• USB Specification Compliance

— Conforms to USB Specification, Version 1.1

— Conforms to USB HID Specification, Version 1.1

— Supports up to five user configured endpoints

Up to four 8-byte data endpoints

Up to two 32-byte data endpoints

— Integrated USB transceivers
• Improved output drivers to reduce EMI
• Operating voltage from 4.0V to 5.5V DC
• Operating temperature from 0 to 70 degrees Celsius

— CY7C64013 available in 28-pin SOIC and 28-pin PDIP packages

— CY7C64113 available in 48-pin SSOP packages
• Industry standard programmer support

CY7C64013
 CY7C64113PRELIMINARY

6

2.0 Functional Overview

The CY7C64013 and CY7C64113 are 8-bit One Time Programmable microcontrollers that are designed for full-speed USB
applications. The instruction set has been optimized specifically for USB operations, although the microcontrollers can be used
for a variety of non-USB embedded applications.

The CY7C64013 features 19 GPIO pins to support USB and other applications. The I/O pins are grouped into three ports (P0[7:0],
P1[7:0], P3[7,2,0]) where each port can be configured as inputs with internal pull-ups, open drain outputs, or traditional CMOS
outputs. There are 16 GPIO pins (Ports 0 and 1) which are rated at 7 mA typical sink current. Port 3 pins are rated at 12 mA
typical sink current, a current sufficient to drive LEDs. Multiple GPIO pins can be connected together to drive a single output for
more drive current capacity. Additionally, each GPIO can be used to generate a GPIO interrupt to the microcontroller. All of the
GPIO interrupts all share the same “GPIO” interrupt vector.

Thirty-two GPIO pins (P0[7:0], P1[7:0], P2[7:0], P3[7:0]) and four Digital to Analog Conversion (DAC) pins (P4[7,2:0]) are available
on the CY7C64113. Every DAC pin includes an integrated 14-kΩ pull-up resistor. When a ‘1’ is written to a DAC I/O pin, the output
current sink is disabled and the output pin is driven HIGH by the internal pull-up resistor. When a ‘0’ is written to a DAC I/O pin,
the internal pull-up resistor is disabled and the output pin provides the programmed amount of sink current. A DAC I/O pin can
be used as an input with an internal pull-up by writing a ‘1’ to the pin.

The sink current for each DAC I/O pin can be individually programmed to one of 16 values using dedicated Isink registers. DAC
bits P4[1:0] can be used as high-current outputs with a programmable sink current range of 3.2 to 16 mA (typical). DAC bits P4[7,2]
have a programmable current sink range of 0.2 to 1.0 mA (typical). Multiple DAC pins can be connected together to drive a single
output that requires more sink current capacity. Each I/O pin can be used to generate a DAC interrupt to the microcontroller. Also,
the interrupt polarity for each DAC I/O pin is individually programmable.

The microcontroller uses an external 6-MHz crystal and an internal oscillator to provide a reference to an internal PLL-based
clock generator. This technology allows the customer application to use an inexpensive 6-MHz fundamental crystal that reduces
the clock-related noise emissions (EMI). A PLL clock generator provides the 6-, 12-, and 48-MHz clock signals for distribution
within the microcontroller.

The CY7C64013 and CY7C64113 have 8 KB of PROM. These parts include power-on reset logic, a watch dog timer, and a 12-bit
free-running timer. The power-on reset (POR) logic detects when power is applied to the device, resets the logic to a known state,
and begins executing instructions at PROM address 0x0000. The watch dog timer is used to ensure the microcontroller recovers
after a period of inactivity. The firmware may become inactive for a variety of reasons, including errors in the code or a hardware
failure such as waiting for an interrupt that never occurs.

The microcontroller can communicate with external electronics through the GPIO pins. An I2C interface accommodates a 100-kHz
serial link with an external device. There is also a Hardware Assisted Parallel Interface (HAPI) which can be used to transfer data
to an external device.

The free-running 12-bit timer clocked at 1 MHz provides two interrupt sources, 128-µs and 1.024-ms. The timer can be used to
measure the duration of an event under firmware control by reading the timer at the start of the event and after the event is
complete. The difference between the two readings indicates the duration of the event in microseconds. The upper four bits of
the timer are latched into an internal register when the firmware reads the lower eight bits. A read from the upper four bits actually
reads data from the internal register, instead of the timer. This feature eliminates the need for firmware to try to compensate if
the upper four bits increment immediately after the lower eight bits are read.

The microcontroller supports 11 maskable interrupts in the vectored interrupt controller. Interrupt sources include the USB Bus
Reset interrupt, the 128-µs (bit 6) and 1.024-ms (bit 9) outputs from the free-running timer, five USB endpoints, the DAC port, the
GPIO ports, and the I2C master mode interface. The timer bits cause an interrupt (if enabled) when the bit toggles from LOW ‘0’
to HIGH ‘1’. The USB endpoints interrupt after the USB host has written data to the endpoint FIFO or after the USB controller
sends a packet to the USB host. The DAC ports have an additional level of masking that allows the user to select which DAC
inputs can cause a DAC interrupt. The GPIO ports also have a level of masking to select which GPIO inputs can cause a GPIO
interrupt. For additional flexibility, the input transition polarity that causes an interrupt is programmable for each pin of the DAC
port. Input transition polarity can be programmed for each GPIO port as part of the port configuration. The interrupt polarity can
be rising edge (‘0’ to ‘1’) or falling edge (‘1’ to ‘0’).

CY7C64013
 CY7C64113PRELIMINARY

7

.

Logic Block Diagram

Interrupt
Controller

PROM

12-bit
Timer

Reset

Watch Dog
Timer

Power-On

SCLKI2C

GPIO
PORT 1

GPIO
PORT 0

P0[7:0]

P1[2:0]

P1[7:3]

SDATA

8-
b

it
 B

u
s

6-MHz crystal

RAM

USB
SIE

USB
Transceiver

D+[0]
D–[0]

Upstream
USB Port

P3[2:0]

DAC
PORT

DAC[0]

DAC[2]

High Current
Outputs

CY7C64113 only

256 byte

8 KB

Clock

6 MHz

12-MHz
8-bit
CPU

*I2C interface enabled by firmware through

Interface

P3[7:3]
Additional

Outputs
High Current

PLL

12 MHz

48 MHz

Divider

GPIO/

PORT 2

P2[0,1,7]

P2[3]; Data_Ready
P2[4]; STB
P2[5]; OE
P2[6]; CS

P2[2]; Latch_Empty HAPI

 P2[1:0] or P1[1:0]

CY7C64113 only

PORT 3

GPIO

DAC[7]

CY7C64013
 CY7C64113PRELIMINARY

8

3.0 Pin Configurations

1

2

3

4

5

6

7

9

11

12

13

14

15

16

18

17

XTALIN

10

8

19

20

31

30

29

33

32

35

34

37

36

39

38

41

40

43

42

45

44

46

48

47

21

22

23

24 25

27

26

28

VCC

P1[1]

P1[0]

P1[2]

P1[4]

P1[6]

P3[0]

P3[2]

VREF

P1[3]

P1[5]

P1[7]

P3[1]

D+[0]

D–[0]

P3[3]

GND

P3[5]

P3[7]

P2[1]

P2[3]

GND

P2[5]

P2[7]

DAC[7]

P0[7]

P0[5]

P0[3]

P0[1]

DAC[1]

XTALOUT

GND

P3[4]

NC

P3[6]

P2[0]

P2[2]

GND

P2[4]

P2[6]

DAC[0]

VPP

P0[0]

P0[2]

P0[4]

P0[6]

DAC[2]

CY7C64113
48-pin SSOP

CY7C64013

1

2

3

4

5

6

7

9

11

12

13

14

XTALIN

10

8

15

17

16

19

18

21

20

23

22

25

24

26

28

27

VCC

P1[1]

P1[0]

P1[2]

P3[0]

P3[2]

GND

P2[2]

VREF

GND

P3[1]

D+[0]

D–[0]

P2[3]

P2[5]

P0[7]

P0[5]

P0[3]

P0[1]

P0[6]

XTALOUT

P2[4]

P2[6]

VPP

P0[0]

P0[2]

P0[4]

28-pin SOIC

CY7C64013

28-pin PDIP

TOP VIEW

1

2

3

4

5

6

7

9

11

12

13

14

XTALIN

10

8

15

17

16

19

18

21

20

23

22

25

24

26

28

27

VCC

P1[0]

P1[2]

P3[0]

P3[2]

P2[2]

GND

P2[4]

VREF

P1[1]

GND

P3[1]

D+[0]

D–[0]

P2[3]

P2[5]

P0[7]

P0[5]

P0[3]

P0[1]

XTALOUT

P2[6]

VPP

P0[0]

P0[2]

P0[4]

P0[6]

CY7C64013
 CY7C64113PRELIMINARY

9

4.0 Product Summary Tables

4.1 Pin Assignments

4.2 I/O Register Summary
I/O registers are accessed via the I/O Read (IORD) and I/O Write (IOWR, IOWX) instructions. IORD reads data from the selected
port into the accumulator. IOWR performs the reverse; it writes data from the accumulator to the selected port. Indexed I/O Write
(IOWX) adds the contents of X to the address in the instruction to form the port address and writes data from the accumulator to
the specified port. Specifying address 0 (e.g., IOWX 0h) means the I/O register is selected solely by the contents of X.

All undefined registers are reserved. It is important not to write to reserved registers as this may cause an undefined operation
or increased current consumption during operation. When writing to registers with reserved bits, the reserved bits must be written
with ‘0.’

Table 4-1. Pin Assignments

Name I/O 28-Pin SOIC 28-Pin PDIP 48-Pin SSOP Description

D+[0], D–[0] I/O 6, 7 7, 8 7, 8 Upstream port, USB differential data.

P0 I/O P0[7:0]
10, 14, 11, 15,
12, 16, 13, 17

P0[7:0]
11, 15, 12, 16,
13, 17, 14, 18

P0[7:0]
20, 26, 21, 27,
22, 28, 23, 29

GPIO Port 0 capable of sinking 7 mA (typical).

P1 I/O P1[2:0]
25, 27, 26

P1[2:0]
26, 4, 27

P1[7:0]
6, 43, 5, 44,
4, 45, 47, 46

GPIO Port 1 capable of sinking 7 mA (typical).

P2 I/O P2[6:2]
19, 9, 20, 8,

21

P2[6:2]
20, 10, 21,

9, 23

P2[7:0]
18, 32, 17, 33,
15, 35, 14, 36

GPIO Port 2 capable of sinking 7 mA (typical). HAPI
is also supported through P2[6:2].

P3 I/O P3[2:0]
23, 5, 24

P3[2:0]
24, 6, 25

P3[7:0]
13, 37, 12, 39,
10, 41, 7, 42

GPIO Port 3, capable of sinking 12 mA (typical).

DAC I/O DAC[7,2:0]
19, 25, 24, 31

DAC Port with programmable current sink outputs.
DAC[1:0] offer a programmable range of 3.2 to 16 mA
typical. DAC[7,2] have a programmable sink current
range of 0.2 to 1.0 mA typical.

XTALIN IN 2 2 2 6-MHz crystal or external clock input.

XTALOUT OUT 1 1 1 6-MHz crystal out.

VPP IN 18 19 30 Programming voltage supply, tie to ground during nor-
mal operation.

VCC IN 28 28 48 Voltage supply.

GND IN 4, 22 5, 22 11, 16, 34, 40 Ground.

VREF IN 3 3 3 External 3.3V supply voltage for the differential data
output buffers and the D+ pull-up.

NC 38 No Connect

Table 4-2. I/O Register Summary

Register Name I/O Address Read/Write Function Page

Port 0 Data 0x00 R/W GPIO Port 0 Data 18

Port 1 Data 0x01 R/W GPIO Port 1 Data 18

Port 2 Data 0x02 R/W GPIO Port 2 Data 18

Port 3 Data 0x03 R/W GPIO Port 3 Data 18

Port 0 Interrupt Enable 0x04 W Interrupt Enable for Pins in Port 0 19

Port 1 Interrupt Enable 0x05 W Interrupt Enable for Pins in Port 1 19

Port 2 Interrupt Enable 0x06 W Interrupt Enable for Pins in Port 2 19

Port 3 Interrupt Enable 0x07 W Interrupt Enable for Pins in Port 3 19

CY7C64013
 CY7C64113PRELIMINARY

10

GPIO Configuration 0x08 R/W GPIO Port Configurations 19

HAPI and I2C Configuration 0x09 R/W HAPI Width and I2C Position Configuration 22

USB Device Address A 0x10 R/W USB Device Address A 32

EP A0 Counter Register 0x11 R/W USB Address A, Endpoint 0 Counter 33

EP A0 Mode Register 0x12 R/W USB Address A, Endpoint 0 Configuration 32

EP A1 Counter Register 0x13 R/W USB Address A, Endpoint 1 Counter 33

EP A1 Mode Register 0x14 R/W USB Address A, Endpoint 1 Configuration 33

EP A2 Counter Register 0x15 R/W USB Address A, Endpoint 2 Counter 33

EP A2 Mode Register 0x16 R/W USB Address A, Endpoint 2 Configuration 33

USB Status & Control 0x1F R/W USB Upstream Port Traffic Status and Control 31

Global Interrupt Enable 0x20 R/W Global Interrupt Enable 26

Endpoint Interrupt Enable 0x21 R/W USB Endpoint Interrupt Enables 26

Interrupt Vector 0x23 R Pending Interrupt Vector Read / Clear 28

Timer (LSB) 0x24 R Lower 8 Bits of Free-running Timer (1 MHz) 21

Timer (MSB) 0x25 R Upper 4 Bits of Free-running Timer 21

WDT Clear 0x26 W Watch Dog Timer Clear 16

I2C Control & Status 0x28 R/W I2C Status and Control 23

I2C Data 0x29 R/W I2C Data 23

DAC Data 0x30 R/W DAC Data 20

DAC Interrupt Enable 0x31 W Interrupt Enable for each DAC Pin 21

DAC Interrupt Polarity 0x32 W Interrupt Polarity for each DAC Pin 21

DAC Isink 0x38-0x3F W Input Sink Current Control for each DAC Pin 20

Reserved 0x40 Reserved

EP A3 Counter Register 0x41 R/W USB Address A, Endpoint 3 Counter 33

EP A3 Mode Register 0x42 R/W USB Address A, Endpoint 3 Configuration 32

EP A4 Counter Register 0x43 R/W USB Address A, Endpoint 4 Counter 33

EP A4 Mode Register 0x44 R/W USB Address A, Endpoint 4 Configuration 33

Reserved 0x48 Reserved

Reserved 0x49 Reserved

Reserved 0x4A Reserved

Reserved 0x4B Reserved

Reserved 0x4C Reserved

Reserved 0x4D Reserved

Reserved 0x4E Reserved

Reserved 0x4F Reserved

Reserved 0x50 Reserved

Reserved 0x51 Reserved

Processor Status & Control 0xFF R/W Microprocessor Status and Control Register 25

Table 4-2. I/O Register Summary (continued)

Register Name I/O Address Read/Write Function Page

CY7C64013
 CY7C64113PRELIMINARY

11

4.3 Instruction Set Summary
Refer to the CYASM Assembler User’s Guide for more details.
Table 4-3. Instruction Set Summary

MNEMONIC operand opcode cycles MNEMONIC operand opcode cycles

HALT 00 7 NOP 20 4

ADD A,expr data 01 4 INC A acc 21 4

ADD A,[expr] direct 02 6 INC X x 22 4

ADD A,[X+expr] index 03 7 INC [expr] direct 23 7

ADC A,expr data 04 4 INC [X+expr] index 24 8

ADC A,[expr] direct 05 6 DEC A acc 25 4

ADC A,[X+expr] index 06 7 DEC X x 26 4

SUB A,expr data 07 4 DEC [expr] direct 27 7

SUB A,[expr] direct 08 6 DEC [X+expr] index 28 8

SUB A,[X+expr] index 09 7 IORD expr address 29 5

SBB A,expr data 0A 4 IOWR expr address 2A 5

SBB A,[expr] direct 0B 6 POP A 2B 4

SBB A,[X+expr] index 0C 7 POP X 2C 4

OR A,expr data 0D 4 PUSH A 2D 5

OR A,[expr] direct 0E 6 PUSH X 2E 5

OR A,[X+expr] index 0F 7 SWAP A,X 2F 5

AND A,expr data 10 4 SWAP A,DSP 30 5

AND A,[expr] direct 11 6 MOV [expr],A direct 31 5

AND A,[X+expr] index 12 7 MOV [X+expr],A index 32 6

XOR A,expr data 13 4 OR [expr],A direct 33 7

XOR A,[expr] direct 14 6 OR [X+expr],A index 34 8

XOR A,[X+expr] index 15 7 AND [expr],A direct 35 7

CMP A,expr data 16 5 AND [X+expr],A index 36 8

CMP A,[expr] direct 17 7 XOR [expr],A direct 37 7

CMP A,[X+expr] index 18 8 XOR [X+expr],A index 38 8

MOV A,expr data 19 4 IOWX [X+expr] index 39 6

MOV A,[expr] direct 1A 5 CPL 3A 4

MOV A,[X+expr] index 1B 6 ASL 3B 4

MOV X,expr data 1C 4 ASR 3C 4

MOV X,[expr] direct 1D 5 RLC 3D 4

reserved 1E RRC 3E 4

XPAGE 1F 4 RET 3F 8

MOV A,X 40 4 DI 70 4

MOV X,A 41 4 EI 72 4

MOV PSP,A 60 4 RETI 73 8

CALL addr 50 - 5F 10 JC addr C0-CF 5

JMP addr 80-8F 5 JNC addr D0-DF 5

CALL addr 90-9F 10 JACC addr E0-EF 7

JZ addr A0-AF 5 INDEX addr F0-FF 14

JNZ addr B0-BF 5

CY7C64013
 CY7C64113PRELIMINARY

12

5.0 Programming Model

5.1 14-Bit Program Counter (PC)
The 14-bit program counter (PC) allows access to up to 8 KB of PROM available with the CY7C64x13 architecture. The top 32
bytes of the ROM in the 8K part are reserved for testing purposes. The program counter is cleared during reset, such that the
first instruction executed after a reset is at address 0x0000h. Typically, this is a jump instruction to a reset handler that initializes
the application (see Interrupt Vectors on page 27).

The lower eight bits of the program counter are incremented as instructions are loaded and executed. The upper six bits of the
program counter are incremented by executing an XPAGE instruction. As a result, the last instruction executed within a 256-byte
“page” of sequential code should be an XPAGE instruction. The assembler directive “XPAGEON” causes the assembler to insert
XPAGE instructions automatically. Because instructions can be either one or two bytes long, the assembler may occasionally
need to insert a NOP followed by an XPAGE to execute correctly.

The address of the next instruction to be executed, the carry flag, and the zero flag are saved as two bytes on the program stack
during an interrupt acknowledge or a CALL instruction. The program counter, carry flag, and zero flag are restored from the
program stack during a RETI instruction. Only the program counter is restored during a RET instruction.

The program counter cannot be accessed directly by the firmware. The program stack can be examined by reading SRAM from
location 0x00 and up.

CY7C64013
 CY7C64113PRELIMINARY

13

5.1.1 Program Memory Organization

5.2 8-Bit Accumulator (A)
The accumulator is the general-purpose register for the microcontroller.

5.3 8-Bit Temporary Register (X)
The “X” register is available to the firmware for temporary storage of intermediate results. The microcontroller can perform indexed
operations based on the value in X. Refer to Section 5.6.3 for additional information.

after reset Address

 14-bit PC 0x0000 Program execution begins here after a reset

0x0002 USB Bus Reset interrupt vector

0x0004 128-µs timer interrupt vector

0x0006 1.024-ms timer interrupt vector

0x0008 USB address A endpoint 0 interrupt vector

0x000A USB address A endpoint 1 interrupt vector

0x000C USB address A endpoint 2 interrupt vector

0x000E USB address A endpoint 3 interrupt vector

0x0010 USB address A endpoint 4 interrupt vector

0x0012 Reserved

0x0014 DAC interrupt vector

0x0016 GPIO interrupt vector

0x0018 I2C interrupt vector

0x001A Program Memory begins here

0x1FDF 8 KB (-32) PROM ends here (CY7C64013, CY7C64113)

Figure 5-1. Program Memory Space with Interrupt Vector Table

CY7C64013
 CY7C64113PRELIMINARY

14

5.4 8-Bit Program Stack Pointer (PSP)
During a reset, the program stack pointer (PSP) is set to 0x00 and “grows” upward from this address. The PSP may be set by
firmware, using the MOV PSP,A instruction. The PSP supports interrupt service under hardware control and CALL, RET, and
RETI instructions under firmware control. The PSP is not readable by the firmware.

During an interrupt acknowledge, interrupts are disabled and the 14-bit program counter, carry flag, and zero flag are written as
two bytes of data memory. The first byte is stored in the memory addressed by the PSP, then the PSP is incremented. The second
byte is stored in memory addressed by the PSP, and the PSP is incremented again. The overall effect is to store the program
counter and flags on the program “stack” and increment the PSP by two.

The return from interrupt (RETI) instruction decrements the PSP, then restores the second byte from memory addressed by the
PSP. The PSP is decremented again and the first byte is restored from memory addressed by the PSP. After the program counter
and flags have been restored from stack, the interrupts are enabled. The overall effect is to restore the program counter and flags
from the program stack, decrement the PSP by two, and re-enable interrupts.

The call subroutine (CALL) instruction stores the program counter and flags on the program stack and increments the PSP by two.

The return from subroutine (RET) instruction restores the program counter but not the flags from the program stack and decre-
ments the PSP by two.

5.4.1 Data Memory Organization

The CY7C64x13 microcontrollers provide 256 bytes of data RAM. Normally, the SRAM is partitioned into four areas: program
stack, user variables, data stack, and USB endpoint FIFOs. The following is one example of where the program stack, data stack,
and user variables areas could be located.

Notes:
1. Refer to Section 5.5 for a description of DSP.
2. Endpoint sizes are fixed by the Endpoint Size Bit (I/O register 0x1F, Bit 7), see Table 18-1.

5.5 8-Bit Data Stack Pointer (DSP)
The data stack pointer (DSP) supports PUSH and POP instructions that use the data stack for temporary storage. A PUSH
instruction pre-decrements the DSP, then writes data to the memory location addressed by the DSP. A POP instruction reads
data from the memory location addressed by the DSP, then post-increments the DSP.

During a reset, the DSP is reset to 0x00. A PUSH instruction when DSP equals 0x00 writes data at the top of the data RAM
(address 0xFF). This writes data to the memory area reserved for USB endpoint FIFOs. Therefore, the DSP should be indexed
at an appropriate memory location that does not compromise the Program Stack, user-defined memory (variables), or the USB
endpoint FIFOs.

For USB applications, the firmware should set the DSP to an appropriate location to avoid a memory conflict with RAM dedicated
to USB FIFOs. The memory requirements for the USB endpoints are described in Section 18.2. Example assembly instructions
to do this with two device addresses (FIFOs begin at 0xD8) are shown below:

MOV A,20h ; Move 20 hex into Accumulator (must be D8h or less)

SWAP A,DSP ; swap accumulator value into DSP register

After reset Address

8-bit DSP 8-bit PSP 0x00 Program Stack Growth

(Move DSP[1])

8-bit DSP user selected Data Stack Growth

User variables

USB FIFO space for five endpoints[2]

0xFF

CY7C64013
 CY7C64113PRELIMINARY

15

5.6 Address Modes
The CY7C64013 and CY7C64113 microcontrollers support three addressing modes for instructions that require data operands:
data, direct, and indexed.

5.6.1 Data (Immediate)

“Data” address mode refers to a data operand that is actually a constant encoded in the instruction. As an example, consider the
instruction that loads A with the constant 0xD8:

• MOV A,0D8h

This instruction requires two bytes of code where the first byte identifies the “MOV A” instruction with a data operand as the second
byte. The second byte of the instruction is the constant “0xD8”. A constant may be referred to by name if a prior “EQU” statement
assigns the constant value to the name. For example, the following code is equivalent to the example shown above:

• DSPINIT: EQU 0D8h
• MOV A,DSPINIT

5.6.2 Direct

“Direct” address mode is used when the data operand is a variable stored in SRAM. In that case, the one byte address of the
variable is encoded in the instruction. As an example, consider an instruction that loads A with the contents of memory address
location 0x10:

• MOV A,[10h]

Normally, variable names are assigned to variable addresses using “EQU” statements to improve the readability of the assembler
source code. As an example, the following code is equivalent to the example shown above:

• buttons: EQU 10h
• MOV A,[buttons]

5.6.3 Indexed

“Indexed” address mode allows the firmware to manipulate arrays of data stored in SRAM. The address of the data operand is
the sum of a constant encoded in the instruction and the contents of the “X” register. Normally, the constant is the “base” address
of an array of data and the X register contains an index that indicates which element of the array is actually addressed:

• array: EQU 10h
• MOV X,3
• MOV A,[X+array]

This would have the effect of loading A with the fourth element of the SRAM “array” that begins at address 0x10. The fourth
element would be at address 0x13.

6.0 Clocking

Figure 6-1. Clock Oscillator On-Chip Circuit

The XTALIN and XTALOUT are the clock pins to the microcontroller. The user can connect an external oscillator or a crystal to
these pins. When using an external crystal, keep PCB traces between the chip leads and crystal as short as possible (less than
2 cm). A 6-MHz fundamental crystal can be connected to these pins to provide a reference frequency for the internal PLL. A
ceramic resonator does not allow the microcontroller to meet the timing specifications of a full speed USB and therefore a ceramic
resonator is not recommended with these parts.

An external 6-MHz clock can be applied to the XTALIN pin if the XTALOUT pin is left open. Grounding the XTALOUT pin when
driving XTALIN with an oscillator does not work because the internal clock is effectively shorted to ground.

XTALOUT

XTALIN
to internal PLL

30 pF 30 pF

(pin 1)

(pin 2)

CY7C64013
 CY7C64113PRELIMINARY

16

7.0 Reset

The CY7C64x13 supports two resets: Power-On Reset (POR) and a Watch Dog Reset (WDR). Each of these resets causes:

• all registers to be restored to their default states,
• the USB Device Address to be set to 0,
• all interrupts to be disabled,
• the PSP and Data Stack Pointer (DSP) to be set to memory address 0x00.

The occurrence of a reset is recorded in the Processor Status and Control Register, as described in Section 15.0. Bits 4 and 6
are used to record the occurrence of POR and WDR, respectively. Firmware can interrogate these bits to determine the cause
of a reset.

Program execution starts at ROM address 0x0000 after a reset. Although this looks like interrupt vector 0, there is an important
difference. Reset processing does NOT push the program counter, carry flag, and zero flag onto program stack. The firmware
reset handler should configure the hardware before the “main” loop of code. Attempting to execute a RET or RETI in the firmware
reset handler causes unpredictable execution results.

7.1 Power-On Reset (POR)
When VCC is first applied to the chip, the Power-On Reset (POR) signal is asserted and the CY7C64x13 enters a “semi-suspend”
state. During the semi-suspend state, which is different from the suspend state defined in the USB specification, the oscillator
and all other blocks of the part are functional, except for the CPU. This semi-suspend time ensures that both a valid VCC level is
reached and that the internal PLL has time to stabilize before full operation begins. When the VCC has risen above approximately
2.5V, and the oscillator is stable, the POR is deasserted and the on-chip timer starts counting. The first 1 ms of suspend time is
not interruptible, and the semi-suspend state continues for an additional 95 ms unless the count is bypassed by a USB Bus Reset
on the upstream port. The 95 ms provides time for VCC to stabilize at a valid operating voltage before the chip executes code.

If a USB Bus Reset occurs on the upstream port during the 95-ms semi-suspend time, the semi-suspend state is aborted and
program execution begins immediately from address 0x0000. In this case, the Bus Reset interrupt is pending but not serviced
until firmware sets the USB Bus Reset Interrupt Enable bit (bit 0 of register 0x20) and enables interrupts with the EI command.

The POR signal is asserted whenever VCC drops below approximately 2.5V, and remains asserted until VCC rises above this level
again. Behavior is the same as described above.

7.2 Watch Dog Reset (WDR)
The Watch Dog Timer Reset (WDR) occurs when the internal Watch Dog timer rolls over. Writing any value to the write-only
Watch Dog Restart Register at address 0x26 clears the timer. The timer rolls over and WDR occurs if it is not cleared within
tWATCH (8 ms minimum) of the last clear. Bit 6 of the Processor Status and Control Register is set to record this event (the register
contents are set to 010X0001 by the WDR). A Watch Dog Timer Reset lasts for 2 ms, after which the microcontroller begins
execution at ROM address 0x0000.

Figure 7-1. Watch Dog Reset (WDR)

The USB transmitter is disabled by a Watch Dog Reset because the USB Device Address Register is cleared (see Section 18.1).
Otherwise, the USB Controller would respond to all address 0 transactions.

It is possible for the WDR bit of the Processor Status and Control Register (0xFF) to be set following a POR event. The WDR bit
should be ignored If the firmware interrogates the Processor Status and Control Register for a Set condition on the WDR bit and
if the POR (bit 3 of register 0xFF) bit is set.

Last write to
Watch Dog Timer
Register

No write to WDT
register, so WDR
goes HIGH

Execution begins at
Reset Vector 0x0000

tWATCH 2 ms

CY7C64013
 CY7C64113PRELIMINARY

17

8.0 Suspend Mode

The CY7C64x13 can be placed into a low-power state by setting the Suspend bit of the Processor Status and Control register.
All logic blocks in the device are turned off except the GPIO interrupt logic and the USB receiver. The clock oscillator and PLL,
as well as the free-running and Watch Dog timers, are shut down. Only the occurrence of an enabled GPIO interrupt or non-idle
bus activity at a USB upstream or downstream port wakes the part out of suspend. The Run bit in the Processor Status and
Control Register must be set to resume a part out of suspend.

The clock oscillator restarts immediately after exiting suspend mode. The microcontroller returns to a fully functional state 1 ms
after the oscillator is stable. The microcontroller executes the instruction following the I/O write that placed the device into suspend
mode before servicing any interrupt requests.

The GPIO interrupt allows the controller to wake-up periodically and poll system components while maintaining a very low average
power consumption. To achieve the lowest possible current during suspend mode, all I/O should be held at VCC or Gnd. This also
applies to internal port pins that may not be bonded in a particular package.

Typical code for entering suspend is shown below:

... ; All GPIO set to low-power state (no floating pins)

... ; Enable GPIO interrupts if desired for wake-up
mov a, 09h ; Set suspend and run bits
iowr FFh ; Write to Status and Control Register - Enter suspend, wait for USB activity (or GPIO Interrupt)
nop ; This executes before any ISR
... ; Remaining code for exiting suspend routine

9.0 General-Purpose I/O (GPIO) Ports

There are up to 32 GPIO pins (P0[7:0], P1[7:0], P2[7:0], and P3[7:0]) for the hardware interface. The number of GPIO pins
changes based on the package type of the chip. Each port can be configured as inputs with internal pull-ups, open drain outputs,
or traditional CMOS outputs. Port 3 offers a higher current drive, with typical current sink capability of 12 mA. The data for each
GPIO port is accessible through the data registers. Port data registers are shown in Figure 9-2 through Figure 9-5, and are set
to 1 on reset.

Figure 9-1. Block Diagram of a GPIO Pin

GPIO

VCC

14 kΩ

GPIO
CFG mode

2-bits

Data
Out
Latch

Internal
Data Bus

Port Read

Port Write

Interrupt
Enable

C
on

tr
ol

C
on

tr
ol

Interrupt
Controller

Q1

Q3*

Q2

*Port 0,1,2: Low Isink
Port 3: High Isink

Data
Interrupt
Latch

OE

Reg_Bit

STRB

Data
In

Latch

(Latch is Transparent
except in HAPI mode)

PIN

CY7C64013
 CY7C64113PRELIMINARY

18

Special care should be taken with any unused GPIO data bits. An unused GPIO data bit, either a pin on the chip or a port bit that
is not bonded on a particular package, must not be left floating when the device enters the suspend state. If a GPIO data bit is
left floating, the leakage current caused by the floating bit may violate the suspend current limitation specified by the USB
Specifications. If a ‘1’ is written to the unused data bit and the port is configured with open drain outputs, the unused data bit
remains in an indeterminate state. Therefore, if an unused port bit is programmed in open-drain mode, it must be written with a
‘0.’ Notice that the CY7C64013 part always requires that the data bits P1[7:3], P2[7,1,0], and P3[7:3] be written with a ‘0.’

In normal non-HAPI mode, reads from a GPIO port always return the present state of the voltage at the pin, independent of the
settings in the Port Data Registers. If HAPI mode is activated for a port, reads of that port return latched data as controlled by
the HAPI signals (see Section 14.0). During reset, all of the GPIO pins are set to a high-impedance input state (‘1’ in open drain
mode). Writing a ‘0’ to a GPIO pin drives the pin LOW. In this state, a ‘0’ is always read on that GPIO pin unless an external source
overdrives the internal pull-down device.

9.1 GPIO Configuration Port
Every GPIO port can be programmed as inputs with internal pull-ups, open drain outputs, and traditional CMOS outputs. In
addition, the interrupt polarity for each port can be programmed. With positive interrupt polarity, a rising edge (‘0’ to ‘1’) on an
input pin causes an interrupt. With negative polarity, a falling edge (‘1’ to ‘0’) on an input pin causes an interrupt. As shown in the
table below, when a GPIO port is configured with CMOS outputs, interrupts from that port are disabled. The GPIO Configuration
Port register provides two bits per port to program these features. The possible port configurations are detailed in Table 9-1:

In “Resistive” mode, a 14-kΩ pull-up resistor is conditionally enabled for all pins of a GPIO port. An I/O pin is driven HIGH through
a 14-kΩ pull-up resistor when a ‘1’ has been written to the pin. The output pin is driven LOW with the pull-up disabled when a ‘0’
has been written to the pin. An I/O pin that has been written as a ‘1’ can be used as an input pin with the integrated 14-kΩ pull-up
resistor. Resistive mode selects a negative (falling edge) interrupt polarity on all pins that have the GPIO interrupt enabled.

7 6 5 4 3 2 1 0

P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] P0[1] P0[0]

Figure 9-2. Port 0 Data 0x00 (read/write)

7 6 5 4 3 2 1 0

P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]

Figure 9-3. Port 1 Data 0x01 (read/write)

7 6 5 4 3 2 1 0

P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] P2[1] P2[0]

Figure 9-4. Port 2 Data 0x02 (read/write)

7 6 5 4 3 2 1 0

P3[7]
(see text)

P3[6] P3[5] P3[4] P3[3] P3[2] P3[1] P3[0]

Figure 9-5. Port 3 Data 0x03 (read/write)

Table 9-1. Port Configurations

Port Configuration bits Pin Interrupt Bit Driver Mode Interrupt Polarity

11 0 Resistive Disabled

1 Resistive –

10 0 CMOS Output Disabled

1 Open Drain Disabled

01 0 Open Drain Disabled

1 Open Drain –

00
(Reset State)

0 Open Drain Disabled (Default Condition)

1 Open Drain +

CY7C64013
 CY7C64113PRELIMINARY

19

In “CMOS” mode, all pins of the GPIO port are outputs that are actively driven. A CMOS port is not a possible source for interrupts.

In “Open Drain” mode, the internal pull-up resistor and CMOS driver (HIGH) are both disabled. An open drain I/O pin that has
been written as a ‘1’ can be used as an input or an open drain output. An I/O pin that has been written as a ‘0’ drives the output
low. The interrupt polarity for an open drain GPIO port can be selected as positive (rising edge) or negative (falling edge).

During reset, all of the bits in the GPIO Configuration Register are written with ‘0’ to select Open Drain output for all GPIO ports
as the default configuration.

9.2 GPIO Interrupt Enable Ports
Each GPIO pin can be individually enabled or disabled as an interrupt source. The Port 0–3 Interrupt Enable registers provide
this feature with an interrupt enable bit for each GPIO pin. When HAPI mode (discussed in Section 14.0) is enabled the GPIO
interrupts are blocked, including ports not used by HAPI, so GPIO pins cannot be used as interrupt sources.

During a reset, GPIO interrupts are disabled by clearing all of the GPIO interrupt enable ports. Writing a ‘1’ to a GPIO Interrupt
Enable bit enables GPIO interrupts from the corresponding input pin. All GPIO pins share a common interrupt, as discussed in
Section 16.7.

7 6 5 4 3 2 1 0

Port 3
Config Bit 1

Port 3
Config Bit 0

Port 2
Config Bit 1

Port 2
Config Bit 0

Port 1
Config Bit 1

Port 1
Config Bit 0

Port 0
Config Bit 1

Port 0
Config Bit 0

Figure 9-6. GPIO Configuration Register 0x08 (read/write)

7 6 5 4 3 2 1 0

P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] P0[1] P0[0]

Figure 9-7. Port 0 Interrupt Enable 0x04 (read/write)

7 6 5 4 3 2 1 0

P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] P1[1] P1[0]

Figure 9-8. Port 1 Interrupt Enable 0x05 (read/write)

7 6 5 4 3 2 1 0

P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] P2[1] P2[0]

Figure 9-9. Port 2 Interrupt Enable 0x06 (read/write)

7 6 5 4 3 2 1 0

reserved -
set to zero

P3[6] P3[5] P3[4] P3[3] P3[2] P3[1] P3[0]

Figure 9-10. Port 3 Interrupt Enable 0x07 (read/write)

CY7C64013
 CY7C64113PRELIMINARY

20

10.0 DAC Port

The CY7C64113 features a Digital to Analog Conversion (DAC) port which has programmable current sink on each I/O pin. Writing
a ‘1’ to a DAC I/O pin disables the output current sink (Isink DAC) and drives the I/O pin HIGH through an integrated 14-kΩ resistor.
When a ‘0’ is written to a DAC I/O pin, the Isink DAC is enabled and the pull-up resistor is disabled. This causes the Isink DAC to
sink current to drive the output LOW. The amount of sink current for the DAC I/O pin is programmable over 16 values based on
the contents of the DAC Isink Register for that output pin. DAC[1:0] are high-current outputs that are programmable from 3.2 mA
to 16 mA (typical). DAC[7:2] are low-current outputs, programmable from 0.2 mA to 1.0 mA (typical).

When the suspend bit in Processor Status and Control Register (0xFF) is set, the Isink DAC block of the DAC circuitry is disabled.
Special care should be taken when the CY7C64x13 device is placed in the suspend mode. The DAC Port Data Register(0x30)
should normally be loaded with all ‘1’s (0xFF) before setting the suspend bit. If any of the DAC bits are set to ‘0’ when the device
is suspended, that DAC input will float. The floating pin could result in excessive current consumption by the device, unless an
external load places the pin in a deterministic state.

When a DAC I/O bit is written as a ‘1’, the I/O pin is an output pulled HIGH through the 14-kΩ resistor or an input with an internal
14-kΩ pull-up resistor. All DAC port data bits are set to ‘1’ during reset.

10.1 DAC Isink Registers
Each DAC I/O pin has an associated DAC Isink register to program the output sink current when the output is driven LOW. The
first Isink register (0x38) controls the current for DAC[0], the second (0x39) for DAC[1], and so on until the Isink register at 0x3F
controls the current to DAC[7]. Writing all ‘0’s to the Isink register causes 1/5 of the max. current to flow through the DAC I/O pin.
Writing all ‘1’s to the Isink register provides the maximum current flow through the pin. The other 14 states of the DAC sink current
are evenly spaced between these two values.

Figure 10-1. Block Diagram of a DAC Pin

Low current outputs
0.2 mA to 1.0 mA typical

High current outputs
3.2 mA to 16 mA typical

7 6 5 4 3 2 1 0

DAC[7] DAC[6] DAC[5] DAC[4] DAC[3] DAC[2] DAC[1] DAC[0]

Figure 10-2. DAC Port Data 0x30 (read/write)

Isink Value

7 6 5 4 3 2 1 0

reserved reserved reserved reserved Isink[3] Isink[2] Isink[1] Isink[0]

Figure 10-3. DAC Port Isink 0x38 to 0x3F (write only)

VCC

14 kΩ

Data
Out
Latch

Internal
Data Bus

DAC Read

DAC Write

Interrupt
Enable

In
te

rr
up

t L
o

gi
c

to Interrupt
Controller

Q1

Internal
Buffer

Interrupt
Polarity

Isink
DAC

Isink
Register

4 bits

DAC
I/O Pin

Suspend
(Bit 3 of Register 0xFF)

CY7C64013
 CY7C64113PRELIMINARY

21

10.2 DAC Port Interrupts
A DAC port interrupt can be enabled/disabled for each pin individually. The DAC Port Interrupt Enable register provides this feature
with an interrupt enable bit for each DAC I/O pin. Writing a ‘1’ to a bit in this register enables interrupts from the corresponding
bit position. Writing a ‘0’ to a bit in the DAC Port Interrupt Enable register disables interrupts from the corresponding bit position.
All of the DAC Port Interrupt Enable register bits are cleared to ‘0’ during a reset. All DAC pins share a common interrupt, as
explained in Section 16.6.

As an additional benefit, the interrupt polarity for each DAC pin is programmable with the DAC Port Interrupt Polarity register.
Writing a ‘0’ to a bit selects negative polarity (falling edge) that causes an interrupt (if enabled) if a falling edge transition occurs
on the corresponding input pin. Writing a ‘1’ to a bit in this register selects positive polarity (rising edge) that causes an interrupt
(if enabled) if a rising edge transition occurs on the corresponding input pin. All of the DAC Port Interrupt Polarity register bits are
cleared during a reset.

11.0 12-Bit Free-Running Timer

The 12-bit timer provides two interrupts (128-µs and 1.024-ms) and allows the firmware to directly time events that are up to 4
ms in duration. The lower 8 bits of the timer can be read directly by the firmware. Reading the lower 8 bits latches the upper 4
bits into a temporary register. When the firmware reads the upper 4 bits of the timer, it is accessing the count stored in the
temporary register. The effect of this logic is to ensure a stable 12-bit timer value can be read, even when the two reads are
separated in time.

11.1 Timer (LSB)

11.2 Timer (MSB)

7 6 5 4 3 2 1 0

DAC[7] DAC[6] DAC[5] DAC[4] DAC[3] DAC[2] DAC[1] DAC[0]

Figure 10-4. DAC Port Interrupt Enable 0x31 (write only)

7 6 5 4 3 2 1 0

DAC[7] DAC[6] DAC[5] DAC[4] DAC[3] DAC[2] DAC[1] DAC[0]

Figure 10-5. DAC Port Interrupt Polarity 0x32 (write only)

7 6 5 4 3 2 1 0

Timer
Bit 7

Timer
Bit 6

Timer
Bit 5

Timer
Bit 4

Timer
Bit 3

Timer
Bit 2

Timer
Bit 1

Timer
Bit 0

Figure 11-1. Timer Register 0x24 (read only)

7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Timer
Bit 11

Timer
Bit 10

Timer
Bit 9

Timer
Bit 8

Figure 11-2. Timer Register 0x25 (read only)

CY7C64013
 CY7C64113PRELIMINARY

22

12.0 I2C and HAPI Configuration Register

Internal hardware supports communication with external devices through two interfaces: a two-wire I2C, and a HAPI for 1, 2, or
3 byte transfers. The I2C and HAPI functions, discussed in detail in Sections 13.0 and 14.0, share a common configuration register
(see Figure 12-1). All bits of this register are cleared on reset.

Bits [7,1:0] of the HAPI/I2C Configuration Register control the pin out configuration of the HAPI and I2C interfaces. Bits [5:2] are
used in HAPI mode only, and are described in Section 14.0. Table 12-1 shows the HAPI port configurations, and Table 12-2 shows
I2C pin location configuration options. These I2C options exist due to pin limitations in certain packages, and to allow simultaneous
HAPI and I2C operation.

HAPI operation is enabled whenever either HAPI Port Width Bit (Bit 1 or 0) is non-zero. This affects GPIO operation as described
in Section 14.0. I2C must be separately enabled as described in Section 13.0.

Figure 11-3. Timer Block Diagram

7 6 5 4 3 2 1 0

R/W R/W R/W R R R/W R/W

I2C Position Reserved LEMPTY
Polarity

DRDY
 Polarity

Latch Empty Data Ready HAPI Port
Width Bit 1

HAPI Port
Width Bit 0

Figure 12-1. HAPI/I2C Configuration Register 0x09 (read/write)

Table 12-1. HAPI Port Configuration

Port Width
Bits[1:0]

HAPI Port Width

11 24 Bits: P3[7:0], P1[7:0], P0[7:0]

10 16 Bits: P1[7:0], P0[7:0]

01 8 Bits: P0[7:0]

00 No HAPI Interface

Table 12-2. I2C Port Configuration

I2C Position
Bit[7]

Port Width
Bit[1] I2C Position

X 1 I2C on P2[1:0], 0:SCL, 1:SDA

0 0 I2C on P1[1:0], 0:SCL, 1:SDA

1 0 I2C on P2[1:0], 0:SCL, 1:SDA

10 9 78 56 4 3 2 1-MHz Clock

1.024-ms Interrupt

128-µs Interrupt

To Timer Register
8

1 011

L1 L0L2L3

D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

CY7C64013
 CY7C64113PRELIMINARY

23

13.0 I2C Controller

The I2C block provides a versatile two-wire communication with external devices, supporting master, slave, and multi-master
modes of operation. The I2C block functions by handling the low-level signaling in hardware, and issuing interrupts as needed to
allow firmware to take appropriate action during transactions. While waiting for firmware response, the hardware keeps the I2C
bus idle if necessary.

The I2C generates an interrupt to the microcontroller at the end of each received or transmitted byte, when a stop bit is detected
by the slave when in receive mode, or when arbitration is lost. Details of the interrupt responses are given in Section 16.8.

The I2C interface consists of two registers, an I2C Data Register (Figure 13-1) and an I2C Status and Control Register (Figure
13-2). The Data Register is implemented as separate read and write registers. Generally, the I2C Status and Control Register
should only be monitored after the I2C interrupt, as all bits are valid at that time. Polling this register at other times could read
misleading bit status if a transaction is underway.

The I2C SCL clock is connected to bit 0 of GPIO port 1 or GPIO port 2, and the I2C SDA data is connected to bit 1 of GPIO port
1 or GPIO port 2. Refer to Section 12.0 for the bit definitions and functionality of the HAPI/I2C Configuration Register, which is
used to set the locations of the configurable I2C pins. Once the I2C functionality is enabled by setting bit 0 of the I2C Status &
Control Register, the two LSB bits ([1:0]) of the corresponding GPIO port are placed in Open Drain mode, regardless of the
settings of the GPIO Configuration Register.

All control of the I2C clock and data lines is performed by the I2C block.

The I2C Status and Control register bits are defined in Table 13-1, with a more detailed description following.

MSTR Mode: Setting this bit causes the I2C to initiate a master mode transaction by sending a start bit and transmitting the first
data byte from the data register (this typically holds the target address and R/W bit). Subsequent bytes are initiated by setting the
Continue bit, as described below.

7 6 5 4 3 2 1 0

 I2C Data 7 I2C Data 6 I2C Data 5 I2C Data 4 I2C Data 3 I2C Data 2 I2C Data 1 I2C Data 0

Figure 13-1. I2C Data Register 0x29 (separate read/write registers)

7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W

MSTR
Mode

Continue/
Busy

Xmit
Mode

ACK Addr ARB Lost/
Restart

Received Stop I2C
Enable

Figure 13-2. I2C Status and Control Register 0x28 (read/write)

Table 13-1. I2C Status and Control Register Bit Definitions

Bit Name Description

0 I2C Enable Write to 1 to enable I2C function. When cleared, I2C GPIO pins operate normally.

1 Received Stop Reads 1 only in slave receive mode, when I2C Stop bit detected (unless firmware did not
ACK the last transaction).

2 ARB Lost/Restart Reads 1 to indicate master has lost arbitration. Reads 0 otherwise.
Write to 1 in master mode to perform a restart sequence (also set Continue bit).

3 Addr Reads 1 during first byte after start/restart in slave mode, or if master loses arbitration.
Reads 0 otherwise. This bit should always be written as 0.

4 ACK In receive mode, write 1 to generate ACK, 0 for no ACK.
In transmit mode, reads 1 if ACK was received, 0 if no ACK received.

5 Xmit Mode Write to 1 for transmit mode, 0 for receive mode.

6 Continue / Busy Write 1 to indicate ready for next transaction.
Reads 1 when I2C block is busy with a transaction, 0 when transaction is complete.

7 MSTR Mode Write to 1 for master mode, 0 for slave mode. This bit is cleared if master loses arbitration.
Clearing from 1 to 0 generates Stop bit.

CY7C64013
 CY7C64113PRELIMINARY

24

In master mode, the I2C block generates the clock (SCK), and drives the data line as required depending on transmit or receive
state. The I2C block performs any required arbitration and clock synchronization. The loss of arbitration results in the clearing of
this bit, the setting of the ARB Lost bit, and the generation of an interrupt to the microcontroller. If the chip is the target of an
external master that wins arbitration, then the interrupt is held off until the transaction from the external master is completed.

When MSTR Mode is cleared from 1 to 0 by a firmware write, an I2C Stop bit is generated.

Continue / Busy: This bit is written by the firmware to indicate that the firmware is ready for the next byte transaction to begin.
In other words, the bit has responded to an interrupt request and has completed the required update or read of the data register.
During a read this bit indicates if the hardware is busy and is locking out additional writes to the I2C Status and Control register.
This locking allows the hardware to complete certain operations that may require an extended period of time. Following an I2C
interrupt, the I2C block does not return to the Busy state until firmware sets the Continue bit. This allows the firmware to make
one control register write without the need to check the Busy bit.

Xmit Mode: This bit is set by firmware to enter transmit mode and perform a data transmit in master or slave mode. Clear this
bit for receive mode. Firmware generally determines the value of this bit from the R/W bit associated with the I2C address packet.
The Xmit Mode bit state is ignored when initially writing the MSTR Mode or the Restart bits, as these cases always cause transmit
mode for the first byte.

ACK: This bit is set or cleared by firmware during receive operation to indicate if the hardware should generate an ACK signal
on the I2C bus. Writing a 1 to this bit generates an ACK (SDA LOW) on the I2C bus at the ACK bit time. During transmits (Xmit
Mode=1), this bit should be cleared.

Addr: This bit is set by the I2C block during the first byte of a slave receive transaction, after an I2C start or restart. The Addr bit
is cleared when the firmware sets the Continue bit. This bit allows the firmware to recognize when the master has lost arbitration,
and in slave mode it allows the firmware to recognize that a start or restart has occurred.

ARB Lost/Restart: This bit is valid as a status bit (ARB Lost) after master mode transactions. In master mode, set this bit (along
with the Continue and MSTR Mode bits) to perform an I2C restart sequence. The I2C target address for the restart must be written
to the data register before setting the Continue bit. To prevent false ARB Lost signals, the Restart bit is cleared by hardware during
the restart sequence.

Receive Stop: This bit is set when the slave is in receive mode and detects a stop bit on the bus. The Receive Stop bit is not set
if the firmware terminates the I2C transaction by not acknowledging the previous byte transmitted on the I2C bus, e.g., in receive
mode if firmware sets the Continue bit and clears the ACK bit.

I2C Enable: Set this bit to override GPIO definition with I2C function on the two I2C pins. When this bit is cleared, these pins are
free to function as GPIOs. In I2C mode, the two pins operate in open drain mode, independent of the GPIO configuration setting.

14.0 Hardware Assisted Parallel Interface (HAPI)

The CY7C64x13 processor provides a hardware assisted parallel interface for bus widths of 8, 16, or 24 bits, to accommodate
data transfer with an external microcontroller or similar device. Control bits for selecting the byte width are in the HAPI/I2C
Configuration Register (Figure 12-1), bits 1 and 0.

Signals are provided on Port 2 to control the HAPI interface. Table 14-1 describes these signals and the HAPI control bits in the
HAPI/I2C Configuration Register. Enabling HAPI causes the GPIO setting in the GPIO Configuration Register (0x08) to be
overridden. The Port 2 output pins are in CMOS output mode and Port 2 input pins are in input mode (open drain mode with Q3
OFF in Figure 9-1).

CY7C64013
 CY7C64113PRELIMINARY

25

HAPI Read by External Device from CY7C64x13: In this case (see Figure 22-3), firmware writes data to the GPIO ports. If
16-bit or 24-bit transfers are being made, Port 0 should be written last, since writes to Port 0 asserts the Data Ready bit and the
DReadyPin to signal the external device that data is available.

The external device then drives the OE and CS pins active (LOW), which causes the HAPI data to be output on the port pins.
When OE is returned HIGH (inactive), the HAPI/GPIO interrupt is generated. At that point, firmware can reload the HAPI latches
for the next output, again writing Port 0 last.

The Data Ready bit reads the opposite state from the external DReadyPin on pin P2[3]. If the DRDY Polarity bit is 0, DReadyPin
is active HIGH, and the Data Ready bit is active LOW.

HAPI Write by External Device to CY7C64x13: In this case (see Figure 22-4), the external device drives the STB and CS pins
active (LOW) when it drives new data onto the port pins. When this happens, the internal latches become full which causes the
Latch Empty bit to be deasserted. When STB is returned HIGH (inactive), the HAPI/GPIO interrupt is generated. Firmware then
reads the parallel ports to empty the HAPI latches. If 16-bit or 24-bit transfers are being made, Port 0 should be read last because
reads from Port 0 assert the Latch Empty bit and the LatEmptyPin to signal the external device for more data.

The Latch Empty bit reads the opposite state from the external LatEmptyPin on pin P2[2]. If the LEMPTY Polarity bit is 0,
LatEmptyPin is active HIGH, and the Latch Empty bit is active LOW.

15.0 Processor Status and Control Register

The Run bit, bit 0, is manipulated by the HALT instruction. When Halt is executed, all the bits of the Processor Status and Control
Register are cleared to 0. Since the run bit is cleared, the processor stops at the end of the current instruction. The processor
remains halted until an appropriate reset occurs (power-on or watch dog). This bit should normally be written as a ‘1.’

Bit 1 is reserved and must be written as a zero.

The Interrupt Enable Sense (bit 2) shows whether interrupts are enabled or disabled. Firmware has no direct control over this bit
as writing a zero or one to this bit position has no effect on interrupts. A ‘0’ indicates that interrupts are masked off and a ‘1’
indicates that the interrupts are enabled. This bit is further gated with the bit settings of the Global Interrupt Enable Register (0x20)
and USB End Point Interrupt Enable Register (0x21). Instructions DI, EI, and RETI manipulate the state of this bit.

Writing a ‘1’ to the Suspend bit (bit 3) halts the processor and causes the microcontroller to enter the suspend mode that
significantly reduces power consumption. A pending, enabled interrupt or USB bus activity causes the device to come out of
suspend. After coming out of suspend, the device resumes firmware execution at the instruction following the IOWR which put
the part into suspend. An IOWR attempting to put the part into suspend is ignored if non-idle USB bus activity is present. See
Section 8.0 for more details on suspend mode operation.

Table 14-1. Port 2 Pin and HAPI Configuration Bit Definitions

Pin Name Direction Description (Port 2 Pin)

P2[2] LatEmptyPin Out Ready for more input data from external interface

P2[3] DReadyPin Out Output data ready for external interface

P2[4] STB In Strobe signal for latching incoming data

P2[5] OE In Output Enable, causes chip to output data

P2[6] CS In Chip Select (Gates STB and OE)

Bit Name R/W Description (HAPI/I2C Configuration Register)

2 Data Ready R Asserted after firmware writes data to Port 0, until OE driven LOW.

3 Latch Empty R Asserted after firmware reads data from Port 0, until STB driven LOW.

4 DRDY Polarity R/W Determines polarity of Data Ready bit and DReadyPin:
If 0, Data Ready is active LOW, DReadyPin is active HIGH.
If 1, Data Ready is active HIGH, DReadyPin is active LOW.

5 LEMPTY Polarity R/W Determines polarity of Latch Empty bit and LatEmptyPin:
If 0, Latch Empty is active LOW, LatEmptyPin is active HIGH.
If 1, Latch Empty is active HIGH, LatEmptyPin is active LOW.

7 6 5 4 3 2 1 0

R R/W R/W R/W R/W R R/W

IRQ
Pending

Watch Dog
Reset

USB Bus Re-
set Interrupt

Power-On
Reset

Suspend Interrupt
Enable Sense

reserved Run

Figure 15-1. Processor Status and Control Register 0xFF

CY7C64013
 CY7C64113PRELIMINARY

26

The Power-On Reset (bit 4) is set to ‘1’ during a power-on reset. The firmware can check bits 4 and 6 in the reset handler to
determine whether a reset was caused by a power-on condition or a watch dog timeout. Note that a POR event may be followed
by a watch dog reset before firmware begins executing, as explained below.

The USB Bus Reset Interrupt (bit 5) occurs when a USB Bus Reset is received on the upstream port. The USB Bus Reset is a
single-ended zero (SE0) that lasts from 12 to 16 µs. An SE0 is defined as the condition in which both the D+ line and the D– line
are LOW at the same time. When the SIE detects that this SE0 condition is removed, the USB Bus Reset interrupt bit is set in
the Processor Status and Control Register and a USB Bus Reset interrupt is generated.

The Watch Dog Reset (bit 6) is set during a reset initiated by the Watch Dog Timer. This indicates the Watch Dog Timer went for
more than tWATCH (8 ms minimum) between Watch Dog clears. This can occur with a POR event, as noted below.

The IRQ pending (bit 7), when set, indicates that one or more of the interrupts has been recognized as active. An interrupt remains
pending until its interrupt enable bit is set (registers 0x20 or 0x21) and interrupts are globally enabled. At that point, the internal
interrupt handling sequence clears this bit until another interrupt is detected as pending.

During power-up, the Processor Status and Control Register is set to 00010001, which indicates a POR (bit 4 set) has occurred
and no interrupts are pending (bit 7 clear). During the 96 ms suspend at start-up (explained in Section 7.1), a Watch Dog Reset
also occurs unless this suspend is aborted by an upstream SE0 before 8 ms. If a WDR occurs during the power-up suspend
interval, firmware reads 01010001 from the Status and Control Register after power-up. Normally, the POR bit should be cleared
so a subsequent WDR can be clearly identified. If an upstream bus reset is received before firmware examines this register, the
Bus Reset bit may also be set.

During a Watch Dog Reset, the Processor Status and Control Register is set to 01XX0001, which indicates a Watch Dog Reset
(bit 6 set) has occurred and no interrupts are pending (bit 7 clear). The Watch Dog Reset does not effect the state of the POR
and the Bus Reset Interrupt bits.

16.0 Interrupts

Interrupts are generated by the GPIO/DAC pins, the internal timers, I2C or HAPI operation, or on various USB traffic conditions.
All interrupts are maskable by the Global Interrupt Enable Register and the USB End Point Interrupt Enable Register. Writing a
‘1’ to a bit position enables the interrupt associated with that bit position. During a reset, the contents the Global Interrupt Enable
Register and USB End Point Interrupt Enable Register are cleared, effectively disabling all interrupts.

The interrupt controller contains a separate flip-flop for each interrupt. See Figure 16-3 for the logic block diagram of the interrupt
controller. When an interrupt is generated, it is first registered as a pending interrupt. It stays pending until it is serviced or a reset
occurs. A pending interrupt only generates an interrupt request if it is enabled by the corresponding bit in the interrupt enable
registers. The highest priority interrupt request is serviced following the completion of the currently executing instruction.

When servicing an interrupt, the hardware first disables all interrupts by clearing the Global Interrupt Enable bit in the CPU (the
state of this bit can be read at Bit 2 of the Processor Status and Control Register). Second, the flip-flop of the current interrupt is
cleared. This is followed by an automatic CALL instruction to the ROM address associated with the interrupt being serviced (i.e.,
the Interrupt Vector, see Section 16.1). The instruction in the interrupt table is typically a JMP instruction to the address of the
Interrupt Service Routine (ISR). The user can re-enable interrupts in the interrupt service routine by executing an EI instruction.
Interrupts can be nested to a level limited only by the available stack space.

The Program Counter value, as well as the Carry and Zero flags (CF, ZF), are stored onto the Program Stack by the automatic
CALL instruction generated as part of the interrupt acknowledge process. The user firmware is responsible for ensuring that the
processor state is preserved and restored during an interrupt. The PUSH A instruction should typically be used as the first
command in the ISR to save the accumulator value and the POP A instruction should be used to restore the accumulator value

7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W

Reserved I2C
Interrupt
Enable

GPIO/HAPI
Interrupt
Enable

DAC
Interrupt
Enable

Reserved 1.024-ms
Interrupt
Enable

128-µs
Interrupt
Enable

USB Bus RST
Interrupt
Enable

Figure 16-1. Global Interrupt Enable Register 0x20 (read/write)

7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W

Reserved Reserved Reserved EPB1
Interrupt
Enable

EPB0
Interrupt
Enable

EPA2
Interrupt
Enable

EPA1
Interrupt
Enable

EPA0
Interrupt
Enable

Figure 16-2. USB Endpoint Interrupt Enable Register 0x21 (read/write)

CY7C64013
 CY7C64113PRELIMINARY

27

just before the RETI instruction. The program counter CF and ZF are restored and interrupts are enabled when the RETI
instruction is executed.

The DI and EI instructions can be used to disable and enable interrupts, respectively. These instructions affect only the Global
Interrupt Enable bit of the CPU. If desired, EI can be used to re-enable interrupts while inside an ISR, instead of waiting for the
RETI that exists the ISR. While the global interrupt enable bit is cleared, the presence of a pending interrupt can be detected by
examining the IRQ Sense bit (Bit 7 in the Processor Status and Control Register).

16.1 Interrupt Vectors
The Interrupt Vectors supported by the USB Controller are listed in Table 16-1. The lowest-numbered interrupt (USB Bus Reset
interrupt) has the highest priority, and the highest-numbered interrupt (I2C interrupt) has the lowest priority. Although Reset is not
an interrupt, the first instruction executed after a reset is at PROM address 0x0000h—which corresponds to the first entry in the
Interrupt Vector Table. Because the JMP instruction is 2 bytes long, the interrupt vectors occupy 2 bytes.

Figure 16-3. Interrupt Controller Functional Diagram

CLR

Global
Interrupt

Interrupt
Acknowledge

IRQout

USB Reset Clear
Interrupt

Interrupt
Priority
Encoder

Enable [0]
D Q 1

Enable
Bit

CLR

USB Reset IRQ
128-µs CLR
128-µs IRQ
1-ms CLR
1-ms IRQ

AddA EP0 IRQ
AddA EP0 CLR

I2C IRQ

Vector

Enable [6]

CLK

CLR

D
Q

CLK

 1

I2C CLR

Int
I2C

Int

USB

AddA EP1 IRQ
AddA EP1 CLR

IRQ Sense

IRQ

Controlled by DI, EI, and
RETI Instructions

DAC IRQ
DAC CLR

To CPU

CPU
Reset

GPIO IRQ
GPIO CLR

AddA EP2 IRQ
AddA EP2 CLR

AddA EP3 IRQ
AddA EP3 CLR

AddA EP4 IRQ
AddA EP4 CLR

(Reg 0x20)

(Reg 0x20)

CLR

Enable [2]
D Q 1

CLK

Int

AddA
ENP2

(Reg 0x21)
Int Enable
Sense

CY7C64013
 CY7C64113PRELIMINARY

28

A pending address can be read from the Interrupt Vector Register (Figure 16-4). The value read from this register is only valid if
the Global Interrupt bit has been disabled, by executing the DI instruction or in an Interrupt Service Routine before interrupts have
been re-enabled. The value read from this register is the interrupt vector address; for example, a 0x06 indicates the 1 ms timer
interrupt is the highest priority pending interrupt.

16.2 Interrupt Latency
Interrupt latency can be calculated from the following equation:

Interrupt latency = (Number of clock cycles remaining in the current instruction) + (10 clock cycles for the CALL instruction) +
(5 clock cycles for the JMP instruction)

For example, if a 5 clock cycle instruction such as JC is being executed when an interrupt occurs, the first instruction of the
Interrupt Service Routine executes a minimum of 16 clocks (1+10+5) or a maximum of 20 clocks (5+10+5) after the interrupt is
issued. For a 12-MHz internal clock (6-MHz crystal), 20 clock periods is 20 / 12 MHz = 1.667 µs.

16.3 USB Bus Reset Interrupt
The USB Controller recognizes a USB Reset when a Single Ended Zero (SE0) condition persists on the upstream USB port for
12–16 µs (the Reset may be recognized for an SE0 as short as 12 µs, but is always recognized for an SE0 longer than 16 µs).
SE0 is defined as the condition in which both the D+ line and the D– line are LOW. Bit 5 of the Status and Control Register is set
to record this event. The interrupt is asserted at the end of the Bus Reset. If the USB reset occurs during the start-up delay
following a POR, the delay is aborted as described in Section 7.1. The USB Bus Reset Interrupt is generated when the SE0 state
is deasserted.

A USB Bus Reset clears the following registers:

SIE Section:USB Device Address Registers (0x10, 0x40)

Table 16-1. Interrupt Vector Assignments

Interrupt Vector Number ROM Address Function

Not Applicable 0x0000 Execution after Reset begins here

1 0x0002 USB Bus Reset interrupt

2 0x0004 128-µs timer interrupt

3 0x0006 1.024-ms timer interrupt

4 0x0008 USB Address A Endpoint 0 interrupt

5 0x000A USB Address A Endpoint 1 interrupt

6 0x000C USB Address A Endpoint 2 interrupt

7 0x000E USB Address A Endpoint 3 interrupt

8 0x0010 USB Address A Endpoint 4 interrupt

9 0x0012 Reserved

10 0x0014 DAC interrupt

11 0x0016 GPIO / HAPI interrupt

12 0x0018 I2C interrupt

7 6 5 4 3 2 1 0

R R R R R

Reserved Reserved Reserved Interrupt
Vector Bit 4

Interrupt
Vector Bit 3

Interrupt
Vector Bit 2

Interrupt
Vector Bit 1

Reads ‘0’

Figure 16-4. Interrupt Vector Register 0x23 (read only)

CY7C64013
 CY7C64113PRELIMINARY

29

16.4 Timer Interrupt
There are two periodic timer interrupts: the 128-µs interrupt and the 1.024-ms interrupt. The user should disable both timer
interrupts before going into the suspend mode to avoid possible conflicts between servicing the timer interrupts first or the suspend
request first.

16.5 USB Endpoint Interrupts
There are five USB endpoint interrupts, one per endpoint. A USB endpoint interrupt is generated after the USB host writes to a
USB endpoint FIFO or after the USB controller sends a packet to the USB host. The interrupt is generated on the last packet of
the transaction (e.g., on the host’s ACK during an IN, or on the device ACK during on OUT). If no ACK is received during an IN
transaction, no interrupt is generated.

16.6 DAC Interrupt
Each DAC I/O pin can generate an interrupt, if enabled. The interrupt polarity for each DAC I/O pin is programmable. A positive
polarity is a rising edge input while a negative polarity is a falling edge input. All of the DAC pins share a single interrupt vector,
which means the firmware needs to read the DAC port to determine which pin or pins caused an interrupt.

If one DAC pin has triggered an interrupt, no other DAC pins can cause a DAC interrupt until that pin has returned to its inactive
(non-trigger) state or the corresponding interrupt enable bit is cleared. The USB Controller does not assign interrupt priority to
different DAC pins and the DAC Interrupt Enable Register is not cleared during the interrupt acknowledge process.

16.7 GPIO/HAPI Interrupt
Each of the GPIO pins can generate an interrupt, if enabled. The interrupt polarity can be programmed for each GPIO port as
part of the GPIO configuration. All of the GPIO pins share a single interrupt vector, which means the firmware needs to read the
GPIO ports with enabled interrupts to determine which pin or pins caused an interrupt. A block diagram of the GPIO interrupt
logic is shown in Figure 16-5. Refer to Sections 9.1 and 9.2 for more information of setting GPIO interrupt polarity and enabling
individual GPIO interrupts.

If one port pin has triggered an interrupt, no other port pins can cause a GPIO interrupt until that port pin has returned to its
inactive (non-trigger) state or its corresponding port interrupt enable bit is cleared. The USB Controller does not assign interrupt
priority to different port pins and the Port Interrupt Enable Registers are not cleared during the interrupt acknowledge process.

When HAPI is enabled, the HAPI logic takes over the interrupt vector and blocks any interrupt from the GPIO bits, including
ports/bits not being used by HAPI. Operation of the HAPI interrupt is independent of the GPIO specific bit interrupt enables, and
is enabled or disabled only by bit 5 of the Global Interrupt Enable Register (0x20) when HAPI is enabled. The settings of the GPIO
bit interrupt enables on ports/bits not used by HAPI still effect the CMOS mode operation of those ports/bits. The effect of

Figure 16-5. GPIO Interrupt Structure

Port

Register OR Gate
GPIO Interrupt
Flip Flop

CLR
GPIO
Pin

1 = Enable
0 = Disable

Port Interrupt
Enable Register

1 = Enable
0 = Disable

Interrupt
Priority
Encoder

IRQout

Interrupt
Vector

D Q
M
U
X

1

(1 input per
 GPIO pin)

Global
GPIO Interrupt

Enable
(Bit 5, Register 0x20)

IRA

Configuration

CY7C64013
 CY7C64113PRELIMINARY

30

modifying the interrupt bits while the Port Config bits are set to “10” is shown in Table 9-1. The events that generate HAPI interrupts
are described in Section 14.0.

16.8 I2C Interrupt
The I2C interrupt occurs after various events on the I2C bus to signal the need for firmware interaction. This generally involves
reading the I2C Status and Control Register (Figure 13-2) to determine the cause of the interrupt, loading/reading the I2C Data
Register as appropriate, and finally writing the Status and Control Register to initiate the subsequent transaction. The interrupt
indicates that status bits are stable and it is safe to read and write the I2C registers. Refer to Section 13.0 for details on the I2C
registers.

When enabled, the I2C state machines generate interrupts on completion of the following conditions. The referenced bits are in
the I2C Status and Control Register.

1. In slave receive mode, after the slave receives a byte of data. The Addr bit is set if this is the first byte since a start or restart
signal was sent by the external master. Firmware must read or write the data register as necessary, then set the ACK, Xmit
Mode, and Continue bits appropriately for the next byte.

2. In slave receive mode, after a stop bit is detected. The Received Stop bit is set. If the stop bit follows a slave receive transaction
where the ACK bit was cleared to 0, no stop bit detection occurs.

3. In slave transmit mode, after the slave transmits a byte of data. The ACK bit indicates if the master that requested the byte
acknowledged the byte. If more bytes are to be sent, firmware writes the next byte into the Data Register and then sets the
Xmit Mode and Continue bits as required.

4. In master transmit mode, after the master sends a byte of data. Firmware should load the Data Register if necessary, and set
the Xmit Mode, MSTR Mode, and Continue/Busy bits appropriately. Clearing the MSTR Mode bit issues a stop signal to the
I2C bus and return to the idle state.

5. In master receive mode, after the master receives a byte of data. Firmware should read the data and set the Ack and
Continue/Busy bits appropriately for the next byte. Clearing the Master bit at the same time causes the master state machine
to issue a stop signal to the I2C bus and leave the I2C hardware in the idle state.

6. When the master loses arbitration. This condition clears the Master bit and sets the Arbitration Lost bit immediately and then
waits for a stop signal on the I2C bus to generate the interrupt.

The Continue/Busy bit is cleared by hardware prior to interrupt conditions 1 to 4. Once the Data Register has been read or written,
firmware should configure the other control bits and set the Continue bit for subsequent transactions.

Following an interrupt from master mode, firmware should perform only one write to the Status and Control Register that sets the
Continue bit, without checking the value of the Busy bit. The Busy bit may otherwise be active and I2C register contents may be
changed by the hardware during the transaction, until the I2C interrupt occurs.

17.0 USB Overview

The USB hardware consists of the logic for a full-speed USB Port. The full-speed serial interface engine (SIE) interfaces the
microcontroller to the USB bus. An external series resistor (Rext) must be placed in series with the D+ and D– lines, as close to
the corresponding pins as possible, to meet the USB driver requirements of the USB specifications.

17.1 USB Serial Interface Engine (SIE)
The SIE allows the CY7C64x13 microcontroller to communicate with the USB host. The SIE simplifies the interface between the
microcontroller and USB by incorporating hardware that handles the following USB bus activity independently of the microcon-
troller:

• Bit stuffing/unstuffing
• Checksum generation/checking
• ACK/NAK/STALL
• Token type identification
• Address checking

Firmware is required to handle the following USB interface tasks:

• Coordinate enumeration by responding to SETUP packets
• Fill and empty the FIFOs
• Suspend/Resume coordination
• Verify and select DATA toggle values

CY7C64013
 CY7C64113PRELIMINARY

31

17.2 USB Enumeration
The USB device is enumerated under firmware control. The following is a brief summary of the typical enumeration process of
the CY7C64x13 by the USB host. For a detailed description of the enumeration process, refer to the USB specification.

In this description, ‘Firmware’ refers to embedded firmware in the CY7C64x13 controller.

1. The host computer sends a SETUP packet followed by a DATA packet to USB address 0 requesting the Device descriptor.

2. Firmware decodes the request and retrieves its Device descriptor from the program memory tables.

3. The host computer performs a control read sequence and Firmware responds by sending the Device descriptor over the USB
bus, via the on-chip FIFOs.

4. After receiving the descriptor, the host sends a SETUP packet followed by a DATA packet to address 0 assigning a new USB
address to the device.

5. Firmware stores the new address in its USB Device Address Register after the no-data control sequence completes.

6. The host sends a request for the Device descriptor using the new USB address.

7. Firmware decodes the request and retrieves the Device descriptor from program memory tables.

8. The host performs a control read sequence and Firmware responds by sending its Device descriptor over the USB bus.

9. The host generates control reads from the device to request the Configuration and Report descriptors.

10.Once the device receives a Set Configuration request, its functions may now be used.

17.3 USB Upstream Port Status and Control
USB status and control is regulated by the USB Status and Control Register, as shown in Figure 17-1. All bits in the register are
cleared during reset.

The three control bits allow the upstream port to be driven manually by firmware. For normal USB operation, all of these bits must
be cleared. Table 17-1 shows how the control bits affect the upstream port.

Table 17-1. Control Bit Definition for Upstream Port

Bus Activity (bit 3) is a “sticky” bit that indicates if any non-idle USB event has occurred on the upstream USB port. Firmware
should check and clear this bit periodically to detect any loss of bus activity. Writing a ‘0’ to the Bus Activity bit clears it, while
writing a ‘1’ preserves the current value. In other words, the firmware can clear the Bus Activity bit, but only the SIE can set it.

The Upstream D– and D+ (bits 4 and 5) are read only. These give the state of each upstream port pin individually: 1=HIGH,
0=LOW.

Endpoint Mode (bit 6) and Endpoint Size (bit 7) are used to configure the number and size of USB endpoints. See Section 18.2
for a detailed description of these bits.

7 6 5 4 3 2 1 0

R/W R/W R R R/C R/W R/W R/W

Endpoint
Size

Endpoint
Mode

D+
Upstream

D–
Upstream

Bus Activity Control
Bit 2

Control
Bit 1

Control
Bit 0

Figure 17-1. USB Status and Control Register 0x1F (read/write)

Control Bits Control Action

000 Not Forcing (SIE Controls Driver)

001 Force D+[0] HIGH, D–[0] LOW

010 Force D+[0] LOW, D–[0] HIGH

011 Force SE0; D+[0] LOW, D–[0] LOW

100 Force D+[0] LOW, D–[0] LOW

101 Force D+[0] HiZ, D–[0] LOW

110 Force D+[0] LOW, D–[0] HiZ

111 Force D+[0] HiZ, D–[0] HiZ

CY7C64013
 CY7C64113PRELIMINARY

32

18.0 USB Serial Interface Engine Operation

USB Device Address A includes up to five endpoints: EPA0, EPA1, EPA2, EPA3, and EPA4. Endpoint (EPA0) allows the USB host
to recognize, set-up, and control the device. In particular, EPA0 is used to receive and transmit control (including set-up) packets.

18.1 USB Device Address
The USB Controller provides one USB Device Address with five endpoints. The USB Device Address Register contents are
cleared during a reset, setting the USB device address to zero and marking this address as disabled. Figure 18-1 shows the
format of the USB Address Registers.

Bit 7 (Device Address Enable) in the USB Device Address Register must be set by firmware before the SIE can respond to USB
traffic to this address. The Device Addresses in bits [6:0] are set by firmware during the USB enumeration process to the non-zero
address assigned by the USB host.

18.2 USB Device Endpoints
The CY7C64x13 controller supports one USB device address and five endpoints for communication with the host. The configu-
ration of these endpoints, and associated FIFOs, is controlled by bits [7,6] of the USB Status and Control Register (0x1F). Bit 7
controls the size of the endpoints and bit 6 controls the number of endpoints. These configuration options are detailed in Table
18-1. The “unused” FIFO areas in the following table can be used by the firmware as additional user RAM space.

When the SIE writes data to a FIFO, the internal data bus is driven by the SIE; not the CPU. This causes a short delay in the CPU
operation. The delay is three clock cycles per byte. For example, an 8-byte data write by the SIE to the FIFO generates a delay
of 2 µs (3 cycles/byte * 83.33 ns/cycle * 8 bytes).

18.3 USB Control Endpoint Mode Register
All USB devices are required to have a control endpoint 0 (EPA0) that is used to initialize and control each USB address. Endpoint
0 provides access to the device configuration information and allows generic USB status and control accesses. Endpoint 0 is
bidirectional to both receive and transmit data. The other endpoints are unidirectional, but selectable by the user as IN or OUT
endpoints.

The endpoint mode register is cleared during reset. The endpoint zero EPA0 mode register uses the format shown in Figure 18-2.

7 6 5 4 3 2 1 0

Device
Address
Enable

Device
Address

Bit 6

Device
Address

Bit 5

Device
Address

Bit 4

Device
Address

Bit 3

Device
Address

Bit 2

Device
Address

Bit 1

Device
Address

Bit 0

Figure 18-1. USB Device Address Register 0x10 (read/write)

Table 18-1. Memory Allocation for Endpoints

I/O status
[7,6]

[0,0] [1,0] [0,1] [1,1]

Label
Start

Address Size Label
Start

Address Size Label
Start

Address Size Label
Start

Address Size
unused 0xD8 8 unused 0xA8 8 EPA4 0xD8 8 EPA4 0xA8 8
unused 0xE0 8 unused 0xB0 8 EPA3 0xE0 8 EPA3 0xB0 8

EPA2 0xE8 8 EPA0 0xB8 8 EPA2 0xE8 8 EPA0 0xB8 8

EPA1 0xF0 8 EPA1 0xC0 32 EPA1 0xF0 8 EPA1 0xC0 32

EPA0 0xF8 8 EPA2 0xE0 32 EPA0 0xF8 8 EPA2 0xE0 32

7 6 5 4 3 2 1 0

Endpoint 0
SETUP

Received

Endpoint 0
IN

Received

Endpoint 0
OUT

Received

ACK Mode
Bit 3

Mode
Bit 2

Mode
Bit 1

Mode
Bit 0

Figure 18-2. USB Device Endpoint Zero Mode Register 0x12 (read/write)

CY7C64013
 CY7C64113PRELIMINARY

33

Bits[7:5] in the endpoint 0 mode registers are status bits that are set by the SIE to report the type of token that was most recently
received by the corresponding device address. These bits must be cleared by firmware as part of the USB processing.

The ACK bit (bit 4) is set whenever the SIE engages in a transaction to the register’s endpoint that completes with an ACK packet.

The SETUP PID status (bit 7) is forced HIGH from the start of the data packet phase of the SETUP transaction until the start of
the ACK packet returned by the SIE. The CPU is prevented from clearing this bit during this interval, and subsequently, until the
CPU first does an IORD to this endpoint 0 mode register.

Bits[6:0] of the endpoint 0 mode register are locked from CPU write operations whenever the SIE has updated one of these bits,
which the SIE does only at the end of the token phase of a transaction (SETUP... Data... ACK, OUT... Data... ACK, or IN... Data...
ACK). The CPU can unlock these bits by doing a subsequent read of this register. Only endpoint 0 mode registers are locked
when updated. The locking mechanism does not apply to the mode registers of other endpoints.

Because of these hardware locking features, firmware must perform an IORD after an IOWR to an endpoint 0 register. This verifies
that the contents have changed as desired, and that the SIE has not updated these values.

While the SETUP bit is set, the CPU cannot write to the endpoint zero FIFOs. This prevents firmware from overwriting an incoming
SETUP transaction before firmware has a chance to read the SETUP data. Refer to Table 18-1 for the appropriate endpoint zero
memory locations.

The Mode bits (bits [3:0]) control how the endpoint responds to USB bus traffic. The mode bit encoding is shown inTable 19-1.
Additional information on the mode bits can be found inTable 19-2 and Table 19-3.

18.4 USB Non-Control Endpoint Mode Registers
The format of the non-control endpoint mode register is shown in Figure 18-3.

The mode bits (bits [3:0]) of the Endpoint Mode Register control how the endpoint responds to USB bus traffic. The mode bit
encoding is shown in Table 19-1.

The ACK bit (bit 4) is set whenever the SIE engages in a transaction to the register’s endpoint that completes with an ACK packet.

If STALL (bit 7) is set, the SIE stalls an OUT packet if the mode bits are set to ACK-IN, and the SIE stalls an IN packet if the mode
bits are set to ACK-OUT. For all other modes, the STALL bit must be a LOW.

Bits 5 and 6 are reserved and must be written to zero during register writes.

18.5 USB Endpoint Counter Registers
There are five Endpoint Counter registers, with identical formats for both control and non-control endpoints. These registers
contain byte count information for USB transactions, as well as bits for data packet status. The format of these registers is shown
in Figure 18-4:

The counter bits (bits [5:0]) indicate the number of data bytes in a transaction. For IN transactions, firmware loads the count with
the number of bytes to be transmitted to the host from the endpoint FIFO. Valid values are 0 to 32, inclusive. For OUT or SETUP
transactions, the count is updated by hardware to the number of data bytes received, plus 2 for the CRC bytes. Valid values are
2 to 34, inclusive.

Data Valid bit 6 is used for OUT and SETUP tokens only. Data is loaded into the FIFOs during the transaction, and then the Data
Valid bit is set if a proper CRC is received. If the CRC is not correct, the endpoint interrupt occurs, but Data Valid is cleared to a
zero.

Data 0/1 Toggle bit 7 selects the DATA packet’s toggle state: 0 for DATA0, 1 for DATA1. For IN transactions, firmware must set this
bit to the desired state. For OUT or SETUP transactions, the hardware sets this bit to the state of the received Data Toggle bit.

Whenever the count updates from a SETUP or OUT transaction on endpoint 0, the counter register locks and cannot be written
by the CPU. Reading the register unlocks it. This prevents firmware from overwriting a status update on incoming SETUP or OUT

7 6 5 4 3 2 1 0

STALL Reserved Reserved ACK Mode
Bit 3

Mode
Bit 2

Mode
Bit 1

Mode
Bit 0

Figure 18-3. USB Non-Control Device Endpoint Mode Registers 0x14, 0x16, 0x42, 0x44, (read/write)

7 6 5 4 3 2 1 0

Data 0/1
Toggle

Data Valid Byte Count
Bit 5

Byte Count
Bit 4

Byte Count
Bit 3

Byte Count
Bit 2

Byte Count
Bit 1

Byte Count
Bit 0

Figure 18-4. USB Endpoint Counter Registers 0x11, 0x13, 0x15, 0x41, 0x43 (read/write)

CY7C64013
 CY7C64113PRELIMINARY

34

transactions before firmware has a chance to read the data. Only endpoint 0 counter register is locked when updated. The locking
mechanism does not apply to the count registers of other endpoints.

18.6 Endpoint Mode/Count Registers update and Locking Mechanism
The contents of the endpoint mode and counter registers are updated, based on the packet flow diagram in Figure 18-5. Two
time points, UPDATE and SETUP, are shown in the same figure. The following activities occur at each time point:

UPDATE:

1. Endpoint Mode Register - All the bits are updated (except the SETUP bit of the endpoint 0 mode register).

2. Counter Registers - All bits are updated.

3. Interrupt - If an interrupt is to be generated as a result of the transaction, the interrupt flag for the corresponding endpoint is
set at this time. For details on what conditions are required to generate an endpoint interrupt, refer to Table 19-2.

4. The contents of the updated endpoint 0 mode and counter registers are locked, except the SETUP bit of the endpoint 0 mode
register which was locked earlier.

SETUP:

The SETUP bit of the endpoint 0 mode register is forced HIGH at this time. This bit is forced HIGH by the SIE until the end of the
data phase of a control write transfer. The SETUP bit can not be cleared by firmware during this time.

The affected mode and counter registers of endpoint 0 are locked from any CPU writes once they are updated. These registers
can be unlocked by a CPU read, only if the read operation occurs after the UPDATE. The firmware needs to perform a register
read as a part of the endpoint ISR processing to unlock the effected registers. The locking mechanism on mode and counter
registers ensures that the firmware recognizes the changes that the SIE might have made since the previous IO read of that
register.

CY7C64013
 CY7C64113PRELIMINARY

35

Figure 18-5. Token/Data Packet Flow Diagram

1. IN Token

H
O
S
T

D
E
V
I
C
E

Token Packet

S
Y
N
C

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Data Packet

S
Y
N
C

D
A
T
A
1

C
R
C
1
6

data

H/S Pkt

Token Packet

S
Y
N
C

I
N

A
D
D
R

E
N
D
P

C
R
C
5

S
Y
N
C

A
C
K

H/S Pkt

S
Y
N
C

NAK/

STALL

update

2. OUT or SETUP Token without CRC error

Token Packet

S
Y
N
C

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Data Packet

S
Y
N
C

D
A
T
A
1

C
R
C
1
6

data
Set
up

H/S Pkt

S
Y
N
C

ACK,

NAK,

STALL

3. OUT or SETUP Token with CRC error

Token Packet

S
Y
N
C

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5Set

up

Data Packet

S
Y
N
C

D
A
T
A
1

C
R
C
1
6

data

update only if FIFO is
Written (see Table 20-3)

update

a)

b)

updateSetup

CY7C64013
 CY7C64113PRELIMINARY

36

19.0 USB Mode Tables

Note:
3. STALL bit is bit 7 of the USB Non-Control Device Endpoint Mode registers. For more information, refer to Section 18.4.

The ‘In’ column represents the SIE’s response to the token type.

A disabled endpoint remains disabled until it is changed by firmware, and all endpoints reset to the disabled state.

Any SETUP packet to an enabled endpoint with mode set to accept SETUPs is changed by the SIE to 0001 (NAKing). Any mode
set to accept a SETUP, ACKs a valid SETUP transaction.

Most modes that control transactions involving an ending ACK, are changed by the SIE to a corresponding mode which NAKs
subsequent packets following the ACK. Exceptions are modes 1010 and 1110.

A Control endpoint has three extra status bits for PID (Setup, In and Out), but must be placed in the correct mode to function as
such. Non-Control endpoints should not be placed into modes that accept SETUPs.

A ‘check’ on an Out token during a Status transaction checks to see that the Out is of zero length and has a Data Toggle (DTOG)
of ‘1’. If the DTOG bit is set and the received Out Packet has zero length, the Out is ACKed to complete the transaction. Otherwise,
the Out is STALLed.

Table 19-1. USB Register Mode Encoding

Mode Encoding Setup In Out Comments

Disable 0000 ignore ignore ignore Ignore all USB traffic to this endpoint

Nak In/Out 0001 accept NAK NAK Forced from Set-up on Control endpoint, from modes other
than 0000

Status Out Only 0010 accept stall check For Control endpoints

Stall In/Out 0011 accept stall stall For Control endpoints

Ignore In/Out 0100 accept ignore ignore For Control endpoints

Isochronous Out 0101 ignore ignore always For Isochronous endpoints

Status In Only 0110 accept TX 0 stall For Control Endpoints

Isochronous In 0111 ignore TX cnt ignore For Isochronous endpoints

Nak Out 1000 ignore ignore NAK An ACK from mode 1001 --> 1000

Ack Out(STALL[3]=0)
Ack Out(STALL[3]=1)

1001
1001

ignore
ignore

ignore
ignore

ACK
stall

This mode is changed by SIE on issuance of ACK --> 1000

Nak Out - Status In 1010 accept TX 0 NAK An ACK from mode 1011 --> 1010

Ack Out - Status In 1011 accept TX 0 ACK This mode is changed by SIE on issuance of ACK --> 1010

Nak In 1100 ignore NAK ignore An ACK from mode 1101 --> 1100

Ack IN(STALL[3]=0)
Ack IN(STALL[3]=1)

1101
1101

ignore
ignore

TX cnt
stall

ignore
ignore

This mode is changed by SIE on issuance of ACK --> 1100

Nak In - Status Out 1110 accept NAK check An ACK from mode 1111 --> 111 Ack In - Status Out

Ack In - Status Out 1111 accept TX cnt check This mode is changed by SIE on issuance of ACK -->1110

CY7C64013
 CY7C64113PRELIMINARY

37

The response of the SIE can be summarized as follows:

1. The SIE only responds to valid transactions and ignores non-valid ones.

2. The SIE generates an interrupt when a valid transaction is completed or when the FIFO is corrupted. FIFO corruption occurs
during an OUT or SETUP transaction to a valid internal address that ends with a non-valid CRC.

3. An incoming Data packet is valid if the count is < Endpoint Size + 2 (includes CRC) and passes all error checking.

4. An IN is ignored by an OUT configured endpoint and vice versa.

5. The IN and OUT PID status is updated at the end of a transaction.

6. The SETUP PID status is updated at the beginning of the Data packet phase.

7. The entire Endpoint 0 mode register and the count register are locked from CPU writes at the end of any transaction to that
endpoint in which either an ACK is transferred or the mode bits have changed. These registers are only unlocked by a CPU
read of these registers, and only if that read happens after the transaction completes. This represents about a 1-µs window in
which the CPU is locked from register writes to these USB registers. Normally, the firmware should perform a register read at
the beginning of the Endpoint ISRs to unlock and get the mode register information. The interlock on the Mode and Count
registers ensures that the firmware recognizes the changes that the SIE might have made during the previous transaction.

Table 19-2. Decode table for Table 19-3: “Details of Modes for Differing Traffic Conditions”

Properties of incoming packet

Encoding Status bits What the SIE does to Mode bits

PID Status bits Interrupt?

End Point Mode
End Point
Mode

3 2 1 0 Token count buffer dval DTOG DVAL COUNT Setup In Out ACK 3 2 1 0 Response Int

Setup

In

Out

The validity of the received data

The quality status of the DMA buffer

The number of received bytes Acknowledge phase completed

Legend: UC: unchanged TX: transmit TX0: transmit 0-length packet

x: don’t care RX: receive

available for Control endpoint only

CY7C64013
 CY7C64113PRELIMINARY

38

Table 19-3. Details of Modes for Differing Traffic Conditions (see Table 19-2 for the decode legend)

End Point Mode PID Set End Point Mode
3 2 1 0 token count buffer dval DTOG DVAL COUNT Setup In Out ACK 3 2 1 0 response int

Setup Packet (if accepting)
See Table 19-1 Setup <= 10 data valid updates 1 updates 1 UC UC 1 0 0 0 1 ACK yes

See Table 19-1 Setup > 10 junk x updates updates updates 1 UC UC UC NoChange ignore yes

See Table 19-1 Setup x junk invalid updates 0 updates 1 UC UC UC NoChange ignore yes

Disabled

0 0 0 0 x x UC x UC UC UC UC UC UC UC NoChange ignore no

Nak In/Out

0 0 0 1 Out x UC x UC UC UC UC UC 1 UC NoChange NAK yes

0 0 0 1 In x UC x UC UC UC UC 1 UC UC NoChange NAK yes

Ignore In/Out

0 1 0 0 Out x UC x UC UC UC UC UC UC UC NoChange ignore no

0 1 0 0 In x UC x UC UC UC UC UC UC UC NoChange ignore no

Stall In/Out

0 0 1 1 Out x UC x UC UC UC UC UC 1 UC NoChange Stall yes

0 0 1 1 In x UC x UC UC UC UC 1 UC UC NoChange Stall yes

Control Write
Normal Out/premature status In

1 0 1 1 Out <= 10 data valid updates 1 updates UC UC 1 1 1 0 1 0 ACK yes

1 0 1 1 Out > 10 junk x updates updates updates UC UC 1 UC NoChange ignore yes

1 0 1 1 Out x junk invalid updates 0 updates UC UC 1 UC NoChange ignore yes

1 0 1 1 In x UC x UC UC UC UC 1 UC 1 NoChange TX 0 yes

NAK Out/premature status In

1 0 1 0 Out <= 10 UC valid UC UC UC UC UC 1 UC NoChange NAK yes

1 0 1 0 Out > 10 UC x UC UC UC UC UC UC UC NoChange ignore no

1 0 1 0 Out x UC invalid UC UC UC UC UC UC UC NoChange ignore no

1 0 1 0 In x UC x UC UC UC UC 1 UC 1 NoChange TX 0 yes

Status In/extra Out

0 1 1 0 Out <= 10 UC valid UC UC UC UC UC 1 UC 0 0 1 1 Stall yes

0 1 1 0 Out > 10 UC x UC UC UC UC UC UC UC NoChange ignore no

0 1 1 0 Out x UC invalid UC UC UC UC UC UC UC NoChange ignore no

0 1 1 0 In x UC x UC UC UC UC 1 UC 1 NoChange TX 0 yes

Control Read
Normal In/premature status Out

1 1 1 1 Out 2 UC valid 1 1 updates UC UC 1 1 NoChange ACK yes

1 1 1 1 Out 2 UC valid 0 1 updates UC UC 1 UC 0 0 1 1 Stall yes

1 1 1 1 Out !=2 UC valid updates 1 updates UC UC 1 UC 0 0 1 1 Stall yes

1 1 1 1 Out > 10 UC x UC UC UC UC UC UC UC NoChange ignore no

1 1 1 1 Out x UC invalid UC UC UC UC UC UC UC NoChange ignore no

1 1 1 1 In x UC x UC UC UC UC 1 UC 1 1 1 1 0 ACK (back) yes

Nak In/premature status Out

1 1 1 0 Out 2 UC valid 1 1 updates UC UC 1 1 NoChange ACK yes

1 1 1 0 Out 2 UC valid 0 1 updates UC UC 1 UC 0 0 1 1 Stall yes

1 1 1 0 Out !=2 UC valid updates 1 updates UC UC 1 UC 0 0 1 1 Stall yes

1 1 1 0 Out > 10 UC x UC UC UC UC UC UC UC NoChange ignore no

1 1 1 0 Out x UC invalid UC UC UC UC UC UC UC NoChange ignore no

1 1 1 0 In x UC x UC UC UC UC 1 UC UC NoChange NAK yes

Status Out/extra In

0 0 1 0 Out 2 UC valid 1 1 updates UC UC 1 1 NoChange ACK yes

0 0 1 0 Out 2 UC valid 0 1 updates UC UC 1 UC 0 0 1 1 Stall yes

0 0 1 0 Out !=2 UC valid updates 1 updates UC UC 1 UC 0 0 1 1 Stall yes

CY7C64013
 CY7C64113PRELIMINARY

39

End Point Mode PID Set End Point Mode
3 2 1 0 token count buffer dval DTOG DVAL COUNT Setup In Out ACK 3 2 1 0 response int

0 0 1 0 Out > 10 UC x UC UC UC UC UC UC UC NoChange ignore no

0 0 1 0 Out x UC invalid UC UC UC UC 1 UC UC NoChange ignore no

0 0 1 0 In x UC x UC UC UC UC 1 UC UC 0 0 1 1 Stall yes

Out endpoint
Normal Out/erroneous In

1 0 0 1 Out <= 10 data valid updates 1 updates UC UC 1 1 1 0 0 0 ACK yes

1 0 0 1 Out > 10 junk x updates updates updates UC UC 1 UC NoChange ignore yes

1 0 0 1 Out x junk invalid updates 0 updates UC UC 1 UC NoChange ignore yes

1 0 0 1 In x UC x UC UC UC UC UC UC UC NoChange ignore no

(STALL[3] = 0)

1 0 0 1 In x UC x UC UC UC UC UC UC UC NoChange Stall no

(STALL[3] = 1)

NAK Out/erroneous In

1 0 0 0 Out <= 10 UC valid UC UC UC UC UC 1 UC NoChange NAK yes

1 0 0 0 Out > 10 UC x UC UC UC UC UC UC UC NoChange ignore no

1 0 0 0 Out x UC invalid UC UC UC UC UC UC UC NoChange ignore no

1 0 0 0 In x UC x UC UC UC UC UC UC UC NoChange ignore no

Isochronous endpoint (Out)

0 1 0 1 Out x updates updates updates updates updates UC UC 1 1 NoChange RX yes

0 1 0 1 In x UC x UC UC UC UC UC UC UC NoChange ignore no

In endpoint
Normal In/erroneous Out

1 1 0 1 Out x UC x UC UC UC UC UC UC UC NoChange ignore no

(STALL[3] = 0)

1 1 0 1 Out x UC x UC UC UC UC UC UC UC NoChange stall no

(STALL[3] = 1)

1 1 0 1 In x UC x UC UC UC UC 1 UC 1 1 1 0 0 ACK (back) yes

NAK In/erroneous Out

1 1 0 0 Out x UC x UC UC UC UC UC UC UC NoChange ignore no

1 1 0 0 In x UC x UC UC UC UC 1 UC UC NoChange NAK yes

Isochronous endpoint (In)

0 1 1 1 Out x UC x UC UC UC UC UC UC UC NoChange ignore no

0 1 1 1 In x UC x UC UC UC UC 1 UC UC NoChange TX yes

Table 19-3. Details of Modes for Differing Traffic Conditions (see Table 19-2 for the decode legend) (continued)

CY7C64013
 CY7C64113PRELIMINARY

40

20.0 Absolute Maximum Ratings

Storage Temperature ..–65°C to +150°C

Ambient Temperature with Power Applied ...0°C to +70°C

Supply voltage on VCC relative to VSS ..–0.5V to +7.0V

DC Input Voltage... –0.5V to +VCC+0.5V

DC Voltage Applied to Outputs in High Z State .. –0.5V to +VCC+0.5V

Power Dissipation ..500 mW

Static Discharge Voltage ... >2000V

Latch-up Current .. >200 mA

Max Output Sink Current into Port 0, 1, 2, 3, and DAC[1:0] Pins ... 60 mA

Max Output Sink Current into DAC[7:2] Pins .. 10 mA

21.0 Electrical Characteristics

fOSC = 6 MHz; Operating Temperature = 0 to 70°C, VCC = 4.0 to 5.25 Volts

Parameter Min. Max. Unit Conditions

General

VREF Reference Voltage 3.15 3.45 V 3.3V ±5%

Vpp Programming Voltage (disabled) –0.4 0.4 V

ICC VCC Operating Current 50 mA No GPIO source current

ISB1 Supply Current—Suspend Mode 50 µA

Iref VREF Operating Current 30 mA Note 5

Iil Input Leakage Current 1 µA any pin

USB Interface

Vdi Differential Input Sensitivity 0.2 V | (D+)–(D–) |

Vcm Differential Input Common Mode Range 0.8 2.5 V

Vse Single Ended Receiver Threshold 0.8 2.0 V

Cin Transceiver Capacitance 20 pF

Ilo Hi-Z State Data Line Leakage –10 10 µA 0 V < Vin < 3.3 V

Rext External USB Series Resistor 19 21 Ω In series with each USB pin

RUUP External Upstream USB Pull-up Resistor 1.425 1.575 kΩ 1.5 kΩ ±5%, D+ to VREG

Power On Reset

tvccs VCC Ramp Rate 0 100 ms linear ramp 0V to VCC
[4]

USB Upstream

VUOH Static Output High 2.8 3.6 V 15 kΩ ±5% to Gnd

VUOL Static Output Low 0.3 V 1.5 kΩ ±5% to VREF

ZO USB Driver Output Impedance 28 44 Ω Including Rext Resistor

General Purpose I/O (GPIO)

Rup Pull-up Resistance (typical 14 kΩ) 8.0 24.0 kΩ
VITH Input Threshold Voltage 20% 40% VCC All ports, LOW to HIGH edge

VH Input Hysteresis Voltage 2% 8% VCC All ports, HIGH to LOW edge

VOL0 Port 0,1,2 Output Low Voltage 0.4
2.0

V
V

IOL = 3 mA
IOL = 5 mA

VOL3 Port 3 Output Low Voltage 0.4
2.0

V
V

IOL = 3 mA
IOL = 8 mA

VOH Output High Voltage 2.4 mA IOH = 1.9 mA (all ports 0,1,2,3)

CY7C64013
 CY7C64113PRELIMINARY

41

Notes:
4. Power-on Reset occurs whenever the voltage on VCC is below approximately 2.5V.
5. This is based on transitions every 2 full-speed bit times on average.
6. Irange: Isinkn(15)/ Isinkn(0) for the same pin.
7. Tratio = Isink1[1:0](n)/Isink0[7:2](n) for the same n, programmed.
8. Ilin measured as largest step size vs. nominal according to measured full scale and zero programmed values.

DAC Interface

Rup DAC Pull-up Resistance (typical 14 kΩ) 8.0 24.0 kΩ

Isink0(0) DAC[7:2] Sink current (0) 0.1 0.3 mA Vout = 2.0V DC

Isink0(F) DAC[7:2] Sink current (F) 0.5 1.5 mA Vout = 2.0V DC

Isink1(0) DAC[1:0] Sink current (0) 1.6 4.8 mA Vout = 2.0V DC

Isink1(F) DAC[1:0] Sink current (F) 8 24 mA Vout = 2.0V DC

Irange Programmed Isink Ratio: max/min 4 6 Vout = 2.0V DC[6]

Tratio Tracking Ratio DAC[1:0] to DAC[7:2] 14 22 Vout = 2.0V[7]

IsinkDAC DAC Sink Current 1.6 4.8 mA Vout = 2.0V DC

Ilin Differential Nonlinearity 0.6 LSB DAC Port[8]

Parameter Min. Max. Unit Conditions

CY7C64013
 CY7C64113PRELIMINARY

42

Notes:
9. Per Table 7-6 of revision 1.1 of USB specification.
10. For 25-pF load.
11. Assumes chip select CS is asserted (LOW).

22.0 Switching Characteristics (fOSC = 6.0 MHz)

Parameter Description Min. Max. Unit

Clock Source

fOSC Clock Rate 6 ±0.25% MHz

tcyc Clock Period 166.25 167.08 ns

tCH Clock HIGH time 0.45 tCYC ns

tCL Clock LOW time 0.45 tCYC ns

USB Full Speed Signaling[9]

trfs Transition Rise Time 4 20 ns

tffs Transition Fall Time 4 20 ns

trfmfs Rise / Fall Time Matching; (tr/tf) 90 111 %

tdratefs Full Speed Date Rate 12 ±0.25% Mb/s

DAC Interface

tsink Current Sink Response Time 0.8 µs

HAPI Read Cycle Timing

tRD Read Pulse Width 15 ns

tOED OE LOW to Data Valid[10, 11] 40 ns

tOEZ OE HIGH to Data High-Z[11] 20 ns

tOEDR OE LOW to Data_Ready Deasserted[10, 11] 0 60 ns

HAPI Write Cycle Timing

tWR Write Strobe Width 15 ns

tDSTB Data Valid to STB HIGH (Data Set-up Time)[11] 5 ns

tSTBZ STB HIGH to Data High-Z (Data Hold Time)[11] 15 ns

tSTBLE STB LOW to Latch_Empty Deasserted[10, 11] 0 50 ns

Timer Signals

twatch WatchDog Timer Period 8.192 14.336 ms

CY7C64013
 CY7C64113PRELIMINARY

43

Figure 22-1. Clock Timing

Figure 22-2. USB Data Signal Timing

Figure 22-3. HAPI Read by External Interface from USB Microcontroller

CLOCK

tCYC

tCL

tCH

90%

10%

90%

10%
D−

D+

tr tr

OE (P2.5, input)

DATA (output)

STB (P2.4, input)

DReadyPin (P2.3, output)

Internal Write

Internal Addr Port0

D[23:0]
tOED tOEZ

tRD

tOEDR

CS (P2.6, input)

Int

(Shown for DRDY Polarity=0)

Interrupt Generated

(Ready)

CY7C64013
 CY7C64113PRELIMINARY

44

Figure 22-4. HAPI Write by External Device to USB Microcontroller

DATA (input)

LEmptyPin (P2.2, output)

Internal Read

Internal Addr Port0

D[23:0]

tSTBLE

tWR

tSTBZ

tDSTB

OE (P2.5, input)

CS (P2.6, input)

STB (P2.4, input)

(not empty)
(Shown for LEMPTY Polarity=0)

IntInterrupt Generated

CY7C64013
 CY7C64113PRELIMINARY

45

Document #: 38-00626-D

23.0 Ordering Information

Ordering Code
PROM
Size

Package
Name Package Type

Operating
Range

CY7C64013-SC 8 KB S21 28-Pin (300-Mil) SOIC Commercial

CY7C64013-PC 8 KB P21 28-Pin (300-Mil) PDIP Commercial

CY7C64113-PVC 8 KB O48 48-Pin (300-Mil) SSOP Commercial

24.0 Package Diagrams

48-Lead Shrunk Small Outline Package O48

51-85061-B

51-85014-B

28-Lead (300-Mil) Molded DIP P21

CY7C64013
 CY7C64113PRELIMINARY

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

24.0 Package Diagrams (continued)

28-Lead (300-Mil) Molded SOIC S21

51-85026-A

